

ÉTUDE COMPARÉE DE DEUX SYSTÈMES DE CLIMATISATION DANS LE CADRE DE LA RÉHABILITATION DES AMPHITHÉÂTRES A, B, C DE L'UNIVERSITÉ D'ABOBO-ADJAMÉ

MÉMOIRE POUR L'OBTENTION DU MASTER D'INGÉNIERIE DE L'EAU ET DE L'ENVIRONNEMENT OPTION : ÉNERGIE ET PROCÉDÉS INDUSTRIELS

Présenté et soutenu publiquement le 26 Juin 2012 par

TRAORE Moktar Patrice Didier

Travaux dirigés par : Dr SIDIBÉ Sayon, Enseignant-chercheur UTER GEI, 2iE

Ing. DOSSO Jean-François, Chef de Département Etudes

et Travaux neufs, MCT

Jury d'évaluation du stage :

Président: Ing. KOTTIN Henry

Membres et correcteurs : Dr SIDIBÉ Sayon

Ing. NOUMI Éric

Ing LAVIGNE Baptiste

Promotion [2011/2012]

DÉDICACE

Gloire A toi Père Eternel Tout-Puissant,

Toi qui m'auras soutenu pendant toutes ses années.

A Mon défunt Père,

TRAORÉ Issa

A Ma Mère AHIMAIN Georgette,

A Mes Sœurs, TRAORÉ Christiane, TRAORÉ Carole,

A mes Amis.

REMERCIEMENTS

Mes premiers remerciements iront à l'endroit de mes maîtres du 2iE, Prof. COULIBALY Y., Dr PABYAM M., Dr AZOUMAH Y., Dr BLIN J., Dr SIDIBE S. qui part la qualité de leurs enseignements, nous auront insufflé le goût de l'ingénierie et de la recherche, l'expertise que requiert notre métier et la foi dans nos capacités.

Mes pensées vont aussi à l'endroit de la Société MCT. Je remercie chaleureusement le Directeur Général M. KONE Lamine à la tête de la Société et M. DOSSO Jean-François, Chef du département Etudes et Travaux neufs, sous la direction duquel j'ai effectué ce stage. J'ai une pensée pour l'ensemble des membres du BE (Bureau d'Etude) et tout le personnel de la Société.

Je ne saurais terminer sans avoir une pensée affectueuse à l'endroit de toute la promotion du master d'ingénierie 2011-2012 du 2iE et en particulier tous les énergéticiens, ces quelques années nous auront permis de fraterniser pour la vie.

Que tous ceux qui m'auront soutenus de près ou de loin et dont les noms n'auraient pas été cités, trouve en ces quelques mots l'expression de mes sincères remerciements.

RÉSUMÉ

Une étude de la réhabilitation de la climatisation a été réalisée à l'Université Abobo-Adjamé en Côte d'Ivoire, suivant deux méthodes. La première, consiste à placer des monoblocs en toiture afin de climatiser les amphithéâtres A, B et C ayant une capacité de 1000 places et une surface de 1100 m² pour le premier et une contenance de 750 places pour une surface de 800 m² pour les 2 autres. La seconde option consiste en la réalisation d'un réseau de climatisation centrale alimentée par un groupe de production d'eau glacée. A la suite de nos investigations, il s'avère que la seconde option entraîne un COP de 3,98 cependant elle nécessite une consommation électrique 2,5 fois supérieure et des coûts d'investissements 3 fois supérieurs à celle du système de monoblocs. Ainsi la meilleure solution pour le site en l'état actuel est la climatisation par monoblocs avec un COP de 2,38. Malgré les difficultés techniques auxquelles se heurte l'installation de la climatisation centrale, elle demeure une option intéressante dans le cas d'un futur accroissement des installations de l'Université.

Mots-Clés: Bilan thermique, Monobloc roof-top, CTA, groupe frigorifique

ABSTRACT

A study on the rehabilitation of air conditioning was conducted at the University Abobo-Adjamé in Côte d'Ivoire, using two methods. The first option is to put several single package units at the top to cool the three amphitheaters A, B and C which can contain 1000 persons in a large area in order of 1100 m² for the first one and the two other have a capacity of 750 persons in an area spread on 800 m² each one. The second option involves a network of 3 handling units to cool, powered by an air-cooled Chiller which products ice water. Following our investigations, it appears that the second option is most involves a value of EER of 3,98 however it needs 2,5 times more electrical supply and 3 times more investments costs. At the present time, the best solution is the single packaged unit with an installation EER of 2,38. Despite the technical difficulties encountered by the installation of central air conditioning, it remains an attractive option in the case of a future increase in University facilities.

<u>Key words:</u> Thermal Balance, Single package Unit roof top, AHU (Air Handling Unit), Air-cooled chiller.

LISTE DES ABREVIATIONS

AFSSE: Agence Française de Sécurité **HFC:** Hydro Fluoro Carbure

Sanitaire et Environnementale

ASHRAE: American Society of Heating, **IEPF** Institut de l'Energie et de

refrigerating and Air Conditionning l'Environnement de la

Engineers Francophonie

BF: By-pass factor SHF: Sensitive Heat Factor

COP: Coefficient Of Performance V: Volume de l'amphithéâtre

CTA: Centrale de Traitement d'Air VRV: Volume de Réfrigérant

Variable

DRV: Débit de Réfrigérant Variable

NOMENCLATURE

h: Enthalpie de l'eau T: température

 \dot{m} : Débit massique ΔT : Différence de température

P: Puissance V-Ph-f: Volt- Phase- fréquence

Q: Chaleur ou gain thermique W: Chaleur

q: débit Y: humidité

INDICES

app: appareil inf: infiltration

as : Air soufflé int : intérieur

C_{amor}: Coefficient d'amortissement de lamp: lampe

l'éclairage

C_{corr}: Coefficient de corrélation lat : latente

Cond: condensation mas: massique

C_{sim.1}: Coefficient de simultanéité dépendant moy: moyenne

du nombre d'occupants

C_{sim.2}: Coefficient de simultanéité dépendant occ : occupants

du nombre d'appareils

F_c: Proportion de la surface vitrée par ra/ren: Renouvellement d'air

rapport à la fenêtre

 F_S : Coefficient global de correction de sen: sensible

l'ensoleillement

Ecl: Eclairage surf: surface

ext: extérieur tot: totale

vol: volumique

ALPHABET GREC

α : Coefficient d'absorption de la paroi

 ϵ : efficacité

 ρ : Masse volumique

τ : Taux de brassage

UNITÉS

dB: Décibel

°C : Degré Celsius

h: heure

kg: kilogramme

kW/W: kilo Watt/ Watt

m3/h: Mètre cube par heure

Pa: pascal

tr/min: Tour par minute

SOMMAIRE

Introduc	etion	1
Chapitre	E I: GÉNÉRALITÉS BIBLIOGRAPHIQUES	5
I- L	a climatisation	6
1)	Notion de confort thermique	7
2)	Le bilan thermique	7
3)	Machines frigorifiques	10
4)	Typologie des systèmes de climatisation	11
II-	Monoblocs roof top	12
III-	Climatisation centrale à eau glacée	13
Chapitre	e II: ÉTUDES TECHNICO-ÉCONOMIQUES	16
I- P	résentation du site	17
II-	Recensement de l'existant sur le site.	18
III-	Bilan thermique	22
IV-	Dimensionnement du monobloc roof top	23
1)	Conditions de soufflage	23
2)	Calcul de la pression du ventilateur de soufflage	24
3)	Sélection du monobloc	24
V-	Dimensionnement de la climatisation centrale à eau glacée	27
1)	Réseau aéraulique	28
2)	Réseau hydraulique	33
VI-	Evaluation financière des 2 systèmes de climatisation	36
VII-	Comparaisons Monoblocs-Groupes de production d'eau glacée	37
CONCL	USION	40
BIBLIO	GRAPHIE	41
ΥI_	Anneves	42

LISTE DES TABLEAUX

Tableau 1: Surfaces vitrées.	19
Tableau 2: Surfaces latérales opaques	19
Tableau 3: Surfaces opaques restantes.	20
Tableau 4: Eléments recensés dans les amphithéâtres.	21
Tableau 5: Conditions climatiques de calculs	22
Tableau 6: Valeurs des facteurs sensibles et des températures de soufflage	23
Tableau 7: Débits de soufflage par amphithéâtre	23
Tableau 8: Pression de soufflage sur le tronçon le plus chargé par amphithéâtre.	24
Tableau 9: Critères de choix des monoblocs	24
Tableau 10: Caractéristiques du monobloc 50 TJ 028.	25
Tableau 11 : Tourelles d'extraction CARHIS	26
Tableau 12: Bilan des monoblocs à installer en toiture par amphithéâtre	27
Tableau 13: Propriétés de l'air soufflé dans les amphithéâtres	28
Tableau 14: Propriétés du mélange air neuf-air recyclé	29
Tableau 15: Propriétés de la batterie froide.	31
Tableau 16: Débit et Pressions des ventilateurs des CTA	31
Tableau 17: Fiche technique CTA CARRIER 39CI 28.	31
Tableau 18: Fiche technique CTA CARRIER 39CI 27.	32
Tableau 19: Débit et puissance du groupe de production d'eau glacée	34
Tableau 20: Bilan des CTA à installer en toiture.	35
Tableau 21: Fiche technique de la pompe hydraulique DXE 80-50.	36
Tableau 22: Comparaison Monoblocs-CTA.	38
Tableau 23: Valeurs du COP de l'installation pour 4, 5, 6 amphithéâtres à climatiser	38

LISTE DES FIGURES

Figure 1: Organigramme de MCT	4
Figure 2: Schéma de principe de la climatisation.	6
Figure 3: Monobloc CARRIER	13
Figure 4: Schéma d'un monobloc	13
Figure 5: Schémas d'une CTA	14
Figure 6: Modèle CTA CARRIER 39 SQC.	15
Figure 7: Refroidisseur de liquide à condensation par eau CARRIER 19XR	15
Figure 8: Plan de masse du site de l'Université d'Abobo-Adjamé.	17
Figure 9: Dimensions amphi A.	18
Figure 10: Dimensions Amphis B et C.	18
Figure 11: Façade extérieure et surfaces opaques considérées.	19
Figure 12: Réseau de gaines de l'amphithéâtre A.	20
Figure 13: Réseau de gaines des amphithéâtres B et C.	20
Figure 14: Bouche de reprise et de soufflage sur le toit	21
Figure 15: Bouche de reprise et de soufflage dans l'amphithéâtre.	21
Tableau 1: Surfaces vitrées.	19
Tableau 2: Surfaces latérales opaques.	19
Tableau 3: Surfaces opaques restantes.	
Tableau 4: Eléments recensés dans les amphithéâtres.	21
Tableau 5: Conditions climatiques de calculs.	22
Tableau 6: Valeurs des facteurs sensibles et des températures de soufflage	23
Tableau 7: Débits de soufflage par amphithéâtre	23
Tableau 8: Pression de soufflage sur le tronçon le plus chargé par amphithéâtre	24
Tableau 9: Critères de choix des monoblocs	24
Tableau 10: Caractéristiques du monobloc 50 TJ 028.	25
Tableau 11 : Tourelles d'extraction CARHIS	26
Tableau 12: Bilan des monoblocs à installer en toiture par amphithéâtre	27
Tableau 13: Propriétés de l'air soufflé dans les amphithéâtres	28
Tableau 14: Propriétés du mélange air neuf-air recyclé	29
Tableau 15: Propriétés de la batterie froide.	31
Tableau 16: Débit et Pressions des ventilateurs des CTA.	31

Tableau 17: Fiche technique CTA CARRIER 39CI 28.	31
Tableau 18: Fiche technique CTA CARRIER 39CI 27.	32
Tableau 19: Débit et puissance du groupe de production d'eau glacée	34
Tableau 20: Bilan des CTA à installer en toiture.	35
Tableau 21: Fiche technique de la pompe hydraulique DXE 80-50.	36
Tableau 22: Comparaison Monoblocs-CTA.	38
Tableau 23: Valeurs du COP de l'installation pour 4, 5, 6 amphithéâtres à climatiser	38
Tableau 1: Surfaces vitrées.	
Tableau 2: Surfaces latérales opaques	
Tableau 3: Surfaces opaques restantes.	20
Tableau 4: Eléments recensés dans les amphithéâtres.	
Tableau 5: Conditions climatiques de calculs	22
Tableau 6: Valeurs des facteurs sensibles et des températures de soufflage	
Tableau 7: Débits de soufflage par amphithéâtre.	23
Tableau 8: Pression de soufflage sur le tronçon le plus chargé par amphithéâtre	24
Tableau 9: Critères de choix des monoblocs	24
Tableau 10: Caractéristiques du monobloc 50 TJ 028.	25
Tableau 11 : Tourelles d'extraction CARHIS	26
Tableau 12: Bilan des monoblocs à installer en toiture par amphithéâtre.	27
Tableau 13: Propriétés de l'air soufflé dans les amphithéâtres	28
Tableau 14: Propriétés du mélange air neuf-air recyclé	29
Tableau 15: Propriétés de la batterie froide.	31
Tableau 16: Débit et Pressions des ventilateurs des CTA	31
Tableau 17: Fiche technique CTA CARRIER 39CI 28.	31
Tableau 18: Fiche technique CTA CARRIER 39CI 27.	32
Tableau 19: Débit et puissance du groupe de production d'eau glacée	34
Tableau 20: Bilan des CTA à installer en toiture.	35
Tableau 21: Fiche technique de la pompe hydraulique DXE 80-50.	36
Tableau 22: Comparaison Monoblocs-CTA.	38
Tableau 23: Valeurs du COP de l'installation pour 4, 5, 6 amphithéâtres à climatiser	38

Introduction générale

a) Contexte du sujet

En Afrique subsaharienne, la climatisation constitue l'un des postes de consommation électrique les plus énergivores. Ainsi lors des périodes sèches, l'on constate des pics de consommation électrique très élevés qui génèrent des coûts d'exploitation onéreux quand on sait que les principaux édifices ont été conçus à une période où la question énergétique n'était pas aussi impérieuse qu'actuellement^[1]. Aussi les choix du système de climatisation, de dimensionnement et de fonctionnement des appareils frigorifiques peuvent s'avérer cruciaux dans le bilan économique et financier de structures subventionnées ou à budget moyen telles que les universités.

Dans notre étude, nous sommes intéressés à la réfection de la climatisation de l'Université Abobo-Adjamé en Côte d'Ivoire. Aucune information technique sur le système en place initialement ne nous a été fournie hormis les installations sur le site (socles, réseau de gaine). Aussi un travail de recherche d'informations a été le préalable avant tout dimensionnement. Puis le choix entre la climatisation par monoblocs ou la climatisation centrale avec un groupe de production d'eau glacée s'est imposé à nous.

Dans le présent mémoire, nous rappellerons, dans une première partie, les principes de la climatisation tout en se focalisant sur la climatisation par monoblocs en toiture et la climatisation centralisée avec un groupe de production d'eau glacée.

Ensuite, dans une seconde partie nous donnerons les détails de l'étude technique que nous avons réalisée selon ces 2 options, avec l'ensemble des méthodes de dimensionnement, les résultats obtenus et les appareils choisis.

Enfin, nous terminerons en présentant les avantages de chacun des cas et les perspectives qui s'offrent au site.

b) Problématique

Dans cette étude, Nous ne disposons que de très peu d'informations sur les installations existantes ou sur les appareils installés initialement, aussi de nombreuses questions se sont posées à nous:

- Comment acquérir des données fiables pouvant servir à une évaluation juste de la puissance frigorifique à installer ?
- Est-ce que l'installation de monobloc en toiture est viable dans le cadre d'infrastructure comme les amphithéâtres? A quelles difficultés techniques devrons-nous faire face ?
- Est-ce que la mise en place d'une climatisation centralisée avec un groupe de production d'eau glacée est envisageable dans ce cas d'étude ? Quelles seront les obstacles ?
- Quels sont les avantages et les inconvénients de ces des deux systèmes ?
- Quelles sont les solutions d'économie d'énergies applicables à ces systèmes ?

c) Objectifs

Les objectifs visés dans le cadre de cette étude sont de choisir un système de climatisation adapté pour un site déjà existant. Le choix se fondera sur des critères techniques et aussi sur les résultats issus des dimensionnements des différents cas en y incluant des notions environnementales et d'économies d'énergie.

d) Méthodologie de travail

Une organisation a été mise en place pour répondre le plus efficacement aux nombreuses questions que soulèvent ce cas d'étude. Cette méthodologie s'articule autour des différents points :

- 1. Le recensement de l'existant afin de disposer de données fiables pouvant servir aux différents dimensionnements.
- 2. L'étude technique de l'installation de monobloc en toiture sur les amphithéâtres.
 - Dimensionnement (Appareil, puissance frigorifique, débit d'air soufflé, ventilateur de soufflage).
 - Choix des monoblocs.
- 3. L'étude technique de l'installation d'une climatisation centralisée avec un groupe de production d'eau glacée.

- Dimensionnement (Appareil, puissance frigorifique des CTA et du groupe frigorifique, débit d'air soufflé, débit d'eau glacée, pompe hydraulique, ventilateur de soufflage, canalisations);
- Choix des CTA, du groupe de production d'eau glacée, de la pompe hydraulique.
- 4. Etude énergétique comparée des 2 solutions.

e) Présentation de l'Entreprise

MCT SA; Manutention, Climatisation et Technique; est une société anonyme créée en 1984 exerçant dans le domaine de la climatisation, l'assistance technique, le dépannage et la maintenance du matériel industriel de réfrigération et d'électricité.

La société MCT dispose à la fois d'un capital de 325 millions de FCFA et d'un savoir-faire de grande qualité qui ont fait d'elle la représentante en Afrique de l'Ouest et en Afrique Centrale de la multinationale CARRIER, leader mondial de la climatisation. Cela lui confère une place importante avec des réalisations notables telles que la réhabilitation de la climatisation de l'Hôtel Ivoire à Abidjan (Côte d'Ivoire), du siège de la banque SGBB (Bénin), l'installation de la climatisation du stade de Malabo ou encore celle du ministère de l'Intérieur de Guinée équatoriale.

• Organigramme et fonctionnement

MCT compte à son actif plus de 70 employés. Au sein de cette société, l'accent est mis sur le rapprochement et le contact direct entre les employés et les directions des différents départements. Cela a pour effet d'améliorer la productivité de chaque employé.

La société MCT se structure autour de :

- ➤ Un Conseil d'Administration représenté par un PCA ;
- Une direction générale ;
- ➤ Un service administratif, financier et comptable ;
- ➤ Un service commercial;
- ➤ Un service d'exploitation ;
- > Un service export;
- ➤ Un département études et travaux neufs en charge de l'aspect technique c'est-à-dire des études de faisabilité et d'exécution des projets. C'est au sein du bureau d'études de ce département que nous avons effectué notre stage.

