

RECONVERSION DU SYSTEME D'IRRIGATION GOUTTE A GOUTTE EN MICRO ASPERSION ET USAGE DE TENSIOMETRES DANS LA PLANTATION DE BANANES DE L'ENTREPRISE GOLDEN EXOTICS LTD VILLAGE DE KASUNYA (SUD-EST DU GHANA)

MEMOIRE POUR L'OBTENTION DU:

MASTER EN INGENIERIE DE L'EAU ET DE L'ENVIRONNEMENT OPTION : EAU AGRICOLE

PRESENTE ET SOUTENU PUBLIQUEMENT LE 25 /10/2013 PAR :

AMELIE KOUSSE

TRAVAUX DIRIGES PAR:

DA SILVEIRA Koffi Sewa

Enseignant Centre Commun de Recherche Eau et Climat (CCR-EC)

Et

JULES TCHOUMBA

Directeur technique de la société Golden Exotics Limited (GEL)

JURY D'EVALUATION DU STAGE:

PRÉSIDENT: DIAL NIANG

MEMBRES ET CORRECTEURS:

BASSIROU BOUBE DA SILVEIRA Koffi Sewa ROLAND YONABA

PROMOTION 2013

DEDICACE

Je dédie ce mémoire à mon père feu Ditouma Louis KOUSSE, à ma grand-mère feu Sima Awa ZERBO et à mon grand père feu Saye ZERBO.

Amélie KOUSSE 2012-2013 I

REMERCIEMENTS

Mes remerciements vont spécialement à l'endroit de ma mère, et de toute ma famille, qui m'a soutenue durant mes études.

Je remercie également mes encadreurs Messieurs da SILVEIRA et Jules TCHOUMBA, ainsi que tout le personnel du bureau de Kasunya qui, à travers leur accompagnement et critiques, m'ont permis de m'améliorer et de rédiger ce mémoire.

RESUME

L'agriculture consomme 69% des ressources en eau. D'après la Vision Mondiale de l'Eau (Cosgrove et Rijsberman 2000), On estime qu'en 2025 l'on pourrait répondre à la moitié de la demande en eau de l'agriculture, à condition de pratiquer une irrigation plus efficace, combinée avec une meilleure gestion de l'eau.

Malgré les quantités importantes exportées chaque année, la société Golden Exotics Limited voit ses bénéfices réduits du fait des pertes considérables enregistrées. Les fréquentes interventions de maintenance sur le réseau actuel d'irrigation sont l'une des causes importantes de pertes d'eau et donc d'argent (elles vont aussi jusqu'à affecter la qualité de la banane récolté, réduisant sa valeur marchande). C'est à la recherche de solution optimale que la reconversion du système d'irrigation en micro aspersion sous frondaison est en cours d'expérimentation sur une zone d'essai. Elle constituera une solution économiquement plus rentable à long terme, moyennant un investissement dans certains équipements à remplacer. Elle devra, tout comme dans le projet de tensiométrie, être accompagnée de sensibilisation et de formation car c'est un nouveau système et le personnel ouvrier actuel n'est pas suffisamment qualifié.

En effet, par la formation, le personnel impliqué dans le projet d'usage de la tensiométrie, aura une bonne compréhension de l'intérêt de la tensiométrie et une maitrise des paramètres à observer. Ainsi, ce projet qui est à ses débuts, sera un procédé efficacité d'usage optimal de l'eau d'irrigation.

Mots Clés:

- 1 Irrigation
- 2 Coûts
- 3 Optimisation
- 4 Tensiométrie
- 5 Formation

ABSTRACT

Agriculture consumes 69% of water withdrawals in the world ("Eau et agriculture" department of sustainable development –FAO). The World Water Vision (Cosgrove and Rijsberman 2000) estimated that half of the water needs for agriculture could be met in 2025 on condition that a more efficient irrigation associated with a better management of water.

Inspite of significant quantities of bananas exported every year, Golden Exotics Limited keeps on seeing his profits shrink due to considerable losses. The current irrigation system is known to present many problems causing significant losses of water. This situation results on frequent maintenance operations on the system in order to fix them. All these factors are leading to money losses for the company; it even impacts the quality of the harvests, leading to drops of their market value. In order to get a more efficient solution, the irrigation system is being converted into micro sprinkler irrigation system under foliage as an experiment in a test spot. It will be a more cost-effective long-term solution, with an investment in some equipment to replace. Like the tensiometry project, this will need sensitization and training of the workforce as they're not enough qualified and used to this new system. Through the training, the staff involved in the tensiometry project will have a good understanding of the benefits of the tensiometers and a better control of the parameters. Thus, this project which just started will end-up with an efficient procedure for an optimal management of irrigation water.

Key words:

- 1 Irrigation
- 2 Costs
- 3 Optimization
- 3 Tensiometry
- 5 Training

LISTE DES ABREVIATIONS

GEL: Golden Exotics Limited

ARD-AR: Agriculture and rural development & Africa region

Plots : parcelle d'environs 200 m x 200 m = 4ha environs. Chaque secteur est découpé en

plots qui suivent une nomenclature

PS: Pumping Station (station de pompage)

F&V: Filter and plot Valves (filtre et vannes tertiaires)

FM: Field Maintenance (entretient de la plantation)

ETP: Evapotranspiration Potentielle

ETo: Evapotranspiration de référence

ETMpointe : Evapotranspiration Maximale correspondant à la période de Pointe

EVbac: évaporation mesurée en bac (ici bac classe A)

Plot valve: vanne tertiaire ou parcellaire

Filtre scan - away: Filtre entre conduit primaire et secondaire

Filtre EBS: Filtre à la station de pompage, assure le filtrage de l'eau refoulée par les pompes vers la conduite primaire

Double bed: ensemble formé par quatre lignes de bananiers, compris entre deux drains de parcellaires, sa largeur est de 11, 2 m en moyenne.

Single bed: moitié de double bed ayant ainsi deux lignes de bananiers, encadrées par deux drains de parcellaires, sa largeur est par conséquent d'environs 5, 6 m.

Petit rang de bananiers : espace entre deux bananiers alignés

Grand rang de bananiers : espace entre deux lignes de bananiers

Cable-way: mode de transport de la banane récoltée, depuis les plots jusqu'au pack house.

C'est un réseau autonome de câbles métalliques supportés par des arcades métalliques.

Haubanage : système d'étayage maintenant les bananiers en équilibre, lors des grands vents.

SOMMAIRE

LISTE DES TABLEAUX	2
LISTE DES FIGURES	3
I. INTRODUCTION	4
II. OBJECTIFS DE TRAVAIL	5
III. GENERALITES	6
IV. MATERIELS ET METHODES	12
IV.1/ ETAT DES LIEUX	12
IV.2/ ETUDE TECHNIQUE	13
IV.3/ ETUDE ECONOMIQUE	21
IV.4/ INSTALLATION ET USAGE DES TENSIOMETRES	23
V. RESULTATS	26
V.1/ ETAT DES LIEUX DE L'EXISTANT DES INSTALLATIONS POUR L'IRRIGATION	26
V.2/ ETUDES TECHNIQUES	32
V.3/ ETUDES ECONOMIQUES	41
V.4/ TRAITEMENT DES DONNEES DU PROJET DE PILOTAGE DE L'IRRIGATION	46
VI. DISCUSSION ET ANALYSE	52
VI.1 / ANALYSE DE L'ETAT DES LIEUX DES EQUIPEMENTS	52
VI.2/ ANALYSE DES RESULTATS DU DIMENSIONNEMENT	53
VI.3 / ANALYSE ECONOMIQUE	54
VI.4/ ANALYSE DE RESULTATS DU PILOTAGE DE L'IRRIGATION	55
VII. CONCLUSION	57
VIII. PERSPECTIVES ET RECOMMANDATIONS	58
IX. BIBLIOGRAPHIE	59
X. LISTE DES ANNEXES	60

LISTE DES TABLEAUX

Tableau 1 : Synthèse des valeurs de pressions et débits relevées durant le mois d'avril par secteur	30
Tableau 2 : Calcul de la HMT de la solution 1 de la simulation	32
Tableau 3 : Calcul de la HMT de la solution 2 de la simulation	33
Tableau 4 : Synthèse des calculs du dimensionnement final	33
Tableau 5 : Equipements conservables en cas de reconversion du système d'irrigation	39
Tableau 6 : Devis des équipements à installer lors de la reconversion du système d'irrigation	39
Tableau 7 : Synthèse du calcul du coût d'exploitation du goutte à goutte	41
Tableau 8 : Synthèse de la projection du coût d'exploitation de la micro aspersion	42
Tableau 9 : Estimation des pertes d'eau dans les drains par les lignes de goutteurs	44
Tableau 10 : Estimation des pertes d'eau au niveau des cable-ways par les lignes de goutteurs	44
Tableau 11 : Estimation des linéaires de rampes de goutteurs perdues	44
Tableau 12 : Estimation des linéaires de rampes de goutteurs perdues	44
Tableau 13 : Estimation du coût des pertes engendrées par les rampes de goutteurs	45
Tableau 14 : Estimation des pertes d'eau dans les drains par les asperseurs	45
Tableau 15 : Estimation des linéaires de rampes perdues sur les cable-ways par les asperseurs	45
Tableau 16 : Estimation du coût des pertes engendrées par les asperseurs	45
Tableau 17 : Relevés des tensiomètres et sondes sur le site systématique F1 au secteur 6 - Mai 20)13
	47
Tableau 18: Relevés des tensiomètres et sondes sur le site tensiométrique F2 au secteur 6 - Mai 2	2013
	49
Tableau 19 : Estimation du volume et coût d'eau d'irrigation apporté par site au secteur 6	51
Tableau 20 : Estimation du volume et coût d'eau d'irrigation apporté par site au secteur 2	51
Tableau 21 : Estimation du volume et coût d'eau d'irrigation apporté par site au secteur 1	51
Tableau 22 : Estimation du volume et coût d'eau d'irrigation apporté par site au secteur 0	51
Tableau 23 : Calcul de l'amortissement de la reconversion du système d'irrigation	54

LISTE DES FIGURES

Figure 1 : Extrait de carte du GHANA: situation géographique de Kasunya 8
Figure 2 : Emplacement des secteurs et lacs artificiels dans la plantation de Kasunya9
Figure 3 : Cartographie des types de sols rencontrés sur les sites expérimentaux9
Figure 4: Histogramme de variation des pluies mensuelles sur la plantation
Figure 5 : Courbe de variation de la pluie annuelle dans la zone de la plantation
Figure 6 : Courbe de variation de l'évaporation bac mensuelle
Figure 7 : Tensiomètre à eau (Isberie, 2000)
Figure 8 : Planification de l'irrigation journalière
Figure 9 : Schéma d'aménagement des secteurs 6 et 7
Figure 10 : Vue en plan de la disposition prévue des rampes et asperseurs sur double bed 38
Figure 11: Coures de variation des tensions relevées sur les tensiomètres et sondes sur le site
systématique F1 - secteur 6
Figure 12 : Coures de variation des tensions relevées sur les tensiomètres et sondes sur le sites
tensiométrique F2 - secteur 6

I. INTRODUCTION

La plantation de Kasunya existerait depuis 1960. Elle était exploitée pour la culture de la canne à sucre par irrigation gravitaire. Cette culture sera abandonnée en 1983 et les habitants de la zone y mèneront quelques cultures de subsistance telles que la pomme de terre, le maïs, le sorgho. Le domaine est finalement repris en 2003 par la société Golden Exotics Limited (GEL) pour pratiquer la banane dessert en irrigation localisée goutte à goutte sur environ 1176 ha.

La production de bananes a atteint en 2012 environ 50 000 tonnes, faisant de cette plantation la première plantation majeure de banane dessert du Ghana. (ARD-AR, 2011).

La direction technique de la société est souvent confrontée à de nombreuses difficultés de gestion du réseau et des équipes d'ouvriers. Ainsi s'est posé certains problèmes de fonctionnement au niveau de l'irrigation goutte à goutte de la bananeraie. La société a alors entamée en 2011 une étude pour la reconversion du système d'irrigation actuel. Elle a aménagé une zone d'essai de 10ha pour l'irrigation par micro aspersion sous frondaison. La société à aussi procédé en 2013 à l'expérimentation du pilotage de l'irrigation par tensiométrie dans la plantation avec pour objectif l'optimisation d'eau d'irrigation sans affecter ni le rendement, ni la qualité des récoltes.

Ce mémoire se donne pour objectif de proposer des solutions afin d'améliorer l'irrigation de la plantation. Pour cela, nous chercherons à comprendre la gestion et le fonctionnement des réseaux d'irrigation goutte à goutte et de la micro aspersion de la plantation de Kasunya. Une étude technique suivra, et prendra en compte le choix et le dimensionnement des équipements à installer si la micro aspersion sous frondaison devait être retenue. Ce préalable permettra ensuite à l'étude économique de ressortir la comparaison du coût de l'investissement au montant économisé en cas de reconversion en micro aspersion. Toujours dans la même optique, nous nous intéresserons à l'apport de la tensiométrie en termes d'optimisation de l'eau d'irrigation.

II. OBJECTIFS DE TRAVAIL

> OBJECTIF GENERAL

Proposer des solutions pour l'amélioration de l'irrigation dans la plantation de Kasunya.

> OBJECTIFS SPECIFIQUES (OS)

Afin d'atteindre l'objectif général cité précédemment nous avons cherché à satisfaire aux objectifs spécifiques suivants :

OS1 : Etat des lieux de l'existant des installations pour l'irrigation ;

OS2 : Etude technique et économique d'équipement en micro aspersion ;

OS4 : Optimisation de l'eau d'irrigation par la tensiométrie ;

> HYPOTHESE DE TRAVAIL

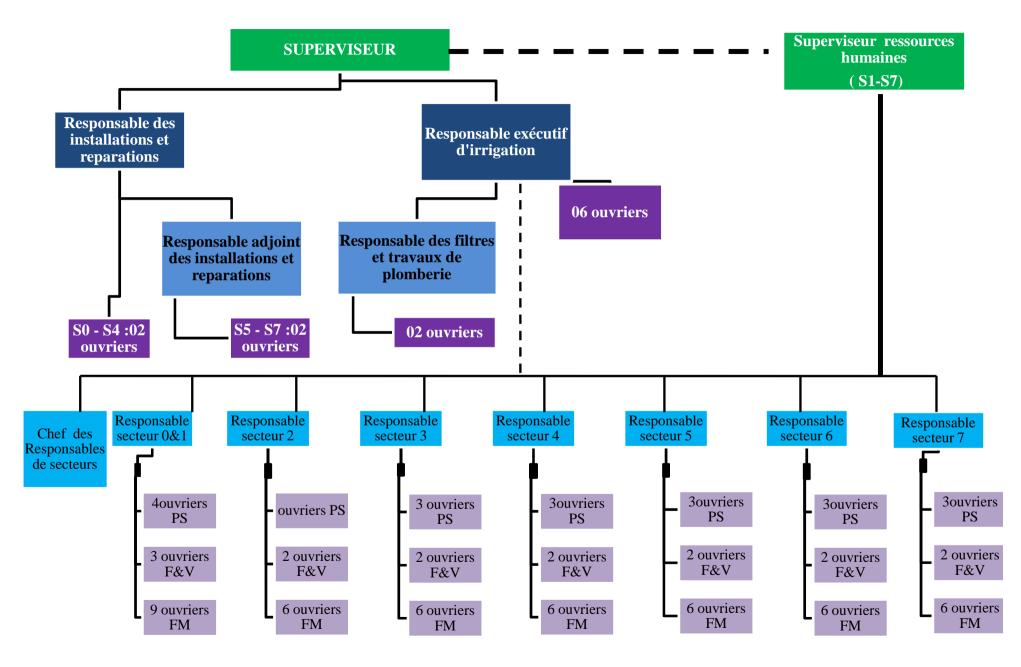
Nous posons comme hypothèses de départ : que le système d'irrigation goutte à goutte n'est pas adapté à la bananeraie de Kasunya ; et que la micro aspersion s'y prêtera beaucoup mieux.

III. GENERALITES

Présentation de la Société

La Société Golden Exotics Limited (GEL) est une filiale du Groupe Compagnie Fruitière de Marseille. Elle dispose au **Ghana** de deux plantations qui couvrent ensemble une superficie d'environ 3 500 hectares :

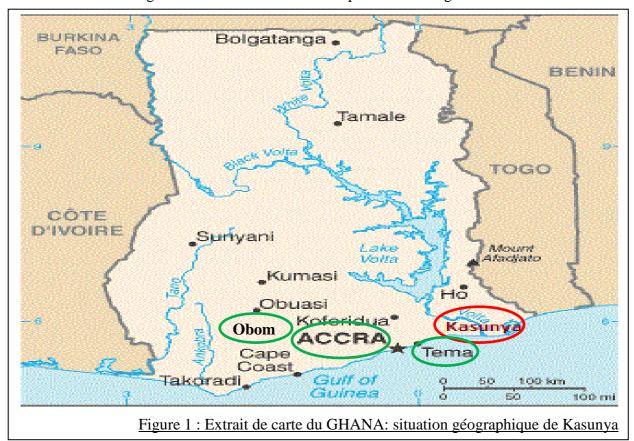
Une plantation d'ananas d'environ 150 ha située au centre Ouest du pays, dans le village d'**Oboum,** dont la production atteint 10 000 tonnes en moyenne par an. Elle prévoit (à long terme) couvrir 300 ha.


Une autre, plus au sud du pays, dans le village de **Kasunya**, couvre 1200 ha environ et se concentre sur la production de la banane dessert qui peut atteindre 50 000 t en moyenne par an. Elle a étendu ses surfaces cultivées, les portant à 1 500 ha, et prévoit couvrir 3200 ha (à long terme).

Ces produits sont destinés à l'exportation vers l'Europe à 95% et l'Afrique de l'Ouest à 5%. GEL est certifiée Globalgap, et Fairtrade - Max Havelaar (organisation indépendante qui gère le label du commerce équitable). La compagnie est actuellement la première plantation d'Afrique 100% Fairtrade (norme permettant de renforcer la position des fermiers et des ouvriers dans la chaîne de valeur).

La société Golden Exotics Limited compte plus de 1500 employés permanents sur la plantation de Kasunya. Elle est structurée comme suit :

- Une direction centrale à Accra,
- Direction chargée de la Logistique et des exportations à Tema.
- Une Direction de Production basée à Kasunya et qui s'occupe d'Oboum et Kasunya
- Une Direction des Ressources Humaines basée à Kasunya qui s'occupe d'Oboum et Kasunya
- Une Direction Technique basée à Kasunya qui s'occupe d'Oboum et Kasunya


Le stage s'est déroulé dans le Service Irrigation de la Direction Technique à Kasunya. L'organigramme du Service Irrigation est présenté ci-dessous :

Amélie KOUSSE 2012-2013 7

Présentation de la plantation de Kasunya

La plantation est située dans le village de Kasunya à une distance de 77 km de la capitale Accra, dans la partie ouest du district de Dangme. Ce district est situé au sud Est du Ghana dans la « Greater Accra Region », entre la latitude 5° 45' Sud et 6° 05' Nord et Longitude 0° 05' Est et 0° 20' Ouest. La plantation est sur la rive droite du fleuve Volta, entre la latitude 0° 16' 10'' Est et la longitude 6° 2' 25'' Nord. Elle est proche du village d'Asutsuare.

