

DIAGNOSTIC DE L'ELECTRIFICATION RURALE DECENTRALISEE PAR GROUPE DIESEL ET PAR INTERCONNEXION AU RESEAU NATIONAL. CAS DE SEBBA ET DE SAMPELGA

MEMOIRE POUR L'OBTENTION DU MASTER 2 SPECIALISE EN GENIE ELECTRIQUE –ENERGETIQUE ET ENERGIE RENOUVELABLE

OPTION: Production et Distribution d'Electricité.

Présenté et soutenu publiquement le [Date] par

Emmanuel TENDANO

Travaux dirigés par:

Dr Daniel YAMEGUEU de l'Institut International d'Ingénierie de l'Eau et l'Environnement (2IE)

Bapio BAYALA Ingénieur Electromécanicien Enseignent à 2iE **Aristide OUEDRAOGO** Directeur Régional de L'Ouest SONABEL

Jury d'évaluation du stage:

Président: Prénom NOM

Membres et correcteurs : Prénom NOM

Prénom NOM

Prénom NOM

Promotion [2011/2012]

DEDICACE

A mon père Diandi TENDANO et à ma mère Yabré Lankoandé qui m'ont inculqué l'amour du travail bien fait;

A ma famille qui m'a assisté durant ces périodes d'études;

A tous ceux qui œuvrent chaque jour dans le domaine de l'énergie pour l'épanouissement du monde rural;

Je dédie ce mémoire

i

Rédigé et soutenu le

REMERCIEMENTS

Notre recherche, qui s'est déroulée de décembre 2013 à Mars 2014, a eu pour cadre la Sonabel de Dori.

A l'issue de ce travail, nous voudrions exprimer notre profonde gratitude à tous ceux qui ont, d'une manière ou d'une autre, apporté leur contribution à la rédaction de ce mémoire.

Nos sincères remerciements s'adressent particulièrement à:

- ✓ Monsieur BASSOLET Ludovic, Directeur Régional du centre SONABEL
- ✓ Notre maître de stage, Monsieur Aristide OUEDRAOGO, Directeur Régional de l'Ouest pour sa franche collaboration, sa disponibilité ainsi que ses conseils et suggestions.
- ✓ Notre Directeur de mémoire le Docteur Daniel YAMEGUEU de l'Institut International d'Ingénierie de l'Eau et l'Environnement (2IE). Nous gardons en lui son sens d'organisation du travail, ses critiques pertinentes et surtout sa rigueur au travail.
- ✓ Au personnel de 2IE, en particulier les enseignants pour l'encadrement reçu.
- ✓ Monsieur Abdramane SIENOU responsable technique de la société SMEEEL et son personnel pour sa disponibilité constante.
- ✓ Au personnel de la SONABEL de Dori pour leur franche collaboration
- ✓ Aux COOPELs de Sebba et Sampelga et tous ces abonnés pour avoir accepté nous partager leurs préoccupations.
- ✓ Monsieur YACOUBA Sanou Chef de Section Production à la SONABEL pour ces critiques et sa disponibilité

Mes amis Adama Zongo et Komoandi K Franck pour leur soutien moral et assistance tout au long de ce parcours.

Nous adressons à tous nos parents notre reconnaissance, nos sincères et profonds remerciements A tous et à toutes nous exprimons notre profonde gratitude.

RESUME

socio-économiques et géographiques difficiles.

Le diagnostic de l'Electrification rurale Décentralisée par groupe diesel et par interconnexion au réseau national met à nu la situation énergétique en Afrique de façon générale et particulièrement au Burkina Faso. Une situation qui se caractérise par une paupérisation énergétique notoire, posant des problèmes de développement. Cela s'expliquent par des facteurs

Notre étude s'est déroulée essentiellement dans les villages de Sampelga et Sebba qui sont des zones rurales fortement marquées par cette pénurie. L'objectif de cette étude était de faire un diagnostic de l'Electrification Rurale Décentralisée des localités de Sebba alimentées par groupes Diesel et de Sampelga raccordé au réseau SONABEL afin de décrire leur fonctionnement et dégager les performances actuelles, mesurer, analyser ces performances et proposer des solutions pour les améliorer. Les données nécessaires à cette étude ont été la vérification du respect des prescriptions techniques relatives aux installations électriques et l'analyse des performances d'exploitation des ouvrages. Les résultats révèlent que l'alimentation par groupe diesel à Sebba présente quelques insuffisances techniques et un coût exorbitant de production. Certains paramètres électriques sont au delà des prescriptions réglementaires.

Quand aux mesures de protection des personnes contre les contacts directs elles sont bien appliquées. Par contre il n'y a aucune protection des personnes et des biens contre les surtensions.

L'alimentation par dérivation triphasée sur le réseau national à Sampelga présente des motifs de satisfaction, notamment en raison du coût de revient de l'énergie très bas. Les contraintes liées à cette technique et les paramètres électriques du réseau BTA sont dans les limites des prescriptions. Par contre la valeur élevée des terres de neutre et leur mise en contact avec les terres de masse constituent un handicap au bon fonctionnement de ce réseau.

La protection des personnes contre les contacts indirects, n'existe pratiquement pas.

Mots clés:

1 – Electrification rurale décentralisée

2 – Groupe diesel

3 – Raccordement triphasé HTA

4 - Sampelga

5 – Sebba

ABSTRACT

Diagnosis of Decentralized Rural Electrification by diesel generator and interconnection to the national network exposes the energetic situation in Africa in general and particularly in Burkina Faso A situation which is characterized by a notorious energetic pauperization, causing problems of development. This can be explained by difficult socio-economic and geographical factors.

Our study was conducted essentially in the villages of Sampelga and Sebba which are rural areas strongly influenced by this shortage. The objective of this study was to make a diagnosis of Decentralized Rural Electrification of localities of Sebba powered by diesel generators and of Sampelga connected to the network SONABEL in order to describe their operation and identify current performance, measure, analyze its performance and propose solutions to improve them. The necessary data for this study have been the verification of compliance with technical prescriptions for electrical installations and analysis of operating performance of works. The results reveal that the diesel group supply to Sebba presents some technical insufficiencies and exorbitant cost of production. Some electrical parameters are beyond regulatory requirements.

As for protection measures for people against direct contacts they are properly applied By cons there is no protection of persons and property against surges.

The three-phase derivation supply on the national network to Sampelga presents grounds for satisfaction, particularly because of the cost price of energy very low The constraints related to this technique and the electrical parameters of BTA network are within the limits of prescriptions. By cons the high value of lands of neutral and their bringing into contact with the land mass constitute an handicap the proper functioning of this network.

The protection of persons against indirect contact does'nt exist practically

Key words

- 1. Decentralized Rural Electrification
- 2. Diesel generator
- 3. HTA tri-phase connection
- 4. Sampelga
- 5. Sebba

LISTE DES FIGURES

Figure 1: courbe de charge mensuelle du réseau de Sampelga	11
Figure 2: courbe de charge journalière de Sebba	12
Figure 3: consommation du gaz-oil selon les relevés fournis par le fermier et calculée	13
Figure 4: Schéma de mise en parallèle de trois puits de terre	22
Figure 5: consommation spécifique du gaz-oil selon les relevés fournis par le fermier et	calculée
	13

LISTE DES TABLEAUX

Tableau 1: Valeur des intensités par phase sur le réseau 20KV triphasé	11
4.1.1.3-Charges sur le réseau triphasé	11
Tableau 2: valeur des terres de neutre et masse du réseau BTA de Sampelga	11
Tableau 3: Distance entre les différentes terres du réseau de Sampelga	12
Tableau 4: Valeur sonore de la centrale	12
Tableau 5: Section des conducteurs et courant transité du réseau de Sampelga	14
Tableau 6: Tension mesurée sur le réseau de Sampelga transformateur de 50kVA	14
Tableau 7: Section des conducteurs et courant transité du réseau de Sebba	14
Tableau 8: facteur de puissance en fonction de la charge du réseau de Sebba	15
Tableau 9: Tension mesurée sur réseau de Sebba	15
Tableau 10: Pertes techniques sur le réseau de Sebba	15
Tableau 11: Surplomb du réseau HTA de Sampelga	15
Tableau 12: Surplomb de route et terrain du réseau BTA de Sampelga	16
Tableau 13: Surplomb bâtiment et voisinage du réseau BTA de Sampelga	16
Tableau 14: surplomb terrain ordinaire et route réseau de Sebba	16
Tableau 15: surplomb bâtiment et voisinage concessions réseau de Sebba	16
Tableau 16: voisinage avec d'autre réseau à Sebba	16
Tableau 17: Valeur des terres réseau de Sebba	16
Tableau 18: Distance entre terre réseau de Sebba	17
Tableau 19: Appareil de protection surintensité réseau de Sebba	17
Tableau 20: Appareil de protection surintensité réseau de Sampelga	17

LISTE DES ABREVIATIONS

A: Ampère

BAD: Banque Africain de Développement

BT: Basse tension < 1000V

CEDEAO: Communauté Economique des Etats de l'Afrique de l'Ouest

COOPELs: Coopératives d'électricité

CLSP: Cadre Stratégique de Lutte contre la Pauvreté

DDO: Distilated Diesel Oïl

DGE: Direction Général de l'Energie

dB: décibel (unité de mesure du bruit)