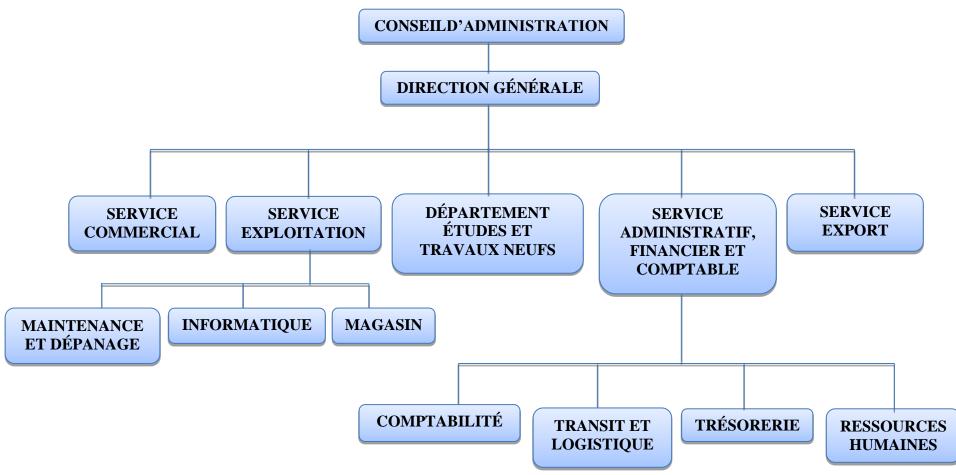


Figure 1: Organigramme de MCT.

Chapitre I: **GÉNRALITÉS BIBLIOGRAPHIQUES**

I- La climatisation

La climatisation regroupe l'ensemble des procédés visant à conditionner l'air ambiant d'un espace en contrôlant et en maintenant la température, l'humidité, le mouvement de l'air, le degré sonore et la différence de pression, tout en veillant à la santé et au confort des occupants de la pièce et au bon fonctionnement des appareils qui s'y trouvent^[2].

Ainsi cette science fait appel à quatre transformations thermodynamiques de base que sont :

- le chauffage;
- le refroidissement ;
- l'humidification;
- la déshumidification;

auxquelles l'on rajoute fréquemment des opérations telles que: la purification et la recirculation de l'air^[3].

Dans la pratique, ces opérations s'effectuent grâce aux différents transferts de chaleur ou de frigorie entre l'air ambiant du local, le fluide frigorigène et l'air extérieur. Ainsi l'air du local échange des frigories avec le fluide de travail qui se vaporise. L'effet résultant de cet échange est l'abaissement de la température du local. Le fluide de travail, à son tour, échange la chaleur emmagasinée avec l'air extérieur. L'effet résultant est la condensation du fluide de travail et la hausse de température dans l'environnement de l'échangeur extérieur.

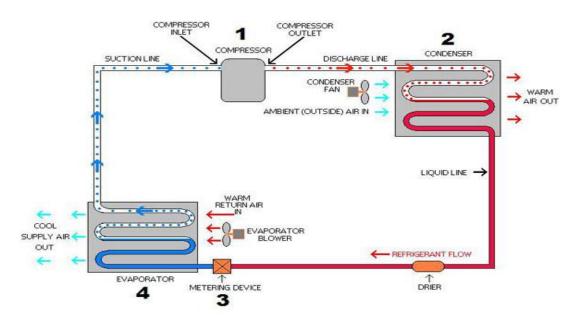


Figure 2: Schéma de principe de la climatisation.

1) Notion de confort thermique

Le confort thermique est la situation dans laquelle, un individu se trouve lorsqu'il est placé dans une ambiance où il ne ressent ni froid, ni chaud. C'est une notion subjective qui dépend à la fois de la température, de l'humidité, de la vitesse du vent dans le local. Elle dépend aussi de la position géographique. En Côte d'Ivoire, la zone de confort dans un local se situe à 24°C pour une humidité relative de 60%^[5].

2) Le bilan thermique

Le bilan thermique permet de déterminer les charges auxquels sont soumis des locaux afin de quantifier la puissance frigorifique à installer. Plusieurs méthodes de calculs existent notamment la méthode du choix arbitraire des puissances, la méthode des surfaces, les méthodes simplifiées, les méthodes détaillées. Dans notre étude, nous nous sommes intéressés à la méthode développée par MESS J.Y. à travers sa feuille de calcul THERMEXCEL, c'est une méthode simplifiée dont la mise en œuvre est facile assez proche de celle développée par l'IEPF pour l'Afrique subsaharienne.

Le calcul du bilan thermique des locaux s'effectue en prenant en compte les charges externes et internes.

a) Les charges externes

Ce sont l'ensemble des gains de chaleur provenant de l'extérieur du local^[6, 7]. Ces charges dépendent :

- Des conditions climatiques (température intérieure et extérieure, humidités relatives, positions géographiques);
- Des apports solaires provenant par les parois vitrées extérieures :

$$Q_{Sol} = F_S * F_C * S * Q_{ens} (W)$$
(1)

où F_s est le Facteur solaire coefficient global de correction d'ensoleillement fonction du type de vitrages et de l'ensoleillement sans store (Annexe A.); F_c représente la proportion de la surface vitrée par rapport à la fenêtre (F_c = 1 à 0,96 pour un vitrage nu ou un châssis métallique, 0,85 pour un châssis en bois) ; S est la Surface de la fenêtre (m^2) ; et Q_{ens} sont les gains solaires par ensoleillement direct et diffus en fonction du moment considéré, de la situation géographique, de l'orientation et des caractéristiques des parois vitrées (W/m^2) (Annexe A).

• Des apports par conduction provenant des parois opaques et vitrées^[8, 9], qui s'écrivent :

$$Q_{Cond} = \alpha * U * S * (T_{surf} - T_{amb}) (W)$$
(2)

où α indique le coefficient d'absorption de la paroi (α =1 pour une couleur sombre, 0,78 pour une couleur moyenne, 0,55 pour une couleur claire) ; U est le coefficient de transmission thermique de la paroi (Annexe A); S exprime la surface de la paroi considérée (m^2) ; T_{surf} et T_{amb} sont les températures de la surface extérieure et de l'environnement extérieur au local.

• Des gains par renouvellement d'air, qui sont obtenus par la formule :

$$Q_{Ren} = Q_{ra,occ} + Q_{inf} + Q_{ra} (W)$$
(3)

où $Q_{ra,occ}$ représente les gains de chaleur du à l'air hygiénique des occupants, Q_{inf} les gains dus aux infiltrations d'air et Q_{ra} ceux provenant du renouvellement d'air du local.

Chacune de ces chaleurs se calculent par addition de chaleurs sensibles (Q_{sen}) et latentes (Q_{lat}) .

La chaleur sensible s'exprime par :

$$Q_{sen} = 0.284 * m * (T_{ext} - T_{int}) (W)$$
(4)

où m représente le débit d'air entrant.

Le terme 0,284 représente le rapport de la capacité calorifique à pression constante de l'air sous 1 atmosphère égale environ à 1032 J/kg. K sur 3600; coefficient de conversion des heures en secondes et s'exprime en J/kg.K.

La chaleur latente, quant à elle se calcule par la formule :

$$Q_{lat} = 0.68 * m * (y_{ext} - y_{int}) (W)$$
(5)

Le terme 0,68 représente le rapport de la chaleur latente de vaporisation de l'eau sous 1 atmosphère égale à 2449 kJ/kg à 28°C sur 3600; coefficient de conversion des heures en secondes et s'exprime en J/kg;

La Charge totale externe est donc la somme des apports de chaleur provenant de l'extérieur:

$$Q_{Tot Ext} = Q_{sol} + Q_{cond} + Q_{Ren} (W)$$
 (6)

b) Les charges internes

Ce sont l'ensemble des gains de chaleur provenant de l'intérieur du local^[6], ^[7]. Ainsi on dénombre :

• Les gains internes liés aux occupants :

$$Q_{Occ,int} = C_{sim,1} * C_{corr} * N * (W_{sen} + W_{lat}) (W)$$

$$(7)$$

où $C_{\text{sim},1}$ et C_{corr} sont, respectivement les coefficients de simultanéité dépendant de l'activité et du nombre de personnes présentes dans le local ; et le coefficient de correction $(C_{\text{corr}} = 1 \text{ public mixte}; 0,85 \text{ pour les hommes}; 0,15 \text{ pour les femmes et 0,25 pour les enfants}). W_{sen} et W_{lat} représentent, respectivement, les chaleurs sensible et latente produites par les occupants de la pièce. Généralement, on prend comme valeur de chaleur sensible et latente 71 W et 46 W par occupants présents dans la pièce et effectuant une activité intellectuelle.$

• Les gains associés à l'éclairage, qui sont indiqués par :

$$Q_{Ecl} = 1.25 * C_{amor} * Q_{lamp} * \Delta h \text{ (W)}$$

où 1,25 est un coefficient de correction relatif au ballast, il représente les 25 % de puissance électrique en plus requis par l'action du ballast; C_{amor} représente le coefficient d'amortissement dépendant à la fois du type, de la durée et du mode de fonctionnement de l'éclairage; Q_{lamp} est la puissance totale des lampes et Δh est le nombre d'heures d'allumage des lampes. Dans notre dimensionnement, nous avons considéré une durée de fonctionnement de 8 heures.

• Les gains relatifs aux appareillages. Ils sont pris en compte à travers l'expression :

$$Q_{App} = C_{sim,2} * Q_{surf} * S (W)$$
(8)

où $C_{sim,2}$ est le coefficient de simultanéité fonction du nombre d'appareils évoluant en même temps et Q_{surf} , la chaleur dégagée par unité de surface (W/m²).

La charge totale interne, qui est la somme des chaleurs crées dans le local, s'obtient par la formule :

$$Q_{Tot Int} = Q_{Occ,int} + Q_{Ecl} + Q_{App} (W)$$
(9)

La charge thermique du local, qui est aussi la puissance frigorifique à apporter, est la somme des charges externes et internes :

$$Q_{Tot} = (Q_{Tot\ Int} + Q_{Tot\ Ext}) (W) \tag{10}$$

Afin de faciliter nos calculs, des hypothèses ont été posées :

- Les apports solaires par le toit ont été minimisés devant les apports par les vitres car la toiture est isolée par des plaques de Pax alu.
- Les infiltrations et renouvellements d'air ont été minimisés devant la quantité d'air à renouveler pour le bien-être des occupants de la salle (20 m³/h par personne).

3) Machines frigorifiques

Les machines frigorifiques, grâce au cycle thermodynamique qu'elles imposent au fluide frigorigène génèrent la production du froid^[10].

Les principaux composants d'une machine frigorifique sont :

Le compresseur.

Le compresseur aspire le fluide frigorigène gazeux (à faible de température et à basse pression) issu de l'évaporateur, le comprime à un niveau plus élevé de température et de pression puis le refoule vers le condenseur.

La compression peut se faire de façon mécanique, par absorption ou par adsorption.

En général, on utilise 2 types de compresseurs :

- les compresseurs volumétriques, dont la compression est obtenue par réduction du volume intérieur de la chambre de compression;
- les compresseurs centrifuges, qui génèrent la hausse de pression grâce à l'entrainement dynamique d'une roue à aubes.

Le condenseur.

C'est un échangeur de chaleur dont le rôle est de transférer la chaleur libérée par le fluide frigorigène en se condensant au fluide de refroidissement. Selon le fluide de refroidissement, on distingue deux types de condenseur :

- ❖ Les condenseurs à air.
- Les condenseurs à eau (en circuit fermé ou ouvert).

Le détendeur.

Le détendeur permet de réduire la pression du fluide frigorigène liquide (création de pertes de charge) issu du condenseur afin qu'il se vaporise à basse température dans l'évaporateur. Les détendeurs thermostatiques régulent aussi la quantité de fluide frigorigène liquide arrivant à l'évaporateur en fonction des besoins de froid.

L'évaporateur.

L'évaporateur est un échangeur de chaleur dans lequel le fluide frigorigène liquide à bas niveau de température et de pression absorbe la chaleur du milieu à refroidir (air ou eau) à pression constante en se vaporisant. Cette absorption de chaleur s'effectue en deux étapes :

- l'évaporation du fluide frigorigène liquide ;
- la surchauffe des vapeurs issues de l'évaporation du fluide frigorigène liquide.

Les évaporateurs sont soit à détente sèche (système de surchauffe du fluide frigorigène) ou à regorgement (surfaces d'échange du fluide frigorigène immergées dans un fluide liquide). On distingue :

- Les évaporateurs à air
- Les évaporateurs à eau

4) Typologie des systèmes de climatisation

La classification des systèmes de climatisation se fait par le croisement de deux critères : la technique employée et le lieu de production de froid^[11]. Les techniques les plus courantes sont celles employant :

- soit un générateur thermodynamique à compression mécanique ou à absorption ;
- soit une centrale de traitement d'air.

De même, le lieu de production du froid comprend plusieurs familles. Ainsi on compte :

- les climatiseurs individuels. Ce sont des appareils autonomes.
- Les systèmes centralisés ou semi-centralisés. Ils se composent de groupes frigorifiques présents dans des locaux techniques disposant d'un réseau de distribution « tout air » ou « tout eau » vers les locaux à climatiser;
- Les systèmes décentralisés. Ils se composent d'unités présentes dans chaque local à climatiser et reliés entre eux par un réseau d'eau.

Ainsi la classification des systèmes de climatisation comprend :

- Les climatiseurs individuels. Ce sont des appareils monoblocs ou bi-blocs (split-system) à détente directe c'est-à-dire que le froid est produit dans l'unité de climatisation placée dans le local à climatiser. Ils sont employés généralement dans les secteurs tertiaires et résidentiels. Parmi ceux-ci, on compte :
 - Les climatiseurs air/air;
 - Les climatiseurs à condensation à eau;
 - Les centrales autonomes à condensation par air ou par eau;
 - Les monoblocs roof-top.
- La climatisation centralisée ou semi-centralisée « tout air ». Dans ce cas de figure, une CTA est associée à 4 réseaux d'air : un pour l'amenée d'air neuf, un second pour la

reprise de l'air du local, un troisième pour le soufflage de l'air de mélange et un dernier réseau pour l'extraction de l'air. Cette famille regroupe :

- les systèmes centralisés à débit d'air constant ;
- les systèmes semi-centralisés à débit d'air constant ;
- les systèmes tout air à débit variable ;
- Les unités terminales de traitements d'air.
- La climatisation centralisée ou semi-centralisée « tout eau ». Dans ce modèle, des groupes refroidisseurs de liquide produisent de l'eau glacée qui est acheminée vers les locaux à climatiser par l'intermédiaire d'un réseau hydraulique ; la diffusion de l'air frais étant assurée par les ventilo-convecteurs, les unités terminales, les planchers rafraichissants et les poutres froides.
- La climatisation décentralisée sur boucle d'eau. Un évaporateur eau/air puise les frigories nécessaires à la climatisation du local sur une boucle d'eau glacée commune.

II- Monoblocs roof top

Le roof top est un appareil de climatisation monobloc implanté en toiture du local à climatiser qui ne convient qu'au traitement des locaux de grandes surfaces à grand volume d'air, telles que les supermarchés ou les entrepôts, sans cloisonnement et formées d'une seule pièce^[12].Il présente l'avantage d'avoir tous les équipements nécessaires au fonctionnement et ceci dans une seule enveloppe ne nécessitant qu'un raccordement électrique et aéraulique.

Les composants du monobloc roof top sont :

- Un circuit frigorifique complet avec les protections du circuit ;
- Un ventilateur de soufflage (moto ventilateur) comprenant un ensemble turbine et courroie;
- Un coffret électrique complet, sectionneur, télécommande, régulation par automate programmable ;
- Un ensemble de filtrations sur l'air repris et l'air neuf
- un système de détection de l'encrassement sur les filtres ;
- Un caisson de mélange
- Dispositif de pièges à sons intégré (silencieux de soufflage).

Généralement, on divise le roof top en 2 compartiments principaux :

- Le premier est utilisé pour le traitement d'air du volume à climatiser. C'est un caisson de type centrale d'air avec élément de filtration (filtres et pré-filtres), ventilateur de reprise, dispositif de mélange d'air neuf et d'air repris. Le taux d'air neuf est contrôlé par un caisson de mélange.
- Le second comporte la génération de froid avec les compresseurs, batterie froide à détente directe (ou « DX coil ») et le ventilateur de soufflage.

Le rooftop intègre les dernières technologies assurant une efficacité énergétique maximale : compresseurs scroll, ventilateur à haute efficacité, commutation électronique, module free-cooling (système par lequel l'air frais extérieur est utilisé pour satisfaire la demande de rafraîchissement du local lorsque la température extérieure est inférieure à celle de l'air repris, permettant des économies d'énergie), lampes UV pour renforcer la qualité de l'air.

Batterie condenseur

UF

Armoire eléctrique

Ventilateur de traitement

Registre
Air neuf

Filtres

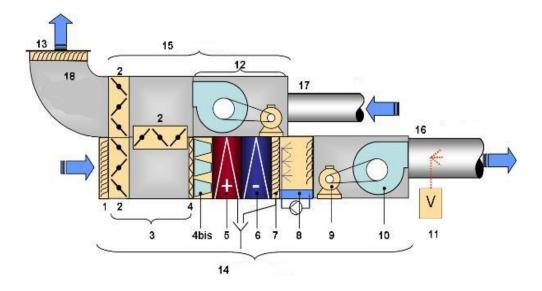
Figure 3: Monobloc CARRIER 50TJ.

Figure 4: Schéma d'un monobloc roof top horizontal.

Ventilateur de

III- Climatisation centrale à eau glacée

Dans ce cas de figure, un groupe frigorifique de production d'eau glacée est utilisé afin d'alimenter la batterie froide d'une centrale de traitement d'air (CTA), qui va approvisionner le local en air frais. Le refroidissement du condenseur se fait par de l'air grâce à des groupes moto-ventilateurs ou par de l'eau qui est refroidie par des tours de refroidissement à circuit ouvert ou fermé.


La CTA.

Une centrale de traitement d'air est un équipement qui modifie la température et l'hygrométrie de l'air soufflé dans un local afin d'assurer les fonctions isolées ou cumulées de chauffage, de climatisation, de ventilation et traitement d'air^[12].

La CTA est constituée d'un ensemble dits caissons (caissons de soufflage et de reprise) qui ont chacun un rôle en rapport avec la transformation de l'air à envoyer dans le local. Ceux-ci peuvent être isolés thermiquement et acoustiquement. Les caissons assurent la filtration grâce aux pré-filtres et filtres plans ou à des poches placés en amont du caisson de mélange (ou des batteries dans le cas de CTA à 100% d'air neuf), le refroidissement de l'air et sa déshumidification par les batteries froides (batterie à eau glacée ou à détente directe) et l'humidification, effectuée par pulvérisation ou par humidification à vapeur vive. Si cela est nécessaire, l'on rajoute une batterie électrique afin de réchauffer l'air.

La CTA peut fonctionner également avec un ventilateur à débit variable. Les consommations électriques sont alors optimisées en fonctions des besoins.

Les différents éléments d'une CTA sont représentés sur la Figure 5.

Numérotation

1-Grille de prise d'air neuf ; 2-Pré-filtes; 3-Caisson de mélange; 4-filtres ; 4-fitres à poches; 5-Batterie chaude; 6-Batterie froide ; 7-Pare-gouttelettes ; 8-Humidificateur à eau recyclée; 9- moteur; 10-Ventilateur; 11-Humidificateur à vapeur; 12-Groupe moto ventilateur de reprise; 13-Grille de rejet d'air extrait; 14-Caisson de soufflage ; 15-Caisson de reprise ; 16-Gaine de soufflage ; 17-Gaine de reprise ; 18-Gaine d'extraction.

Figure 5: Schémas d'une CTA.

Figure 6: Modèle CTA CARRIER 39 SQC.

Figure 7: Refroidisseur de liquide à condensation par eau CARRIER 19XR.