La ressource en eau

La ressource en eau est disponible à partir du barrage hydro-électrique d'AKUSE qui est un sous barrage de celui d'AKOSSOMBO. Il dessert par un canal d'alimentation, des activités de riziculture, pisciculture et des plantations de bananes dont celle de Golden Exotics Limited (GEL). L'exploitant de la plantation reverse des droits annuels pour l'accès à cette eau et la branche du canal alimentant GEL est destinée à fournir 10 100 m³/h (soit 151 500 m³/jour) au niveau d'une station de relevage. Cette banche du canal approvisionne six (06) lacs artificiels ayant une capacité de stockage de 120 000 m³ en moyenne par lac. En saison sèche, l'on peut avoir au moins 100 000 m³ d'eau permanemment disponible par lac.

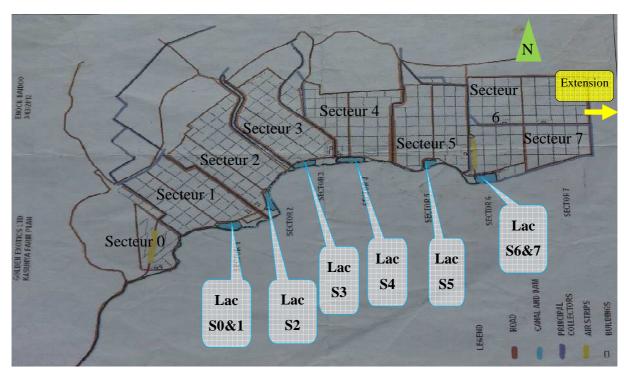


Figure 2 : Emplacement des secteurs et lacs artificiels dans la plantation de Kasunya

Le sol de la plantation de Kasunya:

Il y a trois types de sols dominants dans la plantation: sablo-argileux fertile, des sols sableux et des sols argileux qui sont du vertisol. Les proportions approximatives sont : argile à 49%, sable à 34%, limon à 17%.

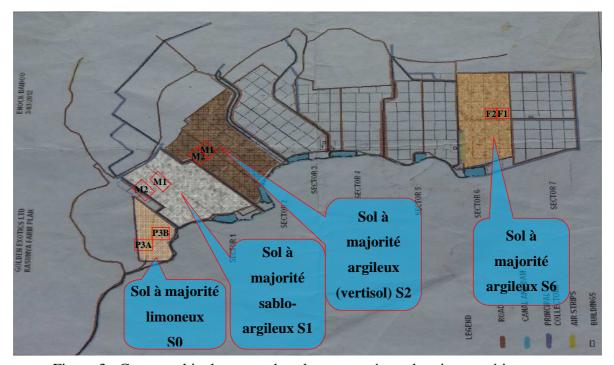


Figure 3 : Cartographie des types de sols rencontrés sur les sites expérimentaux

Climat de la zone:

La zone de Kasunya a un climat tropical pur (750 mm < pluies < 1200 mm, (FAO, 1996). Les vitesses moyennes de vent sont d'environ 3 m/s et l'humidité relative est de 67,5% en moyenne. La compagnie dispose d'une station météorologique, les données suivantes vont de 2008 à 2012:

- La pluviométrie à partir de la station installée sur le secteur n°2 ;
- L'Evaporation mesuré directement avec le Bac classe A.

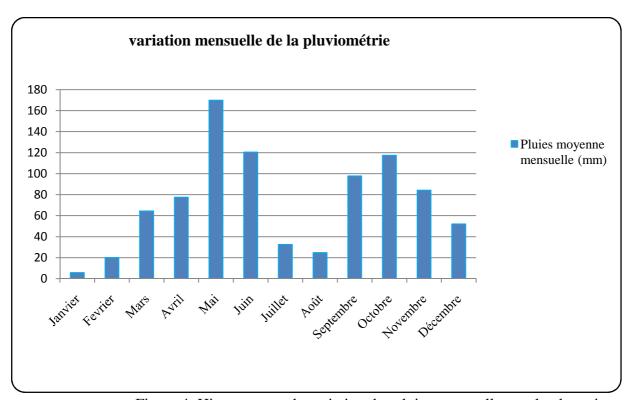


Figure 4: Histogramme de variation des pluies mensuelles sur la plantation

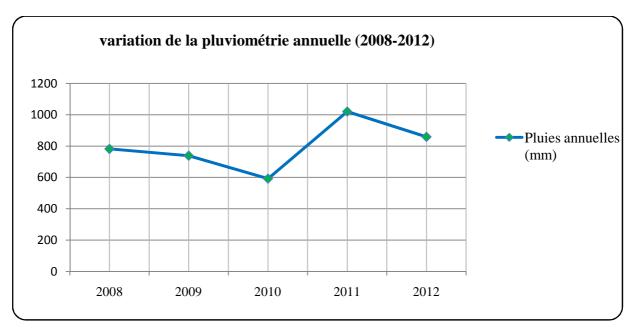


Figure 5 : Courbe de variation de la pluie annuelle dans la zone de la plantation

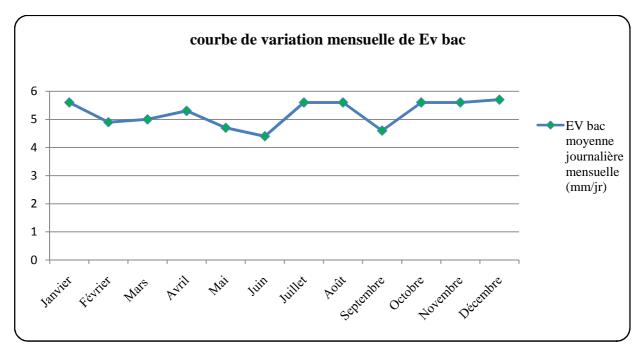


Figure 6 : Courbe de variation de l'évaporation bac mensuelle

IV. MATERIELS ET METHODES

IV.1/ ETAT DES LIEUX

MATERIELS:

01 Manomètre ; 01 éprouvette graduée ; 01 chronomètre ; 01 chaine à mesurer.

METHODES:

<u>Mesure de la variation de pressions</u>: Choisir un poste d'arrosage permettant d'ouvrir les premiers et les derniers filtres scan - away. Puis, mesurer à l'aide du manomètre la pression de sortie à la station de pompage. Mesurer ensuite la pression au niveau du premier puis du dernier filtre scan – away. Mesurer enfin la pression des vannes parcellaires ou (plots valves).

<u>Vérification des diamètres des conduites</u>: Lire directement les dimensions inscrites sur les conduites.

Mesure de débits de goutteurs : Creuser dans le sol au dessous d'une rampe de goutteurs, une profondeur égale à celle de l'éprouvette graduée et la placer dans ce trou. Lancer le chronomètre pour une durée de 05 mn. Ensuite, retirer l'éprouvette et lire le volume recueilli. Enfin, ramener le débit (volume/temps) obtenu en unité du Système International.

IV.2/ ETUDE TECHNIQUE

MATERIELS:

- Tableur Excel
- Catalogues:
 - RFR pour la sélection d'asperseur;
 - PEHD pour les diamètres nominaux des conduites en PE
- Abaques de:
 - Détermination des pdc pour les conduites en PVC,
 - STR-PE pour détermination des pdc pour les conduites en PE.

METHODES:

IV.2/1. DIMENSIONNEMENT PRELEMINAIRE

IV.2/1.1. <u>Dose pratique d'irrigation ou dose nette Dp (mm):</u>

Dp = RFU = p*RU avec $RU = Zr*(\theta_{fc} - \theta_{wp})$. Dp=44mm.

Avec: RFU: Réserve Facilement Utilisable (mm);

RU: Réserve Utile (mm) estimée à 92 mm;

p : facteur de tarissement= 0,475. Dépend du type de culture et du climat obtenu à partir du groupe au quel appartient la banane et de l'évapotranspiration maximale.

Zr : profondeur racinaire (mm) = 500 mm : obtenu ici en effectuant des profils de sol sur deux secteurs de la plantation ;

 θ_{fc} : humidité volumétrique à la capacité au champs (%)= 36,8%

Gras et Betremieux proposent les formules suivantes: He = 0.51*A + 0.16*L + 5.47 pour He > 20 %, (M. L. COMPAORE 2005). He=36.8%

A =48,6%, teneur en argile ; et L = 17,4%, teneur en limon.

Les teneurs en argile et en limon des sols de la plantation ont été calculées grâce aux données d'analyse du sol fournit par le département agronomique, *Tableau1 - Annexe1/P62*.

 θ_{wp} : humidité volumétrique au point de flétrissement (%): $\theta_{wp} = \frac{He}{1,84}$ ou environ $\theta_{wp} \sim \frac{He}{2} = 18\%$.

IV.2/1.2. Fréquence des arrosages F en période (j) de pointe et le tour d'eau T (j) :

$$F(j) = \frac{Dp(mm)}{ETMpointe(mm)} = 11j$$

*ETMpointe=ETo*Kc* =4mm/j, avec Kc: le coefficient cultural de la banane à ses stades de croissance.

Et
$$ETo = Kb * Ev bac (= ETP)$$

L'ETo a été estimé à 4 mm/j, à partir de l'évaporation Evbac hebdomadaire du bac classe A installé à la station météo de la plantation, *Tableau2-Annexe1/P63*. Kb coefficient d'évaporation en bac = 0,7, *Tableau3- annexe1/P65*. Le calcul d'ETo ressort au *Tableau 4-Annexe1/P66*.

Le coefficient cultural de la banane étant disponible sur *CROPWAT 8.0 de la FAO* pour ses différents stades de croissance, le Kc équivalent=1, a été calculé pour la banane 2 qui est celle de la deuxième année, Tableau5 - Annexe1/P67. Cependant pour le calcul de la fréquence, l'ETMpointe mensuelle est la plus répétée dans l'année a été choisit et le Kc correspondant. La dose réelle d'irrigation est alors Dr (mm)=4mm ETMpointe (mm/j)*T (j). Le facteur de tarissement réel est $pr=\frac{Dr}{RU}\frac{(mm)}{(mm)}=0,04$.

IV.2/1.3. La dose (ou besoin) brute Db (mm):

Dose brute
$$Db$$
 $(mm) = \frac{Dp (mm)}{Ea} = 62$ mm.

Ea l'efficience d'application = 70% car le climat est chaud, *Tableau6 -Annexe1/P68*.

❖ Débit fictif continu DFC (l/s/ha)

$$DFC = \frac{Db*10\,000}{J*24*3600} = 1,0 \text{ l/s/ha}$$
 Avec J= période de l'estimation qui est ici de 7 jours

IV.2/1.4. Débit caractéristique DC (l/s/ha):

DC=DFC de pointe= 1,0 l/s/ha

❖ Le débit d'équipement **qe** (l/s/ha) et débit total du système **Qtot** (l/s) :

Qe (l/s/ha)=
$$\frac{\text{Db (mm)}}{\text{T(j)*Ts(}\frac{h}{i})*\text{Ns*0,36}}$$
= 1,9 l/s/ha

- o Db (mm)= dose brute de pointe correspondant à ETm de pointe= 27,3 mm
- o T (j)= le tour d'eau choisit en jours=1
- Ts (h)= nombre d'heures utilisées par poste d'arrosage pour apporter la dose brute, $Ts = \frac{Twmax (h)}{Ns} = 3h/j$
- Twmax(h)= 15h, nombre d'heures maximales d'arrosage par jour/ secteur ou temps de travail.
- o Ns = 5, nombre de postes d'arrosage effectués l'un après l'autre dans un jour.

Correspond ici au nombre de couleurs qui guident les ouvriers (communément appelés filterboy) pour l'ouverture à des intervalles de temps de 2h30mn, des filtres scan-away placé sur la conduite primaire et desservant les secondaires ; donc ici, ceux sont les conduites secondaires (regroupant 3portes-rampes en moyenne) qui constituent les postes d'arrosage.

Le débit total du système **Qtot** (**l/s**) =qe (**l/s/ha**) * **S** (ha) = 594,6 l/s, S=309 ha= somme des superficies irriguées aux secteurs 6 et 7.

Le rendement du réseau sera alors $\mathbf{r} = \frac{Twmax (h)*Nj(j)}{24(h)*7(j)}*100 = 54\%$, avec $\mathbf{N}\mathbf{j} = 6$, nombre de jour d'irrigation par semaine.

IV.2/2. DIMENSIONNEMENT FINAL:

Dans la perspective d'une optimisation économique en minimisant les investissements, la réutilisation du maximum des équipements et installations existants, ainsi que le respect du même schéma d'exploitation sont réalisables.

Une simulation a été faite avec deux rampes de diamètres différents ainsi que le choix de celle qui nous permet d'attendre un fonctionnement optimum du réseau donc s'approchant le plus possible de la HMT fournie par le fabricant voir. Les dimensions des porte-rampes et secondaires ainsi que des conduites primaires sont les mêmes sur les deux simulations.

IV.2/2.1 Sélection et espacement des asperseurs

Sur la plantation, les bananiers sont distants de 2m en moyenne sur une même ligne, et les lignes de bananiers de 1,8m en moyenne. La micro aspersion sous frondaison en cours

d'expérimentation est proposée.

• Vitesse d'infiltration de base Vinf (mm/h)

Le choix de l'infiltration du sol a été fait parmi des valeurs proposées par le *Tableau 7 - Annexe1/P69*. La pluviométrie de l'asperseur est inférieure à la vitesse d'infiltration de base, Pasp < Vinf.

• Pluviométrie de l'asperseur choisit Pasp (mm/h)

$$Pasp (mm/h) = \frac{1000*qasp \left(\frac{m3}{h}\right)}{erp (m)*easp (m)}$$

Avec $e_{asp}=3m=$ espacement entre asperseurs et $e_{rp}=5,6m=$ espacement entre rampes

• <u>Débit de l'asperseur q_{asp} (m³/h)</u>

Le catalogue de sélection des asperseurs est le RFR 2013. Voir *Tableau8 -Annexe1/P70*. Cette sélection a été faite pour un débit, une pression nominale et un diamètre mouillé qui convient au système.

IV.2/2.2. <u>Disposition des asperseurs</u>

La disposition des rampes en rectangle est la mieux indiquée car elle convient le mieux au cas de la plantation. Pour le rectangulaire: une meilleure uniformité est obtenue quand les rampes sont placées perpendiculairement à la direction dominante du vent. Cependant, il est mieux de garder les rampes parallèlement à la direction du vent dominant car cette disposition entraine une zone sèche entre deux rampes parallèles, elle coïncide dans le cas présent avec l'emplacement de drains parcellaires.

En effet, il y aura une rampe par single bed, la distance entre rampe sera de 5,6m. La distance entre asperseurs respectera un recouvrement du diamètre mouillé, donnant une dose uniforme acceptable sans inonder les drains parcellaires.

L'écartement maximal entre asperseurs le long de la rampe $e_{asp,max}=K^*D_{mouillé}=3,2m$, a permis d'ajuster les écartements entre asperseurs, voir Tableau9 - Annexe1/P72.

D_{mouillé}= 3m, diamètre mouillé de l'asperseur, K= Coefficient dépendant de la vitesse du vent

et de la disposition rectangulaire ou carrée, k=80.

Les écartements des asperseurs ont été choisit en fonction des espacements entre les pieds de bananiers et entre les lignes de bananiers.

IV.2/2.3. Calcul des pertes de charges le long des conduites

Le procédé est le suivant pour les rampes, les porte-rampes, les conduites secondaires, la conduite de transport, la conduite de ravitaillement du pack-house :

• Variation des pressions le long des conduites

Ces calculs de variation de pression sont pour un terrain à pente nul.

$$P_{amt}(m) = P_m(m) + \frac{3}{4}\Delta H(m)$$
 pression à l'amont de la conduite

$$P_{avl}(m) = P_m(m) - \frac{1}{4}\Delta H(m)$$
 pression à l'aval de la conduite

Pm: pression de service ou pression moyenne dans la conduite

 Δ H: valeur absolue de la perte de charge linéaire, $\Delta H \leq 0.20 * Pm$

• Différence de pressions entre l'amont et l'aval ΔP (m)

 $\Delta P(m) = P_{amt}(m) - P_{avl}(m)$ variation de pression sur la conduite.

• La variation de pression admissible ΔH_{adm}

$$\Delta H_{adm} = 20\% * Pn$$

Pn: pression nominale de l'asperseur

Avec $\Delta P \leq \Delta H_{adm}$

• <u>Dimensionnement des tubes</u>

Les diamètres D (mm) des différentes conduites ont été déterminés en tenant compte des pertes de charges admissibles. Les conduites étant en Polyéthylène (PE) et en PVC, la vitesse maximale admise sera 1,7m/s.

D (mm)=
$$\sqrt{\frac{Q\left(\frac{m3}{h}\right)}{V\left(\frac{m}{s}\right)}} * 18,811.$$

Les sélections de diamètres nominaux ont été faites dans le catalogue de spécifications PEHD

au *Tableau10 -Annexe1/P73* pour le polyéthylène et dans l'abaque de calcul de perte de charges de South African Bureau of Standards (1976) pour le PVC au *Tableau11 -Annexe1/P74*.

Les diamètres des conduites ont été calculés depuis les rampes jusqu'à la conduite primaire. Avec la largeur moyenne d'un plot le débit par rampe est obtenu en fonction du nombre et débit d'asperseurs. Le diamètre des tubes pou les porte-rampes encore appelé peigne ou conduites tertiaires, a été obtenu par le produit du débit par rampe, par le nombre de rampes par plot, car dans la configuration actuelle, la longueur d'un plot correspond généralement à la longueur du porte-rampe. Les plots n'ont pas exactement les même surfaces, il ya des variations de 0,5 à 2,5ha, ils n'ont donc pas le même nombre d'asperseurs par rampe ; il était nécessaire de faire un calcul de débit par plot et en fonction du nombre de plots par conduite secondaire (secteur 6= 4porte-rampes, secteur 7= 5 porte-rampes) et obtenir le débit des conduites secondaires. Le diamètre de la conduite primaire qui alimente à la fois les secteurs 6 et 7, à quant à lui été obtenu par recherche du poste d'arrosage actuel faisant appel au plus grand débit (voir *Tableau12 -Annexe1/P75*).

• Calcul des pertes de charges

Calculé avec services en route en fonction du débit et du diamètre sélectionné de la conduite concernée.