ERD: Electrification rurale décentralisée

Frs/CFA: Francs /Compagnie Financière Africaine

H: Heure

HTA: Moyenne tension de 1à 50KV

HTB: Haute tension supérieur à 50KV

I: Intensité du courant

INSD: Institut National de la Statique et de la Démographie

Km²: Kilomètre carré

KVA: Kilo Volt Ampère

LPDSE: Lettre de Politique de Développement du Secteur de l'Energie

MATS: Ministère de l'Administration Territoriale et de la Sécurité

MCE: Ministère des Mines des Carrière et de l'Energie

MEDEV: Ministère de l'Economie et du Développement

MT: Moyenne tension

OCDE: Organisation de Coopérative pour le Développement Economique

P: puissance active

PED: Pays en développement

PNE: Plan National d'Electrification

PVC: Polychlorure de Vinyle

S: puissance apparente

SONABEL: Société Nationale d'Electricité du Burkina

SONABHY: Société Nationale Burkinabè d'Hydrocarbures

Tep: Tonne équivalent pétrole

UEMOA: Union Economique et Monétaire Ouest Africaine

SOMMAIRE

DEDICACE	i
REMERCIEMENTS	ii
RESUME	iii
ABSTRACT	iv
LISTE DES FIGURES	v
LISTE DES TABLEAUX	vi
LISTE DES ABREVIATIONS	vii
SOMMAIRE	ix
I-Introduction	1
II-Objectifs de l'etude	5
III-MATERIELS et Méthodes	6
3.2Les contraintes des dérivations triphasées en HTA	6
3.2.1Le déséquilibre	6
3.2.2-Les chutes de tension	6
3.2.3-Les charges de réseaux triphasés	7
3.3 Les contraintes de production par groupe diesel	7
3.3.1 – Le nombre de groupe	7
3.3.2. –La puissance des groupes	7
3.3.3 –L'insonorisation	7
3.3.4– La consommation du groupe	7
3.4-Contraintes électriques des réseaux Basse tension	8
3.4.1- Section des conducteurs	8
3.4.2- Le facteur de puissance du réseau	8
3.4.3—Les chutes de tension sur réseau basse tension	8
3.4.4—Les pertes techniques	9
3.5- Les prescriptions réglementaires	9

Diagnostic de l'Electrification Rurale Décentralisée par groupe diesel et par interconnexion au national	réseau
3.5.1- Les distances à la masse et aux obstacles	9
3.5.2 Les mises à la terre	9
3.6- Les prescriptions sur les caractéristiques du matériel	10
3.6.1La tenue aux courts circuits	10
3.6.2. La tenue aux surtensions	10
IV: RESULTATS	11
4.1-Réseau électrique de Sampelga	11
4.1.1- Les contraintes de dérivations triphasées en HTA	11
4.1.1.1-Le déséquilibre	11
4.1.1.2-Les chutes de tension sur le réseau triphasé HTA	11
4.1.1.4 Valeur des terres	11
4.2-Réseau électrique de Sebba	12
4.2.1-Les contraintes de production par groupe diesel	12
4.2.1.1-— Le nombre de groupe et puissance	12
4.2.1.2 –L'insonorisation	12
3.2.1.3– La consommation du groupe diésel	13
4.3 – Les contraintes électriques sur le réseau BTA	13
4.3.1- Le réseau de Sampelga	13
4.3.1.1-La Section des conducteurs	13
4.3.1.2-Le facteur de puissance	14
4.3.1.3-Les chutes de tension sur le réseau BTA	14
4.3.1.4-Les pertes techniques	14
4.3.2- Le réseau de Sebba	14
4.3.2.1-La Section des conducteurs	14
4.3.2.2-Le facteur de puissance	15
4.3.2.3-Les chutes de tension sur le réseau BTA	15
4.3.2.4-Les pertes techniques	15

Diagnostic de l'Electrification Rufale Decentralisée par groupe dieser et par intercc national	nnexion au reseau
4.4. – Les prescriptions réglementaires	15
4.4.1- Le réseau de Sampelga	15
4.4.1.1- Les distances à la masse et aux obstacles	15
4.4.2- Le réseau de Sebba	16
4.4.2.1- Les distances à la masse et aux obstacles	16
4.4.2.2- Les mises à la terre	16
4.5 – Les prescriptions sur les caractéristiques du matériel	17
4.5.1- La tenue aux courts circuits	17
4.5.1.1 Réseau de Sebba	17
4.2.5.1.1 Réseau de Sampelga	17
V-Discussion et Analyses	18
VI-Conclusions	21
VII-Recommandations - Perspectives	22
LISTE DES ANNEYES	25

I-INTRODUCTION

Dans le monde, plus de deux milliards de personnes n'ont pas accès à l'électricité¹ Elles se trouvent majoritairement dans les pays africains et plus précisément en zone rurale.

Toute chose qui constitue un frein au processus de développement auquel ces populations aspirent. Cet état de fait les oblige à consommer des énergies qui sont non seulement coûteuses et aussi destructrices de l'environnement.

Dans ces zones rurales des Pays en Développement (PED), une extension du réseau électrique exige des investissements financiers extrêmement coûteux et inadaptés à la situation. Les solutions autonomes et décentralisées donnent une alternative pertinente afin de permettre aux populations rurales d'accéder à l'électricité.

Ainsi, des études sur la situation énergétique en Afrique subsaharienne révèlent une pauvreté énergétique caractérisée par une faible consommation d'énergie par habitant. Elle s'établit en 1999 entre 0,27 et 0,29 tonne équivalent pétrole (Tep)² respectivement pour les pays francophones de l'Afrique de l'Ouest et du Sahel.

L'énergie électrique est un élément incontournable pour le développement économique. Elle contribue non seulement à l'amélioration de l'éducation, de la santé, des conditions de vie en particulier des femmes, mais aussi au développement des activités génératrices de revenus et par conséquent à la limitation de l'exode rural.

En Afrique subsaharienne, l'accès aux énergies modernes demeure une équation complexe Cela s'explique par les multiples contraintes auxquelles les populations et les unités économiques sont confrontées: faiblesse de revenus, dispersion de l'habitat, hausse des prix sur les marchés internationaux, faibles disponibilités en devises.

Le secteur de l'électricité confirme cette règle générale. Avec moins de 40% de taux d'électrification en 2002³ l'Afrique présente les taux d'électrification les plus faibles au monde comparativement aux autres parties du monde en voix de développement. A titre d'exemple on n'a: Asie du Sud -42.8%; Asie de l'Est 88%; Amérique Latine 89,2% et enfin 91,8% pour le Moyen–Orient.⁴

Il existe des disparités importantes entre l'Afrique du Nord électrifiée à 84%⁵ et l'Afrique subsaharienne dont seulement 23,6% ⁶ des ménages ont accès à l'électricité. Au sein des Etats de

l'Afrique subsaharienne, des disparités sont affichées entre les milieux urbains et ruraux où le taux d'électrification est inférieur à 8% ⁷

Le Burkina Faso à l'instar des autres Pays en Développement (PED), est confronté à l'étroitesse des marchés, la faiblesse du pouvoir d'achat des populations dont 46,4% vit en dessous du seuil de pauvreté, avec une population, estimée à 14 000 000 environ, dont plus de 70% vit en milieu rural, en 2005 seuls 12.8% ⁹ des ménages avaient accès à l'électricité.

La Société Nationale d'électricité du Burkina (SONABEL), entreprise publique, était l'unique actrice et détentrice du monopole, du transport et de la distribution de l'énergie électrique. Depuis 1998, l'Etat a procédé à l'ouverture du sous –secteur de l'électricité à des opérateurs indépendants 10

A la faveur de l'émergence de la lutte contre la pauvreté, engagée par la communauté internationale, des actes légaux et réglementaires de rupture, consacrent des reformes profondes du secteur de l'électricité. Le caractère spécifique et prioritaire de l'électrification rurale est affirmé, permettant d'introduire la séparation au plan de la prise en charge institutionnelle et financière entre l'électrification urbaine et celle rurale.

L'Etat burkinabè a comme stratégie le recours à l'initiative privée pour répondre aux besoins en électricité de plus en plus croissants des populations, surtout celles des zones rurales et cela pour établir l'équilibre d'accès à l'électricité entre villes et campagnes.

S'il est vrai que l'énergie électrique est un facteur important de développement, il reste que la réussite de la politique d'électrification soit intimement liée à l'accessibilité du service public de l'électricité à la majorité des populations et à la santé financière des coopératives et associations d'électricités existantes.

L'exploitation actuelle des systèmes d'électrification rurale décentralisée (ERD) repose sur un concept à coût réduit.

On observe cependant dans quelques localités des faiblesses de performance entre le système électrique d'une part et sur l'organisation de l'exploitation d'autre part.

Pour tenter de mieux cerner ce problème, nous nous proposons de nous pencher sur le thème «Diagnostic de l'Electrification Rurale Décentralisée par groupe Diesel et par interconnexion au réseau national cas de Samplega et de Sebba.»

__

PROBLEMATIQUE

La démarche d'électrification des zones rurales dans les pays en voies de développement (PVD), en particulier en Afrique, se caractérise par un ensemble de contraintes fortes :

- ✓ faible revenu (pauvreté extrême);
- ✓ faible demande d'énergie (niveau de vie en dessous de la moyenne);
- ✓ faible densité de la population.