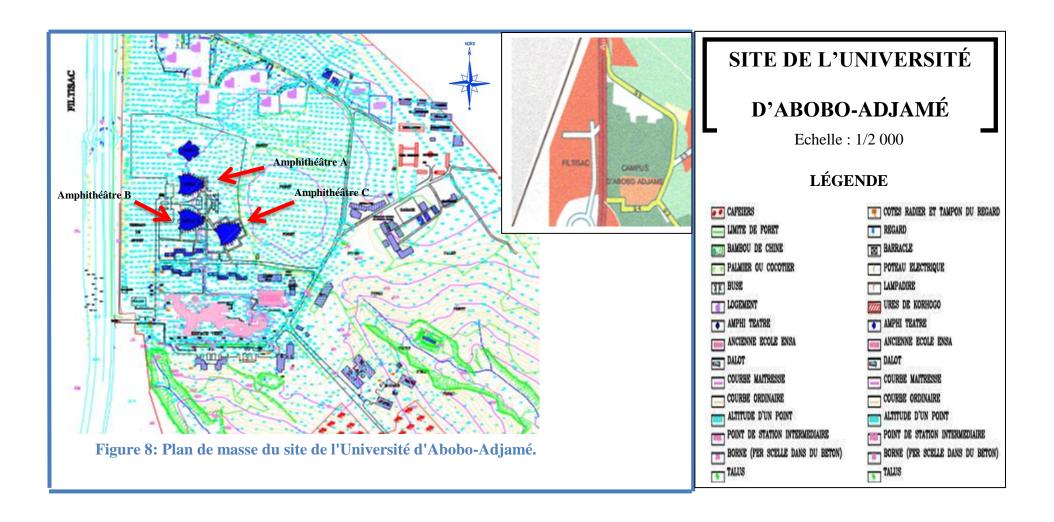
Le groupe de production d'eau glacée.

Le groupe de production d'eau glacée est un appareil frigorifique qui permet de refroidir l'eau qui lui est fournie grâce à son évaporateur par échange de frigorie avec le fluide frigorigène (HFC 407C, 410A,...). La compression du fluide frigorigène est assurée par des compresseurs de type scroll, à vis, à piston ou centrifuge. L'eau glacée sert au refroidissement et/ou à la déshumidification de l'air dans la CTA^[3].

Les refroidisseurs actuels peuvent fournir de l'eau allant de 3 °C à 7°C, pour des applications de climatisation (des températures inférieures peuvent être atteintes cependant elles peuvent entrainer le gel de l'eau dans l'évaporateur à moins d'utiliser des additifs tels que le glycol ou le sel), les puissances frigorifiques pouvant aller jusqu'à 5300 kW. Ils ont généralement des COP élevés, supérieurs ou égaux à 4.

➤ Eléments terminaux de diffusion (grilles de soufflage, de reprise, diffuseurs) et les éléments de régulations (thermostats, manomètres).

La mise en place de ce type de la climatisation centrale à eau glacée doit prendre en compte 2 systèmes :


- Le système aéraulique (CTA-local);
- Le système hydraulique (Groupe frigorifique-CTA).

Réhabilitation de la climatisation des am	phithéâtres A. B et	et C de l'Université d'Abobo-Adiamé
remainment de la chimatisation des ani	pindiculies 11, D ct	t e de i emiversite d'ilocoo i idjame

Chapitre II: ÉTUDES TECHNICO-ÉCONOMIQUES

I- Présentation du site

L'Université Abobo-Adjamé est situé dans la banlieue Nord de la ville d'Abidjan entre les communes d'Abobo et d'Adjamé, entre l'autoroute d'Abobo et la route du zoo. Le site s'étend sur une superficie de 126 ha cependant une faible partie de cette surface est aménagée.

II- Recensement de l'existant sur le site.

La visite des infrastructures du site de l'université, a permis d'évaluer les équipements (socles, bouches de soufflage et de reprise), les surfaces vitrées et la disposition du réseau de gaine. Ces éléments ont été rassemblés dans les figures et tableaux ci-après.

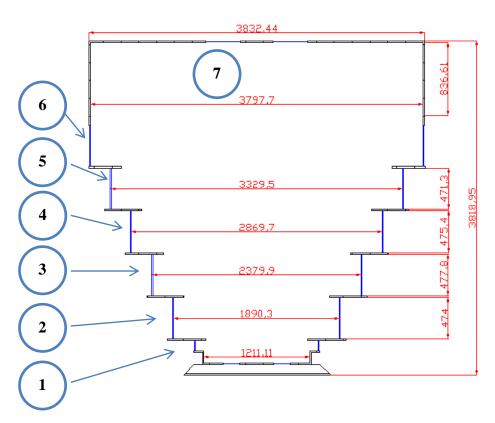


Figure 9: Dimensions amphi A. (Unité : cm).

Les amphithéâtres A et B sont orientés plein Est. Pour ces infrastructures, les surfaces vitrées sont dirigées vers le Nord et le Sud tandis que l'amphithéâtre C est orienté au Nord-Est avec des surfaces vitrées disposées vers le Nord-Ouest et le Sud-Est.

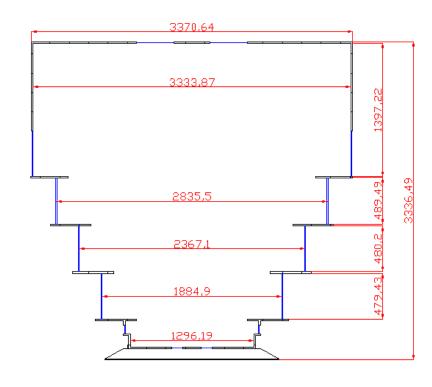


Figure 10: Dimensions Amphis B et C. (Unité : cm).

Tableau 1: Surfaces vitrées.

vitrages	hauteur (m)	largeur (m)	surface (m²)
1	6,40	4,42	28,29
2	4,76	4,42	21,04
3 5,11		4,42	22,59
4	3,63	4,42	16,04
5	3,63	4,42	16,04
6	3,63	4,42	16,04
7	3	4	12

Les surfaces vitrées concernées (Figure 9) sont quasiment identiques pour les amphithéâtres A, B et C. La seule différence réside dans le fait que les amphithéâtres B et C ne disposent pas de vitrage 7 sur leurs parois latérales.

Figure 11: Façade extérieure et surfaces opaques considérées.

Tableau 2: Surfaces latérales opaques.

Surfaces opaques considérées* (m²)		(surfaces latérales +		Surface totale (m²)	
1	supérieure	13,26	32,34	45,60	
	inférieure	-	ŕ	,	
2	supérieure	13,26	28,05	47,19	
	inférieure	5,88	20,03	41,17	
3	supérieure	13,26	23,76	42,90	
	inférieure	5,88	23,70	12,50	
4	supérieure	13,26	19,47	36,40	
_	inférieure	3,67	12,17	20,10	
5	supérieure	13,26	19,47	36,40	
	inférieure	3,67	12,17		
6	supérieure	13,26	19,47	36,40	
U	inférieure	3,67	17,77	30,40	
7**	supérieure	13,26	19,47	36,40	
,	inférieure	3,67	12,47	30,10	

^(*) Ce sont les surfaces extérieures opaques Nord et Sud des amphithéâtres A et B et Nord-ouest et Sud-est de l'amphithéâtre C.

^(**) La surface 7 uniquement pour l'amphithéâtre A.

Tableau 3: Surfaces opaques restantes.

Amphithéâtres	orientation	Surface des façades (m²)
A	Ouest	223,96
	Est	138,30
В	Ouest	196,63
	Est	138,44
C	Sud-Ouest	196,63
	Nord-Est	138,44

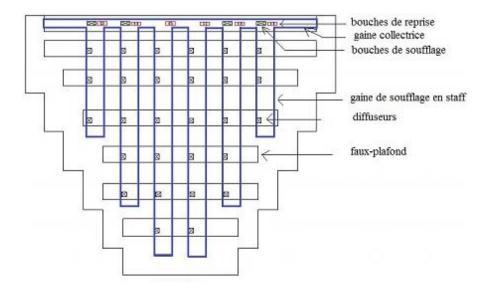


Figure 12: Réseau de gaines de l'amphithéâtre A.

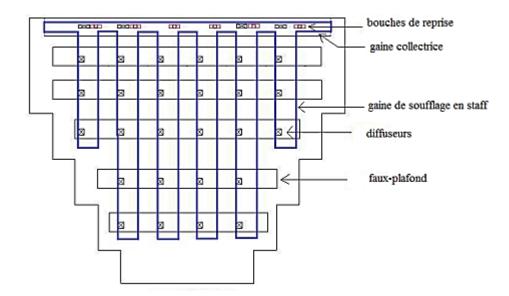


Figure 13: Réseau de gaines des amphithéâtres B et C.

Les amphithéâtres A, B et C disposent de réseau de gaines dont la configuration est identique. Entre le faux-plafond et le comble, une gaine collectrice horizontale alimente 6 gaines en staff qui traverse le faux plafond de l'amphithéâtre dans le sens de la longueur (figure 11 et 12). L'air soufflé arrive dans les bouches de soufflage puis dans la salle par les diffuseurs au plafond. Des bouches de reprises disposées frontalement (non visible sur les schémas) récupèrent l'air repris (figure 8).

L'amphithéâtre A a une capacité de 1000 places tandis que les amphithéâtres B et C ont une capacité de 750 places. Ces salles sont équipées en moyenne de 300 lampes néons de 36 W chacune.

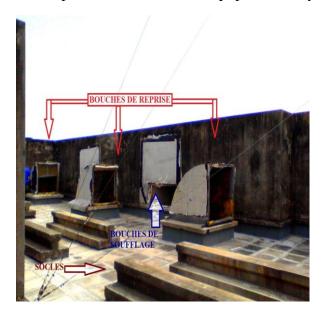


Figure 15: Bouche de reprise et de soufflage dans l'amphithéâtre.

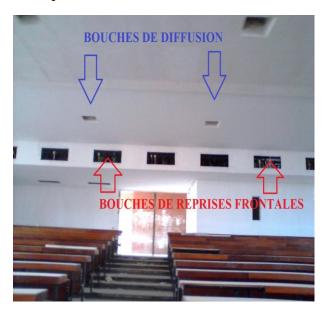


Figure 14: Bouche de reprise et de soufflage sur le toit.

Tableau 4: Eléments recensés dans les amphithéâtres.

		Amphithéâtre A	Amphithéâtre B	Amphithéâtre C	
	Baies vitrées	Parois latérales	Parois latérales	Parois latérales	
	Bouches de	28 au faux-plafond + 4	26 au faux-plafond + 4	26 au faux-plafond + 4	
Salle	diffusion	en amont	en amont	en amont	
Sane	Bouches de	14 (frontales) + 6	12 (frontales) + 6	13 (frontales) + 6	
	reprise	(axiale)	(axiales)	(axiale)	
	Grilles	aucune	aucune	aucune	
	réseau	33 m	28,6 m	28 m	
Faux-plafond	collecteur	33 III	20,0 m	20 111	
comble	Gaines de	6 interconnectées	6 interconnectées	6 interconnectées	
	soufflage	o interconnectees	o interconnectees	o interconnectees	
	Bouches de	5	4	3	
	soufflage		·	J	
	Bouches de	4	4	4	
Toit	reprise	'	'	'	
	Bouches	2	2	2	
	d'extraction			2	
	Socles	5	4	3	

Nous notons l'absence d'appareils de climatisation sur le site. De plus, nous avons constaté la vétusté du réseau de gaine en staff dont de nombreuses parties seront à reprendre dans le cadre de la réhabilitation du réseau notamment les gaines collectrices des amphithéâtres.

III- Bilan thermique

Les résultats des bilans thermiques des 3 amphithéâtres, effectués grâce à la feuille de calcul THERMEXCEL, sont rassemblés dans les tableaux 5 et 6. (Détails des calculs dans l'annexe A)

Tableau 5: Conditions climatiques de calculs.

Ville		Abidjan	
		latitude: 5,2	
		longitude : 4	
		altitude : 20 m	
Température sèche		32,2 °C	
Température humide		20,6°C	
Humidité relative		71,7%	
Date et heure de référence		21 Février à 13 h	
Conditions	Température	24 °C	
Intérieures Humidité		60%	

Tableau 6: Charges thermiques des amphithéâtres.

Amphi	Gains sensibles (kW)	Gains latents (kW)	Puissances frigorifiques (kW)	Surfaces au plancher (m²)	Ratio (W/m²)
A	192,99	207,69	400,69	1100	364,26
В	157,04	155,77	312,81	870	359,55
C	143,25	155,77	298,36	870	342,94

De ces bilans, nous remarquons que la puissance frigorifique surfacique est très élevée. Cela est dû aux gains latents résultants des capacités importantes des amphithéâtres. Ainsi le renouvellement d'air et les charges générées par les occupants sont les paramètres les plus influents du le bilan thermique de ces installations. Le ratio le plus important (364 W/m²) est celui de l'Amphithéâtre A sans doute tributaire de sa très grande capacité.

IV- Dimensionnement du monobloc roof top

1) Conditions de soufflage

a) Détermination de la température de soufflage

Généralement, en climatisation de confort, l'écart de soufflage c'est-à-dire l'écart entre la température ambiante du local et la température de soufflage est compris entre7 et 14°C. Pour notre étude, nous avons choisi un écart de soufflage de 10°C. Ainsi notre température de soufflage sera prise à 14°C afin de disposer d'une température de 24°C en salle.

La méthode utilisée pour déterminer la droite de soufflage est la méthode CARRIER^[3].

Elle est basée sur le facteur de chaleur sensible :

$$\mathbf{S}HF = \frac{Gains\ sensibles}{Charge\ thermique\ total} \tag{11}$$

Cette méthode essentiellement graphique est utilisée pour des valeurs de SHF supérieures à 0,36 et pour les valeurs de charges sensibles positives.

Tableau 6: Valeurs des facteurs sensibles et des températures de soufflage.

	Amphithéâtre A	Amphithéâtre B	Amphithéâtre C
SHF	0,453	0,478	0,465
Conditions de soufflage (T, HR)	14°C, 64%	14°C, 68%	14°C, 67%

b) Détermination du débit de soufflage

Le débit de soufflage de l'air est calculé par la formule^[3] :

$$m = \frac{GS}{0.29*(T_{amb} - T_{as})} \,(\text{m}^3/\text{h})$$
 (12)

GS: Gains sensibles du local (kcal/h).

T_{amb}: Température ambiante = 24°C, T_{as}: Température de l'air soufflé= 14°C.

Tableau 7: Débits de soufflage par amphithéâtre.

	Amphithéâtre A	Amphithéâtre B	Amphithéâtre C
$m (m^3/h)$	57 315,38	46 638,18	42 247,49

2) Calcul de la pression du ventilateur de soufflage

Le réseau de gaines existant est composé de 6 gaines en staff traversant l'amphithéâtre dans toute sa longueur, toutes connectées à une gaine collectrice.

La méthode des pertes de charges constantes, nous a permis de déterminer la pression et le débit du ventilateur de soufflage sur le tronçon le plus chargé pour les 3 amphithéâtres. Nous avons supposé pour cela que l'air soufflé arrive dans la salle uniquement par les diffuseurs. Le débit par diffuseur étant obtenu par le rapport du débit de soufflage total par le nombre de diffuseurs.

Tableau 8: Pression de soufflage sur le tronçon le plus chargé par amphithéâtre.

	Amphithéâtre A	Amphithéâtre B	Amphithéâtre C
Débit par diffuseur (m³/h)	1792	1555	1 408
Débit sur le tronçon (m³/h)	10 752	7 775	7 775
Pression maximale (Pa)	235,52	215,30	215,57

A ces valeurs de pressions nous, devons rajouter celles des pertes de charges dues aux filtres, préfiltres et grilles de soufflage. Nous avons évaluée ces pertes de charge à 150 Pa (Annexe C).

Les besoins en air neuf sont évalués à 20 000 m³/h pour l'amphithéâtre A et à 15 000 m³/h pour les amphithéâtres B et C; à raison de 20m³/h par occupant. Ces débits d'air seront aussi ceux des tourelles d'extraction nécessaires pour l'extraction d'air.

Un compromis reste à trouver afin de satisfaire à la fois au débit d'air soufflé, à la pression de soufflage du ventilateur et à la puissance frigorifique.

3) Sélection du monobloc

La sélection des monoblocs a été réalisée en tenant compte de données physiques propres telles que la puissance frigorifique, le débit de soufflage, les températures de bulbe sec et de bulbe humide intérieures au local et les températures d'entrée de l'air à l'évaporateur et au condenseur, les caractéristiques du ventilateur de soufflage et les caractéristiques électriques mais aussi en prenant en compte l'optimisation de la consommation d'énergie.

Tableau 9: Critères de choix des monoblocs.

	Amphi A	Amphi B	Amphi C
Type d'application	Volume constant		
Puissance frigorifique requise (kW)	400,69	312,81	298,36

Apports sensibles (kW)	192,99	157,04	142,59
Température d'entrée du condenseur (°C)	24		
Température d'entrée de l'évaporateur (°C)	19		
Type de climat	Tropical humide		
Température intérieure de bulbe sec (°C)	24		
Température intérieure de bulbe humide (°C)	18,60		
Quantité d'air soufflé (m³/h)	57 315,38	46 638,18	42 247,49
Pression statique (Pa)	385	365	366

Notre choix, s'est porté sur les monoblocs roof top CARRIER 50TJ 028. L'extraction se fera par des tourelles d'extraction de marque CARHIS HCTT/6-800-B.

Tableau 10: Caractéristiques du monobloc 50 TJ 028.

Modèle	CARRIER 50 TJ 028-903S [13]
Dimensions (L*l*H) (mm)	2553*1270*2440
Réfrigérant	R22
Puissance frigorifique nominale (kW)	88
Puissance frigorifique brute (kW)	87,3
Puissance frigorifique réelle (kW)	80,58
Puissance électrique installée (kW)	33,85
COP nominal	2,38
Débit du ventilateur de soufflage nominal (m³/h)	16 992
Nombre de ventilateur à l'évaporateur	1
Pression statique disponible (Pa)	450
Puissance électrique du moteur de l'évaporateur (kW)	7,45
Chaleur dissipée du moteur de l'évaporateur (kW)	6,72
Efficacité du moteur à l'évaporateur (%)	90
Nombre de compresseurs (type)	2 (scroll) SM185W et SM161T
Puissance du moteur du compresseur (kW)	18,6
Nombre de ventilateur au condenseur	2
Puissance du moteur au condenseur (kW)	7,8
Efficacité du moteur au condenseur (%)	80
Masse (kg)	Environ 1000
Puissance sonore (dB)	90
Données électriques (V-Ph-f)	400-3-50

(Fiche technique, Annexe D).

Tableau 11: Tourelles d'extraction CARHIS

	CARHIS HCTT/6-800-B [14]
Débit maximal (m³/h)	23 800
Pression de soufflage (Pa)	0-500
Puissance électrique absorbée (kW)	3
Nombre de Pôles du moteur	4
Pression sonore (dB)	86-89
Poids (kg)	67

(Autres données techniques, Annexe D)

a) Conditions d'utilisation des monoblocs

En utilisant les fiches de sélection, nous pouvons déterminer les conditions de fonctionnement des monoblocs.

Dans le cas de l'amphithéâtre A, nous climatiserons la salle au moyen de 5 monoblocs roof top CARRIER 50 TJ 028. Sous les conditions de température d'entrée de l'air à l'évaporateur de 19°C et au condenseur de 24°C, les appareils frigorifiques produiront chacun une puissance frigorifique de 87,3 kW. La puissance frigorifique réelle, écart entre la puissance frigorifique brute et la puissance dissipée par le moteur de l'évaporateur (6,72 kW), est évaluée à 80,58 kW pour un débit de 16 992 m³/h. Cela représente au total une puissance frigorifique de 402,9 kW pour un débit d'air soufflé égal à 84 960 m³/h.