Choix de la formule de Cole brook, Calmon et Lechapt pour le calcul de la perte de charge simple par unité de longueur des conduites en PVC:

$$\Delta H_{simple}(m/m) = a^* \frac{[Q(m3/h)/3600]^N}{[D(mm)*0,001]^M}$$
 où a, N, et M sont des coefficients dépendant du matériau du tube concerné, voir *Tableau13 -Annexe1/P76*.

L'abaque STR-PE (voir *Tableau14 -Annexe1/P77*) a été utilisé pour les conduites en polyéthylène, pour déterminer la perte de charge correspondante au débit calculé et au diamètre sélectionné, le **Facteur de correction F** a été appliqué en fonction du nombre de services en route d'après Keller et Karmelli, 1975, voir *Tableau15 -Annexe1/P78*. La perte de charge devient $\Delta H_{conduite\ concernée}$.

La variation totale de pression le long de chaque conduite à été calculé en tenant compte de la condition de perte de charge admissible. $\Delta P(m) = \Delta H P_{amt}(m) - P_{avl}(m) \leq \Delta H_{adm}$

• Calcul de la hauteur manométrique totale HMT

✓ Perte de charges d'aspiration ΔH_{aspiration} (m)

 $\Delta H_{\text{aspiration}} = \frac{V^2}{2*g}$ formule de Keller et Bliestner, avec V : la vitesse dans la conduite d'aspiration en $(\text{m/s})^2$ tel que V $\leq 3.3 \text{m/s}$ et $g=9.81 \text{m/s}^2$.

✓ Perte de charges de la conduite de transport ΔH_{transport} (m)

Elle a été considéré depuis la source jusqu'à l'entrée des périmètres, c'est-à-dire avant à l'entrée de la conduite secondaire. Elle a été calculée comme les conduites précédentes.

Ainsi,
$$\Delta H_{transport}(m) = \Delta H_{simple,transport}(m/m) * L_{transport}(m)$$

✓ Perte de charge dans le support élévatoire de l'asperseur choisit $\Delta \underline{H}_{support}$ (m)

$$\Delta H_{support}(m) = H_{support}(m) *0.25(m/m)$$

0,25 m/m est l'estimation de la perte de charge unitaire et $H_{support}$, la hauteur d'élévation de l'asperseur.

✓ Hauteur géométrique de refoulement ΔP H_{geom} (m)

Un levé de la cote (\mathbf{Z}_{eau}) a été fait à la surface de l'eau du lac artificiel au niveau de la station de pompage 6&7 et au niveau de la parcelle pour déterminer le point le plus élevé (\mathbf{Z}_{max}) où l'asperseur sera.

$$\Delta H_{g\acute{e}om}(m) = Z_{max}(m) - Z_{eau}(m)$$

\checkmark Pression nominale de l'asperseur P_n (bars)

C'est la pression nominale de l'asperseur sélectionné dans le **Catalogue RFR 2012**. Il ya un gain de charge avec la micro aspersion pendulaire.

\checkmark La charge totale $H_{totale}(m)$

C'est la somme de toutes les pertes de charges par frottement ou linéaires.

 $H_{totale}(m)$ = $\sum_{i} Pm + \Delta H support + \Delta H rampe + \Delta H porte - rampe + \Delta H transport + \Delta H aspiration$

✓ Les pertes de charges dans les pièces et connexions

Prises égales à 10% de la charge totale calculée H_{totale}. $\Delta Hpièces$ (m)= 10%* H_{totale}.

✓ Pertes de charges dans les filtres

Les valeurs sont comprises généralement entre 5 et 7m; la valeur maximale de 7m a été choisie.

✓ Hauteur Manométrique Totale HMT (m)

 $HMT(m) = H_{totale}(m) + \Delta H g \acute{e}om(m) + \Delta H p i\grave{e}ces(m) + \Delta H filtre(m)$

• <u>Sélection des caractéristiques de la pompe à fournir</u>

MATERIELS:

01 Tableau de détailles sur la pompe KSB - Courbe caractéristique de la pompe KSB existante.

<u>METHODES</u>:

Calculer la puissance requise. Comparer les paramètres calculés: puissance requise, la HMT calculée lors du dimensionnement, le débit de la conduite primaire, avec celles que fournissent les quatre pompes qui alimentent les deux secteurs à la fois. Le but est de s'assurer que l'installation a la capacité d'assurer l'irrigation et le service des stations d'emballage.

Les calculs détaillés du dimensionnement final sont dans le *Tableau16 -Annexe1/P79*.

IV.3/ ETUDE ECONOMIQUE

MATERIELS: 01 Chaîne à mesurer – O1 Tableur Excel.

METHODES:

IV.3/ 1. COÛT D'EXPLOITATION DU GOUTTE A GOUTTE ET DE LA MICRO ASPERSION

METHODE 1:

Utiliser la Synthèse des charges d'exploitation de l'année 2012 pour le calcul du coût d'exploitation pour le système actuel d'irrigation. Cette synthèse a permit ensuite de projeter le coût d'exploitation d'un réseau en micro aspersion.

<u>DONNEE</u>: Synthèse des charges d'exploitation d'irrigation pour l'année 2012.

IV.3/2. VERIFICATION DE LA RENTABILITE DE LA MICRO ASPERSION PAR RAPPORT AU GOUTTE A GOUTTE

METHODE 2:

Comparer les pertes financières engendrées par chacun des deux systèmes. Il a fallu donc:

Estimer d'abords les pertes d'eau d'irrigation et de linéaires de rampes pour chaque système. Ensuite, faire la différence des montants perdus par système et enfin comparer ce montant au coût de la reconversion du réseau en micro aspersion.

Estimation des pertes du réseau en goutte à goutte

Compter le nombre de plots affectés par les pertes d'eau.

Ensuite, estimer les quantités d'eau perdues à partir : de la durée d'irrigation, du débit par goutteurs, de l'espacement entre goutteurs et des longueurs de rampes qui traversent les drains secondaires (environs 3m) et les lignes de câble-way sur 2m.

SESTIMATION des pertes du réseau en micro aspersion

Estimer les quantités d'eau perdues par les asperseurs dans les drains à partir : de la durée d'irrigation, du débit d'un asperseur, le diamètre de couverture d'un asperseur et l'espacement entre asperseurs.

Section Estimation du cout d'investissement en micro aspersion

Estimer le coût des équipements à remplacer dans le réseau d'irrigation actuel, les asperseurs.

❖ Comparaison du coût du réseau en goutte à goutte et celui en micro aspersion

Analyser la pertinence de la reconversion du système goutte à goutte vers la micro aspersion.

IV.4/ INSTALLATION ET USAGE DES TENSIOMETRES

<u>MATERIELS</u>: 05 Tensiomètres par site – 01 Pompe manuelle à vide - Eau distillée colorée – 04 Sondes par site – 01 Boitier de lecture – 01 Tarière – 01 Chaîne à mesurer – 02 Seaux – 01 Tableur Excel.

METHODE:

Installation suivant la méthode exposée par M. L. COMPAORE, 2005 et le RNEHAD, 1992.

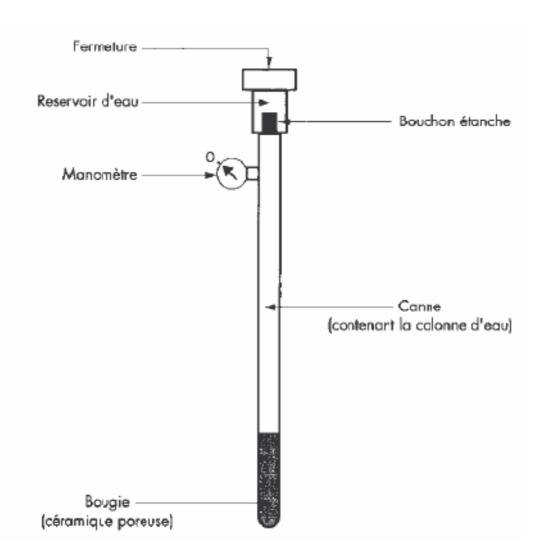


Figure 7 : Tensiomètre à eau (Isberie, 2000)

IV.4/ 1. INSTALLATION

L'essai a été mis en place sur des plots ayant les trois sols dominants de la plantation et sur des parcelles homogènes de premier et deuxième cycle. La fiche de préparation et d'installation jointe a été suivit pour l'installation, ainsi que le descriptif technique disponible sur le site internet du fournisseur.

Il ya sur chaque plot choisit un site (plot de 4ha) : dit **site systématique** irrigué suivant la demande climatique et un **site tensiométrique** où l'irrigation est déclenchée en fonction de l'indication des tensiomètres. Vu le profil racinaire existant des bananiers de la plantation, l'installation a été fait avec des tensiomètres et sondes de surface (25cm de profondeur), et de profondeur (50cm).

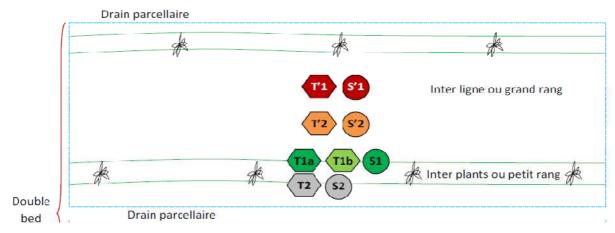
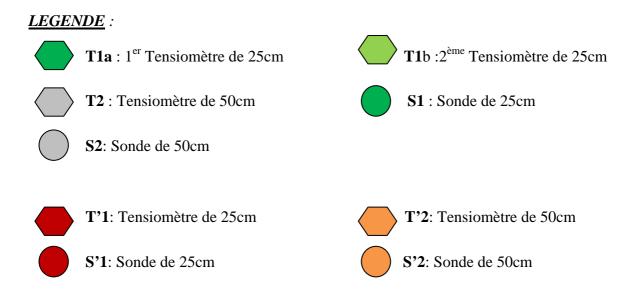



Schéma du dispositif reproduit sur les différents sites

IV.4/ 2. RELEVES ET PILOTAGE DE L'IRRIGATION

Le pilotage consiste à différer l'irrigation sur les sites tensiométriques, chaque fois que les valeurs lues sur la majorité des instruments sont inférieures à 20 cbars. Les valeurs affichées par les manomètres fixés sur les tensiomètres ont permise de tracer les courbes de variation journalière de chaque tensiomètre.

- Noter et reporter sur une feuille de calcul Excel les durées d'irrigation de chaque site ;
- Calculer les volumes d'eau apportés par site, connaissant le débit des goutteurs ;
- Estimer sur une période d'un mois ;
- Estimer l'économie d'eau que réalise chaque site tensiométrique grâce au pilotage de l'irrigation.

Les sites expérimentaux choisit sont les suivants d'après la nomenclature actuelle des plots dans les quels les instruments sont installés:

Secteur 0 (S0):

P3A : site systématique

P3B: site tensiométrique

Secteur 1 (S1):

M1 : site tensiométrique

M2 : site systématique

Secteur 2 (S2):

G2 : site systématique

G3 : site tensiométrique

Secteur 6 (S6):

F1 : site systématique

F2 : site tensiométrique

Parallèlement aux relevés des tensiomètres, le département agronomique fait un suivi hebdomadaire d'échantillons de 100 bananiers homogènes par site jusqu'à la récolte. Ceci permettra de connaitre l'impact du pilotage de l'irrigation par tensiométrie sur la qualité et le rendement, en comparant la production du site tensiométrique avec celle du site systématique. Cependant, pour que les résultats de cette expérience soient fiables, elle devra être menée sur une longue période, alors, l'exploitant prévoit de mener les observations sur deux années successives de production pour rendre les résultats plus fiables.

V. RESULTATS

V.1/ ETAT DES LIEUX DE L'EXISTANT DES INSTALLATIONS POUR

L'IRRIGATION

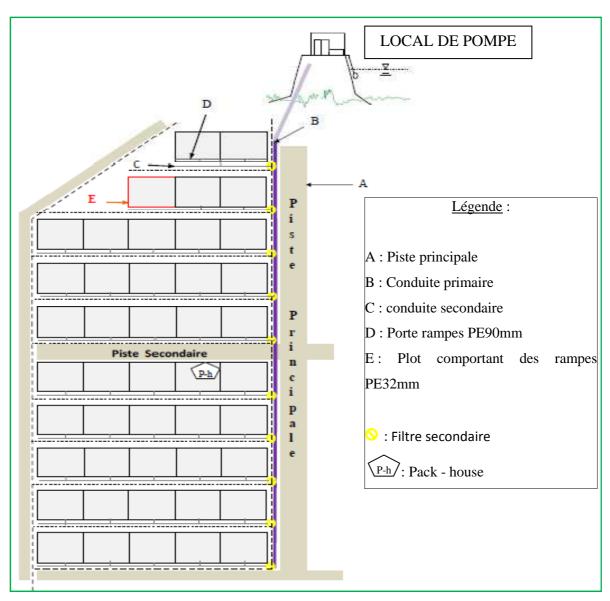
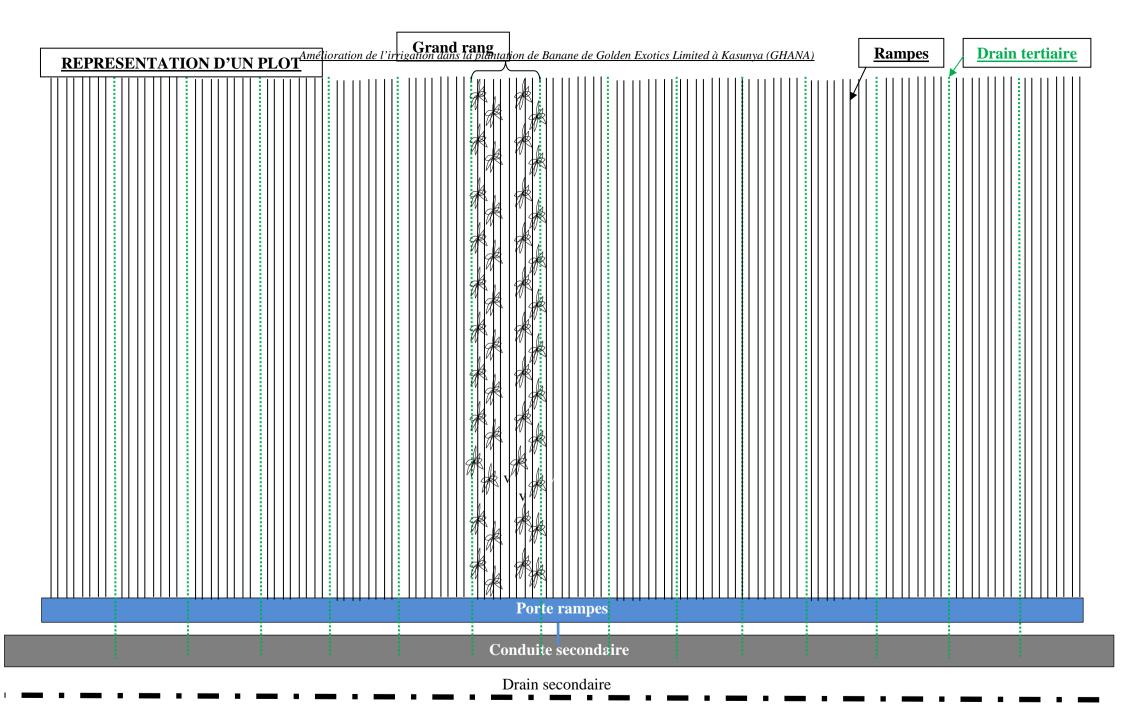



Schéma de la disposition des installations et équipements dans un secteur

Amélie KOUSSE 2012-2013 27

La plantation de Kasunya globalement rectangulaire, couvre environ 1176 ha cultivés, et est actuellement divisée en 08 secteurs. Le schéma des installations est le même pour presque tous les secteurs.

Un secteur est de forme rectangulaire et fait en moyenne 174ha ; il est subdivisé en plots.

Chaque secteur est autonome avec :

- Un local de pompe;
- Un réseau d'irrigation;
- Un réseau de drainage.
- ✓ Le local de pompe est composée essentiellement de :
- Une unité de pompage composée de 02 pompes électriques de 90 kw et 350m3/h chacune :
- Un local de fertigation pour les engrais
- Un générateur.

Remarque : on a 415 m3/h pour la deuxième pompe du secteur 0. Une moto pompe diesel de 250 m³/h approvisionne la parcelle d'essai du secteur 0.

Une unité de pompage est composée de :

- 02 pompes électriques de 90 kw et 350m3/h chacune ;
- 02 filtres EBS
- O2 Manomètres.

Le local de fertigation par secteur est composé de :

- Deux tanks de 3000l chacun, dans les quels se font les mélanges de fertilisants suivant les instructions de la direction agronomique.
- Deux pompes doseuses de 573 l/h chacune, à travers des quelles les mélanges sont injectés dans le réseau primaire d'irrigation.
- ✓ **Le réseau d'irrigation** est composé de :
- Une conduite primaire
- Conduites secondaires
- Conduites tertiaires ou porte rampes
- Rampes ou lignes de goutteurs espacées de 0,7m et il ya 04 lignes de goutteurs par small bed.

✓ Le réseau de drainage est composé de :

- Drains primaires séparant les secteurs, et dont les dimensions sont en moyenne de 7m en largeur en gueule, 3m en largeur au fond, et 3m de profondeur;

- Collecteurs ou drains secondaires traversent les plots tous les 200 m et mesurent en moyenne 2,5 à 3m en largeur au plafond, 0,8 à 1m en largeur au fond, et 1,2m de profondeur;
- Drains parcellaires ou tertiaires, creusés tous les 11,2 m, ils font 90cm en largeur au plafond, 40cm en largeur au fond et 60cm de profondeur.

Remarque: En vue d'améliorer le drainage des parcelles, un programme d'exécution de collecteurs tous les 100m et de drains parcellaires tous les 5,6 m, est en cours dans les secteurs 6 et 7.

Etat du réseau de goutte à goutte

Le système actuel de goutte à goutte fonctionne avec des pressions de moins de 2bars et des débits de 1,5 l/h.

Les rampes traversent 10 drains secondaires et 17 cable-ways dans les secteurs 6 et 7.

Les équipes de reconstruction des drains sont obligées d'attendre la désinstallation de ces rampes de goutteurs avant de débuter leur travaux.

La multiplication par rejet entraine les plants à s'écarter de leur lignes, et les rampes de goutteurs se retrouvent écrasées ou non alignées.

Les équipes apportant les soins aux bananiers sectionnent par inadvertance les rampes cachées sous les feuilles.

Les pannes ne sont pas vite repérées, causant un retard dans l'intervention.

Le personnel en charge n'est pas très instruit mais arrivent faire manutention des rampes qui sont en polyéthylène.