Dans les pays où un processus d'électrification est engagé, on assiste progressivement à des consommations allant de 15 à 20% au départ, 8 à 10% par la suite vers une quasi stagnation.

Les consommations par habitant ont tendance à se plafonner autour de 530Wh /an pour une puissance maximale appelée d'un à quelques centaines de Watt, contre une moyenne mondiale de 250 W /habitant.¹¹

L'urbanisation galopante en Afrique, comme dans d'autres régions du monde, devient elle aussi une source de difficultés grandissantes. Seul le développement d'infrastructures décentralisées peut aider à briser cette évolution infernale. Avec le développement l'électrification rurale il s'agit de:

- ✓ fixer la population par une contribution au développement durable,
- ✓ créer une dynamique de financement d'investissement adaptée,
- ✓ satisfaire les besoins électriques tout en restant compatible avec les normes de distribution et des revenus particulièrement bas.

En somme la situation du monde rurale africain définit la problématique de l'électrification rurale. Comment concilier la faiblesse des revenus, la faible densité de population, la faible consommation en électricité aux réalités économiques de nos PVD.

Pour se faire l'Etat Burkinabé par la lettre de politique de Développement du secteur de l'Energie (LPDSE) de décembre 2000 et trois autres lois 12 tracent les grandes lignes de l'approvisionnement en énergie électrique du monde rural au Burkina Faso. Ainsi la mise en œuvre de la Politique d'électrification rurale, surtout celle relative à l'approche ERD par les coopératives d'électricité (COOPELs), s'est basée sur des principes à savoir:

- ✓ le développement local, sous –tendu par une approche participative responsabilisant fortement les bénéficiaires (d'où la naissance des COOPELs);
- ✓ l'approvisionnement à moindre coût;
- ✓ le service électrique par l'octroi de concessions aux COOPELs;

Pour mener à bien cette lettre de politique, le Fonds de Développement de l'Electrification (FDE)¹³, organe facilitateur et de financement de la politique d'ERD est mis en place par l'Etat.

C'est ainsi que deux options stratégiques sont retenues pour atteindre les objectifs de développement de l'électrification rurale:

- ✓ l'exécution du programme prioritaire d'électrification rurale dont le FDE garantit le financement suivi dans le cadre d'une programmation annuelle;
- ✓ l'encouragement et le soutien aux programmes ou projets d'électrifications rurales issues d'initiatives locales publiques ou privées.

Sampelga et Sebba, à travers leur projet ERD font partie de ce Plan Nationale d'Electrification.

En effet, la fourniture de l'électricité à la ville de Sebba assurée par groupes Diesel est effective depuis Avril 2004 et celle de Sampelga raccordée au réseau SONABEL en triphasé 20kV, en octobre 2009.

L'ERD étant un des éléments transversaux du cadre stratégique de lutte contre la pauvreté (CSLP), et le développement économique et social; les questions relatives aux difficultés techniques, structurelles, organisationnelles et conjoncturelles doivent être au centre des préoccupations des différents acteurs.

Partant de quelques constats d'exploitation des centres électrifiés, il ressort la nécessité pour le FDE de prendre des mesures nécessaires pour améliorer la qualité de service et amoindrir les charges qui sont aujourd'hui difficiles à supporter par les populations des localités concernées et peuvent être un frein aux objectifs nobles de l'ERD.

Il est donc important de faire un diagnostic de l'exploitation des réseaux de ces localités déjà électrifiées pour mieux orienter les actions.

_

II-OBJECTIFS DE L'ETUDE

L'objectif de notre étude est de faire un diagnostic de l'Electrification Rurale Décentralisée des localités de Sebba alimentées par groupes diesel et de Sampelga raccordé au réseau SONABEL afin de:

- ✓ décrire leur fonctionnement et dégager les performances actuelles;
- ✓ analyser les performances d'ERD par groupe diesel et par interconnexion au réseau national;
- ✓ mesurer les performances techniques du réseau électrique;
- ✓ proposer des solutions pour l'amélioration de ces performances.

Notre travail s'articulera en trois parties. La première s'intéresse au matériel et méthodes de l'étude, la deuxième présente les résultats obtenus, enfin la dernière discute et analyse les principaux résultats obtenus.

III-MATERIELS ET METHODES

L'approche méthodologie utilisée était la vérification des prescriptions techniques relatives aux installations électriques et à l'analyse des performances d'exploitations des ouvrages avec les appareils de mesures y afférents et l'utilisation des documents d'exploitation.

3.1. Matériels de mesure

Le matériels de mesure utilisé sont:

- pinces ampèremétrique: pour la mesure des intensités,
- voltmètre: pour la mesure des tensions,
- wattmètre: pour la mesure des puissances,
- EARTH & RESISTIVITY TESTER: pour la mesure de la résistance des terres,
- SUTP 600E: pour la mesure de la hauteur et de l'espacement des conducteurs,
- décamètre pour la mesure des distances.

3.2.-Les contraintes des dérivations triphasées en HTA

3.2.1.-Le déséquilibre

Les réseaux triphasés créent un déséquilibre électrique sur l'ossature principale. Le déséquilibre ne doit pas excéder 2%. ¹⁴

Ce déséquilibre a été évalué sur la base des valeurs des intensités mesurées par un ampèremètre placé dans la cellule départ de la ligne 20 KV Dori–Sampelga sur laquelle le raccordement est effectué.

3.2.2-Les chutes de tension

La chute de tension sur le réseau HTA monophasé a été estimée par la formule suivante:

$$\frac{\Delta u}{U} = (ro + Xotag\phi)^* \frac{PL}{U^2} (1)$$

 $ta\phi = 0.5$: En équipement rural

P = Puissance du réseau triphasé

U: tension en KV

P: Puissance en MW

L: longueur de la ligne en Km

$$Ro = \frac{10\rho o}{S} * \left(\frac{\Omega}{Km}\right) \sqrt{b^2 - 4ac} (2)$$

ρo = 0.330 Ω/Km/100mm² pour l'almélec à 20°C

Si température différente de 20 ρ=K. ρο

$$K = [1 + \alpha(\theta - \theta o)] (3)$$

 $\alpha = 0.004$

6

3.2.3-Les charges de réseaux triphasés

Dans les dérivations triphasées, il convient que la charge soit comprise entre 100 et 300 KW¹⁵:

- La puissance du transformateur à 50 KVA

Les prises de terre doivent être de bonne qualité: inférieur à 3 ohms aux extrémités et à 10 ohms aux transformateurs.

La charge totale du réseau a été mesurée par le Wattmètre incorporé dans le compteur d'énergie de la SONABEL. La puissance du transformateur a fait l'objet d'une lecture direct sur la plaque signalétique.

Les valeurs des prises de terre ont été mesurées à l'aide de l'appareil de mesure «EARTH & RESISTIVITY TESTER» C.A 6462 de Chauvin Arnoux avec la méthode de 62%.

3.3.- Les contraintes de production par groupe diesel

3.3.1 – Le nombre de groupe

Les moyens de production doivent être adaptés à la nature de la distribution envisagée. Le nombre de groupes est fonction de la puissance nominale de base.

Deux groupes suffisent si la puissance minimale se situe entre 50 et 100% de la puissance nominale de base. ¹⁶

Si la puissance d'exploitation du groupe est comprise entre 30 et 50% de sa puissance nominale, alors un autre groupe est nécessaire pour assurer les périodes de faibles charges.

3.3.2. –La puissance des groupes

Un groupe de puissance S est dimensionné pour fournir sous 400 volts:

Une intensité $I = \frac{S}{I \sqrt{3}} (4)$

Une puissance active P = Sx0,8 (5)

La puissance des groupes a fait l'objet d'une lecture sur les plaques signalétiques.

Une exploitation journalière nous a permis de tracer la courbe de charge (confère figure 2: courbe de charge journalière de Sebba page 25)

3.3.3 - L'insonorisation

La réglementation française impose un maximum de $85\ d\ B$ à un (1) mètre 17

Le niveau de sonorisation a été mesuré par un sonomètre.

3.3.4– La consommation du groupe

Selon les données constructeur, la consommation du groupe de 60KVA est de 16,5 l par heure soit 0,2538 l/KVA/h et celui de 145KVA est de 25,8 litres par heure soit 0,2345l/:KVA/h La réglementation impose:¹⁸

7

- ✓ un réservoir d'une capacité de 500 litres dans le local (réservoir journalier);
- ✓ un bac de rétention intérieur de 600 litres;
- ✓ la mise à la terre de la citerne de stockage extérieur;

La consommation du groupe a été estimée sur la base des relevés d'exploitation du fermier et comparé par calcul aux données du constructeur sur six mois de fonctionnement.

Les calculs ont été faits avec un taux de charge de 39% comme puissance maximale d'exploitation du groupe de 65KVA. La consommation sera estimée à 120% de la puissance nominale du groupe seuil toléré par le constructeur (Annexe consommation en fonction de la charge)

La présence des différents réservoirs et la mise à la terre ont fait l'objet d'une constatation visuelle.

3.4-Contraintes électriques des réseaux Basse tension

3.4.1- Section des conducteurs

Il est important de bien dimensionner la section du conducteur pour faire passer une intensité donnée en régime permanent sans provoquer un échauffement exagéré du conducteur.

Ce dimensionnement doit prendre en compte la chute de tension admissible.