Au niveau de l'amphithéâtre B, nous placerons 4 monoblocs 50 TJ 028 en toiture. Ces monoblocs seront paramétrés pour fonctionner dans les mêmes conditions que ceux des amphithéâtres A. Ils représenteront une puissance frigorifique totale de 322,32 kW pour un débit d'air total de 67 968 m³/h.

Quant à l'amphithéâtre C, nous disposerons de 4monoblocs 50 TJ 028 afin de couvrir les gains thermiques évalués à 298,36 kW. Les paramètres de fonctionnement sont de 78,25 kW par appareil avec un débit de 16 992 m³/h. Cependant la toiture de cet amphithéâtre ne dispose que de 3 socles formés de 2 blocs en béton parallélépipédiques de dimension (en mm) 3950x33x700 distants de 2,40 m. Aussi, le socle central sera prolongé 4,46 m et mesurera donc 8,41 m afin d'y déposer 2 monoblocs.

On note aussi que la reprise est réalisée par les monoblocs et l'extraction est effectuée par les tourelles d'extractions à raison de 2 tourelles d'extraction par amphithéâtre.

Tableau 12: Bilan des monoblocs à installer en toiture par amphithéâtre.

Amphis	Nombre de monoblocs + tourelles	Puissances frigorifiques requises (kW)	Puissances frigorifiques installées (kW)	Débits d'air requis (m³/h)	Débits d'air fournis (m³/h)	Masse totale des équipements (kg)
A	5+2	400,69	402,9	57 315,38	84 960	5 134
В	4+2	312,81	322,32	46 638,18	67 968	4 134
C	4+2	298,36	322,32	42 247,49	67 968	4 134

Les valeurs de puissances frigorifiques des machines frigorifiques que nous avons choisies sont supérieures à celles des charges thermiques des locaux pour les différents modes d'utilisation définis plus haut. Afin d'être en accord avec la norme américaine ASHRAE/IES Standard 90.1-1989 qui stipule qu'un surdimensionnement n'est valable que pour des appareils de petite capacité, le cas contraire entrainant nécessairement des gaspillages énergétiques et financiers, nous devons effectuer un choix judicieux d'outils de régulation du système afin de favoriser les économies d'énergies.

b) Economie d'énergie

Les monoblocs CARRIER TJ 028 intègrent le concept d'économie d'énergie grâce à leurs systèmes de régulation. Des pressostats et des thermostats permettent au système de déclencher ou non les étages de compression. Ainsi le second étage de compression n'est activé qu'après l'incapacité du premier à répondre seul à la consigne. Les deux étages de compression ne fonctionnent ensemble que durant un intervalle de temps nécessaire à l'obtention des conditions de consigne. Ce système minimise la consommation d'énergie des moteurs des compresseurs.

De plus, l'économiseur, en option, permet d'améliorer les réductions de consommation énergétique en permettant de refroidir le local sans faire appel au second étage de compression.

c) Environnement

Les monoblocs 50 TJ 028 admettent pour fluide de travail le R22 dont l'utilisation sera prohibée d'ici 2020 cependant les constructeurs continuent de produire des machines frigorifiques employant ce fluide sur des « stocks recyclés ».

V- Dimensionnement de la climatisation centrale à eau glacée

Le dimensionnement de la climatisation centrale va se faire en deux parties ; la première abordera le dimensionnement du réseau aéraulique et la seconde partie se focalisera sur le réseau hydraulique.

1) Réseau aéraulique

a) Calcul des propriétés de l'air de soufflage

La détermination du débit massique de soufflage, nécessite de connaître les propriétés thermo hydriques du local à climatiser. Les amphithéâtres doivent être à 24°C avec une humidité relative de 60% (humidité absolue : 11,18 g/kg as, enthalpie : 52,71 kJ/kg as = 14,64 W/h).

Le débit massique est obtenu par la formule :

$$q_{mas} = 3600 * \frac{GT - (2490 + 1,96*T_{ext})*M_{eau}}{\Delta T*(1+1,96*y_{local})} (kg/h)$$
 (13)

Où GT représente les gains totaux de l'amphithéâtre considéré (kW), M_{eau} désigne la masse en eau apportée par les occupants en une heure (un occupant libère en moyenne 60 g/h à 27°C).

L'écart de soufflage étant de 10°C, la température de soufflage est donc fixée à 14°C. L'humidité de soufflage est obtenue grâce à la formule :

$$y_{soufflage} = y_{local} - \frac{M_{eau}}{q_{mas}}$$
 (g/kg as) (14)

L'enthalpie de soufflage est aussi déterminée par :

$$h_{soufflage} = h_{local} - \frac{GT}{q_{mas}} \text{ (kJ/kg as)}$$
 (15)

Le débit volumique :

$$q_{vol} = \frac{q_{mas}}{\rho_{soutflage}} (m^3 \ h) \tag{16}$$

Le taux de brassage représente le nombre de volume d'air traité et renouvelé dans la pièce pendant une heure. Il est fonction du type de bouche de soufflage utilisé, il s'exprime par :

$$\tau = \frac{q_{vol}}{V} \text{ (h}^{-1}) \tag{17}$$

Tableau 13: Propriétés de l'air soufflé dans les amphithéâtres.

	Amphithéâtre A	Amphithéâtre B	Amphithéâtre C
M _{eau} (kg/h)	60	45	45
q _{mas} (kg/h)	126 374,54	99 111,31	94 020,86
y _{soufflage} (g/kg as)	10,71	10,73	10,70
h _{soufflage} (kJ/kg as)	41,30	41,35	41,29
q_{vol} (m ³ /h)	102 743,53	80 578,30	76 439,72
$\tau (h^{-1})$	19,66	19,50	19,50

b) Calcul des propriétés du mélange air neuf- air recyclé

Le débit d'air neuf est calculé en prenant un débit de 20 m³/h et par personne. Le débit d'air neuf total pour L'amphithéâtre A est de 20 000 m³/h soit un débit massique d'air neuf de 24 600 kg/h (6,83 kg/s)et de 15 000 m³/h soit un débit massique de 18 450 kg/h (5,13 kg/s) pour les amphithéâtres B et C.

Le mélange de l'air neuf et de l'air recyclé se fait dans le caisson de mélange avant l'entrée dans le caisson de traitement.

Le débit massique de soufflage est égal à la somme des débits issus du mélange. Ainsi l'on peut déduire les débits volumiques et massiques de l'air recyclé dans les différents cas de figure.

Les propriétés de l'air issu du mélange sont obtenues grâce aux différentes formules :

• Enthalpie du mélange :
$$h_{m\acute{e}lange} = h_{local} + \frac{(h_{neuf} - h_{local}) * q_{mas,neuf}}{q_{mas,soufflage}}$$
 (kJ/kg as) (18)

• Humidité du mélange :
$$y_{mélange} = y_{local} + \frac{(y_{neuf} - y_{local}) * q_{mas,neuf}}{q_{mas,soufflage}}$$
 (g/kg as) (19)

• Le taux d'air neuf :
$$T_{neuf} = \frac{q_{mas,neuf}}{q_{mas,souffalge}} * 100$$
 (20)

(L'air neuf est pris aux conditions extérieures de 32,2°C et de 71,7%).

Tableau 14: Propriétés du mélange air neuf-air recyclé.

	Amphithéâtre A	Amphithéâtre B	Amphithéâtre C
Enthalpie du mélange (kJ/kg as)	59,70	59,38	59,76
Humidité du mélange (g/kg as)	13,27	13,18	13,29
Température de mélange (°C)	30,55	30,51	30,42
Taux d'air neuf (%)	19,47	18,62	19,62

c) Traitement de l'air

Le traitement de l'air représente l'ensemble des opérations que l'air de mélange va subir afin de parvenir aux conditions de soufflage.

Il faut refroidir et déshumidifier l'air de mélange, pour cela on utilise une batterie froide.

• Régime de température de la batterie froide

Dans un premier temps, nous allons déterminer le régime de température du groupe de production d'eau glacée car c'est ce groupe qui va alimenter la batterie froide de la CTA.

La température moyenne de surface de la batterie froide est déterminée par l'intersection de la droite de soufflage avec la courbe de saturation.

Dans notre cas d'étude, les températures de surface obtenue graphiquement dans les 3 cas sont du même ordre et égales à 14°C. Cette valeur est très élevée pour être prise comme valeur moyenne de la batterie froide, aussi prendrons nous cette température pour la température de retour de l'eau.

En générale, l'écart de température sur un circuit d'eau glacée est de 5°C cependant notre système étant de grande taille, nous prendrons un écart de 6°C donc la température de départ de l'eau sera de 8°C. La température moyenne de la batterie froide est donc de 11°C.

Le régime de température est donc 8/14°C.

• Puissance de la batterie froide

Afin d'évaluer la puissance de la batterie froide, il faut évaluer le facteur de bipasse, qui est le rapport de la puissance frigorifique réelle fournie à l'air sur la puissance obtenue si l'air sortait à saturation de la même droite de soufflage.

Il s'obtient par :

$$BF = \frac{T_{soufflage} - T_{moy,batterie}}{T_{m\'elange} - T_{moy,batterie}}$$
(21)

L'efficacité de la batterie est obtenue en retranchant le facteur bipasse à l'unité. L'efficacité s'écrit :

$$\varepsilon = 1 - BF \tag{22}$$

La puissance frigorifique qui est la quantité de chaleur fournie par la batterie froide se calcule grâce à :

$$P_{batterie} = \varepsilon * q_{mas, soufflage} * (h_{m\'elange} - h_{soufflage}) \text{ (kW)}$$
 (23)

Les besoins en eau glacée à 8°C de chaque CTA sont calculés par :

$$q_{vol,batterie} = \frac{1000}{\rho_{eau,8^{\circ}C}} * \frac{P_{batterie}}{h_{eau,8^{\circ}C}}$$
 (1/s) (24)

La masse d'eau piégée par la batterie froide à eau glacée est :

$$M_{eau,batterie} = \frac{q_{mas,soufflage}*(y_{mélange}-y_{soufflage})}{\rho_{eau,8}\circ c} \text{ (m}^{3}/\text{h)}$$
 (25)

Tableau 15: Propriétés de la batterie froide.

	Amphithéâtre A	Amphithéâtre B	Amphithéâtre C
BP	0,153	0,154	0,154
ε (%)	84,65	84,62	84,55
P _{batterie} (kW)	546,99	420,49	407,92
q _{vol,batterie} (m ³ /h)	16,67	12,81	12,43
M _{eau,batterie} (m ³ /h)	0,32	0,24	0,24

d) Dimensionnement du ventilateur de soufflage

Le ventilateur de soufflage doit être dimensionné en prenant en compte les pertes de charges dues au réseau de gaines mais aussi à celles dues aux filtres et pré-filtres, dont l'usage est nécessaire afin de garantir la santé des occupants de la salle en limitant la teneur de l'air en poussière, gaz et particules dangereux. Généralement, on utilise des filtres F7 (entre 80% et 90% de rendement opacimétrique) et des pré-filtres G4 (rendement gravimétrique supérieur à 90%) au minimum pour traiter l'air neuf et l'air repris.

Dans nos cas d'étude, nous avons évalué la perte de charge due aux filtres et pré-filtres à 150 Pa. Cette valeur s'ajoute aux pertes de charges du réseau aéraulique des amphithéâtres, évoquées plus haut (annexe B). Ainsi le ventilateur à sélectionner doit avoir les propriétés regroupées dans le tableau ci-après :

Tableau 16: Débit et Pressions des ventilateurs des CTA.

	Amphithéâtre A	Amphithéâtre B	Amphithéâtre C
Débit d'air soufflé (m³/h)	102 743,53	80 578,30	76 439,72
Pression (Pa)	500	500	500

Les débits d'air soufflé étant élevés, nous avons opté pour le choix d'une CTA en toiture par amphithéâtre, celle-ci effectuera aussi l'extraction d'air à raison de 20 000 m³/h pour la salle A et 15 000 m³/h pour les salles B et C.

e) Choix des CTA

Pour l'amphithéâtre A, nous avons opté pour une CTA de marque CARRIER 39CI 28 produisant chacune un débit d'air 55 000 m³/h, munie de deux ventilateurs, un de soufflage, l'autre d'extraction disposant de pression respective de 500 Pa et de 490 Pa.

Tableau 17: Fiche technique CTA CARRIER 39CI 28.

Dimensions (mm)	9830x2950x2170
Poids (kg)	3929 kg

Position	Toiture
Puissance de la batterie froide (kW)	588
Puissance électrique installée (kW)	100
СОР	5,88
Isolation	Polyuréthane expansé SP 23 mm
Construction	Double panneau Plastifié/Galvanisé
Connexions	Côté droit
Inspections	Côté gauche
Pré-filtres	Plissés synthétiques à cellules 50 mm EU4/G4 85% pondérale Plissés 50 mm EU3/G3 85 % pondérale
Filtres	Filtres à poches EU8/F8 98-95%
Ventilateur d'extraction	Modèle : BQ 560 (orientation droite) Moteur : 6 Pôles – 11 kW Débit : 25 000 m³/h Pression : 490 Pa Option : Carter de protection Insonorisation avec laine de roche 50 mm + tôle percée
Ventilateur de soufflage	Modèle : BQR 800 (orientation droite) Moteur : 6 Pôles – 30 kW Débit : 55 000 m³/h Pression : 500 Pa Option : Carter de protection Insonorisation avec laine de roche 50 mm+ tôle percée
Caisson 3 voies	Caisson de mélange horizontal 3 voies pour unité en ligne avec extraction
Batterie froide	P3012AF 4R 60T 2000A 2,5P 120 NC Cu-Cu Différence bac de condensats en aluminium
Silencieux de soufflage	Epaisseur : 750 mm Performance : - 15 dB (A)
Registre de soufflage	
Séparateur de gouttelettes	100 mm

En ce qui concerne les amphithéâtres B et C, nous avons choisi des CTA du même modèle, 39CI 27, à raison d'une CTA par amphithéâtre, produisant chacune un débit de 45 000 m³/h, avec deux ventilateurs de soufflage et d'extraction aux pressions respectives de 500 Pa et 490 Pa.

Tableau 18: Fiche technique CTA CARRIER 39CI 27.

Dimensions	8840x2750x2170
Poids (kg)	3756
Puissance la batterie froide (kW)	495
Puissance électrique installée (kW)	100
СОР	4,95

Position	Toiture	
Isolation	Polyuréthane expansé SP 23 mm	
Construction	Double panneau Plastifié/Galvanisé	
Connexions	Côté droit	
Inspections	Côté gauche	
Pré-filtres	Plissés synthétiques à cellules 50 mm EU4/G4 85% pondérale Plissés 50 mm EU3/G3 85 % pondérale	
Filtres	Filtres à poches EU8/F8 98-95%	
	Modèle : BQ 560 (orientation droite)	
	Moteur : 6 Pôles – 11 kW	
Ventilateur d'extraction	Débit : 25 000 m ³ /h	
V Chemical a Carrieron	Pression: 490 Pa	
	Option : Carter de protection	
	Insonorisation avec laine de roche 50 mm + tôle percée	
	Modèle : BQ 710 (orientation droite)	
	Moteur: 6 Pôles – 30 kW	
Ventilateur de soufflage	Débit : 45 000 m ³ /h	
venimical de sourrage	Pression: 500 Pa	
	Option : Carter de protection	
	Insonorisation avec laine de roche 50 mm+ tôle percée	
Caisson 3 voies	Caisson de mélange horizontal 3 voies pour unité en ligne avec	
Caisson 5 voies	extraction	
Batterie froide	P3012AF 7R 60T 2400A 3,0P 210NC Cu-Cu	
	Différence bac de condensats en aluminium	
Silencieux de soufflage	Epaisseur: 750 mm	
	Performance : - 15 dB (A)	
Registre de soufflage		
Séparateur de gouttelettes	100 mm	

Les autres données techniques sont rassemblées dans l'annexe D.

2) Réseau hydraulique

Les CTA choisies doivent produire chacune une puissance frigorifique supérieure à 400 kW avec des débits d'air de l'ordre de 50 000 m³/h. Afin de répondre à ce défi, nous avons proposé la mise en place d'un réseau hydraulique pouvant alimenter les batteries froides en eau à 8°C en quantité suffisante. Ce choix admet des avantages du point de vue disponibilité de la ressource, l'eau vecteur énergétique est présente sur le site grâce aux nombreuses sources d'alimentation en eau potable, du point de vue thermique, ce vecteur dispose d'une grande capacité calorifique élevée et stable (1kJ/kg.K), du point de vue technique, le réseau hydraulique pour la climatisation est une technologie éprouvée et maîtrisée qui permet d'éviter les complications des réseaux « à détente directe » (manipulation contraignante des fluides frigorigènes, concentration en fluide frigorigène dans le réseau) et du point de vue économique ce choix limite la taille des tuyauteries cuivre et donc les coûts à l'installation. Le principal inconvénient résidant dans la quantité d'eau consommée et la quantité d'isolant pour les canalisations.

a) Calcul du groupe frigorifique

Le dimensionnement du groupe de production d'eau glacée doit prendre en compte deux paramètres important à savoir le débit d'eau glacée et la puissance frigorifique à fournir. De plus cet équipement doit être sélectionné afin d'alimenter les 3 CTA prévues.

• Débit d'eau glacée

Le débit total d'eau glacée à fournir aux CTA est :

$$q_{vol,eau\ glac\acute{e}e} = 1.05 * q_{vol,batterie} (m^3/h)$$
 (26)

• Puissance du groupe frigorifique

La puissance du groupe de production d'eau glacée est obtenue en prenant en compte les enthalpies d'entrée et de sortie de l'eau. Pour alimenter la CTA en eau glacée à 8°C, l'eau entrant dans le groupe de production d'eau glacée est prise à 25°C et sort à 6°C en évaluant à 2°C la hausse de température dans la conduite menant l'eau glacée à la CTA.

$$P_{groupe,eau\ glac\acute{e}e} = \frac{CR*q_{vol,eau\ glac\acute{e}e}*\rho_{eau\ glac\acute{e}e}*(h_{eau,25°C}-h_{eau,6°C})}{1000} \text{ (kW)}$$
 (27)

où CR représente un facteur de correction fonction de la température de sortie de l'eau glacée et de la température ambiante, dans notre cas, CR = 0,74, valeur obtenue par interpolation linéaire (annexe C).

Tableau 19: Débit et puissance du groupe de production d'eau glacée.

	Groupe de production d'eau glacée
Débit d'eau glacée (m³/h)	44,00
Puissance frigorifique (kW)	2590,83

Lors de la sélection des équipements nous privilégierons la condensation par air dans le but de limiter l'appoint en eau du groupe.

b) Choix du groupe frigorifique de production d'eau glacée

Pour alimenter les CTA en eau à 8 °C, nous avons choisi 2 refroidisseurs de liquide à condensation par air CARRIER 30XA 1302. Chaque appareil a une puissance frigorifique nominale de 1297 kW. Pour une température d'entrée de l'air à 30°C et une température de sortie de l'eau à 6°C, cet équipement produira une puissance frigorifique de 1313 kW avec une puissance électrique absorbée totale de 400 kW dont 385 kW pour les compresseurs, soit un COP de 3,28.