Il y a beaucoup de tâches de maintenance comme le « arising » et le « flashing »

Etat du réseau de micro aspersion

Les asperseurs du réseau de micro aspersion fonctionnent avec des pressions de 2,5 bars. Il ya une seule rampe au milieu d'un single bed, ce qui ne gêne pas les équipes de soins aux fruits et de drainage;

Les ouvriers arrivent à repérer facilement un disfonctionnement des asperseurs.

Cette équipe intervient moins souvent sur le réseau car la pression dans le réseau réduit les problèmes de colmatage des rampes et asperseurs. Il ya par ailleurs moins de rampes sectionnées par les ouvriers.

Le tableau ci-dessous résume les valeurs de pressions et débits relevées sur les réseaux.

Amélioration de l'irrigation dans la plantation de Banane de Golden Exotics Limited à Kasunya (GHANA)

Tableau 1 : Synthèse des valeurs de pressions et débits relevées durant le mois d'avril par secteur

	Station de pompage	<u>Réseau primaire</u>			<u>Réseau secondaire</u>			<u>Réseau tertiaire</u>			Rampes (goutteurs ou asperseurs)		
		P bars	Ø mm	Observati ons	P bars	Ø mm	Observatio ns	P bars	Ø mm	Obser vations	Ø mm (PE)	Q l/h	Ø _{couv} m
PARCELLE D'ESSAIS: 10 ha	Unité de pompage composée d'une pompe à diesel et de deux filtres en parallèles	2, 6	PE225	pas de débitmètre à la sortie de la pompe	-	-	Il n'ya pas de réseau secondaire	1,6	PE 90	Pmax =1,8 bars	32	30	2,5
SECTEUR 0: $S0 = 37.9 ha$	Un moteur diesel; Q=350 m3/h	4, 9	PE225	196	3,2	PE200	Pmax=4 bars	1	PE 90	P _{max} =3,4 Bars	32	1,4	-
<u>SECTEUR 1</u> : S1 = 159 ha	Deux pompes en parallèle ; Q=415 m ³ /h + 350 m ³ /h; P _{in} =5 bars /P _{out} =4bars	5	PV355/32 0 m; PV280 /1020 m	Q=580 m ³ /h	4	PE200/200m; PE225/100m; PE140/200m		2	PE 90	P _{max} =2,5 Bars	32	1,5	-
SECTEUR 2 : S2 = 179 ha	Deux pompes en parallèle ; Q=2*350 m³/h; P _{in} =5bars /P _{out} =4bars	5	PV355/32 0 m; PVC280/ 1020 m	Q=640 m ³ /h	4	PE200/200m; PE225/100m; PE140/200m		2	PE 90	P _{max} = 2,5 Bars	32	1,7	-
<u>SECTEUR 3</u> : S3 = 158ha	Deux pompes en parallèle ; Q=2	5	PV355/32 0m; PV280/10	Q=580 m ³ /h	4	PE200/200m; PE225/100m;		2	PE 90	P _{max} = 2,5	32	1,4	-

Amélie KOUSSE 2012-2013 30

Amélioration de l'irrigation dans la plantation de Banane de Golden Exotics Limited à Kasunya (GHANA)

	x 350 m 3 /h; P_{in} =5 bars $/P_{out}$ =4bars		20 m			PE140/200m				Bars				
SECTEUR 4: S4 = 155 ha	Deux pompes en parallèle ; Q=2 x 350 m ³ /h; P _{in} =5 bars /P _{out} =4bars	5	PV355/32 0 m; PV280/10 20m	Q=580 m ³ /h	4	PE200/200m; PE225/100m; PE140/200m		2	PE 90	P _{max} = 2,5 Bars	32	1,6	-	
<u>SECTEUR 5</u> : S5 = 169 ha	Deux pompes en parallèle ; Q= 2 x 350 m³/h; P _{in} =5 bars /P _{out} =4bars	5	PV355/32 0 m; PVC280 /1020 m	Q=580 m ³ /h	4	PE200/200m; PE225/100m; PE140/200m		2	PE 90	P _{max} = 2,5 Bars	32	1,6	-	
<u>SECTEUR 6</u> : S6 = 144ha	04Pompes volumétriques disposées en série ; Q=350 m3/h	4,5	PVC500/ 1270m &	Q=725	2,8	PVC:250, 200 & 140	Pmax=4 bars	1,7	PE 90	P _{max} = 2,9 Bars	32	1,55	-	
<u>SECTEUR 7</u> : S7= 165ha	x 4. P _{in} =5 bars/P _{out} =4,8bars	4,5	PVC400/ 1025m		m ³ /h	2,4	PVC:250, 200 & 140	Pmax=3,6 bars	1,0	PE 90	P _{max} = 2,9 Bars	32	1,4	-

LEGENDE:

P (bars) : Pression d'entrée en bars Ø (mm): diamètre en millimètre Q (l/h) : Débit en litres par heures

 $\emptyset_{\text{couv}}(m)$: Diamètre de couverture en mètre.

V.2/ ETUDES TECHNIQUES

V.2/1. DIMENSIONNEMENT PRELIMINAIRE

Le système d'irrigation à déplacement périodique est appliqué ici, il correspond à l'organisation du réseau actuellement en place. Ci-dessous le tableau montrant le mois durant le quel le besoin en eau est le plus élevé de l'année.

Tableau de calcul des besoins nets

Mois	décembre	janvier	février	mars	avril	mai	juin	juillet	août
Durée (j)	31	31	29	31	30	31	30	31	30
kc équivalent	1	1	1	1	1,1	1,2	1,2	1,1	1,1
ETo (mm/j)	4	4	3	4	4	3	3	4	4
ETM (mm/j)= $kc*Eto$	4	4	3	4	4	4	4	4	4
ETM (mm)	124,0	120,9	98,6	108,5	116,9	122,8	111,6	135,3	128,7
P (mm)	52,1	5,8	20,1	64,5	169,9	169,9	120,6	32,6	24,8
Pe(mm)	31,3	3,5	12,1	38,7	127,4	127,4	90,4	19,5	14,9
ETM-Pe (mm)	92,7	117,5	86,5	69,8	-10,5	-4,7	21,2	115,8	113,8
Besoins nets (m3/ha)= (ETM-Pe)*10	927,2	1174,5	865,4	698,1	-105,1	-46,7	211,7	1157,9	1138,0

V.2/2. DIMENSIONNEMENT FINAL

La simulation fait a donné deux propositions de rampes de diamètres différents comme suit :

❖ <u>SOLUTION 1</u>: avec rampes de diamètre 32 mm

Tableau 2 : Calcul de la HMT de la solution 1 de la simulation

PARAMETRES		VALEURS	UNITES
Débit d'asperseur choisit	qasp	0,0282	m3/h
Pression nominale de l'eau au niveau de la buse	Pn	2,5	bars
Débit tronçon rampe	Qrp1	1,9	m3/h
Pression moyenne ou de service dans une rampe	Pm	2,2	bars
pression amont rampe	Pamt	2,5	bars
pression aval rampe	Pavl	2,1	bars
différence de pression sur rampe	$\Delta P = \Delta H = P_{amt} - P_{avl}$	0,44	bars
Perte de charges admissible	ΔHadm	5,0	bars
Vitesse max admissible ds conduite en PE \leq 1,7	m/s V	1,7	m/s
Diamètre théorique de la rampe	D théor.rampe	20	mm
Diamètre choisit de la rampe	$\mathbf{D}_{\mathrm{rampe}}$	32	mm
Longueur de rampe	L_{rampe}	200	m

Perte de charge linéaire sur rampe	$\Delta_{ m hrampe}$	1,2	m
variation totale de pression le long d'une rampe	ΔΡ	0,8	m
HAUTEUR MANOMETRIQUE TOTALE	НМТ	56	m
	_	242	KW

❖ <u>SOLUTION 2</u>: avec rampes de diamètre 25 mm.

Tableau 3 : Calcul de la HMT de la solution 2 de la simulation

PARAMETRES		VALEURS	UNITES
Débit d'asperseur choisit	qasp	0,0282	m3/h
Pression nominale de l'eau au niveau de la buse	Pn	2,5	bars
Débit tronçon rampe	Qrp1	1,9	m3/h
Pression moyenne ou de service dans une rampe	Pm	2,2	bars
pression amont rampe	Pamt	2,5	bars
pression aval rampe	Pavl	2,1	bars
différence de pression sur rampe $\Delta P = \Delta I$	H=Pamt-Pavl	0,44	bars
Perte de charges admissible	ΔHadm	5,0	bars
Vitesse max admissible ds conduite en PE ≤ 1,7 m/	v V	1,7	m/s
Diamètre théorique de la rampe I	Othéor.rampe	20	mm
Diamètre de la rampe	Drampe	25	mm
Longueur de rampe	Lrampe	200	m
Perte de charge linéaire sur rampe	Δhrampe	3,6	m
variation totale de pression le long d'une rampe	ΔΡ	3,1	m
HAUTEUR MANOMETRIQUE TOTALE	HMT	59,3	m
Puissance requise	P	257	KW

HMT de la pompe existante = 60 m.

❖ <u>DIMENSIONNEMENT DES CONDUITES TERTIAIRES, SECONDAIRES, PRIMAIRES, PACK-HOUSE POUR LES DEUX SECTEURS 6&7</u>

Tableau 4 : Synthèse des calculs du dimensionnement final

PORTE-RAMPES PN4		Valeur	Unités
Pression de service dans un porte-rampe	Pm	2,9	Bars
pression amont porte-rp	Pamt	3,34	m
pression aval porte-rp	Pavl	2,76	m
Diamètre du porte-rp	Dporte-rp	118	mm
Choix diamètre du porte-rp	D'porte-rp	125	mm
Longueur de porte rampes	Lporte-rp	200	m
Perte de charge linéaire sur porte rampe	ΔHporte-rp	1,5	m
variation totale de pression le long d'un port-rp	ΔP	0,9	m

CONDUITES SECONDAIRES PN6			_
Pression moyenne ou de service dans un secondaire Pm	3,6	Bars	1
Valeur absolue de la perte de charge linéaire sur second. ΔH =20%Pm	0,72		-
pression amont second. Pamt	4,14	m	-
pression anont second. Pavl Pavl	3,42	m	-
Diamètre du secondaire1 Dtheor, second. A1 S7	264	m	-
Choix diamètre du secondaire1 D'second. A1 S7		mm	PVC x 8 conduites
	280 167	mm	P V C X & collaultes
Diamètre du secondaire2 Dtheor, second. A2 S7 Choix diamètre du secondaire2 D'second. A2 S7	167	mm	PVC
Choix diamètre du secondaire2 D'second. A2 S7 Diamètre du secondaire3 Dtheor, second. A3 S7	200 118	mm	PVC
Choix diamètre du secondaire3 D'second. A3 S7	140	mm	PVC
Diamètre du secondaire 1 Die	205	mm	PVC
Choix diamètre du secondaire1 D'second.B1 S7	250	mm	PVC
Diamètre du secondaire 2 Diescond.B1 S7 Diamètre du secondaire 2 Diescond.B2 S7	118	mm	PVC
Choix diamètre du secondaire2 D'isecond.B2 S7	200	mm	PVC
Diamètre du secondaire 2 Diamètre du secondaire 3 Diamètre 3 Diamè	167	mm	I VC
Choix diamètre du secondaire1 D'second.C1 S7 Choix diamètre du secondaire1 D'second.C1 S7	200	mm	PVC
Diamètre du secondaire2 Diesecond.C2 S7 Diamètre du secondaire2 Diesecond.C2 S7	118	mm	- I VC
Choix diamètre du secondaire2 D'isecond.C2 S7 Choix diamètre du secondaire2 D'second.C2 S7	140	mm	PVC
Diamètre du secondaire 2 Disecond. C2 S7 Diamètre du secondaire 1 Diheor, second. A1 S6	236	mm	PVC
Choix diamètre du secondaire1 D'second. A1 S6	250	mm	PVC
Diamètre du secondaire 2 Diamètre du secondaire 3 Diamètre 3 Diam	167	mm	PVC
Choix diamètre du secondaire2 Disecond. A2 S6 Disecond. A2 S6		mm	PVC
	200 118	mm	PVC
Diamètre du secondaire3 Choix diamètre du secondaire3 Dtheor, second. A3 S6 D'second. A3 S6	140	mm	PVC
	264	mm	PVC
Diamètre du secondaire 1 Dtheor, second. B1 S6 Choix diamètre du secondaire 1 D'second.B1 S6		mm	DVC v 1 conduits
	280 205	mm	PVC x 1conduite
Diamètre du secondaire2 Dtheor, second. B2 S6 Choix diamètre du secondaire2 D'second. B2 S6	205	mm	PVC
	225 167	mm	PVC
Diamètre du secondaire3 Dtheor, second. B3 S6 Choix diamètre du secondaire3 D'second. B3 S6		mm	PVC
Diamètre du secondaire1 Diamètre du secondaire1 Diamètre du secondaire1 Diamètre du secondaire1 Diamètre du secondaire3 Diamèt	180 167	mm	PVC
Choix diamètre du secondaire1 D'second.C1 S6	250	mm	PVC
Diamètre du secondaire 2 Die	167	mm	PVC
Choix diamètre du secondaire2 D'second. C2 S6	200	mm	PVC
Diamètre du secondaire3 Diheor, second. C3 S6	118	mm	PVC
Choix diamètre du secondaire3 D'second.C3 S6	140	mm	PVC
SOMME AHsecond. A7	9,1	mm	PVC
SOWIVE Ansecond. A7	8,4	m m	-
SOMME AHsecond. B7		m m	
SOMME AHSECONG. B7	7,3 6,6	m	1
SOMME AHsecond. C7	3,8	m m	+
SOWINE Ansecond. C/	3,1	m m	+
SOMME AHsecond. A6	9,5	m	1
SONIVIE ΔHSecond. Ab	9,5 8,8	m	1
SOMME AHsecond. B6	<u> </u>	m	+
SOIVINE Arisecond. Bo	6,9	m m	-
SOMME AHsecond. C6	10,2		-
AP	9,5	m m	-
ΔP le plus élevé pour la suite du design	9,5	m m	-
CONDUITES DE TRANSPORT (existant: PN10)	ر,	Ш	J
Poste d'arrosage le plus important Qposte	1146	m3/h	1
Débit cond. Transp. Qtransp.2	573	m3/h	-
Pression moyenne ou de service dans la conduite de transport Pm	4,8	bars	1
1 ression moyenne ou de service dans la conduite de transport	7,0	oars	1

Valeur absolue de perte de charge lin. sur cond.Transport ΔH=20%Pm	0,96	m
pression amont transp. Pamt	5,5	m
pression aval transp. Pavl	4,6	m
Choix diamètre du PVC D'transp.1	500	mm
Choix diamètre du PVC D'transp.1 Choix diamètre du PVC D'transp.2	400	
<u> </u>		mm
Perte de charge linéaire sur transp. AHtransp.1	2,6	m
Perte de charge linéaire sur transp. ΔHtransp.2	6,2	m
Perte de charge TOTALE Δhtotal,ransp.	8,8	m
variation totale de pression le long d'un transp. ΔP	7,8	m
CONDUITES DE TRANSPORT PACK-HOUSE (PN8)		
Débit tronçon1 cond.pack-house Qrp1	100	m3/h
Débit tronçon1 cond.pack-house Qrp2	50	m3/h
Pression moyenne ou de service dans la conduite Pm	4,5	bars
Valeur absolue de perte de charge lin. sur la conduite $\Delta H=20\%$ Pm	1	m
pression amont conduite Pamt	5	m
pression aval conduite Pavl	4	m
Choix D'cond.1	160	mm
Choix D'cond.2	110	mm
SOMME Perte de charge linéaire sur cond. ΔHcond.	22,5	m
variation totale de pression le long d'une cond. ΔP	21,2	m
Perte de charge d'aspiration ΔHaspiration	0,6	m
Charge totale Htotale	43	m
Perte de charge dans les pièces AHpièces	4,3	m
Perte de charge dans les filtres Ahfiltre, inject.	7	m
Hauteur géométrique de refoulement la plus contraignante Hgeom	5	m

Secteur S7		Valeurs	Unités
Longueur d'une conduite secondaire1	L1 second. A7	500	m
Longueur d'une conduite secondaire2	L2second.A7	200	m
Longueur d'une conduite secondaire3	L3 second. A7	200	m
Longueur d'une conduite secondaire1	L1 second. $B7$	300	m
Longueur d'une conduite secondaire2	L2 second.B7	200	m
Longueur d'une conduite secondaire3	L3second.B7	6	m
Longueur d'une conduite secondaire1	L1 second. C7	250	m
Longueur d'une conduite secondaire2	L2second.C7	50	m
S6			
Longueur d'une conduite secondaire1	L1 second. A 6	300	m
Longueur d'une conduite secondaire2	L2second.A6	200	m
Longueur d'une conduite secondaire3	L3 second. A 6	200	m
Longueur d'une conduite secondaire1	L1 second. $B6$	300	m
Longueur d'une conduite secondaire2	L2second.B6	300	m
Longueur d'une conduite secondaire3	L3second.B6	300	m
Longueur d'une conduite secondaire1	L1 second.C6	300	m
Longueur d'une conduite secondaire2	L2second.C6	200	m
Longueur d'une conduite secondaire3	L3second.C6	200	m
Longueur de conduite transport	L1 transp.	1270	m
Longueur de conduite transport	L2 transp.	1025	m
Longueur1 de la conduite de la station au j	pack-house L1cond.	1000	m
Longueur1 de la conduite de la station au j	pack-house L2cond.	500	m