La section des conducteurs a été relevée sur les différents sites et l'intensité qui y circule a fait l'objet de calcul en fonction des différentes charges ou de mesure à l'aide d'une pince ampèremétrique.

3.4.2- Le facteur de puissance du réseau

Pour une même puissance active appelée par un appareil électrique, il faut transporter, dans tous les circuits une intensité d'autant plus élevée que le facteur de puissance est mauvais.

Une faible valeur entraîne par conséquent:

- ✓ un surdimensionnement de l'installation;
- ✓ un accroissement des pertes sur celle –ci;
- ✓ une augmentation du montant de la facture.

Pour la détermination du facteur de puissance du réseau, une lecture directe sur les équipements de comptage ou la formule suivante a été utilisée:

$$\cos\varphi = \frac{P}{s} (6)$$

S: puissance apparente

P: puissance active

3.4.3—Les chutes de tension sur réseau basse tension

Les cahiers des charges des concessions imposent au distributeur le maintien à tout moment et à tout endroit d'une certaine plage de tension compatible avec le fonctionnement des appareils raccordés.

La chute de tension doit être inférieure à 10 % de la valeur nominale de la source. 19

La chute de tension sur le réseau BT, a été estimée sur la base de la différence entre la tension mesurée à la source et celle en bout de ligne par un voltmètre

3.4.4—Les pertes techniques

Pour disposer d'une puissance identique au niveau des appareils d'utilisation, il faut appeler sur le réseau une puissance active d'autant plus importante que les besoins de puissance réactive sont eux même importants. A la puissance active ainsi perdue, correspondent des pertes en énergies.

Elle a été évaluée sur la base de la différence de l'énergie produite et l'énergie vendue ou par l'exploitation de la formule ci-dessous au cas où l'énergie vendue n'est pas quantifiée.

$$Pe = \frac{10^3 RLP^2 T}{U^2 \cos^2 \varphi} \ (7)$$

R: est la résistance linéique du câble en (Ω/km)

L: est la longueur de la ligne (km)

U: la tension entre phase (V)

P: la puissance active appelée (KW)

T: la durée annuelle d'utilisation de la puissance P (heures)

 $cos\phi = 0.9$ (Equipement rural)

3.5- Les prescriptions réglementaires

3.5.1- Les distances à la masse et aux obstacles

Les distances à la masse pour les réseaux 20 KV sont de 0,20 m à l'absence de vent et de 0,12 m avec un vent horizontal 20

Les distances ont été mesurées par un décamètre et un téléru-mètre

Les distances minimales aux obstacles les plus fréquemment rencontrées sont indiquées à l'annexe 4

3.5.2.- Les mises à la terre 21

Des mises à la terre doivent être établies sur certains supports dans les cas suivants:

Les lignes BT

Le conducteur neutre des lignes aériennes doit être mis à la terre en plus d'un point dès que la longueur du réseau dépasse 100 m. Les prises de terre doivent être de bonne qualité: inférieur à 3 ohms aux extrémités, à 10ohms aux transformateurs.

Les lignes HTA

On raccorde à la terre:

- ✓ les poteaux métalliques;
- ✓ les masses des appareils placés sur les poteaux.

La présence des mises à la terre a fait l'objet d'un constat sur le terrain.

Les distances entre les différentes prises de terre ont été mesurées par un décamètre.

La valeur des terres a été mesurée par l'appareil de mesure «EARTH & RESISTIVITY TESTER» C.A 6462 de Chauvin Arnoux avec la méthode de 62%.

3.6- Les prescriptions sur les caractéristiques du matériel

3.6.1.-La tenue aux courts circuits

La tenue aux courts circuits consiste à garantir le bon fonctionnement des disjoncteurs et des fusibles destinées à interrompre le courant de court circuit (Icc), mais aussi à assurer la protection du matériel pendant le passage des courants de défaut.

Le pouvoir de coupure des appareils a été relevé sur les différents sites. Leur capacité de protection a fait l'objet d'une vérification avec les charges protégées.

3.6.2. La tenue aux surtensions

Ces surtensions sont d'origines atmosphériques et dans une moindre mesure due aux manœuvres sur le réseau. La protection peut être assurée par des parafoudres.²²

Au niveau des installations BT la protection doit être assurée au niveau des branchements ou groupe de branchement par des parafoudres à résistance variable.

Une visite des différents sites nous a permis de relever les appareils de protection contre les surtensions

IV: RESULTATS

4.1-Réseau électrique de Sampelga

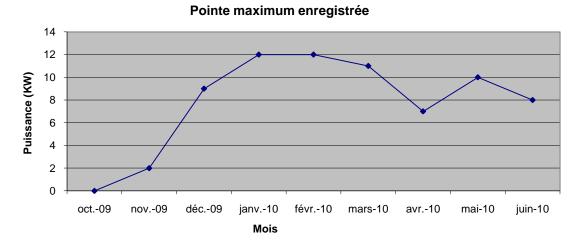
4.1.1- Les contraintes de dérivations triphasées en HTA

4.1.1.1-Le déséquilibre

Les intensités qui ont été mesurées par les appareils de mesure placés dans le disjoncteur de départ, par phase sur le réseau 20 KV triphasé de l'ossature principal sont les suivantes:

Tableau 1: Valeur des intensités par phase sur le réseau 20KV triphasé

Intensité (A)	Jour 1	Jour 2	Jour 3	Jour 4
Phase 1	240	230	250	220
Phase 2	280	270	286	260
Phase 3	260	250	280	250
déséquilibre	1,42%	1,48%	0,12%	1,15%


4.1.1.2-Les chutes de tension sur le réseau triphasé HTA

La chute de tension sur le réseau HTA triphasé estimée a donné le résultat suivant:

$$\frac{\Delta u}{U} = 0.014$$

4.1.1.3-Charges sur le réseau triphasé

Les différentes puissances maxima mensuelles enregistrées par les équipements de comptage sont représentées sur le graphique ci-dessous. Le réseau était desservi par un transformateur de 50kVA

Figure 1: courbe de charge mensuelle du réseau de Sampelga

4.1.1.4-. Valeur des terres

Les lignes HTA

Sur le réseau HTA, on a constaté le raccordement effectif des poteaux métalliques et des masses des appareils à la terre.

Sur le réseau BTA les mesures de résistance des terres ont donné les valeurs suivantes:

Tableau 2: valeur des terres de neutre et masse du réseau BTA de Sampelga

Désignation	Terre du neutre en	Terre des masses en	Appareil
	ohm (Ω)	ohm (Ω)	
Comptage		42,3	Transformateur
			d'isolement
Ecole Sampelga 1	3		Réseau BT

Diagnostic de l'Electrification Rurale Décentralisée par groupe diesel et par interconnexion au réseau national

Transformateur 1	8,26	8,06	Réseau BT	et
			parafoudre	
Eglise protestante	21,2		Réseau BT	
Maison des jeunes	14,13	13,45	Réseau BT	et
			parafoudre	
Ecole Sampelga 2	23,9		Réseau BT	
Support 02/052	10,10		Réseau BT	
Support 02/032	14,9		Réseau BT	

Les distances entre les différentes terres ont été les suivantes:

Tableau 3: Distance entre les différentes terres du réseau de Sampelga

Désignation	Distance en mètre(m)
Ecole Sampelga 1 – Transformateur 1	305
Transformateur 1 –Eglise protestante	130
Maison des jeunes- Support 02/032	48
Support 02/020- Ecole Sampelga 2	190
Maison des jeunes- Support 02/052	178

4.2-Réseau électrique de Sebba

4.2.1-Les contraintes de production par groupe diesel

4.2.1.1- Le nombre de groupe et puissance

Deux groupes, l'un de 60KVA et l'autre de 145 KVA sont installés sur le site Une exploitation journalière a donné la courbe de charge suivante:

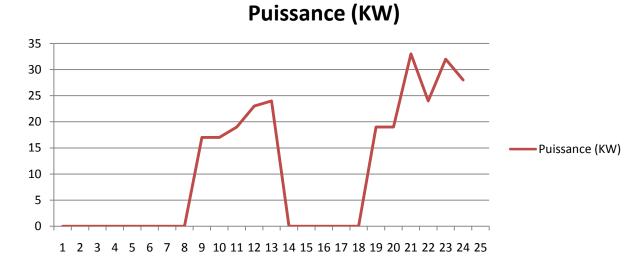


Figure 2: courbe de charge journalière de Sebba

4.2.1.2 -L'insonorisation

La mesure du niveau sonore a donné la valeur suivante (tableau 4 ci-dessous):

Tableau 4: Valeur sonore de la centrale

Désignation	Bruit (dB) à 1mètre
Mesure coté Sud	93
Mesure coté Est	97
Mesure coté Nord	45

3.2.1.3 La consommation du groupe diésel

Nous avons trouvé un réservoir de 500 litres dans la centrale et un bac de rétention de 600 litres. Les données d'exploitation fournies par le fermier et calculées sont les suivantes:

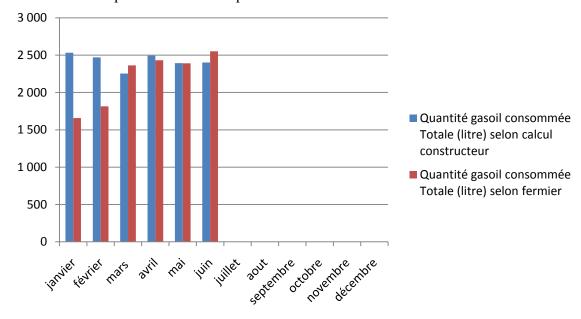


Figure 3: consommation du gaz-oil selon les relevés fournis par le fermier et calculée