Cependant, le constructeur a établi une plage de température de l'eau entrant dans l'évaporateur qui s'étend de 6,8°C à 21 °C. En sachant que nos sources d'approvisionnement en eau peuvent atteindre

des valeurs de température sortant de cette plage de fonctionnement nous proposons la mise en place dans le circuit hydraulique d'un ballon de stockage, qui aura un double intérêt car il permettra de rendre le circuit hydraulique autonome de la source d'eau de consommation, les appoints s'effectuant durant des périodes précises et d'abaisser la température de l'eau alimentant le groupe de production d'eau glacée par le mélange de l'eau de retour des CTA, à 14°C, et de celle de la source d'alimentation en eau, à 25°C, dans le ballon de stockage, de sorte à alimenter les groupes de refroidissement avec une eau à une température inférieure à 20°C.

Puissances **Puissances** frigorifiques **Débits Débits** Nombre Masse totale frigorifiques Amphi d'air fournis requises pour d'air requis de CTA des CTA (kg) (m^3/h) (m^3/h) la batterie (kW) froide (kW) A 1 546,99 588 102 743,53 110 000 3929 В 1 420,49 495 80 578,30 90 000 3756 C 1 76 439,72 90 000 420,49 495 3756

Tableau 20: Bilan des CTA à installer en toiture.

c) Choix de la pompe

La distribution de l'eau glacée aux 3 CTA nécessite un réseau hydraulique équilibré c'est-à-dire que les pertes de charge dans les conduites doivent être égales quelques soit le tronçon emprunté par le fluide afin de fournir le débit nécessaire à chaque CTA. Pour y parvenir nous devons disposer d'une pompe ayant à la fois le débit et la pression nécessaire à l'alimentation en eau des centrales, mais aussi d'équipements de régulation et de sécurité tels que les purgeurs d'air et d'eau, les vases d'expansion, les vannes de réglage et d'arrêt.

Nous avons proposé dans notre étude, un réseau hydraulique (Annexe E), et nous avons évalué les pertes de charges sur le circuit aller à 15 158 Pa (1,52 mCE), soit une perte de charge totale de 30 316 Pa (3,03 mCE) sur l'ensemble du circuit. A cette perte de charge, il faut ajouter celle nécessaire à la montée de l'eau au toit (à 8 m du sol soit 8 mCE) et celle du aux échangeurs des CTA, nous évaluerons le tout à 12 mCE environ. Afin de satisfaire les besoins en eau glacée des CTA aux débits et les pressions requis, nous allons utiliser 2 pompes en série afin d'atteindre la puissance requise pour un débit minimal estimée à 44 m³/h.

Après investigation, nous avons choisi 2 pompes identiques de marque SALMSON DXE 80-50à rotor noyé et à double circulateur. Dans le fonctionnement prévu, la pompe fournira 50 m³/h d'eau

glacée à une pression manométrique de 7 m de colonne d'eau soit une pression cumulée de 14 mCE. Cette pression supérieure à celle obtenue par calcul des pertes de charge, permettra de vaincre les pertes de charges supplémentaires non prises en compte par notre modèle. De plus en cas d'extension du réseau hydraulique, la pompe disposera d'une plage de pression suffisante pour desservir en eau glacée les nouveaux sites.

Tableau 21: Fiche technique de la pompe hydraulique DXE 80-50.

	Pompe hydraulique DXE 80-50	
Poids standard (kg)	10 990	
Puissance électrique maximale (kW)	1,65	
Débit maximal (m³/h)	90	
Hauteur manométrique maximale (mCE)	11	
Pression de service maximale (bar)	10	
Température ambiante maximale (°C)	+ 40°C	
Régulation	Electronique	
Puissance acoustique (dB)	96 dB	
Partie hydraulique		
Diamètre de la bride	DN 80	
Partie Moteur		
Alimentation électrique	400-3-50	
Vitesse (tr/min)	850-2850	

(Autres données techniques voir Annexe D)

d) Environnement

Le groupe refroidisseur de liquide utilise le HFC 134A (CH₂F-CF₃) comme fluide frigorigène. Ce gaz est sans impact sur la couche d'ozone.

VI- Evaluation financière des 2 systèmes de climatisation

Les devis de la climatisation par des monoblocs en toiture ou par la climatisation centralisée avec un groupe de production d'eau glacée doivent prendre en compte :

- Les frais d'achat des 13 monoblocs 50TJ 028 et des tourelles d'extractions HCTT/4-800 B dans un cas et ceux des CTA CARRIER 39CI 28 et 39CI 27, du refroidisseur de liquide CARRIER 30XA et de la pompe Hydraulique de marque SALMSON dans l'autre cas ;
- les frais de logistique :
 - ➤ le transport des monoblocs, par voie terrestre et par bateau, depuis les usines de production de SAMCO en Arabie Saoudite pour les monoblocs et CERINI en Italie pour les CTA, MONTLUEL en France pour le refroidisseur et CHATOU en France pour les pompes, dans les deux cas il faudra prendre le coût des conteneurs nécessaires au transport des appareils ;

- les frais de dédouanement des appareils.
- les frais liés à la mise en route des appareils :
 - ➤ la location d'une grue afin de les disposer sur la toiture des amphithéâtres ;
 - ➤ la mise en route des appareils (câbles électriques, coffrets électriques et protections, appareils de régulation, tuyauteries);
 - ➤ la réhabilitation du réseau aéraulique (les gaines en staff, les grilles de soufflage et de reprise ;
 - L'isolation des gaines de soufflage (Armaflex);
 - le prolongement du socle de l'amphithéâtre C,
 - ➤ la pose de diffuseurs dans les amphithéâtres A, B et C.

En plus dans le cas de la climatisation centrale, l'on prendra aussi en compte des frais relatifs à :

- ➤ L'installation de la pompe hydraulique et de tout le réseau hydraulique (filtres à tamis, conduites, vannes, ballon de stockage, raccordement au réseau hydraulique local) ;
- L'isolation des conduites :
- Les frais de main d'œuvre.

Le devis de l'exécution a été réalisé et a permis d'estimer la pause et la mise en marche des monoblocs à 141 994 708 FCFA environ tandis que la climatisation centralisée coûtera 580 199 468,7 FCFA. Ce montant est de l'ordre du quadruple du prix de la première option. (Annexe C).

VII- Comparaisons Monoblocs-Groupes de production d'eau glacée

Une étude comparée système des monoblocs-Systèmes à climatisation centrale avec groupe de production d'eau glacée a été effectuée (tableau 22). Nous notons pour les 2 cas cités, que de nos jours les normes d'économies (Normes ASHRAE, européenne), ont amenées les constructeurs à concevoir des appareils performants ayant des COP élevés, aussi les économies d'énergie les plus pertinentes concernent le choix de l'équipement (mode de régulation, sensibilité des capteurs, consommation électrique) et le temps de fonctionnement de ces appareils.

La climatisation des amphithéâtres au moyen des monoblocs admet en moyenne un COP de l'ordre de 2,38 (tableau 22).

Ce système est le plus efficace du point de vue énergétique car il entraîne une consommation électrique 2,5 fois plus faible que dans le cas de la climatisation centrale. De plus, il nécessite peu de

conduites et donc son impact financier est minime. Cependant son usage est moins adapté pour la climatisation de plusieurs zones. De plus l'utilisation du gaz frigorigène R22, alourdit le bilan environnemental des monoblocs. Cependant le constructeur CARRIER s'assure de la compatibilité de ces appareils avec des fluides frigorigènes moins polluants tels que le PURON (R410A), le HFC-407 ou encore le HFC-134A. Ainsi, à l'échéance de 2015 relative à l'interdiction de l'usage du R22, les monoblocs pourront toujours être utilisés [15].

	Amphit	héâtre A	Amphit	héâtre B	Amphithéâtre C			
	Monoblocs	Centralisée	Monoblocs	Centralisée	Monoblocs	Centralisée		
Puissance frigorifique totale installée (kW)	402,9	1463,33	322,32	1370,33	322,32	1370,33		
Puissance électrique totale installée (kW)	169,25	367,77*	135,4	367,77*	135,4	367,77*		
Débit d'air produit (m³/h)	84 960	110 000	67 968	90 000	67 968	90 000		
COP	2,38	3,98	2,38	3,73	2,38	3,73		
Impacts environnementaux	R22	HFC-134A	R22	HFC-134A	R22	HFC-134A		

^(*) Les puissances électriques de la pompe et du groupe de production d'eau glacée ont été réparties sur les 3 amphithéâtres.

$$P_{\acute{e}lectrique,Amphi} = P_{\acute{e}lectrique,CTA} + \frac{2*(P_{\acute{e}lectrique,groupe\,frigorifique} + P_{\acute{e}lectrique,pompe})}{3} \text{ (kW)}$$

$$P_{frigorifique,Amphi} = P_{frigorifique,CTA} + \frac{2*(P_{\acute{e}lectrique,groupe\,frigorifique})}{3} \text{ (kW)}$$

$$(29)$$

$$P_{frigorifique,Amphi} = P_{frigorifique,CTA} + \frac{2*(P_{\'electrique,groupe\,frigorifique})}{3} \text{ (kW)}$$

La climatisation centrale demande peu d'appareils par amphithéâtre pour de grands débits d'air. Cependant la prise en compte de machine fortement consommatrice d'énergie telle que le groupe frigorifique pèse sur le bilan énergétique de l'installation (puissance électrique installée de l'ordre de 1400 kW). Ce type de système peut permettre la climatisation de plusieurs zones ainsi que de point isolé en agrandissant le réseau hydraulique bien que tout raccordement inclura une augmentation des conduites et donc une hausse des coûts d'investissements. Les coûts de maintenance des CTA sont minimes car leur maintenance est simple et localisée. Elle concerne généralement l'entretien des filtres et la vérification des courroies d'entrainement du ventilateur.

Tableau 23: Valeurs du COP de l'installation pour 4, 5, 6 amphithéâtres à climatiser.

Nombre d'amphithéâtres	4	5	6
Puissance frigorifique (kW)	4699	5194	5689
Puissance électrique installée (kW)	1203,3	1303,3	1403,3
COP _{tot, installation}	3,91	3,99	4,05

Une simulation a été réalisée en augmentant le nombre d'amphithéâtres à climatiser pour le même système de climatisation centralisée (tableau 23). On constate que la valeur du COP totale de l'installation croît. Ainsi la hausse du nombre de salle à climatiser est un facteur qui améliore l'efficacité énergétique de l'installation.

Conclusion

L'étude technique des installations sur le site de l'Université Abobo-Adjamé a permis d'acquérir des données fiables qui ont pu servir à l'évaluation des charges thermiques de chaque amphithéâtre avec des puissances surfaciques de l'ordre de 300 W/m². Les deux solutions envisagées sont techniquement réalisables cependant du point de vue énergétique et économique, la pose de monoblocs en toiture reste la solution la plus avantageuse pour le site en état actuel.

Bien qu'elle nécessite la pose en toiture de 13 appareils roof-top CARRIER 50TJ028, la climatisation par monoblocs est la meilleur solution pour le site en l'état bien que le COP de l'installation de 2,98, soit le plus bas. De plus, elle génère les coûts d'investissements les plus bas, avec aible tuyauterie celle-ci étant limitée à celle nécessaire à l'extraction des condensats de l'évaporateur. Cependant cette solution de « climatisation individualisée », entraînera des coûts de maintenance élevée due à la concentration de toutes les fonctions dans un seul bloc (régulation, circuit frigorifique de l'évaporateur et du condenseur, compresseur, bloc moto-ventilateur de soufflage et du condenseur, circuit électrique).

L'option de la climatisation centralisée, nécessite des coûts d'investissements élevés (l'installation a été évaluée à 462 millions de FCFA TTC, soit le triple du prix de la climatisation par monoblocs) et des frais d'exploitation liés à l'approvisionnement en eau des ballons de stockage. Cependant le COP de l'installation de l'ordre de 3,80 témoigne de l'efficacité de ce système. Cette technique qui entraîne une consommation électrique 2,5 fois supérieure à celle des monoblocs, deviendra avantageuse dans le cas d'une extension des installations et d'une augmentation du nombre de locaux à climatiser, ce système étant plus adapté pour la climatisation d'édifices multizones avec une plus grande flexibilité de méthodes (possibilité d'installation de ventilo convecteurs alimentée par le réseau d'eau glacée). Cette solution est celle de l'avenir car la capacité de l'université va s'accroître dans quelques années.

En tablant sur l'avenir, une étude technique et économique complémentaire doit être menée sur la climatisation centrale avec production d'eau glacée afin de déterminer le nombre optimal de salles à climatiser à partir duquel ce système est avantageux du point de vue énergétique et économique, d'établir la viabilité du raccordement de toutes les salles de l'université par ce système, d'évaluer les possibilités de minimiser les coûts d'investissements, d'optimiser les économies d'énergie possibles (par exemple envisager d'alimenter les groupes frigorifiques et les pompes par voie solaire).

Bibliographie

- [1] J.P.FAVENNEC, C. ADEDJOUMOU, B.DUHAMEL, J.GIRI, H.GILLES and A.TRONCHE in L'énergie en Afrique à l'horizon 2050, AFD,BAD, 2009
- [2] S.K.WANG and Z.LAVAN, Air refrigeration and conditionning, CRC Press LLC, 1999
- [3] J. F. SEMPORE, Cours Technologie Climatisation, 2005
- [4] Y.COULIBALY, Cours de thermodynamique classique et appliquée
- [5] Y.COULIBALY, Cours Economie d'énergie dans les bâtiments et dans l'industrie, 2011
- [6] J.CLAENS, Y.COULIBALY, T.DJIAKO, M.GNAMKE, A.KANMOGNE, A.KEMAJOU, M.J.KONE, A.N'DIAYE, M.K.SAKO and D.STAMATOUKOS, Efficacité énergétique de la climatisation en Afrique tropicale Tome I: Conception des nouveaux bâtiments
- [7] J.CLAENS, Y.COULIBALY, T.DJIAKO, M.GNAMKE, A.KANMOGNE, A.KEMAJOU, M.J.KONE, A.N'DIAYE, M.K.SAKO and D.STAMATOUKOS, Efficacité énergétique de la climatisation en milieu tropicale Tome 2: Exploitations des installations existantes
- [8] Y.JANNOT, Transferts thermiques, 2005
- [9] Y.AZOUMAH, Transferts thermiques, 2010
- [10] J. F.SEMPORE, Cours Techniques frigorifiques, 2006
- [11] AFSSE in Impacts Sanitaires et énergétiques des installations de climatisation, AFSSE, CSTB, 2004.
- [12] S.SIDIBE, Cours de conditionnement d'air, 2011
- [13] CARRIER in Product Data 50TJ 028 Single Packaged Rooftop Units
- [14] CARHIS in Catalogue CARHIS
- [15] CARRIER in Catalogue 2012.

Sites internet:

- www.xpairs.com
- www.dimclim.fr
- www.carrier.com
- www.carhis.com

Logiciels:

- AUTOCAD
- COOLPACK
- CTA CARRIER ver 4.0
- THERMEXEL / DIMCLIM
- PSYCHRODREAM

Annexes

VIII- Annexe A

Valeur du coefficient F_S.

Type de vitrage	$\mathbf{F_s}$
vitrage simple ordinaire de 3 mm (peu courant)	1
vitrage simple 6 mm (Fenêtre courante bâtiment)	0,94
double vitrage 6 mm sans écran (Fenêtre courante bâtiment)	0,8
double vitrage absorbant sans écran	0,52
double vitrage 6 mm avec écran	0,59
double vitrage absorbant avec écran	0,39
double vitrage 6 mm avec écran	0,59
double vitrage absorbant avec écran	0,39

Valeurs du gain solaire par rapport à l'orientation du vitrage.

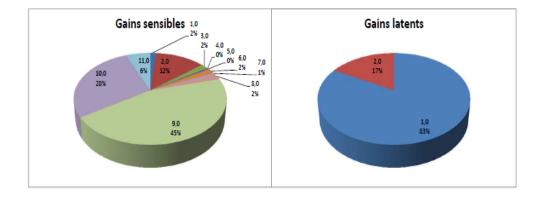
Orientation	Angle (°C)	Q _{ens} (W)
N	1°	320,2
NE	45°	256,3
Е	90°	75,3
E/SE	113°	50,7
SE	135°	50,7
S/SE	158°	50,7
S	180°	50,7
S/SO	203°	50,7
SO	225°	50,7
O/SO	248°	50,7
0	270°	36,4
O/NO	293°	141,1
NO	315°	228,8

Valeurs du coefficient de transmission des parois par rapport aux types de vitrage.

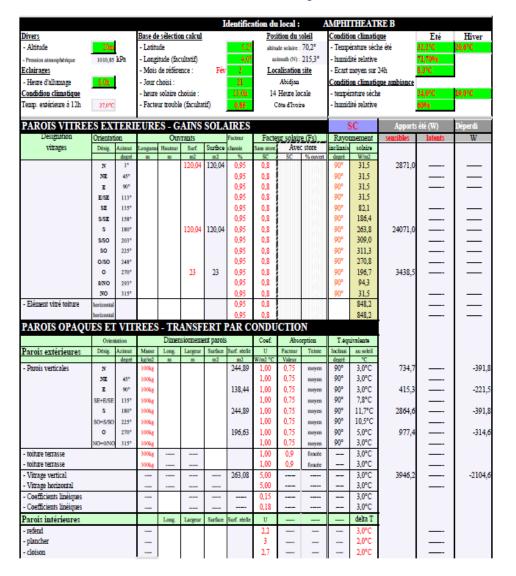
Type de vitrage	Coefficient de transmission U (W/m². °C)
Vitrages simples	4 à 6 pour les vitrages simples selon châssis
Vitrages isolés	2,8 à 4,8 pour les vitrages isolés selon châssis
Murs non isolés en pierres	2 à 3
Murs béton 15 à 25 cm non isolés	1,8 à 2,7
Murs en briques 15 à 25 cm non isolés	1,5 à 2,5
Murs isolés, 4 à 10 cm d'isolant	0,7 à 0,3
Toiture non isolée	2 à 3,5
Toiture isolée, 4 à 12 cm	0,8 à 0,25

Bilan des amphithéâtres.

Numérotation des indices.

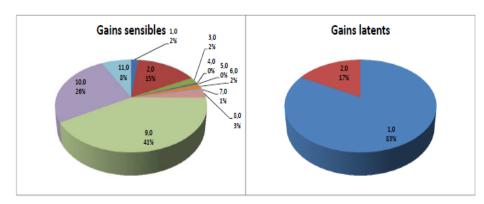

Numérotation	Apports sensibles	Apports latents
1	Vitrage Nord (amphi A et B) Vitrage Nord-Ouest (amphi C)	Air hygiénique occupants
2	Vitrage Sud (amphi A et B) Vitrage Sud-Est (amphi C)	Gains internes occupants
3	Vitrage Ouest (amphi A et B) Vitrage Sud-Ouest (amphi C)	
4	Parois opaques Nord (amphi A et B) Parois opaques Nord-Ouest (amphi C)	
5	Parois opaques Est (amphi A et B) Parois opaques Nord-Est (amphi C)	
6	Parois opaques Sud (amphi A et B) Parois opaques Sud-Est (amphi C)	
7	Parois opaques Ouest (amphi A et B) Parois opaques Sud-Ouest (amphi C)	
8	Vitrage vertical	
9	Air hygiénique occupants	
10	Gains internes occupants	
11	Eclairage	

Bilan thermexcel de l'Amphithéâtre A.