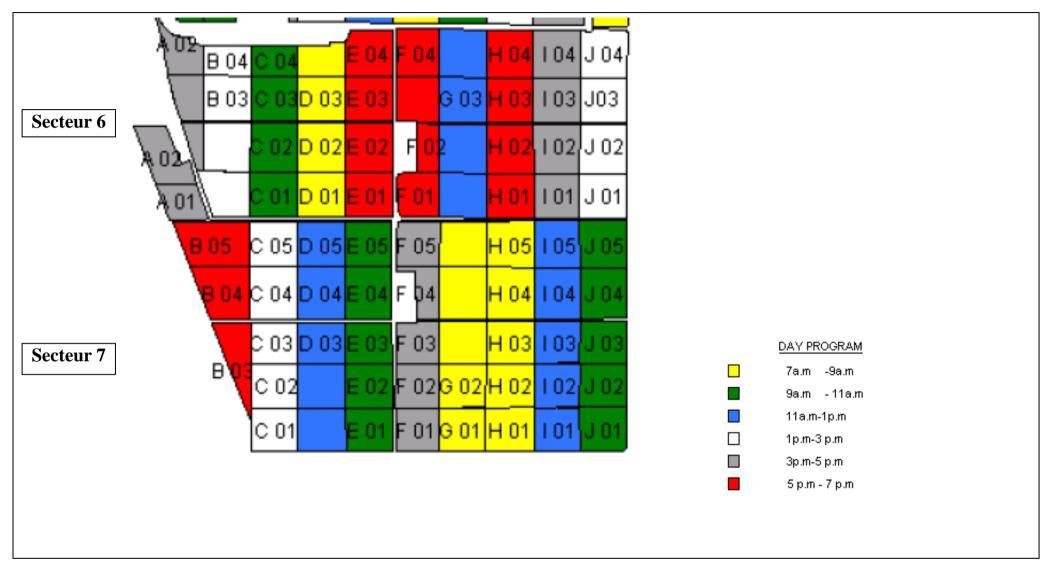


Figure 8 : Planification de l'irrigation journalière

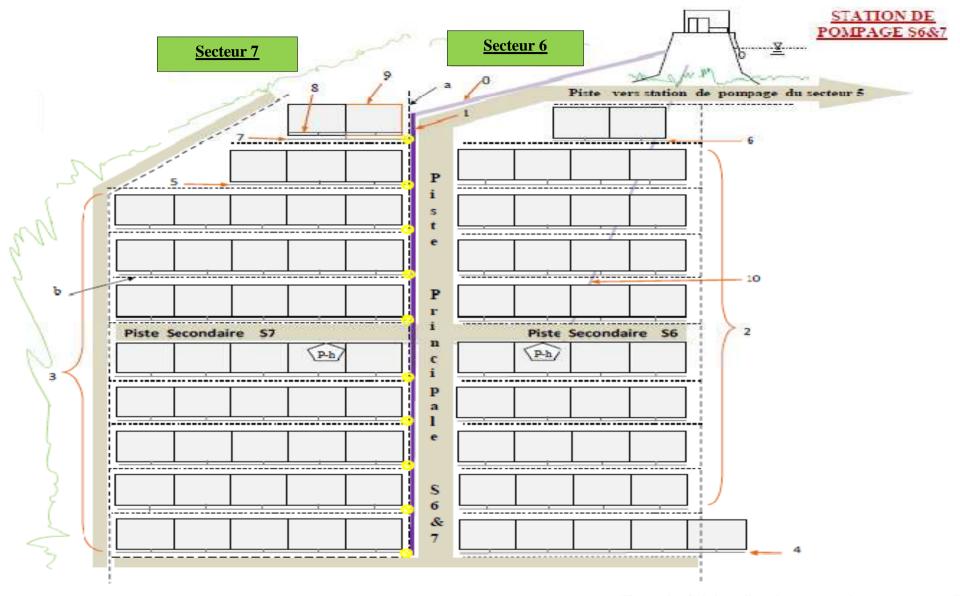


Figure 9 : Schéma d'aménagement des secteurs 6 et 7

LEGENDE:

- 0 : Conduite enterrée d'amenée de l'eau depuis la station de pompage
- 1: 1 conduite primaire enterrée (PVC) PN10: DN500 et DN400
- 2: 8 conduites secondaires A (PVC): DN250, DN200, et DN140, desservant 4 porte-rampes
- 3: 8 conduites secondaires A (PVC): DN280, DN200 et DN140, desservant 5 porte-rampes
- 4: 1 conduite secondaire B(PVC): DN280, DN225 et DN180, desservant 5 porte-rampes
- 5: 1 conduite secondaire B(PVC): DN250 et DN200, desservant 3 porte-rampes
- 6: 1 conduite secondaire C (PVC): DN250, DN200 et DN140, desservant 2 porte-rampes
- 7: 1 conduite secondaire C (PVC): DN200 et DN140, desservant 2 porte-rampes
- 8: 1 Porte rampes: porte rampe DN 125mm
- 9: 1Plot avec rampes de DN 25 mm
- **10** : Conduite Principale enterrée approvisionnant les pack-houses 6 et 7
- a: Drain primaire
- **b** : Drain secondaire
- S: Filtre secondaire

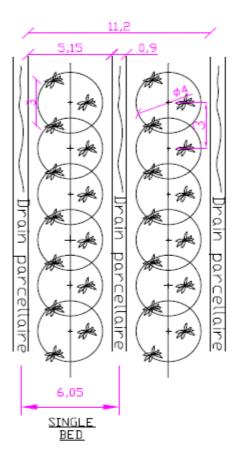


Figure 10 : Vue en plan de la disposition prévue des rampes et asperseurs sur double bed

V.2/3. DEVIS QUANTITATIF ET ESTIMATIF

Les équipements du réseau dans le tableau suivant seront conservés en cas de reconversion.

<u>Tableau 5 : Equipements conservables en cas de reconversion du système d'irrigation</u>

EQUIPEMENTS	Longueur (m)	Quantité (U)	Longueur totale (m)
Pompe: Q=350m3/h/ Pu = 90KW/ HMT=65m	-	4	-
Filtres EBS	-	4	-
Conduite1 : Primaire enterrée PVC PN10	1270	1	1270
Conduites1 : Primaire enterrée PVC PN10	1025	1	1025
Conduites2 : Secondaires DN : 250/200/140	300/200/200	8	2400/1600/1600
Conduites3 : Secondaires DN : 200/140	200/200	8	1600/1600
Conduites5 : Secondaires DN : 250/200	300/200	1	300/200
Conduites 6 : Secondaires DN : 250/200/140	300/200/200	1	300/200/200
Conduites 7 : Secondaires DN : 200/140	250/50	1	250/50
Pièces de connexion et singularités	-	PM	-

Le devis ci-dessous a été établi pour tous les équipements à fournir en remplacement aux secteurs 6 et 7, si le réseau devait être en micro aspersion.

Tableau 6 : Devis des équipements à installer lors de la reconversion du système d'irrigation

	Dimension (m)	Quantité (U)	Quantité totale (m ou U)	Prix unitaire (€)	Prix total (€)
Asperseurs ailettes bleues Catalogue RFR, renversés P=0,53 mm/h	q= 28,2 l/h, r=2m	200000	200 000	1,197	239 400
Portes rampes S6 : PE 125 mm	200	39	7 800	5,975	46 605
Portes rampes S7 : PE 125 mm	200	45	9 000	5,975	53 775
Conduite4 (PVC) : Secondaires DN : 280	300	1	300	26,35	7 905
Conduite4 (PVC) : Secondaires DN : 225	300	1	300	13,5	4 050

Conduite4 (PVC) : Secondaires DN : 180	300	1	300	10,7	3 210	
Conduite3 (PVC) : Secondaires DN : 280	500	8	4 000	26,35	105 400	
2ème conduit Pack-house : PVC 110 mm	500	1	500	3,3	1 650	
Matériel support piquets pour rampes : H= 1,3m	1,3	60 000	78 000,0	2,2	171 600	
MONTANT 1 HORS TAXE (€)						

Rampes SOLUTION 1 PE 32 mm	200	3000	600 000	0,897	538 200
Rampes SOLUTION 2 PE 25 mm	200	3000	600 000	0,549	329 400
Accessoires et divers	PM	PM		PM	

MONTANT TOTAL GENERAL AVEC SOLUTION 1 HORS TAXES (€)	1 171 795
MONTANT TOTAL GENERAL AVEC SOLUTION 2 HORS TAXES (€)	962 995

❖ OPTIMISATION POUR LE CHOIX DU DIAMETRE DE LA RAMPE

	SOLUTION1	SOLUTION2
COÛT/solution (€)	1 171 795	962 995

V.3/ ETUDES ECONOMIQUES

V.2/ 1. COÛT D'EXPLOITATION DU GOUTTE A GOUTTE ET DE LA MICRO ASPERSION

* Résumé du coût d'exploitation pour le système de goutte à goutte

Les charges entrant dans l'exploitation du réseau d'irrigation valable pour chacun des secteurs 6 et 7, sont résumées dans le tableau ci-dessous. Calculs détaillés au **tableau 17, annexe 1/P84**:

Tableau 7 : Synthèse du calcul du coût d'exploitation du goutte à goutte

Désignations	Charges en euros pour S6 (ou S7)
Engrais	388 692
Bloc équipe mobile	655 04,4
Bureau magasin commun aux sect.	13 853,5
Communication	1 173,5
Conditionnement station	3 920,7
Contrôle qualité suivi qualité	970,4
Coupe	1 256,3
Dépenses sociales externes	1 361,5
Dépenses sociales internes	2 626,5
Drainage	12 423,8
Encadrement	15 653,5
Entretien courant (désherbage)	27 693,4
Entretien des fruits / régimes	31 479,9
Entretien matériel et atelier	9 318,9
Expédition	24 880,5
Fongicide	24 987,8
Gardiennage et sécurité	10 571,5
Haubanage	15 886,5
IRRIGATION	119 167,8
Logement	4 529
Loyer terrain	7 127,5
Petits encadrements commun aux secteurs	28 009,5
Préparation de terrain	807,15

Quotte part Direction ressources humaines	4 227
Quotte part direction agence	11 889,5
Quotte part direction agronomique	14 216
Quotte part direction financière	24 740,5
Quotte part direction générale	32 073,5
Quotte part direction technique	8 237
Transport approvisionnement	4 812,1
Transport du personnel (de la plantation)	65 575,5
Voirie	8 261
TOTAL GENERAL (€ /secteur)	985 927
TOTAL GENERAL (CFA /secteur)	646 725 845
TOTAL GENERAL (GHC/ secteur)	2 516 443

Le coût de l'exploitation en goutte à goutte revient à 6 381/ha.

❖ Projection du coût d'exploitation pour le système de micro aspersion

La différence notable sera au niveau de la section irrigation où la main d'œuvre devrait être considérablement réduite. En effet l'effectif actuel de maintenance de rampe est de 4 ouvriers pour environ 16ha soit 1 ouvrier pour 4ha. Il est de 1 ouvrier pour 10ha de la parcelle d'expérimentation de la micro aspersion. Ce qui réduit de presque la moitié cet effectif. (Nous considérons que les autres tâches que font les équipes mobiles d'entretien du réseau pourront être maintenant en arrosage par micro aspersion).

L'on peut donc prévoir une baisse d'environ 50% des charges du personnel affecté à la maintenance de l'irrigation. Ainsi, le tableau récapitulatif suivant tient compte des nouvelles charges prévues pour la section irrigation. Voir calcul détaillé au *Tableau 18-Annexe1/P88*.

Tableau 8 : Synthèse de la projection du coût d'exploitation de la micro aspersion

Désignations	Charges en euros pour S6 (ou S7)
Engrais	388 692
Bloc équipe mobile	655 04,4
Bureau magasin commun aux sect.	13 853,5
Communication	1 173,5

Conditionnement station	3 920,7
Contrôle qualité suivi qualité	970,4
Coupe	1 256,3
Dépenses sociales externes	1 361,5
Dépenses sociales internes	2 626,5
Drainage	12 423,8
Encadrement	15 653,5
Entretien courant (désherbage)	27 693,4
Entretien des fruits / régimes	31 479,9
Entretien matériel et atelier	9 318,9
Expédition	24 880,5
Fongicide	24 987,8
Gardiennage et sécurité	10 571,5
Haubanage	15 886,5
Logement	4 529
Loyer terrain	7 127,5
Petits encadrements commun aux secteurs	28 009,5
Préparation de terrain	807,15
Quotte part Direction ressources humaines	4 227
Quotte part direction agence	11 889,5
Quotte part direction agronomique	14 216
Quotte part direction financière	24 740,5
Quotte part direction générale	32 073,5
Quotte part direction technique	8 237
Transport approvisionnement	4 812,1
Transport du personnel (de la plantation)	65 575,5
Voirie	8 261
TOTAL GENERAL = Amortissement sans les charges de la	944 750 4
section irrigation (€ /secteur)	866 759,4
Prévision des charges de la section irrigation (€/æcteur)	61 070,4
TOTAL GENERAL (€/secteur)	927 829,8
TOTAL GENERAL (CFA/secteur)	608 616 452
TOTAL GENERAL (GHC/secteur)	2 368 157
	•

Le coût de l'exploitation en goutte à goutte revient à 6 005/ha.

V.2/ 2. VERIFICATION DE RENTABILITE DE LA MICRO ASPERSION PAR RAPPORT AU GOUTTE A GOUTTE

❖ Calcul des pertes d'eau dans le système de goutte à goutte aux secteurs 6 et 7

Tableau 9 : Estimation des pertes d'eau dans les drains par les lignes de goutteurs

	SECTEURS	S6	S7
	Nombre de drains collecteurs affectés		10
	Largeur en gueule des drains (m)		3
	Débit d'un goutteur (l/h)		1,7
	espacement entre goutteurs	0,7	0,7
	nombre de goutteurs sur le drain	4,3	4,3
	Débits d'eau entrant dans le drain par rampe (l/h)	7,3	7,3
PERTE D'EAU D'IRRIGATION	Nombre de rampes par double bed		8
DANS LES	Nombre de double bed par plot		16
DRAINS DRAINS	nombre rampes par plot		128
DIAINS	Débit total par plot (l/h)	932,6	932,6
	Nombre de plots affectés par secteur	40	50
	Débit total par secteur (l/h)		46629
	Nombre d'heure d'irrigation par jour (h)		2,5
	Volume total d'eau perdu par secteur, par j (l)		116571
	Surface du secteur (ha)		165
	Volume total d'eau perdu (m³/j/ha)	0,65	0,71

<u>Tableau 10</u>: Estimation des pertes d'eau au niveau des cable-ways par les lignes de goutteurs

	SECTEURS	6	7
	Nombre de cable-way affectés	17	19
PERTE D'EAU D'IRRIGATION	largeur cable-way (m)	2	2
AU NIVEAU	Débit par tronçon de rampe affecté (l/h)	4,9	4,9
DES CABLE-	Nombre de plots par secondaire	4	5
WAYS	Nombre de secondaire par secteur	17	17
WAIS	Nombre de rampes par secteur	8704	12160
	Volume total d'eau perdu (m³/j/ha)	0,73	0,89

Tableau 11 : Estimation des linéaires de rampes de goutteurs perdues

LINEAIRE	Secteurs	Linéaire de rampes	Linéaire de rampes	Linéaire de rampes
DE RAMPES		perdu (m)	perdu (km)	perdu (km/ha)
PERDU SUR	6	153 600	153,6	1,07
LES DRAINS	7	192 000	192	1,16

Tableau 12 : Estimation des linéaires de rampes de goutteurs perdues

LINEAIRE DE	Secteurs	Linéaire de rampes	Linéaire de rampes	Linéaire de rampes
RAMPES PERDU		perdu (m)	perdu (km)	perdu (km/ha)
SUR LES	6	42277	42	0,29
CABLE-WAYS	7	59063	59	0,36

<u>Tableau 13 : Estimation du coût des pertes engendrées par les rampes de goutteurs</u>

RECAPITULATIF DES PERTES EN GOUTTE A GOUTTE	Quantité	Unité	Prix unitaire	Prix total (€/an)
	1.001.0=11	3, "		/
MONTANT TOTAL PERDU (EAU) S6	1,38*274j	m ³ /an/ha	0,021€/m³	1144
MONTANT TOTAL PERDU (EAU) S7	1,60*274j	m³/an/ha	0,021€/m³	1519
SOMME TOTAL PERDU (RAMPES) S6	1,36	Km/ha	1,5 €/km	294
SOMME TOTAL PERDU (RAMPES) S7	1,52	Km/ha	1,5 €/km	377
TOTAL GENERAL S6&7 (€/an)				

❖ Calcul des pertes d'eau dans le système de micro aspersion aux secteurs 6 et 7

Tableau 14 : Estimation des pertes d'eau dans les drains par les asperseurs

	PER	TE D'EAU	D'IRRIGA	TION DAN	S LES DRAIN	S
Secteurs	Nombre de plots affectés par secteur	Superficie correspon dante (ha)	Débit d'un asperseur (m³/h)	Durée d'irrigation (h/j)	Volume d'eau perdu (m³/j)	Volume d'eau perdu (m³/j/ha)
6	40	144	0,015	2,5	27	0,19
7	50	165	0,015	2,5	34	0,20

<u>Tableau 15 : Estimation des linéaires de rampes perdues sur les cable-ways par les asperseurs</u>

LINEAIRE DE RAMPES PERDU SUR LES CABLE-WAYS										
SECTEURS	6	7								
Nombre de câble-way affectés	17	19								
largeur câble-way (m)	2	2								
Débit par tronçon de rampe affecté (l/h)	4,9	4,9								
Nombre de plots par secondaire	4	5								
Nombre de secondaire par secteur	17	17								
Nombre de rampes par secteur	8704	12160								
Linéaire de rampes perdu (m)	42276,6	59062,9								
Linéaire de rampes perdu (km)	42,3	59,1								
Linéaire de rampes perdu (km/ha)	0,26	0,33								

<u>Tableau 16</u>: Estimation du coût des pertes engendrées par les asperseurs

RECAPITULATIF DES PERTES EN MICRO ASPERSION	Quantité	Unité	prix unitaire	Prix total (€/an)
MONTANT TOTAL PERDU (EAU) S6	0,19*274j=51,4	m ³ /an/ha	0,021€/m³	155
MONTANT TOTAL PERDU (EAU) S7	0,20*274j=56	m ³ /an/ha	0,021€/m³	194
MONTANT PERDU (RAMPES) S6 & S7	0,59	km/ha	1,5€/km	275
TOTAL GENER	RAL S6&7 (€/an)			624

Calcul du coût de la reconversion du réseau en micro aspersion

Le coût de la reconversion du réseau en micro aspersion correspond au devis estimatif établi pout la soltution2. Il n'y aurait pas de changement sur les conduites primaires, et l'essentiel des travaux se ferait au niveau des parcelles (hors travaux de terrassements), soit environs **962 995 Euros**.

V.4/ TRAITEMENT DES DONNEES DU PROJET DE PILOTAGE DE L'IRRIGATION

Après des relevés journaliers sur plusieurs semaines, nous avons tracé les courbes des valeurs des tensiomètres par secteur et par site, afin de faciliter l'interprétation et décider de l'irrigation. Ci-dessous un exemple de graphe de relevé hebdomadaire pour le mois de mai 2013 sur les deux sites expérimentaux, F1 et F2 du secteur 6 irrigué au goutte à goutte. Les relevés du mois de mai pour les sites P3A et P3B du secteur 0 irrigué en micro aspersion sont aussi donnés *Tableau 19- Annexe 1/ P89*.