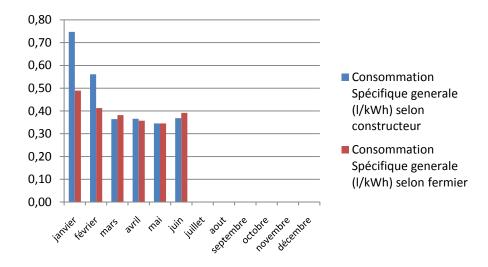


Figure 4: consommation spécifique du gaz-oil selon les relevés fournis par le fermier et calculée

4.3 – Les contraintes électriques sur le réseau BTA

4.3.1- Le réseau de Sampelga

4.3.1.1-La Section des conducteurs

Les câbles utilisés sur le réseau et les intensités qui ont été relevées sont (tableau 5 ci-dessous):

Tableau 5: Section des conducteurs et courant transité du réseau de Sampelga

Transformateur 1: 50 KVA	
Caractéristique du câble	Intensité (A)
3X35 + 54,6 mm² alu	I1 =32,6; I2=15,4; I3=18,9; In = 32,4
4x16 mm² alu	I1= 16,3; I2=9.2; I3 = 29.6; In = 8,1
2X 16 mm² alu	I1= 6,1; In = 4,3

4.3.1.2-Le facteur de puissance

Le facteur de puissance enregistré par le comptage était de 0,87

4.3.1.3-Les chutes de tension sur le réseau BTA

Les mesures de tension effectuées en bout de ligne ont donné les valeurs suivantes (tableau 6 cidessous)

Tableau 6: Tension mesurée sur le réseau de Sampelga transformateur de 50kVA

Valeur des tensions	Valeur respective des	Longueur de la ligne	Chutes de tension
mesurée au poste	tensions mesurées en	(m)	approximative en
source V1; V2; V3;	(V)		(%)
en (V)			
	238; 237; 234	342	3,84%
248; 247; 245	238; 237; 235	330	3.84%
	239; 238; 236	260	3.46%
		332	3.84%

4.3.1.4-Les pertes techniques

Les pertes techniques ont été estimées par la formule $Pe = \frac{10^3 RLP^2 T}{U^2 \cos^2 \omega^3}$ (8)

Les caractéristiques de la ligne sont les suivants:

- section 34,4 mm² d'où une résistance de 0,959 Ω /Km à 20°C et 1,16 Ω /Km à 60°C
- Longueur:45 Km
- Puissance (P): 40 KW
- Tension (U): 20000V
- Temps (T)= $365 \times 24 = 8760 \text{ h}$
- $tag = 0.5 Cos \phi = 0.88$
- Pe = 730.7 KWh

4.3.2- Le réseau de Sebba

4.3.2.1-La Section des conducteurs

Les caractéristiques des câbles utilisés sur le réseau et les intensités qui ont été relevées sont:

Tableau 7: Section des conducteurs et courant transité du réseau de Sebba

Caractéristique du câble	Intensité (A)
$3X 50 + 16 \text{ mm}^2 \text{ alu}$	I1 = 22,4; I2 = 28,9; I3 = 26; In = 7,5
2X25 mm² alu	I = 7,11 A; In = 4,4 A

4.3.2.2-Le facteur de puissance

Le facteur de puissance selon la charge est le suivant (tableau 8 ci-dessous):

Tableau 8: facteur de puissance en fonction de la charge du réseau de Sebba

	Puissance réactive (KVAR)	Facteur de puissance
Puissance active (KW)	, , ,	1
35	17	0,90
33	19	0,86
29	15	0,90
26	14	0,88
22	16	0,84
19	13	0,82

4.3.2.3-Les chutes de tension sur le réseau BTA

Les mesures effectuées en bout de ligne ont donnée les valeurs suivantes:

Tableau 9: Tension mesurée sur réseau de Sebba

Tension à la source	Valeur de tension	Longueur de la	Chute de tension en
(V)	mesurée en bout de	ligne (m)	%
	ligne en volt (V)		
234	219	1050	6,41
	224	460	4,27
	218	1250	6,83
	216	1350	7,69

4.3.2.4-Les pertes techniques

Les pertes annuelles sur le réseau étaient estimées à (tableau ci-dessous):

Tableau 10: Pertes techniques sur le réseau de Sebba

PERIODE	2004	2005	2006
Energie produite (KWh)	15491	41351	27733
Energie Consommée (KWh)	10765	33936	26768
Energie perdue (KWh)	4 726	7 415	965
Rendement réseau	0,694	0,821	0,965

4.4. – Les prescriptions réglementaires

4.4.1- Le réseau de Sampelga

4.4.1.1- Les distances à la masse et aux obstacles

Les distances mesurées étaient les suivantes (tableaux ci-après):

Tableau 11: Surplomb du réseau HTA de Sampelga

Surplomb de terrain	Hauteur (m)	Surplomb de route	Hauteur (m)
ordinaire réseau HTA		réseau HTA	
Mesure1	5,47	Mesure1	9.45
Mesure 2	4,80	Mesure 2	9,38

Tableau 12: Surplomb de route et terrain du réseau BTA de Sampelga

Surplomb de terrain	Hauteur (m)	Surplomb de route	Hauteur (m)
ordinaire réseau BTA		réseau BTA	
Mesure 1	4,12	Mesure 1	6,51
Mesure 2	4,20		
Mesure 3	3,78		
Mesure 4	4,43	Mesure 2	6,05
Mesure 5	4,85		
Mesure 6	3,74		

Tableau 13: Surplomb bâtiment et voisinage du réseau BTA de Sampelga

Surplomb de bâtiment	Hauteur (m)	Voisinage des	Hauteur (m)
du réseau BTA		concessions réseau BTA	
Mesure 1	2,40	Mesure 1	0,52
Mesure 2	1	Mesure 2	0,75
Mesure 3	1,37	Mesure 3	2,62
Mesure 4	1 ,43	Mesure 4	0,90

4.4.2- Le réseau de Sebba

4.4.2.1- Les distances à la masse et aux obstacles

Tableau 14: surplomb terrain ordinaire et route réseau de Sebba

Surplomb de terrain ordinaire	Hauteur (m)	Surplomb de route	Hauteur (m)
Mesure 1	5,96	Mesure 1	9,67
Mesure 2	5,5	Mesure 2	9,17

Tableau 15: surplomb bâtiment et voisinage concessions réseau de Sebba

Surplomb de bâtiment	Hauteur (m)	Voisinage des concessions	Hauteur (m)
Mesure 1	2,85	Mesure 1	1
Mesure 2	3,3	Mesure 2	1
Mesure 3	2	Mesure 3	1,80

Tableau 16: voisinage avec d'autre réseau à Sebba

Voisinage avec d'autres réseaux (télécommunication)	Hauteur (m)
Mesure 1	0,5
Mesure 2	0,7

4.4.2.2- Les mises à la terre

Sur le réseau BTA les valeurs mesurées des terres ont été les suivantes

Tableau 17: Valeur des terres réseau de Sebba

Désignation	Terre du neutre en ohm (Ω)
AL 09 1	80,1
AL 09 2	34,1
AE 18 01	45,8
AD 13 07	56,9

Les Distances entre les différentes terres ont été les suivantes:

Tableau 18: Distance entre terre réseau de Sebba

Désignation	Distance en mètre(m)
AI 27 04 et AE 14 01	650
AI 27 04 et AI 01	950
AE RA-AD 11 07	600
AE RA-AB 01	1040
AD 11 07-AD 02	900
AK0802-AL 09	610
AL 09-Central	40

4.5 – Les prescriptions sur les caractéristiques du matériel

4.5.1- La tenue aux courts circuits

Les appareils de protection avaient les caractéristiques suivantes:

4.5.1.1 Réseau de Sebba

Tableau 19: Appareil de protection surintensité réseau de Sebba

Désignation	Pouvoir de coupure (KA)
Disjoncteur compact 63 A–400 V	10

4.2.5.1.1 Réseau de Sampelga

Tableau 20: Appareil de protection surintensité réseau de Sampelga

Désignation	Pouvoir de coupure (KA)
Disjoncteur haut de poteau type 3	15

4.2.5.2- Tenues aux surtensions

Une visite des différents sites nous a permis de relever les appareils de protection contre les surtensions qui sont constitués de parafoudre uniquement sur le réseau HTA.

V-DISCUSSION ET ANALYSES

De notre étude, il ressort que le choix du mode d'électrification est un facteur déterminant dans la réussite du processus d'électrification rurale décentralisée

Pour le réseau de Sebba alimenté en groupe diesel nous faisons les constats suivants:

✓ la pointe maximum de puissance est de 34 KW et le minimum de 17 KW avec des groupes de 51.2 KW et 116 KW. Ces derniers sont chargés à moins de 50% sur une durée de cinq heures sur dix.

Par conséquent le rendement est très bas durant cette période de faible charge, d'où une consommation en diesel de plus de 120% (annexe V) et une accumulation de fuel imbrûlé dans les chambres de combustion qui peut conduire à des dégâts importants.