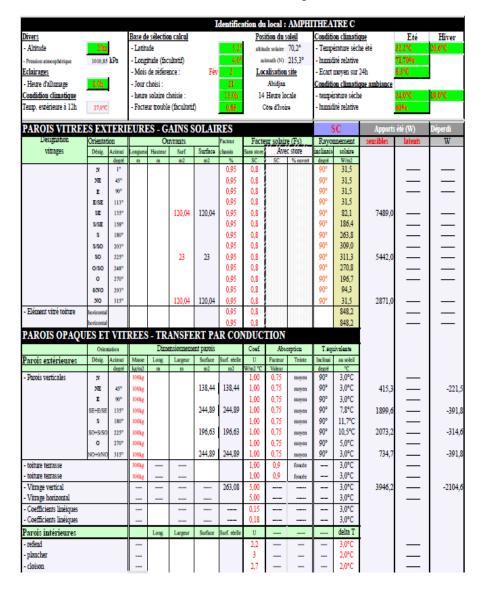

						I	dentifica	ation du	local :	AMPHI	HIBA	RE A				
Divers			Base de	e sélectio	n calcul			Pos	ition du s	oleil	Conditi	on climatic	que	Eté	Hiver	
- Altitude	20m		- Latitu	ıde			5,2°	shite	de solaire :	70,2°	- Temp	érature sècl	ne été	32,2°C	20,6°C	
- Pression atmosphérique	1010.85	kPa	- Longi	itude (fac	ultatif)		4.0°	92	imuth (N):	215.3°	- humid	lité relative		71,7096		
Eclairages	1010,00			de référe		Fév	197	Localisation site				moven sur	24h	8.3°C		
- Heure d'allumage	8,0h	ı	- Jour o				21		Abidjan				rue ambiance	-p	۱ ۱	
Condidion climatique	0,011	ļ	- heure solaire choisie : 13.0					14		calo		rature sèch		24.0°C	19.0°C	
Temp. extérieure à 12h	27.0°C					es.			14 Heure locale Côte d'Ivoire			iature secri lité relative		24,0 C 6046	19,0 C	
Temp. exteneure a 12n	27/PC		- Facteur trouble (facultatif) 0,85					,	ote a Ivoi	re .	- manno	me terunive		0040	ا ا	
PAROIS VITRE	S EX	neri	303	cs_c	ATNS	SOT A	TRES				9	SC	Annorts	Apports été (W)		
Designation	Orientati		Ouvrants Factour						ur solair	n (Fs)		nnement	cancible	latante	Déperdi W	
vitrages	Désig.	Azimut	Longueur	Hauteur	Surf.	Surface	chassis	Sans store		c store	inclinais	solaire	Semplotes	mient	w	
valuges	areasg.	degré	m	m	m2	m2	%	SC	SC	% ouvert	degré	W/m2				
	N	10			120,04	120,04	0,95	0,8			90°	31,5	2871,0	_	_	
	NE	45°					0,95	0,8	!	5.7%	90°	31,5		_		
	E	90°					0,95	8,0	!	5.72	90°	31,5				
	E/SE	113°					0,95	8,0		5.74	90°	31,5				
	SE	135°					0,95	0,8	i	5.7%	90°	82,1		_	_	
	SISE	158°					0,95	8,0	i	3.74	90°	186,4				
	8	180°			120,04	120,04	0,95	8,0	i	5.72	90°	263,8	24071,0			
	\$/\$0	203°					0,95	8,0		57%	90°	309,0		_	_	
	80	225°					0,95	8,0		5.76	90°	311,3			_	
	0/50	248°					0,95	8,0		575	90°	270,8		_	_	
	0	270°			23	23	0,95	0,8		5.76	90°	196,7	3438,5		_	
	0/NO	293°					0,95	8,0		57%	90°	94,3				
	NO	315°					0,95	0,8		572	90°	31,5			_	
- Elément vitré toiture	horizontal						0,95	8,0		5.72		848,2		_	_	
	horizontal						0,95	0,8		574		848,2			_	
PAROIS OPAQU	ES EI	VIT	REES	- TR	ANSF	ERT P	AR CO	DNDU	CTIO	V						
	Orien	tation		Dime	nsionnem	ent parois		Coef	Abs	ception	T.eqt	tivalente				
Parois extérieures	Désig.	Azimut	Masse	Long.	Largeur	Surface	Surf. réelle	U	Facteur	Teinte	Inclinai	au soleil				
		degré	kg/m2	m	m	m2	m2	W/m2 ℃	Valeur		degré	°C				
- Parois verticales	N		100kg				281,29	1,00	0,75	moyen	90°	3,0°C	843,9	_	-450,1	
	NE	45°	100kg					1,00	0,75	moyen	90°	3,0°C		_		
	E	,,,	100kg				138,30	1,00	0,75	moyen	90°	3,0°C	414,9		-221,3	
	SE+E/SE	135° 180°	100kg				201.22	1,00	0,75	moyen	90°	7,8°C	2000 4	_	450.1	
	S		100kg				281,29	1,00	0,75	moyen	90°	11,7°C 10.5°C	3290,4		-450,1	
	90+9/50	225° 270°	100kg				222.04	-,	-11	moyen	90°	,	11122	_	250.2	
	1		100kg				223,96	1,00	0,75	moyen	90°	5,0°C 3.0°C	1113,2		-358,3	
taitum tamana	NO+0/NO	315°	100kg 300kg					1,00	0,75	moyen foncée	90"	3,0°C		_		
- toiture terrasse - toiture terrasse			300kg 300kg					1.00	0.9	foncée foncée	_	3,0°C				
					*****		263.08	5.00	0,9	Toncee	₩—	3,0°C	3946.2		-2104.6	
 Vitrage vertical Vitrage horizontal 					*****	*****	205,08	5,00				3,0°C	3940,2		-2104,0	
- Vitrage norizontal - Coefficients linéiques				*****	*****			0.15			₩—	3,0°C				
- Coefficients lineiques - Coefficients lineiques								0.18				3,0°C				
					*****	*****		-1,				delta T				
Parois intérieures				Long.	Largeur	Surface	Surf. réelle	U								
- refend								2,2		-		3,0°C		_		
- plancher								3				2,0°C		_		
- cloison					l	l		2,7				2,0°C		_		

	Dime	nsions	D	bit air O (20°C/101	3mb)	Extérieur		Intérieur		Delta va	leurs	' I		
	lo	local Unit Nbre V		Volumiqu	Massique (assigue (Ts		Tempér Humidité		Tempé Humidité					
	Surf.	Haut	m3	Ü	m3/h	kg/h	°C	g/h kg	°C	g/h kg	°K	g/h kg			
- Air hygiénique occupants			20	1000	20000	23627	36,9°C	21,96	24,0°C	11,21	12,9°C	10,75	86805,2	172679,1	-10880,0
- Infiltration d'air							36,9°C	21,96	24,0°C	11,21	12,9°C	10,75			
- Renouvellement air							36,9°C	21,96	24,0°C	11,21	12,9°C	10,75			
GAINS INTERNE															
					Surf.	0	ccupation	(pers/m2	or persor	nes)	Sensi.	Latent	' I		
OCCUPANTS		Type d	activité		m2	pers/m2	Pers	Simulta	Correct	pers	W	W			
- Assis sans activité, au rep	Assis sans activité, au repos (théatre)								- 1		68	34			
- Assis, marche lente, trava	il léger	(bureau	x, magas	in)			1000	0,9	0,85	765,00	71	46	54323,1	35016,2	
- Travail facile		(atelier,	restaura	nt)					1		82	80		-	
- Danse		(discott	ièque)						1		95	162			
- Travail difficile		(usine)	•						1		154	270			
ECLAIRAGE		Type d	ėclairage		Surf.	ratio/m2	Quant	Simulta	Puis	balast	Amortisse	ment	' I		
					m2	w/unit	U		wh	corect.	h. écou	coéf.			
- Eclairage (non encastré)		à incan	lescence			15w					4,0h	0,88			
- Eclairage (non encastré)		fluoresc	ent			36w	300u	- 1	10800	1,25	4,0h	0,88	11876,2		
- Eclairage (encastré)	- 1									1,25	4,0h	0,88			
DIVERS		m2	w/unit	Quant.	Simulta										
- Ordinateur :															
- Divers	Divers														

Puissance frigorifique calculée 400,69 kW

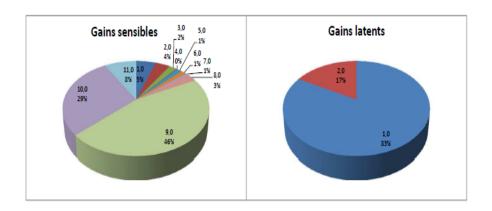


Bilan thermexcel de l'amphithéâtre B.



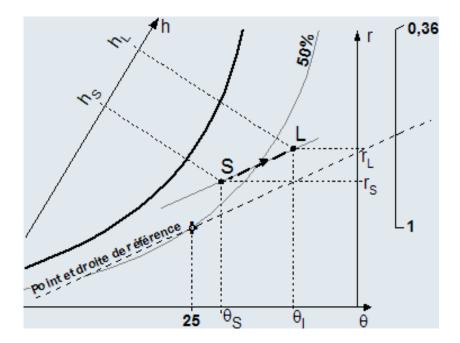
	Dime	nsions	De	bit air () (i	20°C/1013	imb)	Exte	rieur	Intérieur		Delta valeurs				
	lo			Volumiqu	Massique	Ts	Humidité	Tempér	Humidité	Tempé	Humidité				
	Surf.	Haut	m3	Ü	m3/h	kgħ	°C	g/h kg	*C	g/h kg	°K	g/h kg			
 Air hygiénique occupants 			20	750	15000	17720	36,9°C	21,96	24,0°C	11,21	12,9°C	10,75	65103,9	129509,3	-8160,0
- Infiltration d'air							36,9°C	21,96	24,0°C	11,21	12,9°C	10,75			
- Renouvellement air							36,9°C	21,96	24,0°C	11,21	12,9°C	10,75			
GAINS INTERNE	S (W	/h)													
					Surf.	0	ccupation	(pers/m2	or person	nes)	Sensi.	Latent	' I		
OCCUPANTS		Type d	activité		m2	pers/m2	Pers	Simulta	Correct	pers	W	W			
- Assis sans activité, au rep	05	(théatre)						- 1		68	34			
- Assis, marche lente, trava	,,						750	0,9	0,85	573,75	71	46	40742,3	26262,2	
- Travail facile	-	(atelier,	restaura	nt)					1		82	80			
- Danse		(discoth	ièque)						1		95	162			
- Travail difficile		(usine)	•						1		154	270			
ECLAIRAGE		Type d	ėclairage		Surf.	ratio/m2	Quant	Simulta	Puis	balast	Amortisse	ment	' I		
					m2	w/unit	U		w/h	corect.	h. écou	coéf.			
- Eclairage (non encastré)		à incan	lescence			15w					4,0h	0,88			
- Eclairage (non encastré)		fluoreso	ent			36w	300u	1	10800	1,25	4,0h	0,88	11876,2		
- Eclairage (encastré)	rage (encastré) à incandescence									1,25	4,0h	0,88			
DIVERS	<u> </u>					w/unit	Quant.	Simulta	*****				i		
- Ordinateur :	dinateur :														
- Divers	net2														
Manage diam diamete des	Japeur d'eau dégagée dans local (679 x Q (kg/h))														

Puissance frigorifique calculée 312,81 kW

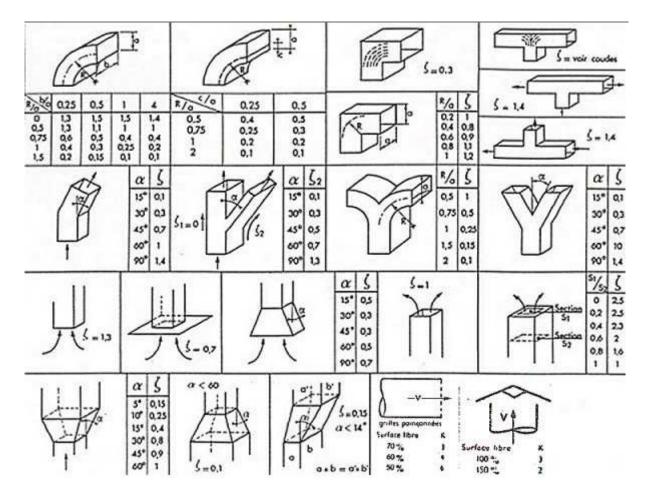

Bilan thermexcel de l'amphithéâtre C.

GAINS PAR REN	OUV	(a) (i) (i) (i)	MEN	T D'A	IR										
	Dime	nsions	I	Nébit air Q	(à 20°C/1013	imb)	Exte	rieur	Int	erieur	Delta va	leurs	' I		
	_	cal	Unit	Nbre	Volumique (Ts	Humidité		Humidité	Tempé	Humidité			
	Surf.	Haut	m3	Ü	m3/h	kgħ	°C	g/h kg	*C	g/h kg	°K	g/h kg			
 Air hygiénique occupants 			20	750	15000	17720	36,9°C	21,96	24,0°C	11,21	12,9°C	10,75	65103,9	129509,3	-8160,0
- Infiltration d'air							36,9°C	21,96	24,0°C	11,21	12,9°C	10,75			
- Renouvellement air							36,9°C	21,96	24,0°C	11,21	12,9°C	10,75			
GAINS INTERNE	S (W	/h)													
					Surf.	0	ccupation	(pers/m2 (or person	nes)	Sensi.	Latent	' I		
OCCUPANTS		Type d'	activité		m2	pers/m2	Pers	Simulta	Correct	pers	W	W			
- Assis sans activité, au rep	s sans activité, au repos (théatre)								1		68	34			
- Assis, marche lente, trava	il léger	(bureau	s, magas	in)	l		750	0,9	0,85	573,75	71	46	40742,3	26262,2	
- Travail facile		(atelier,	restaura	nt)	l				1		82	80			
- Danse		(discoth	ièque)	•	l				1		95	162			
- Travail difficile		(usine)	• /						1		154	270			
ECLAIRAGE		Type d	eclairage		Surf.	ratio/m2	Quant	Simulta	Puis	balast	Amortisse	ment	' I		
					m2	w/unit	U		wh	corect.	h. écou	coéf.			
- Eclairage (non encastré)		à incano	lescence			15w					4,0h	0,88			
- Eclairage (non encastré)		fluoresc	ent		l	36w	300u	-1	10800	1,25	4,0h	0,88	11876,2		
- Eclairage (encastré)	2 1									1,25	4,0h	0,88			
DIVERS	ERS					w/unit	Quant.	Simulta	****				' I		
Ordinateur :															
- Divers	ivers														
- Vapeur d'eau dégagée dar	Vapeur d'eau dégagée dans local (679 % Q (kg/h))														
					TO	TAL BI	LAN I	HER	MIQU	E DU I	OCA	L (W) :	142593	155771	-11584

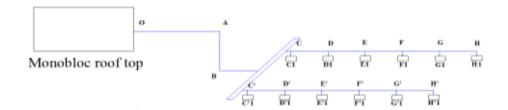
Puissance frigorifique calculée


298,36 kW

• Méthode Carrier pour la détermination de la droite de soufflage


Les étapes de la construction de la droite de soufflage sont les suivants :

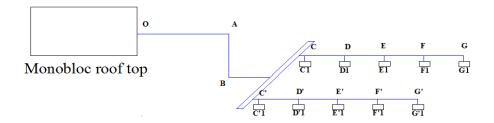
- Sur l'échelle fournie, on lit directement la valeur du facteur de chaleur sensible SHF;
- On trace une droite issue du point de référence (24°C, 50 %) jusqu'à la valeur du SHF;
- On trace une parallèle à cette droite de référence passant par le point du local (24°C, 60%);
- Le point de soufflage se trouve à l'intersection de cette droite de soufflage et l'isotherme de la température de soufflage.


IX- Annexe B

Evaluation des pertes de charge sur le tronçon le plus chargé.

Valeurs du coefficient de perte de charge singulière selon les différents cas pour une conduite rectangulaire.

> Cas de l'Amphithéâtre A.

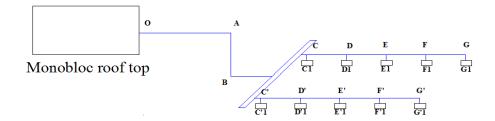


Synoptique de la climatisation pour l'amphithéâtre A

Calcul des pertes de charges du réseau de gaines dans l'amphithéâtre A.

tronçon	OA	AB	ВС	CD	DE	EF	FG	GH	C1	D1	E1	F1	G1	H1
longueur (m)	5,3	1	2	7,2	7,2	7,2	7,2	7,2	1	1	1	1	1	1
Q (m3/h)	10752	10752	10752	8960	7168	5376	3584	1792	1792	1792	1792	1792	1792	1792
Q (m3/s)	2,99	2,99	2,99	2,49	1,99	1,49	1,00	0,50	0,50	0,50	0,50	0,50	0,50	0,50
v (m/s)	8	7	7	6	5	4	4	4	3	3	3	3	3	3
S (m ²)	0,37	0,43	0,43	0,41	0,40	0,37	0,25	0,12	0,17	0,17	0,17	0,17	0,17	0,17
D éq (mm)	689,45	737,05	737,05	726,75	712,06	689,45	562,93	398,05	459,63	459,63	459,63	459,63	459,63	459,63
D éq abaque (mm)	700	737	737	732	711	700	573	400	464	464	464	464	464	464
a (mm)	750	700	700	750	700	750	550	450	450	450	450	450	450	450
b (mm)	550	650	650	600	650	550	500	300	400	400	400	400	400	400
f	0,93	0,94	0,94	0,94	0,94	0,93	0,94	0,93	0,94	0,94	0,94	0,94	0,94	0,94
v réelle (m/s)	7,44	6,58	6,58	5,64	4,7	3,72	3,76	3,72	2,82	2,82	2,82	2,82	2,82	2,82
j mmCE/m	0,07	0,05	-	-	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
j réel mmCE/m	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07
P charges linéaires (Pa)	3,38	0,64	1,28	4,59	4,59	4,59	4,59	4,59	0,64	0,64	0,64	0,64	0,64	0,64
type de P singulière		coude				piquage			0	0	0	0	0	0
Е	1,4	1,4	1,4	1,5	1,5	1,5	1,5	1,5	0	0	0	0	0	0
P charges singulières (Pa)	46,06	36,03	36,03	28,36	19,69	12,34	12,60	12,34	0,00	0,00	0,00	0,00	0,00	0,00
P charges totales (Pa)	49,44	36,66	37,30	32,95	24,29	16,93	17,20	16,93	0,64	0,64	0,64	0,64	0,64	0,64
P charges totales (Pa)							235	5,52						

> Cas de l'Amphithéâtre B



Synoptique de la climatisation pour l'amphithéâtre B

Calcul des pertes de charges du réseau de gaines dans l'amphithéâtre B.

tronçon	OA	AB	ВС	CD	DE	EF	FG	C1	D1	E1	F1	G1
longueur (m)	5,3	1	2	6,5	6,5	6,5	6,5	1	1	1	1	1
Q(m3/h)	7775	7775	7775	6220	4665	3110	1555	1555	1555	1555	1555	1555
Q(m3/s)	2,16	2,16	2,16	1,73	1,30	0,86	0,43	0,43	0,43	0,43	0,43	0,43
v (m/s)	8	7	7	6	5	4	4	3	3	3	3	3
S (m²)	0,27	0,31	0,31	0,29	0,26	0,22	0,11	0,14	0,14	0,14	0,14	0,14
D éq (mm)	586,29	626,77	626,77	605,51	574,44	524,39	370,80	428,16	428,16	428,16	428,16	428,16
D éq (mm) abaque	589	628,00	628,00	610	573	533	378	433	433	433	433	433
a (mm)	650	600	600	700	550	600	400	450	450	450	450	450
b (mm)	450	550,00	550,00	450	500	400	300	350	350	350	350	350
F	0,93	0,94	0,94	0,93	0,94	0,93	0,93	0,93	0,93	0,93	0,93	0,93
v réelle (m/s)	7,44	6,58	6,58	5,58	4,7	3,72	3,72	2,79	2,79	2,79	2,79	2,79
j (CE/m)	0,07	0,05	-	-	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02
j réel (CE/m)	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07
P charges linéaires (Pa)	3,38	0,64	1,28	4,14	4,14	4,14	4,14	0,64	0,64	0,64	0,64	0,64
type de P singulière		coude			piqu	ıage		0	0	0	0	0
Е	1,4	1,4	1,4	1,5	1,5	1,5	1,5	0	0	0	0	0
P charges singulières (Pa)	46,06	36,03	36,03	27,76	19,69	12,34	12,34	0,00	0,00	0,00	0,00	0,00
P charges totales (Pa)	49,44	36,66	37,30	31,90	23,84	16,48	16,48	0,64	0,64	0,64	0,64	0,64
P charges totales (Pa)						215	5,30					

> Cas de l'amphithéâtre C

Synoptique de la climatisation pour l'amphithéâtre C

Calcul des pertes de charges dans le réseau de gaine dans l'amphithéâtre C.