LEGENDE:

T1a= 1er tensiomètre de 25cm dans le petit rang ; T1b =2ème tensiomètre de 25cm dans le petit rang

T2= tensiomètre de 50cm dans le petit rang ; S1 = sonde de 25cm dans le petit rang

S2= sonde de 50cm dans le petit rang ; T'1= tensiomètre de 25cm dans le grand rang

T'2= tensiomètre de 50cm dans le grand rang ; S'1 = sonde de 25cm dans le grand rang

S'2= sonde de 50cm dans le grand rang ; S0 = Secteur 0; S1 = Secteur 1; S2 = Secteur 2

S6= Secteur 6; t = site tensiométrique; S = site systématique

Tableau 17 : Relevés des tensiomètres et sondes sur le site systématique F1 au secteur 6 - Mai 2013

	01 ^{er}	02	03	04	06	07	08	09	10	13	14	15	16	17	18	20	21	22	23	24	25	27	28	29	30	31
Pluies P (mm)	14	0	0	0	0	0	0	0	38	0	0	0	0	0	0	0	0	0	0	0	2,4	0	0	1,5	0	0
T1aS6s (cbars)		10	16	12	36	22		9	12	9	10	8	10	10	10	20	10	9	5	8		18	25	48	68	64
T1bS6s		6	10	8	18	10		5	0	4	5	6	5	4	6	7	5	5	1	4		7	6	5	7	5
S1S6s		3	3	1	0	7		3	3	0	0	0	0	0	0					0		0	4	12	17	19
T2S6s		12	12	11	14	11		6	6	5	6	6	6	6	4	8	6	6	3	5		8	7	6	7	5
S2S6s		15	14	14	14	14		13	12	0	0	0	0	2	0					0		0	0	0	0	0
T'1S6s		0	2	2	0	12		1	0	0	0	0	1	0	0	0	6	0	0	0		0	0	0	0	0
S'1S6s		0	5	1	20	9		0	1	0	0	1	1	1	0					0		14	5	0	0	0
T'2S6s		6	10	8	18	0		6	8	5	6	6	5	6	5	9	5	6	1	5		8	8	7	7	4
S'2S6s		11	10	10	10	10		10	10	4	3	3	2	6	0					5		0	0	0	0	0
Irrigations, après relevés = Durée d'irr. * Nb gtteur/plot * Qgtteur (m3)	0	0	113,4	113,4	113,4	113,4	113,4	0	113,4	0	0	0	0	113,4	113,4	113,4	0	0	0	0	0	0	113,4	113,4	113,4	0

Volume total d'eau d'irrigation apporté : 1 360,4 m³.

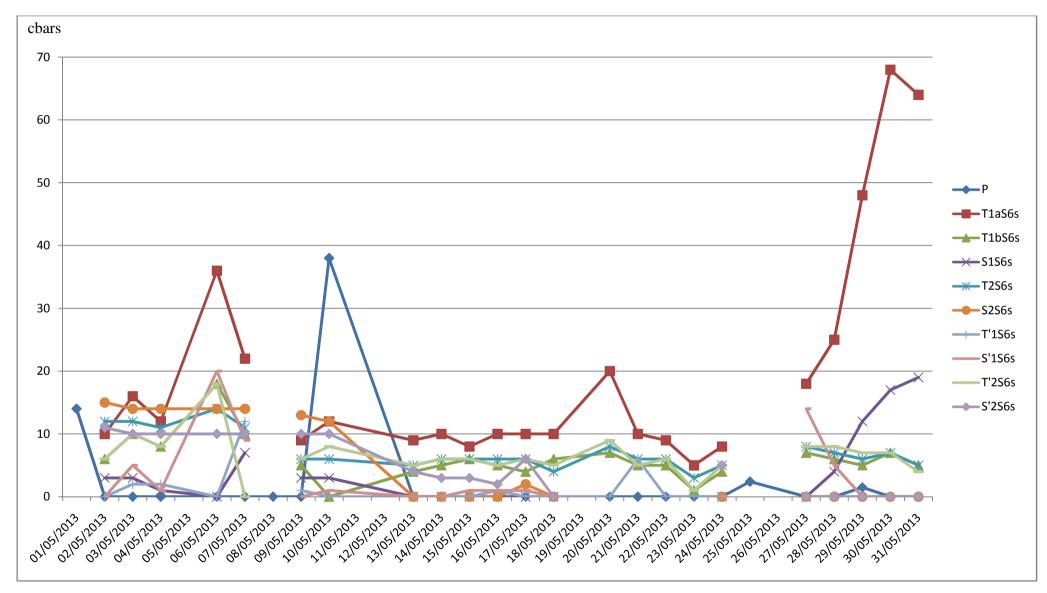


Figure 11: Coures de variation des tensions relevées sur les tensiomètres et sondes sur le site systématique F1 - secteur 6

Tableau 18: Relevés des tensiomètres et sondes sur le site tensiométrique F2 au secteur 6 - Mai 2013

Jours	01 ^{er}	02	03	04	06	07	08	09	10	13	14	15	16	17	18	20	21	22	23	24	25	27	28	29	30	31
Pluies P (mm)	14	0	0	0	0	0	0	0	38	0	0	0	0	0	0	0	0	0	0	0	2,4	0	0	1,5	0	0
T1aS6t (cbars)		6	10	14	30	31		5	10	4	5	8	6	3	7	5	10	12	3	4		10	13	18	24	25
T1bS6t		9	12	14	21	20		8	10	5	7	9	8	6	10	11	10	11	4	6		9	12	12	15	17
S1S6t		0	0	2	12	15		0	1	0	0	0	0	0	0					0		0	4	10	13	14
T2S6t		12	12	12	12	16		19	16	12	12	10	5	8	7	10	10	10	5	7		10	11	10	11	12
S2S6t		0	0	0	0	0		0	0	0	0	0	0	0	0					0		0	0	0	0	0
T'1S6t		6	11	14	26	26		6	8	5	6	8	7	6	10	13	12	13	3	5		10	12	14	18	20
S'1S6t		0	0	0	12	14		0	0	0	0	0	0	0	0					0		0	6	12	15	16
T'2S6t		8	10	12	18	18		8	8	5	5	9	7	6	10	14	13	17	4	7		10	13	16	19	20
S'2S6t		0	0	0	0	0		0	0	0	0	0	0	1	0					0		0	0	0	0	0
Irrigations pilotées, après relevés des instruments (m3)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Volume total d'eau d'irrigation apporté : 0 m³.

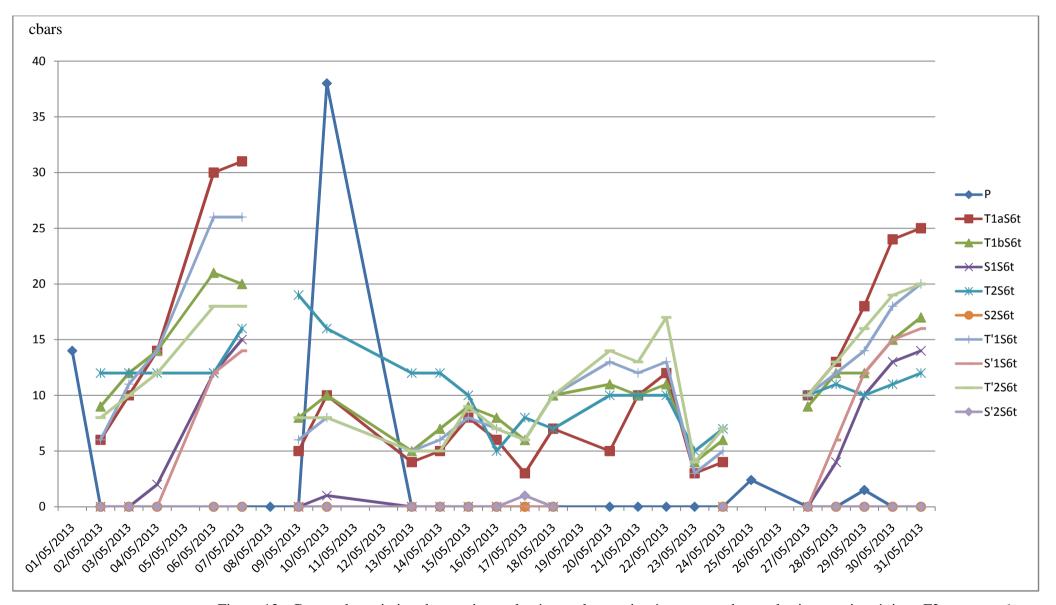


Figure 12 : Coures de variation des tensions relevées sur les tensiomètres et sondes sur le sites tensiométrique F2 - secteur 6

V.3/1. ECONOMIE D'EAU GRACE AU PILOTAGE PAR TENSIOMETRES

Les volumes d'eau d'irrigation apportés on été estimé sur chaque site sur une période d'un mois, voir la feuille de calcul au *Tableau20-Annexe 1/P93*. Aussi, au *Tableaux 21 et 22 -Annexe 1/P94 et 95*. Se trouvent les tableaux de calcul de la consommation en eau et du coût unitaire de l'eau mise à disposition par Kpong Irrigation Programme (KIP) qui est la représentation étatique gérant la volta.

<u>Tableau 19 : Estimation du volume et coût d'eau d'irrigation apporté par site au secteur 6</u>

	SECTOR 6 (goutte à goutte)												
	29 avril -30mai												
F1 (site	F1 (site systématique) : 3,4ha F2 (site tensiométrique) : 2,1 ha												
Durée	débit	quantité	Coût	Coût unitaire	Durée	débit	quantité	Coût	Coût unitaire				
d'irrigation (h)	(m^3/h)	(m^3)	(€)	(€/ha)	d'irrigation (h)	(m ³ /h)	(m^3)	(€)	(€/ha)				
34	34 14,0 475 10,0 2,9 0 - 0 0,0 0,0												

Tableau 20 : Estimation du volume et coût d'eau d'irrigation apporté par site au secteur 2

	SECTOR 2 (goutte à goutte)												
	29 avril -30mai												
G2	(SITE SYS	TEMATIQ	QUE) :4 I	ha	G3 (SITE TEN	TIOME	TRIQUE):	4 ha					
Durée	débit	quantité	Coût	Coût unitaire	Durée	débit	quantité	Coût	Coût unitaire				
d'irrigation (h)	(m^3/h)	(m^3)	(€)	(€/ha)	d'irrigation (h)	(m ³ /h)	(m^3)	(€)	(€/ha)				
30	17,9	538	11,3	2,8	12	17,9	215	4,5	1,1				

<u>Tableau 21 : Estimation du volume et coût d'eau d'irrigation apporté par site au secteur 1</u>

	SECTOR 1 (goutte à goutte)											
	29 avril -30mai											
	M2 (site sy	stématique)	: 4 ha		M1	(site tens	iométrique) : 4 h a				
Durée	débit	quantité	Coût	Coût unitaire	Durée	débit	quantité	Coût	Coût unitaire			
d'irrigation (h)	(m^3/h)	(m^3)	(€)	(€/ha)	d'irrigation (h)	(m ³ /h)	(m^3)	(€)	(€/ha)			
37,5	16,6	623	13,1	3,3	20,5	15,8	325	6,8	1,7			

Tableau 22 : Estimation du volume et coût d'eau d'irrigation apporté par site au secteur 0

	SECTOR 0 (micro aspersion)												
	29 avril -30mai												
F	P3A (site systématique) :3ha P3B (site tensiométrique) : 3ha												
Durée	débit	quantité	Coût	Coût unitaire	Durée	débit	quantité	Coût	Coût unitaire				
d'irrigation (h)	(m^3/h)	(m^3)	(€)	(€/ha)	d'irrigation (h)	(m ³ /h)	(m^3)	(€)	(€/ha)				
28	28 53,5 1497 31,4 10,5 3 53,5 160 3,4 1,1												

VI. DISCUSSION ET ANALYSE

${ m VI.1/~~ANALYSE}$ DE L'ETAT DES LIEUX DES EQUIPEMENTS

VI.1/ 1. ANALYSE DU SYSTEME DE GOUTTE A GOUTTE

Les faibles pressions et débits du système actuel de goutte à goutte permettent une grande économie d'énergie, d'eau dans le réseau. L'entretien ne demande pas une main d'œuvre très qualifiée et sa manutention est relativement simplifiée par la nature des rampes.

Toutefois, les difficultés rencontrées pour ce système dans le cas de la plantation de Kasunya nous amènent à remettre en cause son adaptation pour la bananeraie.

En effet, les rampes en plus de compliquer l'entretien du réseau, embarrassent les travaux des autres services de la plantation. Cet entretien demande une main d'œuvre relativement importante pour exécuter les multiples tâches de maintenance. La perte d'eau d'irrigation dans les drains à travers les rampes est aussi importante.

VI.1/2. ANALYSE DU SYSTEME DE MICRO ASPERSION

Ce système engendre plus de consommation d'énergie ; aussi, sa maintenance demande une main d'œuvre plus aguerri.

Toute fois il présente plus d'avantages techniques que le goutte à goutte :

La seule rampe sur le milieu du single bed gêne moins les travaux des autres services de la plantation. Les équipes gagnent du temps en intervenant moins souvent pour l'entretien et les réparations.

VI.2/ ANALYSE DES RESULTATS DU DIMENSIONNEMENT

La valeur de la HMT obtenue et la puissance requise pour chacune des deux simulations sont acceptables, elles sont inférieures à celles que peut fournir l'ensemble des 4 pompes. Cependant la HMT la plus intéressante est celle la plus proche de la HMT de la pompe (qui est de 65m), du fait que la pompe fonctionne au rendement maximal à cette valeur; Ce qui donnera alors un meilleur rendement. La solution 2 est la mieux indiquée du fait de sa HMT DE 59,3 m. Voir les détails sur la pompe KSB au *Tableau 23 - Annexe 1/P96*.

Le programme d'irrigation reste inchangé car il est possible d'y adapter le système de micro aspersion.

Ainsi, sur le plan technique, le système de micro aspersion sous frondaison est une solution idéale pour remplacer le système de goutte à goutte dans le cas de la plantation de Kasunya. Cependant ce nouveau système demande une formation des ouvriers et certaines modifications à apporter au réseau au niveau des plots (parcelles).

VI.3/ ANALYSE ECONOMIQUE

Discussion sur la rentabilité de la micro aspersion par rapport au goutte a goutte

Pour l'ensemble des secteurs 6 et 7, les rampes qui surplombent des drains secondaires et des cable-ways, dans le cas actuel du système en goutte à goutte entrainent une perte en eau et rampes estimée à 3 333 €/an ;elle pourra être de 624 €/an dans le cas où le système fonctionnera en micro aspersion. Ce qui veux dire que l'entreprise pourrait éviter une perte annuelle d'environ 2 709 €/an soit 8,77€/an/ hasi elle reconvertit le système d'irrigation.

Il y aurait aussi une économie de 58 097,2 €/ an/ secteur soit environs 376,03 €/ an/ ha, pour ce qui est de la main d'œuvre s'occupant de l'entretien du réseau actuel. Et cela sans compter les économies sur l'achat des engrais car les défaillances du réseau ont entrainé la perte d'une part importante lors de l'irrigation. Il a été cependant difficile d'estimer ces quantités du fait que leur injection varie selon les directives de la direction agronomique.

Quant au coût de la reconversion du système de goutte à goutte en micro aspersion il est d'environ 985 927 €pour les deux secteurs concernés, soit 3 191 €/ ha.

<u>Tableau 23 : Calcul de l'amortissement de la reconversion du système d'irrigation</u>

Appréciation	Montant	Unités
Economie en eau d'irrigation	8,77	€/ an/ ha
Economie de 50% de la main d'œuvre	376,03	€/ an/ ha
Economie total possible	384,8	€/ an/ ha
Coût de la reconversion	3 191	€/ ha
Temps mis pour récupérer l'investissement	3 191/384,8 = 8,3	années

La micro aspersion pourrait être plus économique à relativement long terme dans le cas de la plantation de Kasunya.

VI.4/ ANALYSE DE RESULTATS DU PILOTAGE DE L'IRRIGATION

VI.3/ 1. BREF RAPPEL SUR L'INTERET ET PRINCIPE DE FONCTONNEMENT DE LA TENSIOMETRIE

Le tensiomètre à eau est constitué d'une bougie poreuse en céramique que l'on remplit d'eau et qu'on place dans le sol, la succion du sol entraine une dépression à l'intérieur de la bougie; la mesure est faite grâce à un manomètre. La mise en place du tensiomètre est délicate car il est important d'éviter au maximum la présence d'air dans l'eau et le contact entre la bougie et le sol doit être parfait.

L'on constate qu'après une irrigation, les valeurs des tensiomètres baissent. Par contre certains tensiomètres placés loin des goutteurs restent à des valeurs supérieures à 20 cbars, l'on peut alors supposer qu'ils sont hors du bulbe crée par le goutteur. Au secteur 2, les valeurs prennent plus de temps avant de baisser, l'infiltrabilité du sol y est plus faible. Lorsque l'on fait le pilotage sur l'un des sites, l'on constate effectivement que les valeurs montent après quelques jours, ce qui traduit le besoin de ré irriguer le plot.

L'irrigation sur les sites tensiométriques des secteurs 0 et 1: les tensiomètres T1 de 25cm affichent sur toute la période, des valeurs supérieures à 60 cbars dans les petits rangs, ce qui suppose que les plants sont en deçà du confort hydrique et ont besoin d'être irrigués.

Les sites tensiométriques des secteurs 2 et 6 : ils n'ont pas souvent besoin d'être irrigués car les valeurs affichées par les tensiomètres de 25 et de 50 cm sont en générales inférieures à 50 cbars, ce qui correspond à un confort hydrique pour le plant.

Sur le site tensiométrique du secteur 0 : les tensiomètres de 25 cm présentent des valeurs nettement supérieures à 50 cbars notamment dans le petit rang; ceux de 50 cm ont des valeurs en dessus de 20 cbars, on doit donc déclencher l'irrigation sur ce site.

Le site tensiométrique du secteur 6: à la fin de la semaine, la majorité des tensiomètres et sondes de 25 cm et 50 cm présentent des valeurs supérieures à 20 cbars; il nous faut donc déclencher l'irrigation.

VI.3/2. ECONOMIE D'EAU GRACE AU PILOTAGE DE L'IRRIGATION

Au regard des quantités d'eau obtenues pour chaque site (tensiométrique et systématique), il ya une importante économie d'eau donc d'énergie et d'argent pour les sites dont l'irrigation a été contrôlée à partir des valeurs lues sur les tensiomètres. Ainsi pour la période d'un mois (avril) il a été possible d'économiser sur un site tensiométrique en moyenne 608 m³/plot en eau, soit environs 13 €/ plot ou 3,25 €/ha En extrapolant sur l'ensemble de tous les secteurs il sera possible d'économiser 45 064 €/an C'est un début encourageant pour l'atteinte de l'usage optimum de l'eau d'irrigation afin de réduire ses charges d'exploitation.

Parallèlement aux relevés des tensiomètres, le département agronomique fait un suivi hebdomadaire d'échantillons de 100 bananiers homogènes par site jusqu'à la récolte. Ceci permettra de connaitre l'impact du pilotage de l'irrigation par tensiométrie sur la qualité et le rendement, en comparant la production du site tensiométrique avec celle du site systématique. Cependant, pour que les résultats de cette expérience soient fiables, elle devra être menée sur une longue période, l'exploitant prévoit de mener les observations sur deux années successives de production pour rendre les résultats plus fiables.