Ce rythme de fonctionnement nous donne une consommation moyenne de 0,40 litre de diesel consommé pour un (1) KWh produit, soit en moyenne 220 FCFA par KWh.

- ✓ L'écart considérable entre les valeurs des consommations spécifiques calculées et fournies par le fermier mérite une analyse approfondie.
- ✓ Pour le stockage du combustible, la réglementation est respectée soit un réservoir de 500 litres à l'intérieur, un bac de rétention de 600 litres et une mise à la terre de la citerne de stockage extérieur.
- Seul le niveau sonore enregistré coté nord de la centrale à un mètre, de 40 dB respecte la réglementation, qui est de 85dB, les autres cotés ont un niveau sonore non réglementaire. Cela pourrait causer, à long terme, des troubles auditifs aux riverains de la centrale
- Les sections des conducteurs sur le réseau BTA qui sont de 3 x 50 mm² + 16 et de 2x 25 mm² qui transite respectivement 26 A et 7,1A, sont admissibles, car les capacités de transit respectifs sont de 168A et 112 A.
- ✓ Les pertes techniques de l'ordre de 17,9% sont élevées comparativement à la moyenne admise qui est de 12%, le facteur de puissance estimé à 0,86% est au dessous de la moyenne qui est de 0,89 pour un réseau rural.
- ✓ La chute de tension sur le réseau BTA de 7,69%, est admissible, la limite étant de 10%.
- ✓ La valeur des prises de terre de 80,6 ohms par endroit est supérieure à la valeur de 10 ohms exigée. La distance entre elles qui atteint 1040 m sur certain tronçon est largement au dessus de la norme qui exige au moins deux prises de terre tous les 200 mètres.

Cela pourrait occasionner en cas de défaut des surtensions sur le réseau basse tension.

- ✓ Les surplombs du réseau BTA en terrain ordinaire, de 5,2 m et en traversée de route de 9,17 sont admissibles, car la réglementation impose respectivement 5 et 8 mètres (annexe IV)
- ✓ Les surplombs et voisinage des bâtiments du réseau BTA sont admissibles.
- ✓ Les distances de voisinage avec le réseau de télécommunication sont admissibles

- ✓ La protection du réseau contre les surintensités et les court-circuits est assurée par des disjoncteurs compacts de 10Ka. Aucune protection n'est en place contre les surtensions.
- ✓ le manque de protection contre les surtensions, pourrait occasionner des dégâts énormes sur les groupes à la centrale et des sinistres auprès des abonnés en cas de décharge atmosphérique.

Pour le réseau de Sampelga:

- ✓ Le déséquilibre créé par la dérivation sur le réseau triphasé de 1,15% est dans les limites admissibles de 2%.
- ✓ Les chutes de tension sur le réseau HTA, de 0,045% et de 3,86% sur le réseau BTA sont admissibles
- ✓ La charge du réseau de 12 kW, est en deçà de la réglementation qui impose une puissance comprise entre 100 − 300 KW
- ✓ Les valeurs des prises de terre qui sont de 14,13 ohms au transformateur et 23,9 ohms à l'extrémité du réseau dépassent les prescriptions qui sont respectivement de 3 et 10 ohms
- La distance entre les prises de terre qui vaut 300 m par endroit est au delà de la prescription qui est de 2 terres tous les 200 m. Ces valeurs élevées des terres et les grandes distances qui les séparent pourraient créer des surtensions sur le réseau basse tension et par conséquent des dégâts sur les récepteurs des abonnés;
- ✓ La mise en contact du câble de terre du neutre et des masses au support des transformateurs constaté et qui est proscrite peut avoir comme effet des montées en potentiel sur le réseau basse tension en cas de décharge atmosphérique d'où la destruction d'appareils chez les clients.
- La puissance souscrite auprès de la SONABEL de 10 kW est largement au delà des besoins qui sont de 15 kW maximum. Cet écart a pour conséquence une augmentation du montant de la facture de consommation par pénalité de dépassement de puissance souscrite.
- ✓ La disposition du compteur est telle que toutes les pertes du réseau sont enregistrées comme consommation au compte de la SONABEL contrairement aux autres COOPELS. Ce qui est très positif car seuls les pertes du transformateurs sont prises en compte dans la facture du client.
- ✓ Le manque de personnel qualifié pour conseiller les clients entraîne une surestimation de certaines puissances souscrites.
- ✓ Les sections des conducteurs, sur les réseaux HTA et BTA, admettent les différentes valeurs de courant qui y transitent.
- ✓ Les pertes techniques et le facteur de puissance sont admissibles, pour un réseau rural
- ✓ Les surplombs de réseau HTA de 4,8 mètres en terrain ordinaire par endroit sont en deçà de la réglementation qui préconise 6 m. En traversée de route la hauteur de 9,38 m est admissible.
- ✓ Pour le réseau BTA les surplombs en terrain ordinaire de 3,78 m par endroit sont en deçà de la réglementation qui exige 5 m. En traversée de route la hauteur de 6,05 est admissible.

- ✓ Les surplombs et voisinage des bâtiments du réseau BTA sont admissibles.
- ✓ Le non respect de ces distances peut avoir comme conséquences des accidents dus au contact direct des riverains avec ces ouvrages
- ✓ La protection du réseau contre les surintensités et les court–circuits est assurée par des disjoncteurs hauts de poteau de 15kA, quant à la surtension, elle est assurée par des parafoudres sur le réseau HTA uniquement

VI-CONCLUSIONS

Notre étude s'est déroulée dans les villages de Sebba et Sampelga , zones rurales respectivement alimentées par groupe diesel et par interconnexion au réseau HTA national, en triphasé. Elle avait pour objectif de faire un diagnostic technique de ces deux types d'alimentation. Il s'agissait alors de décrire leur fonctionnement actuel, mesurer les performances techniques et de proposer des solutions pour l'amélioration de ces performances. Pour atteindre ces objectifs la vérification du respect des prescriptions techniques relatives aux installations électriques et l'analyse des performances d'exploitation des ouvrages ont été retenues. Ainsi les contraintes liées aux dérivations triphasées en HTA, à la production par groupe diesel, le respect des paramètres électriques sur le réseau BTA et les règles de protection des personnes et des biens ont été vérifiés. Les données utilisées dans cette recherche ont été obtenues grâce aux relevées de certains

Les données utilisées dans cette recherche ont été obtenues grâce aux relevées de certains paramètres électriques sur une durée donnée, à l'exploitation des fiches d'exploitation et de facturation, à la vérification de l'existence de certains dispositifs de protection sur les différents sites.

L'analyse des résultats montre que l'alimentation par groupe diesel présente quelques insuffisances techniques et un coût exorbitant de production. La consommation en gaz-oil est élevée, due aux faibles charges et à la puissance surdimensionnée des groupes. Les conditions de stockage du diesel obéissent aux règles en la matière. Le niveau sonore des groupes au delà de la prescription induit des problèmes auditifs auprès des riverains.

Les paramètres électriques tels que la valeur des prises de terres, les pertes techniques, le facteur de puissance sont tous au delà des prescriptions.

Quand aux mesures de protection des riverains contre les contacts directs aux ouvrages, elles sont bien appliquées. Par contre il n'y a aucune protection des personnes et des biens contre les surtensions.

La section des conducteurs, sous dimensionner est à revoir car source de pertes techniques énormes. L'alimentation par dérivation triphasé sur le réseau national présente des motifs de satisfaction, notamment en raison du coût de revient de l'énergie très bas. Les contraintes liées à cette technique telles que le déséquilibre, la chute de tension, la charge à alimenter sont dans les limites des prescriptions. Par contre la valeur élevée des terres de neutre et leur mise en contact avec les terres de masse constituent un handicap au bon fonctionnement de ce réseau.

Les paramètres électriques du réseau BTA, tels la chute de tension, les pertes techniques, le facteur de puissance sont dans les limites des prescriptions.

Les mesures de protection des riverains contre les contacts indirects aux ouvrages, posent des problèmes de sécurité en raison du non respect des prescriptions.

VII-RECOMMANDATIONS - PERSPECTIVES

Compte tenu de l'importance de l'électricité dans le développement socio-économique des populations rurales et son rôle prépondérant dans la lutte contre la pauvreté, l'électrification rurale décentralisée est à promouvoir. Pour cela nous formulons les recommandations ci-dessous pour chacun des réseaux étudier:

- Réseau de Sampelga,
- trouver un autre mécanisme de facturation auprès de la SONABEL pour éviter de prendre en compte les pertes techniques sur le réseau comme consommation au compte de la COOPEL. En passant toutes les COOPEL en réseau de distribution public. C'est- à-dire passer leur poste de transformation de privée à public. Ceci permettra aux COOPEL de ne pas payer les pertes dues au transformateur de courant qui sont facturées même si elles ne consomment pas.
- Augmenter la puissance de souscription auprès de la SONABEL en fonction du besoin réel du village afin d'éviter les pénalités de dépassement de puissance. Ceci nécessite avant toute électrification rurale de connaître les besoins réels des populations en faisant un audite énergétique et non procéder par estimation pour déterminer la puissance souscrite comme cela se fait actuellement.
- améliorer la valeur des terres de neutre et réduire la distance entre elles. En augmentant leur nombre pour passer de 1 à 3 et les mettre en parallèle par liaison triangulaire des piquets de terre comme l'indique le schéma si après. On peut aussi faire un apport extérieur de terre riche et moins résistive.