		Ι				Ι			Ι	Ι	I	
tronçons	OA	AB	BC	CD	DE	EF	FG	C1	D1	E1	F1	G1
longueur (m)	5,3	1	2	6,5	6,5	6,5	6,5	1	1	1	1	1
$Q(m^3/h)$	7040	7040	7040	5632	4224	2816	1408	1408	1408	1408	1408	1408
$Q(m^3/s)$	1,96	1,96	1,96	1,56	1,17	0,78	0,39	0,39	0,39	0,39	0,39	0,39
v (m/s)	8	7	7	6	5	4	4	3	3	3	3	3
S (m ²)	0,24	0,28	0,28	0,26	0,23	0,20	0,10	0,13	0,13	0,13	0,13	0,13
D éq (mm)	557,89	596,40	596,40	576,18	546,61	498,99	352,84	407,42	407,42	407,42	407,42	407,4
D éq (mm) abaque	567	598	598	589	547	511	354	409	409	409	409	409
a (mm)	600	600	600	650	500	550	350	400	400	400	400	400
b (mm)	450	500	500	450	500	400	300	350	350	350	350	350
f	0,93	0,94	0,94	0,93	0,94	0,93	0,94	0,94	0,94	0,94	0,94	0,94
v réelle (m/s)	7,44	6,58	6,58	5,58	4,70	3,72	3,76	2,82	2,82	2,82	2,82	2,82
j (mmCE/m)	0,07	0,05	-	-	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02
j réel (mmCE/m)	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07
P charge linéaire (Pa)	3,38	0,64	1,28	4,14	4,14	4,14	4,14	0,64	0,64	0,64	0,64	0,64
type de P singulière		coude			piqı	ıage		0	0	0	0	0
ε	1,40	1,40	1,40	1,50	1,50	1,50	1,50	0	0	0	0	0
P charge singulière (Pa)	46,06	36,03	36,03	27,76	19,69	12,34	12,60	0	0	0	0	0
P charge totale (Pa)	49,44	36,66	37,30	31,90	23,84	16,48	16,75	0,64	0,64	0,64	0,64	0,64
P charge totale (Pa)						215	,57					

X- Annexe C

Classifications des filtres.

Classification	n des filtres grossiers à rende	ement moyen
Classe du filtre (groupe G)	Rendement gravimétrique moyen Am (%)	Classe correspondante de filtre d'après EUROVENT
G1	Am < 65	EU 1
G2	65 <= Am < 80	EU 2
G3	80 <= Am < 90	EU 3
G4	90 <= Am	EU 4
Classifica	ation des filtres fins à rendem	ent élevé
Classe du filtre (groupe F)		
F5	40 <= Em < 60	EU 5
F6	60 <= Em < 80	EU 6
F7	80 <= Em < 90	EU 7
F8	90 <= Em < 95	EU 8
F9	95 <= Em	EU 9
Classification	des filtres ultrafins à très ha	ut rendement
Classe du filtre (groupe HEPA)	Rendement minimal sur la base des particules les plus difficiles à filtrer (test MPPS) en %	Classe correspondante de filtre d'après EUROVENT
H 10	85	EU 10
H 11	95	EU 11
H 12	99.5	EU 12 et EU 13
H 13	99.95	EU 14
H 14	99.995	EU 14
Classification des filtres ultra	afins à très faible pénétration	pour applications spéciales
Classe du filtre (groupe ULPA)	Rendement minimal sur la base des particules les plus difficiles à filtrer (test MPPS) en %	Classe correspondante de filtre d'après EUROVENT
U 15	99,9995	
U 16	99,99995	
U 17	99.999995	

Facteur de correction de puissance selon la température ambiante et de température de sortie d'eau.

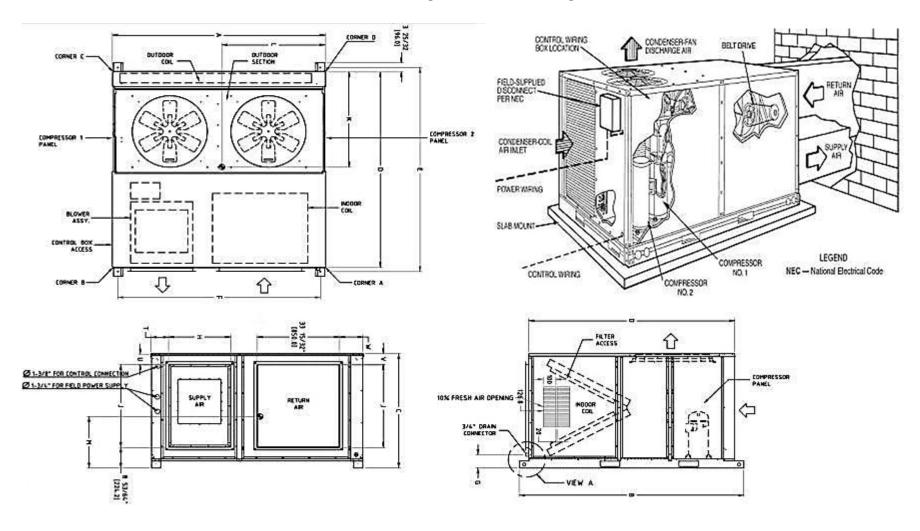
LWT [°C] - Température de sortie de l'eau

K	-20°C	-5°C	0°C	+5°C	+7°C	+10°C	+12°C	+15°C
25°C		0,49	0,64	0,74	0,78	0,86	0,90	1,00
30°C	Version LT (basse temp.)	0,44	0,55	0,70	0,74	0,79	0,84	0,89
35°C	Aersion LT (0,41	0,51	0,65	0,69	0,74	0,79	0,84
40°C			0,47	0,60	0,64	0,69		
45°C				Version TI	R (tropicalisée)			

Estimation du coût d'exécution des 2 systèmes de climatisation

Climatisation p	ar Monobl	locs	
Désignation	Qté	PU HT (FCFA)	PT (FCFA)
Appareils			
Monoblocs 50 TJ 028 CARRIER*	13	39 38 000	51 194 000
Tourelles d'extraction HCTT/4-800 B*	6	1 356 008	8 136 048
Location de grue	1	10 000 000	10 000 000
Circuit aéraulique			
isolant (épaisseur 50 mm)	26	65500	1 703 000
isolant coudes (épaisseur 50 mm)	13	150650	1 958 450
Grilles de soufflage alu 700x700	80	25 000	2 000 000
Grilles de reprise alu 1200x700	60	35000	2 100 000
Tuyauteries PVC	26	5500	143 000
Plaques en staff	400	9500	3 800 000
Autres (filasse, mastique, maçonnerie)	1	1000000	1 000 000
Circuit électrique			

Climatisation co	entrale		
Désignation	Qté	PU HT (FCFA)	PT (FCFA)
Appareils		(1 0111)	(1 0111)
CTA CARRIER 39CI 28*	1	33 897 560	33 897 560
CTA CARRIER 39CI 27*	2	33 510 455	67 020 910
Groupe Frigorifique CARRIER30 XA 1302*	1	59 316 145	59 316 145
Pompe hydraulique SALMSON DXE 80-50*	2	3 672 585	7 345 170
Location de grue	1	10 000 000	10 000 000
Circuit hydraulique			
Vannes de réglages	18	5 240 000	94 320 000
Ballons de stockage	2	2 364 550	4 729 100
filtres à tamis	2	393 000	786 000
Pressostats	10	13 100	131 000
isolant (épaisseur 50 mm)	800	65 500	52 400 000
isolant coudes (épaisseur 50 mm)	5	150 650	753 250
Tuyauteries PVC	800	5500	4 400 000
Plaques en staff	400	9500	3 800 000
Autres (filasse, mastique, maçonnerie)	1	5000000	5 000 000
Circuit aéraulique			
Grilles de soufflage alu 700x700	80	25000	2 000 000
Grilles de reprise alu 1200x700	60	35 000	2 100 000


Câbles électriques et appareils de régulation	6	1 800 000	10 800 000
Main d'œuvre (30 jours de travail)			
Staffeurs	6	5 000	900 000
Electriciens	2	5 000	300 000
Frigoristes	2	5000	300 000
Imprévus	1	1 000 000	1000000
Bureau d'études	1	25 000 000	25 000 000
TOTAL			120 334 498
TVA (18%)			21 660 210
TOTAL(TTC)			141 994 708

Main d'œuvre (60 jours de travail)			
Staffeurs* (30 jours de travail)	6	5000	900 000
Electriciens	3	5000	750 000
Frigoristes	2	5000	500 000
Plombiers	3	5000	750 000
Imprévus	1	5000000	5 000 000
Bureau d'études	1	35000000	35 000 000
TOTAL			390 899 135
TVA (18%)			70 361 844,3
TOTAL (TTC)			461 260 979,3

(*) Prix constructeur

XI- Annexe D

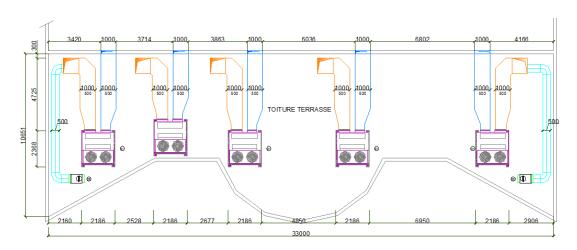
• Données techniques monobloc roof top CARRIER 50 TJ 28

1007	SH	PPING DIMENSIO	NS
UNIT	As	Bs	Cs
50TJ016	90-1/2 [2299.0]	91-1/4 [2318.0]	50.0 [1270.0]
50TJ020	90-1/2 [2299.0]	91-1/4 [2318.0]	50.0 [1270.0]
50TJ024	100-1/2 [2553.0]	96.0 [2440.0]	50.0 [1270.0]
50TJ028	100-1/2 [2553.0]	96.0 [2440.0]	50.0 [1270.0]
S0TJ032	100-1/2 [2553.0]	102-23/64 [2600.0]	55.0 [1397.0]

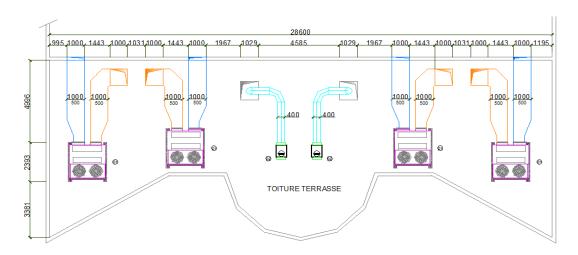
UNIT	A	В	c	D	E	F	G	Н	j	Ţ	Ü	Ÿ	W
50TJ016	86-1/2 [2197.0]	91-1/4 [2318.0]	49.0 [1244.5]	83-47/64 [2127.0]	87-1/4 [2216.0]	82-9/32 [2090.0]	5-11/16 [144.5]	25-13/64 [640.0]	35-7/16 [900.0]	7.0 [178.0]	9-3/4 [247.5]	4-7/8 [122.0]	9-1/4 [235.0]
50TJ020	86-1/2 [2197.0]	91-1/4 [2318.0]	49.0 [1244.5]	83-47/64 [2127.0]	87-1/4 [2216.0]	82-9/32 [2090,0]	5-11/16 [144.5]	25-13/64 [640.0]	35-7/16 [900.0]	7.0 [178.0]	9-3/4 (247.5)	4-7/8 [122.0]	9-1/4 [235.0]
50TJ024	96-1/2 [2451.0]	96.0 [2440.0]	49.0 [1244.5]	88 - 7/16 [2247.0]	92-3/64 [2338.0]	92-1/8 [2340.0]	5-11/16 [144.5]	29-47/64 [755.0]	35-7/16 [900.0]	9-2/3 [245.5]	6-1/4 [159.5]	4-7/8 [122.0]	9-1/4 [235.0]
50TJ028	96-1/2 [2451.0]	96.0 [2440.0]	49.0 [1244.5]	88 - 7/16 [2247.0]	92-3/64 [2338.0]	92-1/8 [2340.0]	5-11/16 [144.5]	29-47/64 [755.0]	35-7/16 [900.0]	9-2/3 [245.5]	6-1/4 [159.5]	4-7/8 [122.0]	9-1/4 [235.0]
50TJ032	96-1/2 [2451.0]	102-23/64 [2600.0]	54.0 [1372.0]	94-27/32 [2409.0]	98-11/32 [2318.0]	92-1/8 [2315.0]	6-5/8 [168.3]	29-47/64 [755.0]	39-3/8 [1000,0]	9-2/3 [245.5]	10-3/8 [263.0]	4-7/8 [122.0]	9-1/4 (235.0)

Ten	np (C)	2					Evap	orator A	Air Quan	tity — L/s	s/BF					
Air E	ntering		3304/0.0	5	9	3776/0.0	6	4248/0.07			4720/0.08			6	9	
Condenser		0 80	Evaporator Air — Ewb (C)													
(E	db)	17	19	22	17	19	22	17	19	22	17	19	22	17	19	22
24	TC	82.3	90.8	100.5	84.4	93.2	102.8	85.6	94.6	104.0	87.3	95.8	105.8	89.1	97.3	107.2
	SHC	69.1	58.8	47.8	74.1	62.6	50.3	79.7	66.9	54.3	83.2	70.2	56.6	87.9	75.3	59.9
	kW	18.2	18.8	19.4	18.4	19.0	19.6	18.5	19.1	19.7	18.6	19.2	19.9	18.8	19.4	20.0
29	TC	79.7	87.9	97.3	81.7	90.5	99.6	83.2	92.0	101.7	84.7	93.2	102.8	86.7	94.3	104.0
	SHC	68.0	57.4	46.6	73.0	61.1	49.1	77.6	65.0	51.4	81.7	68.0	53.7	85.8	73.2	57.3
	kW	20.3	20.8	21.5	20.4	21.0	21.7	20.6	21.2	21.8	20.8	21.4	22.0	20.9	21.4	22.1
35	TC	76.8	85.3	93.8	78.5	87.0	95.8	80.3	88.5	97.6	81.7	90.0	99.0	83.5	91.1	100.5
	SHC	66.5	56.2	45.6	71.5	59.7	47.8	75.6	63.1	49.9	79.4	66.6	52.0	82.9	70.6	54.8
	kW	22.6	23.1	23.7	22.6	23.3	23.9	22.8	23.4	24.1	23.0	23.6	24.2	23.1	23.6	24.4
41	TC	73.8	81.7	90.0	75.6	83.5	91.7	77.1	85.0	93.5	78.5	86.1	94.6	80.9	87.0	95.8
	SHC	65.1	54.7	44.2	69.6	58.5	46.4	74.1	61.6	48.4	77.4	65.0	50.5	80.6	69.4	53.2
	kW	24.9	25.5	26.1	25.0	25.7	26.3	25.2	25.8	26.5	25.3	25.9	26.5	25.5	26.0	26.7
46	TC	70.3	77.9	85.6	72.1	79.7	87.6	73.8	80.9	88.8	75.6	81.7	90.2	77.6	82.9	91.1
	SHC	63.5	53.3	42.7	68.0	57.0	44.8	71.8	60.4	47.0	75.0	63.5	49.5	77.4	67.8	51.5
	kW	27.3	27.9	28.5	27.5	28.1	28.7	27.7	28.3	28.9	27.8	28.3	28.9	28.0	28.5	29.1
52	TC	67.0	73.8	81.5	68.6	75.6	82.9	70.3	76.5	84.1	71.8	77.4	85.3	73.8	77.9	86.4
	SHC	61.8	51.9	41.2	66.1	55.4	43.2	69.1	58.5	45.3	71.8	61.6	47.1	73.8	65.6	49.7
	kW	29.9	30.4	31.1	30.0	30.6	31.2	30.2	30.7	31.3	30.4	30.7	31.5	30.6	30.9	31.6

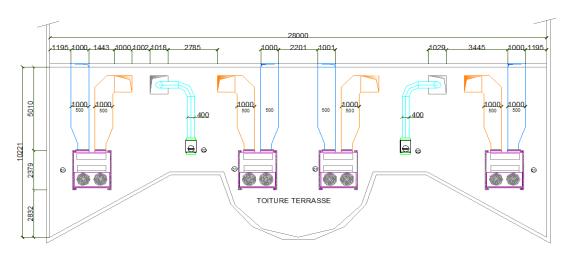
LEGEND


BF — Bypass Factor
Edb — Entering Dry Bulb Temperature (C)
Ewb — Entering Wet Bulb Temperature (C)
kW — Compressor Input (kW)
SHC — Sensible Heat Capacity (kW)
TC — Total Capacity (kW)

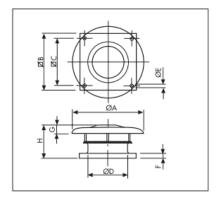
UNIT 50TJ	016	020	024	028	32				
NOMINAL CAPACITY (KW)	52.8	63.3	70.3	87.9	105				
OPERATING WEIGHT		For O	perating Weights see p	age 10.					
COMPRESSOR QuantityDanfoss Model (Ckt 1 , Ckt 2)	2SM110S	1SM120S, 1SM110S	Scroll 1SM161T, 1SM120S	1SM185W, 1SM161T	2SM185W,				
Number of Refrigerant Circuits Oil (mil) (Ckt 1 , Ckt 2) Stages of Capacity Control (%)	2 3312, 3312 50/50	2 3312, 3312 55/45	2 3312, 3312 60/40	2 4250, 4250 55/45	2 4250, 4250 50/50				
REFRIGERANT TYPE Expansion Device		3045	R-22 TXV	30140	3030				
Operating Charge (Kg) Circuit 1* Circuit 2	6.4 6.4	8 6.6	10.5 6.6	11.4 7.7	11.4 11.4				
CONDENSER COIL	540/0	Grooved s/tr Aluminium	In. Copper Tubes, Alu Pre-Coated, or Coppe	minium Wavy, er Plate Fins	e Broden				
RowsFins/in. Total Face Area (m²)	216 2.271	316 2.271	316 2.55	416 2.55	416 2.79				
CONDENSER FAN Nominal L/s QuantityDiameter (mm)No. of Blades. Motor BKWr/s	y <u>e</u>	6040 27624 0.7516	Propeller Type	27	43 526				
EVAPORATOR COIL	1	0.7516 0.74516 Grooved sla-In. Copper Tubes, LSW or Copper Plate Fins, Face Split							
RowsFins/in. Total Face Area (m²)	217 1.71	317 1.71	317 1.951	417 1.951	417 2.165				
EVAPORATOR FAN QuantitySize (mm) Type Drive Nominal L/s Motor BkW Motor Nominal r/s Maximum Continuous BkW Motor Frame Size Fan Pulley Pitch Diameter (mm) Nominal Fan Shaft Diameter (mm) Motor Bearing Type Maximum Allowable r/s Motor Pulley Pitch Diameter Min/Max (mm) Nominal Motor Shaft Diameter Min/Max (mm) Pulley Center Line Distance (mm.) Speed Change per Full Turn of Movable Pulley Flange (r/s) Movable Pulley Maximum Full Turns From Closed Position Factory Speed Setting Factory Speed Setting (r/s)	1400 x 400 Bett 2830 3.7 24 4 184T 11.5-14 224 30 Ball 20 110/131 28.5 2 SPA 1800 604.5-635 0.5	1400 x 400 Bett 2973 3.7 24 4 184T 13-15 200 30 Ball 20 110/131 28.5 2 SPA 1800 604.5-635 0.5	Centrifugal Type 1450 x 450 Belt 3775 5.6 24 6.2 213T 11.83-13.5 236 35 Ball 23.33 114/129 35 2 SPB 2000 604.5-635 0.33 5 24g 12.66	1450 x 450 Bet 4105 5.6 24 6.2 213T 13.5-15 236 35 Ball 23.33 131/146 35 2 SPB 2000 604.5-635 0.33 5	1450 x 450 Belt 4955 7.5 24 8.25 215T 14-18 236 35 Ball 23.33 137/173 35 2 SPB 195 660-685 0.83 5				
HIGH-PRESSURE SWITCH (paig) Cut-out Reset (Auto)	3/2		425 320						
LOW-PRESSURE SWITCH (pelg) Cu-out Reset (Auto)	-3		27 44						
REEZE PROTECTION THERMOSTAT (C) Opens Closes	-1±1 7±1								
RETURN-AIR FILTERS QuantifySize (mm.)			minium 790 x 545)	***************************************	Aluminium 4./902 x 546				