VII. CONCLUSION

La reconversion du système de goutte à goutte vers la micro aspersion est possible avec la configuration actuelle des installations.

A court terme, le coût d'investissement est relativement élevé (985 927 €) comparativement aux pertes actuelles en eau et rampes (2 709 €/an), engais, et main d'œuvre (58 097,2 €/an/secteur). Mais à long terme il serait amorti par les économies engendrées par l'arrosage en micro aspersion sous frondaison.

Pour ce qui est du pilotage de l'irrigation par la tensiométrie, nous avons pu économiser par site (plot) dit tensiométrique, 608 m³ d'eau, ce qui témoigne d'une économie réelle d'eau d'irrigation. Il est aussi relativement simple à effectuer par le personnel actuel de la plantation.

VIII. PERSPECTIVES ET RECOMMANDATIONS

> Perspectives

L'analyse de données sur le suivit de la croissance des bananiers jusqu'à la récolte des sites expérimentaux permettra de savoir si le pilotage de l'irrigation par tensiométrie n'influe pas négativement sur la quantité et la qualité des bananes.

Recommandations

Une étude plus détaillée de la main d'œuvre exacte nécessaire pour l'entretien d'un réseau en micro aspersion, ainsi qu'une estimation précise des quantités d'engrais injectées et celles perdues dans l'irrigation, permettront de connaître l'économie exacte qui serait faite sur ces deux aspects importants.

Une formation du personnel directement impliqué dans l'entretien du réseau est nécessaire afin d'éviter les pertes d'argent liées aux erreurs dans les tâches courantes.

Le réseau en place étant adaptable à la micro aspersion, l'essentiel des modifications devra se faire à partir des filtres de huit (08) conduites secondaires jusqu'à la parcelle, où il faudra y mettre des cônes d'élargissement pour adapter le diamètre du tube du filtre (DN 250mm) au premier tronçon de secondaire (DN 280mm). Une formation du personnel ouvrant les vannes (filter-boys) permettra de leur faire comprendre la sensibilité des asperseurs en cas de baisse de pression.

Aux endroits de passage des cable-way, il faudrait réduire la hauteur des rampes pour éviter de gêner le transport des récoltes.

Pour de meilleurs résultats du pilotage de l'irrigation par tensiométrie, il est indispensable de sensibiliser les responsables de stations de pompages et leurs équipes sur : le fonctionnement des tensiomètres, l'importance des relevés avant irrigation, et l'importance du projet.

IX. BIBLIOGRAPHIE

Ouvrages et articles

- Amir I., 1991. Sprinkler and trickle irrigation. UNESCO-IHE.
- Bulletin FAO d'irrigation et de drainage 54, 1996, Crue et apports. CIEH/ ORSTOM/ LCT-CEMAGREf.-ENGREF, P22.
- Cuenca R.H, 1989. Irrigation system design. Prentice Hall.
- Cuenca R.H, 2007. Furrow and small ring infiltration tests. UNESCO-IHE.
- Deboissezon J., 1985. Hydraulique en charge. Cours EIER.
- Depeweg H.W.Th., 1998. Field and drainage: Surface irrigation methods. UNESCO.
- FAO, 1982. Mechanized Sprinkler Irrigation. FAO Irrigation and Drainage.
- IFDC REPORT VOL 37, 2012. Programme des Engrais de l'USAID en Afrique de l'ouest. IFDC.
- Jaeger P., Sergeant A., Graffham A. Orchard J., Adongo A., Homer S., juin 2011. Horticulture Exports From GHANA: A Strategic Study. Agriculture and Rural Development & Africa Region.
- Keller, J. and Bliesner, R.D. 1990. Sprinkler and Trickle Irrigation. Chapman and Hall.
- Ministère de l'agriculture, CTGREF, 1979, Evaluation des quantités d'eau nécessaires aux irrigations. Ministère de la coopération française, P.60-61.
- Compaoré M.L., Novembre 2005, Les Données de Base de l'Irrigation 3ème Edition. M. L. C., P 42-44.
- PHOCAIDES A., 2001. Handbook on Pressurized irrigation techniques. FAO.
- Réseau National Expérimentation Démonstration-Hydraulique Agricole (RNEHAD), 1992.
 Irrigation-Guide pratique du CEMAGREF 2ème édition. RNEHAD, P31-62.
- Savva P. A., Frenken K, 2001. Irrigation manual module 8: sprinkler irrigation systems, planning, design, operation and maintenance. FAO Sub-regional office for East and southern Africa.
- Société Grenobloise d'Applications Hydrauliques (SOGREAH), novembre 1978, Les pompes et les petites stations de pompage. SOGREAH, P25-P29.

Sites internet:

http://www.fao.org, consulté le 31mars 2013.

http://www.IRROMETER.com, consulté le 15 mars 2013.

http://www.lexadin.nl, (site sur la législation du Ghana) consulté le 05 mai 2013.

X. LISTE DES ANNEXES

ANNEXES: TABLEAUX

Tableau 1 : résultat d'analyse des sols de la plantation

Tableau 2 : relevé d'évaporation bac hebdomadaire sur la plantation

Tableau 3 : détermination du coefficient d'évaporation en bac

Tableau 4 : calcul du coefficient cultural de la banane

Tableau5: détermination de l'efficience d'application

Tableau 6: valeur approximatives de la vitesse d'infiltration de base

Tableau 7: détail des dimensionnements préliminaire et final

Tableau8 : Catalogues : RFR et Naandanjain

Tableau 9 : Ecartement maximum des asperseurs sous l'effet du vent

Tableau 10 : Catalogue PEHD

Tableau 11 : Abaque détermination de pertes de charges de conduites pvc

Tableau 12 : Détermination du poste d'arrosage de plus grand débit

Tableau 13 : Valeur des coefficients de la formule de Colebrook, Calmon et Lechapt

Tableau 14 : Abaque STR-PE d'estimation des pertes de charges linéaires sur conduite en polyéthylènes

Tableau 15: Valeur du facteur de correction F

Tableau 16: Détailles des coûts d'exploitation du réseau d'irrigation des secteurs 6 et 7

Tableau 17 : Détailles du calcul de la réduction de 50% de la main d'œuvre

Tableau 18: Trace des relevés de tensiomètres et sondes

Tableau 19 : Calcul de la part de l'eau d'irrigation aux secteurs 6&7

Tableau 20 : Coût de l'eau d'irrigation dans la consommation en eau de s6&7

Tableau 21 : Calcul de l'économie d'eau sur les sites tensiométriques

Tableau 22: Détailles sur la pompe KSB

ANNEXES I : TABLEAUX

Tableau 1: RESULTATS D'ANALYSE DE SOLS DE LA PLANTATION

No. Témoin.	Identification	Groupe	Secteur	Sable%	<u>Limon%</u>	Argile%	Texture
Eus-1	L'Afrique	A1	1	53,64	13,97	32,39	Terre glaise
Eus-2	L'Afrique	B1	3	18,71	20,87	60,42	Argile
Eus-3	L'Afrique	B1	4	23,39	14,64	61,97	Argile
Eus-4	L'Afrique	C1	5	27,13	15,57	57,30	Argile
Eus-5	L'Afrique	D2	2	26,94	19,87	53,19	Argile
Eus-6	L'Afrique	E1	1	34,30	22,50	43,20	Argile
Eus-7	L'Afrique	F1	2	23,88	22,93	53,19	Argile
Eus-8	L'Afrique	G3	3	60,95	16,03	23,02	Terre glaise
Eus-9	L'Afrique	G3	4	13,11	17,13	69,76	Argile
Eus-10	L'Afrique	G2	5	5,17	23,79	71,04	Argile
Eus-11	L'Afrique	I2	2	72,30	10,68	17,02	Terre glaise Arénacée
Eus-12	L'Afrique	I2	3	65,66	14,43	19,91	Terre glaise Arénacée
Eus-13	L'Afrique	I3	5	27,13	15,57	57,30	Argile
Eus-14	L'Afrique	J1	4	20,89	18,69	60,42	Argile
Eus-15	L'Afrique	K2	1	24,89	15,71	59,40	Argile
Eus-16	L'Afrique	L2	2	34,57	15,29	50,14	Argile
Eus-17	L'Afrique	L3	4	16,22	17,13	66,65	Argile
Eus-18	L'Afrique	M2	3	10,74	18,86	70,40	Argile
Eus-19	L'Afrique	O1	1	59,49	17,49	23,02	Terre glaise
Eus-20	L'Afrique	P1	5	60,95	16,03	23,02	Terre glaise
	MOYENN	IES (%)		<u>34</u>	<u>17</u>	<u>49</u>	

Tableau 2:RELEVE D'EVAPORATIONS BAC HEBDOMADAIRES SUR LA PLANTATION

	2008	2009	2010	2011	2012	2013		
	Ev	aporati	on moy	enne (n	nm/sem	ı.)	Evaporation maximum (mm/sem)	Evaporation moyenne (mm/jr)
	27	20	26	24	23	38	38	
Jan.	20	22	0	22	24	39	39	5.6
Sem 2 à 5	17	17	20	26	21	39	39	5,6
	23	24	28		25	28	28	
	33	26	22	20	21	34	34	
Fév.	31	28	21	28	25	33	33	4.0
Sem 6 à 9	30	20		21	25	41	30	4,9
	32	28	30	23	26	41	32	
	25	31	16	28	27	-	31	
Mars	24	31	20	14	33	33	33	
Sem 10	33	22	16	30	28	33	33	5
à 14	23	34	16	25	35	32	31	
	18	31	22	24	30	25	31	
	17	38	26	26	29	24	38	
Av. Sem 15	27	18	22	20	37	20	34	5.2
à 18	24	21	10	14	34	30	33	5,3
	24	20	26	19	33		33	
	16	12	15	21	33		33	
Mai		22	19	20	20		22	
Sem 19		33	14	26	27		33	4,7
à 23	13	33	17	18	33		33	
	23	20	13	12	10		23	
	19	21	14	27	31		31	
Juin Sem. 24	6	13	17	7	28		28	4,4
à 27	13	15	19	12	20		26	7,7
	19	13	16	16	26		26	
	13	16	12	14	30		30	
Juil. Sem. 28	19	17	11	10	39		39	5,6
à 31	8	21		19	33		33	5,0
	12	16	19	18	33		33	
Août	14	20	13	16	39		39	5,6

Amélioration de l'irrigation dans la plantation de Banane de Golden Exotics Limited à Kasunya (GHANA)

	Ametioration de l'irrigation dans la plantation de Banane de Golden Exotics Limited a Kasunya (GHANA)							
Sem. 32	19	17	17	17	37		37	
à 36	16	13	18	19	37		37	
		8	22	17	36		36	
	12	20	16	21	30		30	
Sept Sem.37 à 40	19	16	12	21	32		32	
	12	7	8	9	27		27	4,6
		16	17	14	32		32	4,0
	13	16		11	32		32	
	17	13		27	15		27	
Oct. Sem. 41		13	19	11	39		39	5,6
à 44		16	27	17	28		28	3,0
		16	23	21	33		33	
	12	13	11	23	39		39	
Nov.	17	13		27	28		28	
Sem 45	23	19	21	11	28		28	5,6
à 49	16	20	18	15	39		39	
	9	19		25	27		27	
Déc. Sem 50 à 52	16	16	28	24	28		28	
	15	16	25	25	33		33	5,7
	19	11	23	25	40		40	3,7
		29	29				29	

Tableau3: DETERMINATION DU COEFFICIENT D'EVAPORATION EN BAC

		Bac envir ⁄erte cour		ne	Cas B : Bac environné d'une jachère sèche			
Hr moyenn e en %		Faible inférieur à 40%	Moy. 40-70	Fort. sup à 70			Moy. 40-70	Fort. sup à 70
Vent	Distance	9			Distance			
km/jour	de la cu	lture			de la jachère			
	verte du	u côté			sèche exposé			
	exposé	au vent (ı	m)		au vent (m)			
Mod.	0	0,5	0,6	0,65	0	0,65	0,75	0,8
175-425	10	0,6	0,7	0,75	10	0,55	0,65	0,7
	100	0,65	0,75	0,8	100	0,5	0,6	0,65
	1000	0,è	0,8	0,8	1000	0,45	0,55	0,6

EV bac moyenne journalière mensuelle (mm/jr)	Coefficient Kb d'évaporation en bac	MOIS
5,6	0,7	Janvier
4,9	0,7	Février
5,0	0,7	Mars
5,3	0,7	Avril
4,7	0,7	Mai
4,4	0,7	Juin
5,6	0,7	Juillet
5,6	0,7	Août
4,6	0,7	Septembre
5,6	0,7	Octobre
5,6	0,7	Novembre
5,7	0,7	Décembre

Tableau 4: CALCUL DE L'EVAPOTRANSPIRATION DE REFERENCE ETO SUR LA PLANTATION DE KASUNYA

EV bac moyenne journalière mensuelle (mm/jr)	Coefficient Kb d'évaporation en bac	ETo (mm/j)	MOIS
5,6	0,7	4	Janvier
4,9	0,7	3	Février
5,0	0,7	4	Mars
5,3	0,7	4	Avril
4,7	0,7	3	Mai
4,4	0,7	3	Juin
5,6	0,7	4	Juillet
5,6	0,7	4	Août
4,6	0,7	3	Septembre
5,6	0,7	4	Octobre
5,6	0,7	4	Novembre
5,7	0,7	4	Décembre

Tableau 5: CALCUL DU COEFFICIENT CULTURAL DE LA BANANE

Cycle de 240	initial (60 jours)			développement (60jours)					aison ours)		récolte (45jours)		
jours banane2	26 décembr e	janvie r		évrier 29j)	mars	avril (3	30j)	ma i	jui n	jui	llet (31j)	aoû (30 <u>)</u>	
durée de la phase par mois (j)	7	31	22	7	31	22	8	31	30	6	25	20	10
kc phase	1	1	1	1	1	1	1	1	1	1	1	1	
kc équivalent	1	1		1	1	1,1		1	1		1,1	1	

Tableau 6: DETERMINATION DE L'EFFICIENCE D'APPLICATION

Climat	Efficience Ea
Froid	80%
Modéré	75%
Chaud	70%
Désertique	65%

Source FAO 1982

Tableau 7: VALEUR APPROXIMATIVES DE LA VITESSE D'INFILTRATION DE BASE

Type de sol	Vitesse d'infiltration de base (mm/h)
Argile	(1-7)
Argilo-limoneux	7–15
Sable fin- limoneux	15-25
Sablo-limoneux	25-40
Sableux	>40

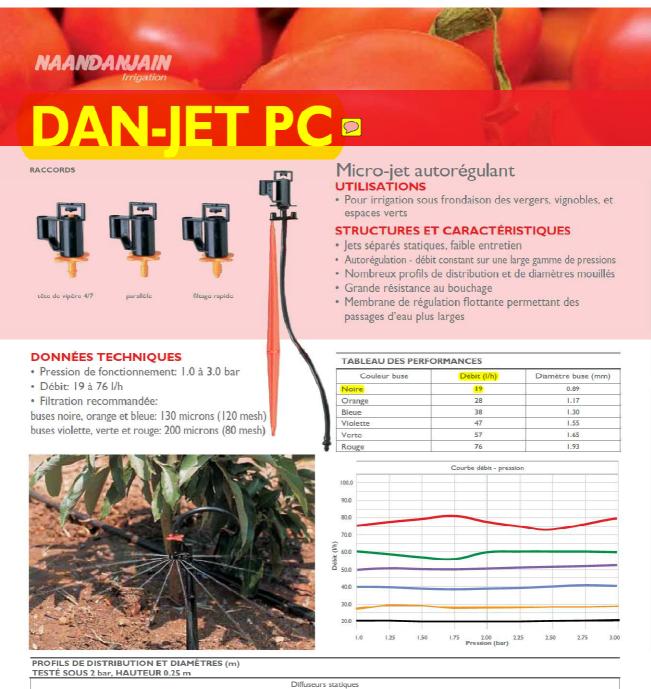

Source Adapté de Savva& Frenken, 2001

Tableau 8 : CATALOGUES : RFR et Naandanjain

	<u>CATALOGUES RFR</u>											
Metric Units												
R.F.R Nominal flow rate	lph		Color code(nozzle); flow rate (l/h)									
		Pressure (bar)	Black	Blue	Dark. B	Green	Red	White				
RFR 23 (Black)	23	0,5	13,5	17,8	25,0	31,6	42,0	55,7				
RFR 30 (Blue)	30	0,8	17,1	22,4	31,4	39,5	52,3	67,7				
RFR 41 (Dark biue)	41,5	1	19,0	24,8	34,8	43,6	57,0	77,9				
RFR 53 (Green)	53	1,25	21,0	27,4	38,6	48,4	62,8	86,3				
RFR 70 (Red)	70	1,5	22,4	29,1	41,8	52,1	68,1	93,1				
RFR 95 (White)	95	1,75	22,4	29,6	43,6	55,1	70,9	96,6				
		2	21,8	29,2	43,3	55,7	70,3	90,2				
		2,5	21,5	28,2	41,5	52,9	67,8	93,8				
		3	22,1	28,0	41,3	53,2	68,0	97,5				
		3,5	22,2	28,0	41,7	52,5	67,3	97,1				

	Flow rate (l/h)										
D' 4 6 '44 ()	23	30	41,5	53	70	95					
Distance from emitter (m)	Nozzle (ailette) color / Application rate (mm/h)										
	Black	Blue	Dark Blue	Green	Red	White					
0	4,63	2,73	3,13	3,95	4,47	3,48					
0,25	4,63	2,73	3,13	3,95	4,47	3,48					
0,5	6,40	4,58	4,10	4,95	6,37	9,17					
0,75	3,13	5,13	6,90	7,17	9,60	14,18					
1	2,28	2,93	4,20	4,40	6,03	10,08					
1,25	2,30	2,63	3,15	3,15	3,57	8,18					
1,5	1,38	1,98	2,33	3,05	2,67	3,68					
1,75	0,50	1,23	1,83	2,58	2,17	2,40					
2	0,13	0,53	1,45	1,60	2,23	2,00					
2,25	0,00	0,10	0,60	0,65	2,27	1,95					
2,5	0,00	0,00	0,18	0,13	0,83	1,53					
2,75	0,00	0,00	0,00	0,00	0,17	0,85					
3	0,00	0,00	0,00	0,00	0,00	0,30					
3,25	0,00	0,00	0,00	0,00	0,00	0,00					
3,5	0,00	0,00	0,00	0,00	0,00	0,00					
3,75	0,00	0,00	0,00	0,00	0,00	0,00					
Range - radius (m)	1,75	2	2,25	2,25	2,5	2,75					