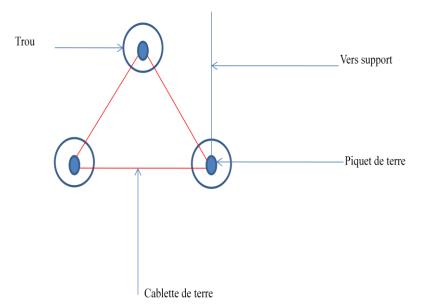


Figure 5: Schéma de mise en parallèle de trois puits de terre

isoler le câble de terre de neutre et des masses au niveau des supports du transformateur. Par utilisation de tube PVC de diamètre 20 à une hauteur de 3 m à partir du pied du support. Pour le reste de la longueur on utilisera des serre-fils à laiton pour serrer le câble de la terre des masses,

Diagnostic de l'Electrification Rurale Décentralisée par groupe diesel et par interconnexion au réseau national quant à celui de la terre du neutre en plus des serre-fils à laiton on utilisera des isolateurs cosga pour l'isoler au support.

- rehausser la hauteur du réseau BTA par apport au sol à certains endroits, Surtout au niveau des traversées des grandes voies. Cela nécessite la dépose des supports métalliques de 9 m et la réimplantation des supports métalliques de 12 m pour gagner en hauteur.
- ✓ renforcer les capacités humaines des membres de la COOPEL en vue d'une bonne gestion et suivi des ouvrages électriques.
- ✓ donner les moyens humains et matériels à la COOPEL pour l'extension du réseau.
- Réseau de Sebba,

En entente de son raccordement sur le réseau national par interconnexion avec Sampelga ou Titabé,

- ✓ disposer d'un groupe diesel de 30KW pour les périodes de faibles charges;
- ✓ installer des systèmes de surveillance en temps réel des consommations de carburant;
- ✓ réduire le niveau sonore, de la centrale, par l'utilisation des abats son de gaine ou des capots insonorisants
- ✓ .donner les moyens matériels au fermier pour l'extension du réseau BTA;
- ✓ redimensionner les sections du réseau BTA pour améliorer les pertes techniques;
- ✓ Installer à la centrale et sur le réseau BTA des appareils de protection contre les surtensions;

I. BIBLIOGRAPHIE

CDEAO. Le livre blanc pour une politique Régionale

F.M Gatta and E.Cinieri. Rural Electrification of Developing Countries Using the Insulated shield wires of HV lines –news design criteria and operation experience by F.Iliceto University of Rome "La Sapienza", University of l'Aquila

Ordonnance n°076/021/PRES/MTP/URB qui donne l'exclusivité de la production, du transport, de la distribution à la VOLTELEC. 13 novembre 1976

Arrêté Technique de 17 mai 2001

¹Http://WWW.photowatt.com/products-erd-fr.php,1'Electrification rurale décentralisée

²Acte du séminaire «Accès à l'énergie et lutte contre la pauvreté «du 10 au 12 mai 2004 Ouagadougou .P.72

³ Banque Africaine de Développement et le Centre de Développement de l'Organisation de Coopérative pour le Développement Economique. Perspectives Economiques en Afrique

⁴BAD et OCDE, IBIEM

⁵Actes du séminaire, IBIDEM. P.116

⁶BAD et OCDE; IBIDEM

⁷BAD et OCDE; IBIDEM

⁸INSD «Burkina –Faso, la pauvreté en 2006» 2 édition, decembre 2006

⁹MEDEV, IBIDEM P.43

¹⁰Loi n° 10/98/AN du 21 avril 1998, portant modalités d'intervention de l'Etat et répartition des compétences entre l'Etat et les autres acteurs

¹¹Jean Jacques GRAF. Cours électrification rurale 2011 -2IE F P8

¹²DGE, «Electrification rurale au Burkina Faso» P.2

¹³Art.4 Décret n° 2003 -089/PRES/PM/MCE du 19/02/2003 portant création, attributions, organisation et fonctionnement d'un fonds de développement de l'électrification.

¹⁴Jean Jacques GRAFF Cours transport et distribution de 2IE P.29

¹⁵Jean Jacques GRAFF Cours transport et distribution de 2IE 2010 P.30

¹⁶Jean Jacques GRAFF Cours électrification rurale de 2IE 2010 p.33

¹⁷ Jean Jacques GRAFF Cours électrification rurale 2IE P.39

¹⁸Jean Jacques GRAFF Cours électrification rurale 2IE de P.40

¹⁹Jean Jacques GRAFF Cours calcul électrique de 2IE p.47

²⁰Jean Jacques GRAFF Cours calcul mécanique 2IE 2010 P.15

²¹Norme NFC 11-201 P.48

²²Norme NFC 11-201 P.61

LISTE DES ANNEXES

Annexe I: Les chiffres caractéristiques de la SONABEL	26
Annexe II: Villes électrifiées au Burkina Faso par la SONABEL	27
Annexe III: Les localités de l' ERD	28
Annexe IV: Distance minimale à respecter	29
Annexe V: Consommation en fonction de la charge	31
Annexe VI: Caractéristiques techniques des groupes	32
Annexe VII: Raccordement au réseau HTA à neutre distribué	33
Annexe VIII: Raccordement au réseau HTA sans neutre distribué	34
Annexe IX: Dispositif typique des circuits de distribution du SCDGI triphasé	35

Annexe I: Les chiffres caractéristiques de la SONABEL

	ANNEE 2009	ANNEE 2010	ANNEE 2011
Capital	46 000 000 000	46 000 000 000	46 000 000 000
Effectif du personnel	1420	1450	1459
Longueur réseau BT(m)	5 634 231	5 829 037	6 510 899
Longueur réseau HT (m)	1 817 680	2 014 790	2 268 841
Energie importée (KWH)	139 323 910	135 715 743	144 599 534
Production thermique (KWH)	501 295 228	483 468 216	567 492 534
Production hydroélectrique (KWH)	111 416 699	135 932 318	132 297 083
Nombre d'abonnés desservis en moyenne tension	842	910	1016
Nombre d'abonné desservis en basse tension	287 633	308 032	337 155
Cout de revient moyen du KWH	129,62	141,37	134,28
Energie vendue par agent (KWH)	428	438	489
Nombre de centrales thermiques	28	28	27
Nombre de centrales hydroélectriques	04	04	04
Puissance hydroélectrique totale installée (MVA)	32	32	32
Puissance thermique totale installée (MVA)	217	220	219
Vente d'énergie (MWH)	607 174	635 487	714 142
Nombre de localités électrifiés	66	98	104

Sources: rapport d'activité SONABEL 2010

Ces chiffres permettent de mesurer l'envergure des responsabilités de la SONABEL à travers la production, le transport et la distribution de l'énergie électrique sur le territoire national

Annexe II: Villes électrifiées au Burkina Faso par la SONABEL

N°D'ordre	Ville	Année	N°D'ordre	Ville	Année
1	Ouagadougou	1954	45	Dano	2002
2	Bobo	1954	46	Dakola	2003
	Dioulasso				
3	Ouahigouya	1964	47	Koubri	2003
4	Koudougou	1976	48	Nongana	2004
5	Banfora	11974	49	Zagtouli	2004
6	Dédougou	1982	50	Pabré	2004
7	Tougan	1982	51	Kamboinsé	2004
8	Gaoua	1983	52	Sapaga	2004
9	Fada	1983	53	Ligd-malguem	2004
10	Dori	1983	54	Toma	2005
11	Kaya	1983	55	Boussouma	2005
12	Tenkodogo	1983	56	Korsimoro	2005
13	Orodara	1986	57	Dissin	2005
14	Po	1986	58	Pama	2005
15	Koupela	1986	59	Nadiagou	2005
16	Pouytenga	1986	60	Cinkansé	2006
17	Yako	1986	61	Djikologo	2006
18	Réo	1990	62	Dapelgo	2007
19	Kompienga	1990	63	Noumoudara	2007
20	Ziniaré	1991	64	Gambastenga	2008
21	Pourra	1991	65	Pagatenga	2008
22	Boromo	1991	66	Niniogo	2008
23	Zorgho	1994	67	Zitenga	2008
24	Toussiana	1994	68	Onliessan	2008
25	Darsalamy	1995	69	Banaverou	2008
26	Péni	1995	70	Salbisgo	2008
27	Bérégadougou	1995	71	Kombissiri	2000
28	Nouna	1997	72	Garango	2000
29	Gourcy	1997	73	Loumbila	2000
30	Léo	1997	74	Gorom-Gorom	2000
31	Niangoloko	1997	75	Tiébelé	2009
32	Kongoussi	1997	76	Komilga	2009
33	Diébougou	1997	77	Laye	2009
34	Bogandé	1997	78	Komki ipala	2009
35	Bagré	1997	79	Banakeledaga	2009
36	Saaba	1998	80	Farakoba	2009
37	Houndé	1999	81	Nanoro	2009
38	Fara	1999	82	Poa	2009
39	Manga	2000	83	Tenado	2009
40	Djibo	2000	84	Kissan	2009
41	Diapaga	2000	85	Diabo	2009
42	Bittou	2000	86	Tibga	2009
43	Boulsa	2000	87	Zam	2009
			88	Bilanga	2010
			89	Manni	2010
			90	Absua	2010