Condenser Motor Efficiency 80% Evaporator Motor Efficiency 87%

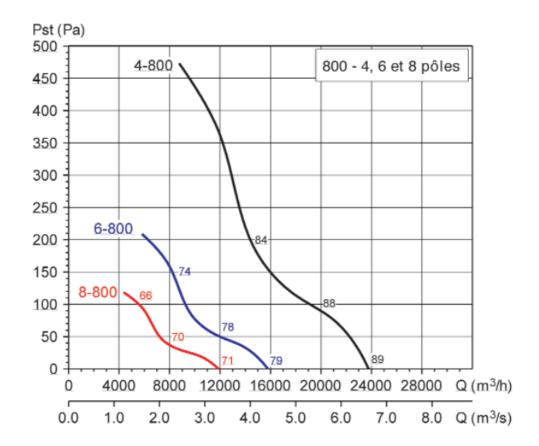
Plan de pose des monoblocs


Amphithéâtre A

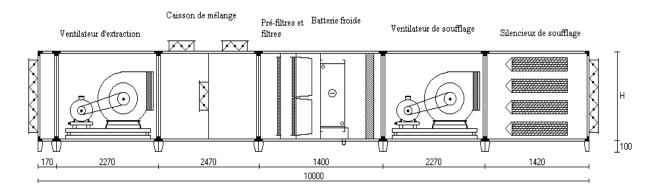
Amphithéâtre B

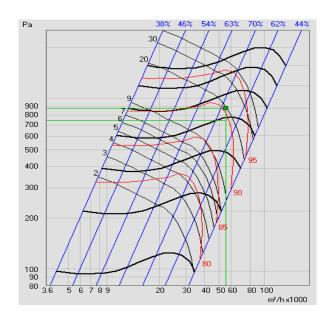


Amphithéâtre C


• Données techniques de la tourelle d'extraction HCTT/4-800-B

Dimensions

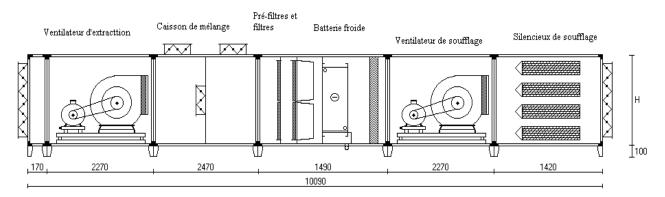


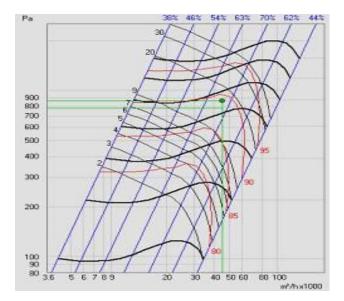

Туре	ØA	Ø₿	ДC	ØD	ØE	F	G	н
315	640	560	450	315	12	40	70	341
355	760	630	535	355	12	40	80	361
400	760	630	535	400	12	40	80	361
450	895	710	590	450	14	40	110	410
500	895	710	590	500	14	40	110	410
560	1150	905	750	560	14	50	165	488
630	1150	905	750	630	14	50	165	488
710	1350	1100	840	710	14	50	200	551
800	1350	1100	840	800	14	50	200	732
900	1580	1250	950	900	14	50	200	756
1000	1580	1250	950	1000	14	50	200	756

Courbe caractéristique de la tourelle d'extraction

Données techniques CTA CARRIER 39CI 28

Courbe de fonctionnement du ventilateur de soufflage de la CTA CARRIER 39CI 28.


Courbe de fonctionnement du ventilateur d'extraction de la CTA CARRIER 39 CI 28.


Modèle			BQ 800					
Niveau de puissar)]	90	Niveau de)]	83			
Fréq [Hz]	63	125	250	500	1000	2000	4000	8000
Lw [dB]	95,5	94,3	91,9	86,6	83,8	78,7	73,2	66,5

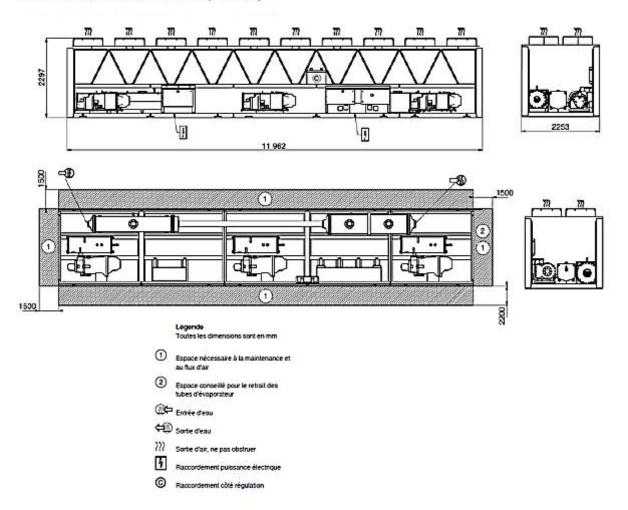
Modèle Niveau de puissar	nce sonore [db	(A)]	BQ 900 92	Niveau (de pression	sonore (db(/	A)]	85
Fréq [Hz]	63	125	250	500	1000	2000	4000	8000
Lw [dB]	97,5	96,3	93,9	88,6	85,8	80,7	75,2	68,5
DLw [dB]	4	8	15	23	32	34	23	16
Lw ris. [dB]	101,5	104,3	108,9	111,6	117,8	114,7	98,2	84,5

Analyse sonore du ventilateur de soufflage et d'extraction de la CTA CARRIER 39CI 28.

Données techniques CTA CARRIER 39CI 27.

Courbe de fonctionnement du ventilateur de soufflage de la CTA CARRIER 39CI 27.

Courbe de fonctionnement du ventilateur d'extraction CTA CARRIER 39CI 27.


Modèle Niveau de puissar	nce sonore [db	(A)]	BQ 800 89	Niveau o	de pression	sonore [db(/	A)]	82
Fréq [Hz]	63	125	250	500	1000	2000	4000	8000
Lw [dB]	94,5	93,3	90,9	85,6	82,8	77,7	72,2	65,5
DLw [dB]	4	8	15	23	32	34	23	16
Lw ris. [dB]	98,5	101,3	105,9	108,6	114,8	111,7	95,2	81,5

Modèle			BQ 800					
Niveau de puissar	90	Niveau de)]	83				
Fréq [Hz]	63	125	250	500	1000	2000	4000	8000
Lw [dB]	95,5	94,3	91,9	86,6	83,8	78,7	73,2	66,5

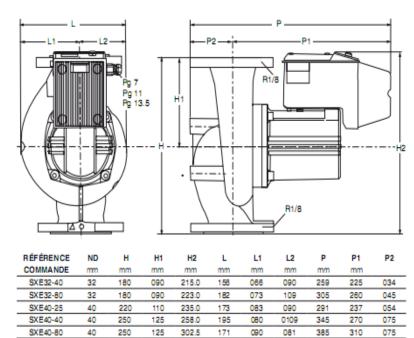
Analyse sonore du ventilateur de soufflage et d'extraction de la CTA CARRIER 39CI27.

 Données techniques refroidisseurs de liquide à condensation par air CARRIER 30 XA-1302

30XA 1102-1352 Batterie MCHX (standard)

	Tempe	rature	d'air (°0	2)																					
	25					30					35					40					46				
	CAP	COM	UNIT	COOL	COOL	CAP	COMP	UNIT	COOL	COOL	CAP	COMP	UNIT	COOL	COOL	CAP	COM	UNIT	COOL	COOL	CAP	COME	UNIT	COOL	COOL
30XA	kW	kW	kW	l/s	kPa	kW	kW	kW	l/s	kPa	kW	kW	kW	l/s	kPa	kW	kW	kW	l/s	kPa	kW	kW	kW	l/s	kPa
252	280	67	72	13	14	270	74	78	13	14	260	81	86	12	13	248	89	93	12	12	234	99	103	11	10
302	309	77	81	15	15	297	84	88	14	14	285	92	96	14	13	272	101	105	13	12	255	113	117	12	10
352	338	83	87	16	18	325	91	95	15	16	311	100	104	15	15	295	109	113	14	14	276	122	126	13	12
402	398	96	102	19	34	385	105	112	18	32	371	115	121	18	30	356	126	132	17	28	338	140	146	16	25
452	457	115	121	22	36	442	126	132	21	34	425	138	144	20	32	407	151	157	19	30	385	169	175	18	27
502	514	127	133	25	36	497	139	145	24	34	478	152	159	23	31	457	167	173	22	29	431	187	193	21	26
502	632	156	164	30	46	610	171	179	29	43	587	187	195	28	40	563	204	212	27	37	531	228	236	25	33
702	683	164	173	33	36	659	179	188	31	34	634	196	205	30	31	608	214	223	29	29	573	240	248	27	26
752	739	186	195	35	37	714	203	212	34	35	687	222	231	33	33	658	243	252	31	30	615	267	275	29	27
302	802	205	214	38	35	773	224	233	37	32	743	245	254	35	30	711	268	277	34	28	655	290	299	31	24
352	840	209	220	40	38	810	228	239	39	35	780	250	261	37	33	747	274	284	36	31	705	307	317	34	28
902	911	235	246	43	36	879	257	267	42	34	845	281	291	40	31	810	308	318	39	29	735	324	335	35	24
1002	998	253	265	48	35	962	277	289	46	33	925	303	315	44	31	887	332	344	42	28	831	368	379	40	25
1102	1167	286	300	56	42	1127	312	327	54	39	1084	342	356	52	36	1039	374	388	50	34	981	418	432	47	30
1202	1273	320	335	61	44	1229	350	365	59	41	1182	383	398	56	38	1134	419	434	54	35	1057	458	473	50	31
1302	1362	353	368	65	46	1313	385	400	63	43	1261	422	437	60	40	1207	463	478	57	37	1039	453	467	50	28
1352	1454	400	415	69	43	1401	438	453	67	40	1345	480	494	64	37	1286	526	541	61	34	956	427	441	46	20
1402	1496	373	391	71	46	1443	408	426	69	43	1387	446	464	66	40	1329	489	506	63	37	1200	511	528	57	31
1502	1550	390	408	74	47	1495	426	444	71	44	1437	466	484	68	41	1377	511	529	66	38	1258	544	561	60	32
1702	1678	415	437	80	56	1621	454	475	77	52	1560	497	518	74	49	1495	545	566	71	45	1401	602	622	67	40

LWT Température of CAP kW Puissance frig


Température de sortie d'eau
Puissance frigorfique
Puissance absorbée des compresseurs

UNIT kW Puissance absorbée de l'unité (compresseurs, ventilateurs, commande)
COOL l/s Débit d'eau évaporateur
COOL kPa Perla de charge évaporateur

Données d'application: Unités standards, Réfrigérant R134a Différence entrée/sortie d'eau à l'évaporateur: 5 K Fluide à l'évaporateur: eau glacée Coefficient d'encrassement: 0,18 x 10⁻⁴ (m²K) / W Performances établies selon EN 14511

Données techniques de la pompe hydraulique SALMSON DXE 80-50

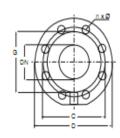
Dimensions

317.5

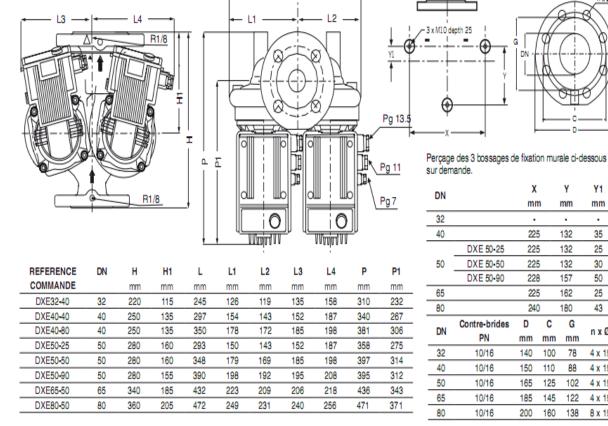
317.5

357.5

368.0

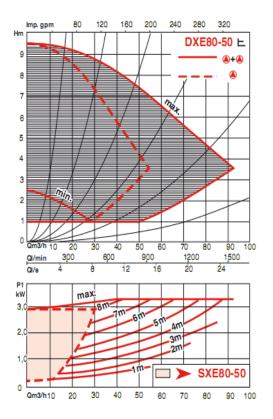

SXE50-50

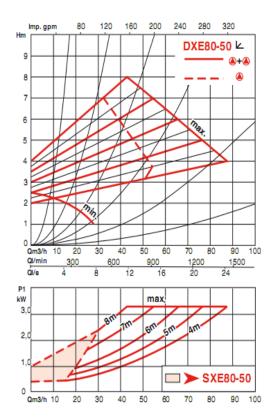
SXE50-90


SXE65-50

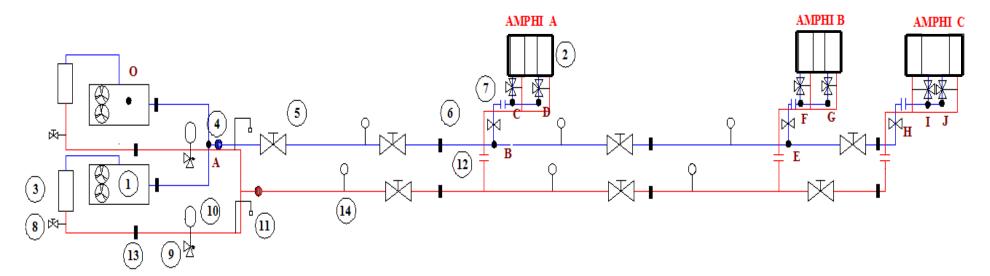
SXE80-50

Perçage sur dem		ossage	s de fixa	tion murale ci-dessous
DN	X	Υ	Y1	_3 x M10
	mm	mm	mm	depth 25
40*	90	90	40	<u>~</u> ⊕.——
50	90	90	40	
65	104	90	40	1 4 4
80	135	95	40	Ψ
"SXE	40-25:	sans boo	ssage	- x -




DN	Contre-brid	es D	С	G	n x Ø		
DIN	PN	mm	mm	mm			
32 =	Corps fileté G2	måle pour	raccor	dement	RU 3342		
40	10/16	150	110	88	4 x 19		
50	10/16	165	125	102	4 x 19		
65	10/16	185	145	122	4 x 19		
80	10/16	200	160	138	8 x 19		

sur dem	ande.				
DN		X		Y	Y1
DIV		mr	n	mm	mm
32					•
40		22	5	132	35
	DXE 50-25	22	5	132	25
50	DXE 50-50	22	5	132	30
	DXE 50-90	22	8	157	50
65		22	5	162	25
80		240	0	180	43
DN	Contre-brides	D	С	G	
N	PN	mm	mm	mm	nxØ
32	10/16	140	100	78	4 x 19
40	10/16	150	110	88	4 x 19
50	10/16	165	125	102	4 x 19
65	10/16	185	145	122	4 x 19
	40440	000	400	400	8 x 19
80	10/16	200	160	138	0 X 19


Courbe de fonctionnement de la pompe hydraulique (en régime de pression différentielle constante et variable).

Annexe E

Réseau hydraulique proposé

Circuit frigorifique

1 : Refroidisseur de liquide à condensation par air

2 : CTA

3 : Ballon de stockage

4 : Pompe hydraulique

Eléments de sécurité

5 : Vannes d'arrêt

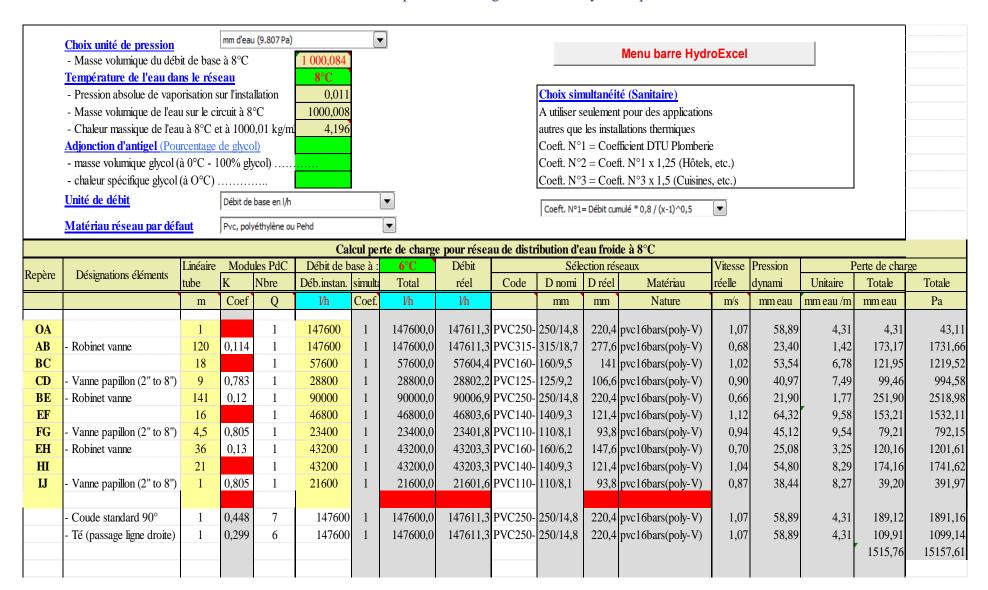
6 : Vannes de réglage de débit

7 : Vannes de tête de colonne

8 : Vannes de vidange

9 : Soupape de sécurité

10 : Vase d'expansion


11 : Purgeur d'air / 12 : Raccord flexible

Eléments de régulation

13: Thermostats

14: Pressostats

Calcul des pertes de charges du réseau hydraulique