Annexe III: Les localités de l' ERD

N°	Localité	Date de mise	Investissement	Nombre	d'abonnés
		en service	(en FCFA)	au 31	décembre
				2009	
1	Bama	10/2004	523 223 550		
2	Gayeri	05/2004	89 890 000		
3	Sebba	06/2004	136 599 000		
4	Seytenga	05/2004	65 479 000		
5	Tanghin -Dassouri	08/2005	141 762 595		
6	Béguédo	02/2007	200 327 536		
7	Niaogho	02/2007	162 519 381		
8	Batié	02/2007	142 904 742		
9	Solenzo	05/2007	318 796 591		
10	Bagassi	04/2007	177 069 758		
11	Sampelga	10/2009			
12	Bolontou	04/2010			
13	Piela	07/2010			
14	Kamtchari	06/2009			
15	Moada	10/2011			
16	Bougui	09/2012			
17	Tinackoff	01/2012			
18	Deou	04/2011			
19	Markoye	03/2012			
20	Arbinda	07/2012			
21	Titao	09/2009			
22	Tangaye	01/2011			
23	Bissiga	05/2012			
24	Saatenga	08/2012			
25	Kabèga	06/2012			
26	Zabré	03/2010			

Source: FDE

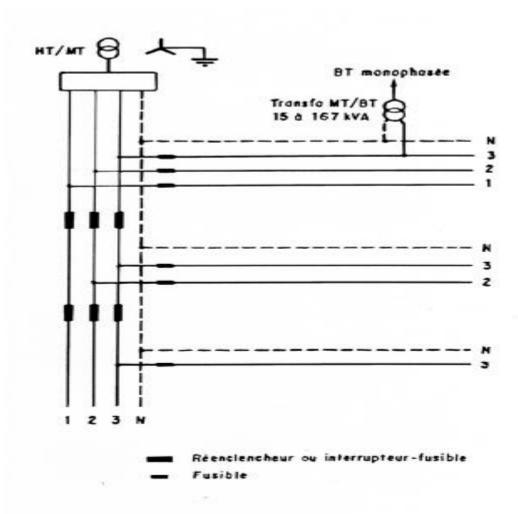

Annexe IV: Distance minimale à respecter

Catégorie des ouvrages	BT		HTA		
de distribution	Conducteur		Conducteurs		Cond
Nature des	Nus	Isolés	20 kV	33 kV	ucteur
Surplombs et voisinages					isolés
II. SURPLOMB DE					
TERRAINS	6 m	5 m	6 m	6 m	5 m
Terrain ordinaire					
Terrain agricole	6 m	5 m	6 m	6 m 20	5 m
Cour de ferme ou d'usine	H +1 m	H + 1 m	h + 1 m	h+1m 20	h+1m
Enseignement, sport, jeux	INTERDI T	6 m	à éviter	à éviter	6 m
SURPLOMB DE VOIES	6 m	6 m	8 m	8 m	6 m
Voies accessibles aux véhicules, routes, autoroutes	8 m	8 m	8 m	8 m	8 m
Voies pour passage d'engin de grande hauteur	h + 1 m	h + 1 m	h+1m 20	h+1m20	h+1 m
Voies et plans d'eaux	h + 1 m	h + 1 m	h + 1 m	h+1m20	h + 1 m
mat des bateaux hauteurs h					
Navigation à voile	9 m	9 m	9 m	9 m 20	9 m
Sans voile	8 m	8 m	8 m	8 m 20	8 m
Voie d'eau non navigable	6 m	6 m	6 m	6 m	6 m
au dessus de l'étiage	3 m	3 m	3 m	3 m	3 m
au dessus des plus hautes eaux					
III. BATIMENTS	1 m	Pas de distance	3 m 20	3 m 20	Pas de distance
Surplomb toit dont la pente $est > 45^{\circ}$	1 111	prescrite (1)	3 III 20	3 III 20	prescrite (1)
Toit dont la pente est	2	Pas de	2 20	2 20	Pas de
comprise entre 12 et 45°	2 m	distance	3 m 20	3 m 20	distance
		prescrite (1)			prescrite (1)
Toit dont la pente est < à 12°	3 m	2 m	3 m 20	3 m 20	2 m
-					
Voisinage latéral	1 m	Pas de distance	3 m	3 m 20	Pas de distance
Voisinage lateral	1 111	prescrite	3 111	3 111 20	prescrite
		(1)			(1)
IV.	1	Pas de			Pas de
V. ARBRES ET DIVERS	1 m	distance prescrite	2 m	2 m	distance prescrite
Surplomb		(1)			(1)
		Pas de			Pas de
Voisinage	1 m	distance	2 m	2 m	distance
		prescrite (1			prescrite (1
		(1			(1

VI. CHEMIN DE FER	2 m 70	2 m 70	2 m 70	2 m 90	2 m 20
Voie ferrée par rapport au					
Gabarit cinématique					
Voie ferrée par rapport aux lignes					
de contacts	3 m	3 m	3 m	3 m 20	3 m
TELEPHERIQUES ET REMONTE					
<u>PENTES</u>	INTERDI	3 m	3 m	3 m 20	3 m
Par rapport au gabarit cinématique	T				

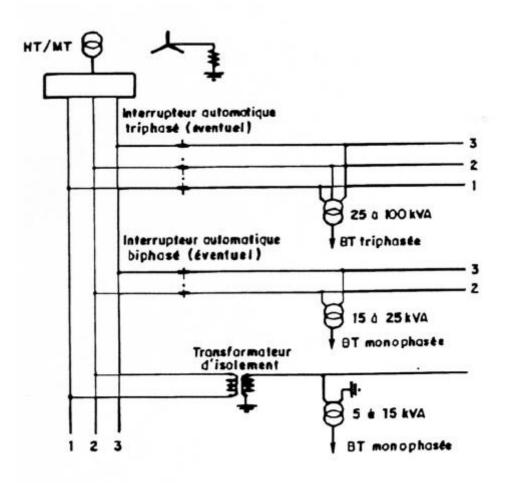
Source: Cours calcul mécanique 2IE 2011 de Jean Jacques GRAFF

Annexe V: Consommation en fonction de la charge

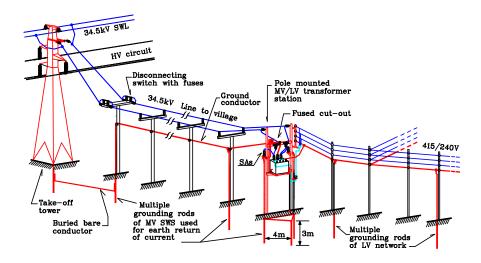

Source: cours électrification rural Jean Jacques GRAFF

Annexe VI: Caractéristiques techniques des groupes

(Pour tout équipeme	ent hors stand	ard : nous o	consulter.)							
Type du coffret auto	matique stand	dard								
Type du coffret man						-				
Capacité du réservo	ir standard							1.1	7	
Consommation hora	aire					2//		\neg		
Intensité nominale s	ous 400 V							1		
Type de l'alternateur						7	- 8	1		
Arrangement des cy		age x cour	rse		7	1				- 1
Cylindrée moteur di		y		—			1			
P. secours utile				1	1		1	1		
P. continue utile			1		1			1		1
	kVA	kva	l i	X - mm × mm	1	IA	1/6	lt.	l	
ACB 42	40	40	3,9	L4 - 102 × 120	A 42 L8	58	10,4	100	M2	A2
ACB 58	55	55	3,9	L4 - 102 × 120	A 44 M1	80	14	100	M2	A2
ACB 70	65	65	3,9	L4 - 102 × 120	A 44 M2	94	16,5	100	M2	A2
ACB 90	90	90	5,9	L6 - 102 × 120	A 44 L5	130	21,3	100	M2	A2
ACB 110	105	105	5,9	L6 - 102 × 120	A 44 L8	150	25,8	100	M2	A2
ACB 145	140	155	8,1	L4 - 130 × 152	A 46 M3A	200	32	200	В	. E
ACB 170	165	180	14	L6 - 140 × 152	A 46 M3	240	40,6	200	B :	E
ACB 225	215	240	14	L6 - 140 × 152	A 46 L7	310	. 51,6	200	В	E
ACB 265	255	270	14	L6 - 140 × 152	A 46 L10	305	60,3	200	B	E
ACB 275	265	290	14	L6 - 140 × 152	A 46 L10	385	63,4	200	В	E
ACB 330	315	350	14	L6 - 140 × 152	A 47 L4	455	70	200	B	E
ACB 370	360	400	14	L6 - 140 × 152	A 47 L6	520	79 .	200	B	- E


Source: donnée constructeur

Annexe VII: Raccordement au réseau HTA à neutre distribué


Source: Cours transport et distribution 2IE -2011 de Jean Jacques GRAFF

Annexe VIII: Raccordement au réseau HTA sans neutre distribué

Source: Cours transport et distribution 2IE -2011 de Jean Jacques GRAFF

Annexe IX: Dispositif typique des circuits de distribution du SCDGI triphasé

Source: Rural Electrification of Developing Countries Using the Insulated shield wires of HV lines –news design criteria and operation experience by F.Iliceto University of Rome "La Sapienza", F.M Gatta and E. Cinieri University of l'Aquila.