CATALOGUE NAANDANJAIN2012

	Diffuseurs statiques											
	Bande			l 6 Jets	20 Jets	180° (rayon)	Inversé'*	(pas de jets)	Bande plat (pas de jets)			
Couleur buse		*	*	*		**		X				
Noire	2.4	3.0	3.2	3.0	2.4	1.5	2.5	2.4	2.0			
Orange	2.6	3.2	3.6	3.2	2.8	1.7	3.3	2.6	2.2			
Bleue	3.2	4.0	4.4	4.6	3.6	2.2	3.8	3.0				
Violette	3.8	4.4	4.8	4.8	4.0	2.4	4.0	3.1				
Verte	4.8	4.8	5.0	5.0	4.6	2.7	4.3	3.4				
Rouge	5.0	5.6	5.4	5.4	5.2	2.8	4.8	3.6				

* Testé à 0.6 m de hauteur

14

O NAANDANIAIN Ltd. 09/201

Tableau 9: ECARTEMENT MAXIMUM DES ASPERSEURS SOUS L'EFFET DU VENT

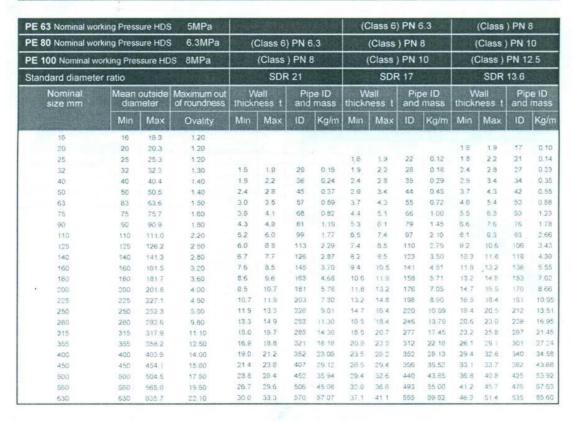
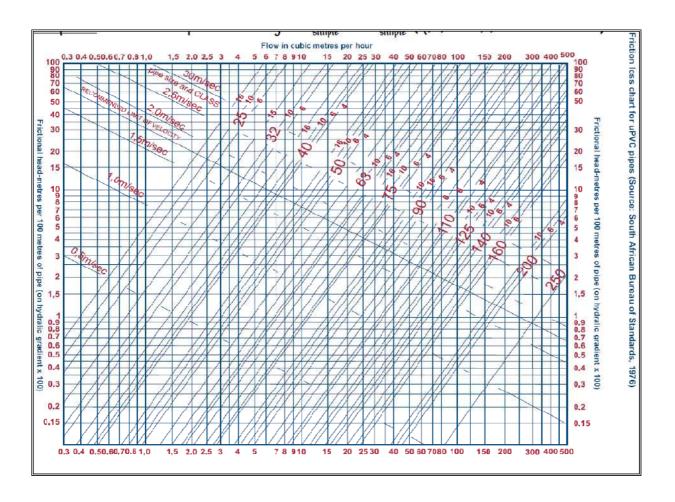

	Vitesse moyenne du	Ecartement maxi	Ecartement maxi		
	vent (m/h)	entre asperseur le	entre rampes le		
	(,,	long de la rampe	long du porte-		
		e _{asp} =KxD	rampes e _{rp} =KxD		
		50% du diamètre	60% du diamètre		
Ecartements	0-3	mouillé D	mouillé D		
en disposition		45% du diamètre	60% du diamètre		
rectangulaire	4-7	mouillé D	mouillé D		
rectanguland		40% du diamètre	60% du diamètre		
	8-12	mouillé D	mouillé D		
		55% du diamètre			
Ecartements	0-3	mouillé D			
en disposition		50% du diamètre			
carrée	4-7	mouillé D			
Carree		45% du diamètre			
	8-12	mouillé D			
		60% du diamètre	0.866x Ecart		
Ecartements	0-3	mouillé D	asperseurs		
en disposition		55% du diamètre	0.866x Ecart		
triangulaire	4-7	mouillé D	asperseurs		
trialigulatie		45% du diamètre	0.866x Ecart		
	8-12	mouillé D	asperseurs		

Tableau10: CATALOGUE PEHD


HDPE pipe dimensions

PE 63 Nominal working Pressure HDS 5MPa								12.0	Class)	PN 3	2	3.0	(Class) PN	4	
PE 80 Nominal working Pressure HDS 6.3MPa				(Class)	PN 3.	2	1	(Class) PN	4	1 33		abe. I			
PE 100 Nominal working Pressure HDS 8MPa			(Class) PN 4				Spinsi		3.04	(Class 6) PN 6.3						
Standard diameter ratio			SDR 41			SDR 33			引影響	SDR 26						
Nominal size mm		outside neter	Maximum out of roundness				Pipe ID and mass		Wall thickness t		e ID mass	Wall thickness t			Pipe ID and mass	
	Min	Max	Ovality	Min	Max	ID	Kg/m	Min	Max	ID	Kg/m	Min	Max	ID	Kg/n	
16	16	16.3	1.20												III automouses	
20	20	20.3	1.20													
25	25	25.3	1.20													
32	32	32 3	1.30									1.6	1.9	29	0.16	
40	40	40.4	1.40									1.6	1.9	37	0.20	
50	50	50.5	1.40	1.6	1.9	47	0.25	1.6	1.9	47	0.25	1.9	23	∉6	0.30	
63	63	63.6	1.50	1.6	19	60	0.32	1.9	2.2	59	0.38	2.4	28	58	0.48	
75	75	75.7	1.60	1.8	2 1	71	0.43	2.3	2.5	70	0.53	2.9	3.3	69	0.67	
90	90	90.9	1.50	22	2.5	86	0.62	2.7	3.1	85	0.77	3.5	4.0	83	0.97	
110	110	111.0	2.20	27	3.1	105	0.93	3.3	3.8	103	1 15	4.2	49	101	1.45	
125	125	126.2	2 50	3.0	3.5	118	1.20	3.8	4.4	117	1.45	4.5	5.5	115	1.57	
140	140	141.3	2.90	3.4	39	133	1.51	4.2	4.9	132	1.86	5.4	8.2	129	2.34	
160	160	161.5	3.20	3.9	4.4	152	1.94	4.8	5.4	150	2.40	6.2	6.9	148	3.02	
180	180	181.7	3.60	4.4	4.9	172	2.46	5.5	6.1	189	3.04	6.9	7.8	166	3,82	
200	200	201.8	4.00	4.9	5.5	191	3.03	6.1	6.8	188	3.75	7.7	8.6	185	4.71	
225	225	227.1	4.50	5.5	6.1	214	3.83	6.8	7.6	212	4.73	8.7	9.6	208	5.95	
250	250	252.3	5.00	6.1	6.8	238	4.73	7.6	8.4	235	5.84	9.6	10.7	231	7,35	
280	280	282.6	9.80	6.8	7.6	267	5.94	8.5	9.5	263	7.33	10.8	12.0	259	9.22	
315	315	317.9	11.10	7.7	8.6	300	7.51	9.5	10.6	296	9.27	12.1	13.5	291	11.67	
355	355	358.2	12.50	8.7	9.7	338	9.54	10.8	12.0	334	11.78	13.7	15.2	325	14.82	
400	400	403.6	14.00	9.8	10.9	381	12.11	12.1	13.5	376	14.95	15.4	17.2	369	18.81	
450	450	454.1	15.60	11.0	12.2	429	15.29	13.6	15.1	423	18.88	17.3	19.2	416	23.75	
500	500	504.5	17.50	12.2	13.5	477	18.88	15.2	16.6	470	23.31	19.2	213	452	29.33	
560	560	565.0	19.50	13,7	15.2	534	23.68	17.0	18.81	527	29.24	21.5	23.9	517	36.75	
630	630	835.7	22.10	15.4	17.1	800	29.98	19.1	21.2	593	37:01	24.2	26.9	582	46.56	

Tableau11: ABAQUE DETERMINATION DE PERTES DE CHARGES DE CONDUITES PVC

<u>Tableau12: DETERMINATION DU POSTE D'ARROSAGE DE PLUS GRAND DEBIT</u>

	Se	ctor 6				Secteur 7		
Plots	Surfaces plots (ha)	Débits plots (m3/h)	Débit par poste d'arrosage S6 (m3/h)	Plot	Surfaces plots (ha)	Débits plots (m3/h)	Débit par poste d'arrosage S7 (m3/h)	DEBITS POSTES d'arosage S6&7 (m3/h)
A 01	3,835	64	875	A 01	2,774	47	797	1 076
A 02	4,079	68	800	A 02	4,079	68	917	1 137
B 01	3,883	65	511	B 03	3,660	61	346	1 146
B 02	4,395	74	221	B 04	4,953	83	615	1 126
B 03	4,024	68	279	B 05	5,923	99	344	1 219
B 04	2,752	46		C 01	3,866	65		
C 01	3,991	67		C 02	3,912	66		
C 02	4,416	74		C 03	3,644	61		
C 03	3,998	67		C 04	4,727	79		
C 04	2,728	46		C 05	4,135	69		
D 01	3,954	66		D 01	3,975	67		
D 02	4,425	74		D 02	4,002	67		
D 03	4,028	68		D 03	3,696	62		
D 04	2,874	48		D 04	4,759	80		
E 01	3,935	66		D 05	4,162	70		
E 02	4,412	74		E 01	3,837	64		
E 03	4,013	67		E 02	3,867	65		
E 04	4,083	69		E 03	3,601	60		
F 01	3,490	59		E 04	4,650	78		
F 02	2,120	36		E 05	4,010	67		
F 03	3,637	61		F 01	3,549	60		
F 04	3,892	65		F 02	3,611	61		
G 01	3,967	67		F 03	3,448	58		
G 02	4,402	74		F 04	2,522	42		
G 03	4,022	68		F 05	3,741	63		
G 04	4,266	72		G 01	3,848	65		
H 01	3,970	67		G 02	3,845	65	-	
H 02 H 03	4,400	74 68		G 03 G 04	3,790 4,719	64 79	-	
H 04	4,035 4,239	71		G 05	4,719	79		
I 01	3,846	65		H 01	3,980	67		
I 02	4,272	72		H 02	4,009	67		
I 03	3,948	66		H 03	3,766	63		
I 04	4,122	69		H 04	4,570	77		
J 01	3,968	67		H 05	4,157	70		
J 02	4,393	74		I 01	3,757	63		
J 03	4,012	67		I 02	3,795	64	j	
J 04	4,330	73		I 03	3,633	61	1	
J 05	4,009	67		I 04	4,472	75		
J 06	4,196	70		I 05	4,135	69		
J 07	2,649	44		J 01	3,871	65		
			-	J 02	3,806	64		
				J 03	3,722	62		
				J 04	4,500	76		
				J 05	4,212	71		

<u>Tableau13: VALEUR DES COEFFICIENTS DE LA FORMULE DE COLEBROOK, CALMON ET LECHAPT</u>

Matériaux	a	N	М
Mortier de ciment centrifugé	1.049 .10-3	1.88	4.93
Métal neuf	1.100 .10-3	1.89	5.01
Béton centrifugé	1.160 .10 ⁻³	1.93	5.11
Fonte acier revêtement ciment	1.400.10-3	1.96	5.19
Fonte acier non revêtu neuf	1.601.10-3	1.975	5.25
Fonte acier non revêtu ancien	1.863.10-3	2	5.33
PVC	1.101 .10-3	1.84	4.88
PVC diamètre D tel que 50≤D≤200 mm	0.916.10-3	1.78	4.78
PVC diamètre D tel que 250≤D≤1000 mm	0.971.10-3	1.81	4.81

Source: Deboissezon, 1985

<u>Tableau14: ABAQUE STR-PE D'ESTIMATION DES PERTES DE CHARGES LINEAIRES SUR</u> <u>CONDUITE EN POLYETHYLENES</u>

Tableau15: VALEURS DU FACTEUR DE CORRECTION F

Nombre	Valeur de F	Nombre	Valeur de F
de points		de points	
de		de	
service		service	
1	1.000	14	0.387
2	0.639	16	0.382
3	0.535	18	0.379
4	0.486	20	0.376
5	0.457	25	0.371
6	0.435	30	0.368
8	0.415	40	0.364
10	0.402	50	0.361
12	0.394	100	0.356

Tableau 16: DETAILLE DU DIMENSIONNEMENT FINAL

PORTE-RAMPES PN4	Valeur	Unités
Débit porte-rampe Qporte-rp	67,1	m3/h
Pression de service dans un porte-rampe Pm	2,8	Bars
Valeur absolue de la pdc linéaire sur porte-rp ΔH =20%Pm	0,56	m
pression amont porte-rp Pamt	3,22	m
pression aval porte-rp Pavl	2,66	m
différence de pression sur porte-rp $\Delta P = \Delta H = Pamt-Pavl$	0,56	m
Vitesse admissible ds conduite en PE ≤1,7m/s V	1,7	m/s
Diamètre du porte-rp Dporte-rp	118	mm
Choix diamètre du porte-rp D'porte-rp	125	mm
ΔHsimple,porte-rp,abaque	0,020	m/m
Facteur de correction F de ΔHsimple	0,364	-
Perte de charge linéaire sur porte rampe ΔHporte-rp	1,5	m
variation totale de pression le long d'un port-rp ΔP	0,9	m
CONDUITES SECONDAIRES PN6		
S7		
Débit conduite3 : secondaire Qsecond3.1= Q/plot*5plots	336	m3/h
Débit conduite3 : secondaire Qsecond3.2=Q/plot*2plot	134	m3/h
Débit conduite3 : secondaire Qsecond3.3=Q/plot*1plot	67	m3/h
Débit conduite5 : secondaire Qsecond5.1=Q/plot*3plots	201	m3/h
Débit conduite5 : secondaire Qsecond5.2=Q/plot*1plot	67	m3/h
Débit conduite7 : secondaire	134	m3/h
Débit conduite7 : secondaire Qsecond7.2=Q/plot*1plot	67	m3/h
S6		
Débit conduite2 : secondaire Qsecond2.1=Q/plot*2plots	269	m3/h
Débit conduite2 : secondaire Qsecond2.2=Q/plot*1plot	134	m3/h
Débit conduite 2 : secondaire Qsecond2.3=Q/plot*1plot	67	m3/h
Débit conduite4 : secondaire Qsecond4.1=Q/plot*2plots	336	m3/h
Débit conduite4 : secondaire Qsecond4.2=Q/plot*1plot	201	m3/h
Débit conduite4 : secondaire Qsecond4.3=Q/plot*2plots	134	m3/h
Débit conduite6 : secondaire Qsecond6.1=Q/plot*0 plot	134	m3/h
Débit conduite 6 : secondaire Qsecond6.2=Q/plot*2plot	134	m3/h
Débit conduite6 : secondaire Qsecond6.3=Q/plot*1plot	67	m3/h
Pression moyenne ou de service dans un secondaire Pm	3,6	Bars
Valeur absolue de la perte de charge linéaire sur second. ΔH =20%Pm	0,72	M
pression amont second. Pamt	4,14	M
pression aval second. Pavl	3,42	M
différence de pression sur second. $\Delta P = \Delta H = Pamt - Pavl$	0,72	M
Vitesse maximale admissible ds conduite en PE ≤1,7m/s Vmax	1,7	m/s
S7	_	
Diamètre du secondaire3.1 Dtheor, second3.1	264	Mm

Catalogue PEHD, ep : 5,5mm Abaque STR/PE 36 rampes

29 m ou 2,9 bars, classe 6 des secondaires est donc OK

Choix diamètre du secondaire3.1 D)'second3 1	280	mm	PVC x 8 conduites
	Otheor, second3.2	167	mm	1 ve x o conduites
	D'second3.2	200	mm	PVC
	Otheor, second3.3	118	mm	
	D'second3.3	140	mm	PVC
	Dtheor, second5.1	205	mm	
	D'second5.1	250	mm	PVC
	Dtheor, second5.2	118	mm	1 10
	D'second5.2	200	mm	PVC
	Otheor, second 7.1	167	mm	1 10
Choix diamètre du secondaire7.1	D'second7.1	200	mm	PVC
Diamètre du secondaire7.2		118		1 10
Choix diamètre du secondaire7.2	Discoord 7.2		mm	PVC
	D'second7.2	140	mm	PVC
S6	D.1 10.1	226		_
Diamètre du secondaire 2.1	Dtheor, second2.1	236	mm	DVC
Choix diamètre du secondaire2.1	D'second2.1	250	mm	PVC
Diamètre du secondaire2.2	Dtheor, second2.2	167	mm	Duc
Choix diamètre du secondaire2.2	D'second2.2	200	mm	PVC
Diamètre du secondaire2.3	Dtheor, second2.3	118	mm	
Choix diamètre du secondaire2.3	D'second2.3	140	mm	PVC
	Dtheor, second4.1	264	mm	
	D'second4.1	280	mm	PVC x 1conduite
	Otheor, second4.2	205	mm	
	D'second4.2	225	mm	PVC
	Otheor, second4.3	167	mm	
	0'second4.3	180	mm	PVC
Diamètre du secondaire6.1	Dtheor, second6.1	167	mm	
	D'second6.1	250	mm	PVC
	Dtheor, second6.2	167	mm	
	0'second6.2	200	mm	PVC
Diamètre du secondaire6.3	Otheor, second 6.3	118	mm	PVC
Choix diamètre du secondaire6.3 D	0'second6.3	140	mm	PVC
S7				
ΔHsimple3.1, sec, abaque		0,007	m/m	ABAQUE P89
ΔHsimple3.2, sec, abaque		0,010	m/m	ABAQUE P89
ΔHsimple3.3, sec, abaque)	0,026	m/m	ABAQUE P89
ΔHsimple5.1, s	sec, abaque	0,011	m/m	ABAQUE P89
ΔHsimple5.2, sec, abaque		0,026	m/m	ABAQUE P89
ΔHsimple7.1, sec, ab	aque	0,010	m/m	ABAQUE P89
ΔHsimple7.2, sec,	abaque	0,026	m/m	ABAQUE P89
S6				
ΔHsimple2.1, so	ec, abaque	0,012	m/m	ABAQUE P89
ΔHsimple2.2, s	sec, abaque	0,010	m/m	ABAQUE P89
ΔHsimple	2.3, sec, abaque	0,026	m/m	ABAQUE P89
ΔHsir	nple4.1, sec, abaque	0,007	m/m	ABAQUE P89
ΔHsimple4	.2, sec, abaque	0,011	m/m	ABAQUE P89

ABAQUE P89 ABAQUE P89 ABAQUE P89 ABAQUE P90 Nprt-rp/sec=3 Nprt-rp/sec=1 Nprt-rp/sec=1 Nprt-rp/sec=2 Nprt-rp/sec=1 Nprt-rp/sec=1 Nprt-rp/sec=1 Nprt-rp /sec=2 Nprt-rp /sec=1 Nprt-rp /sec=1 Nprt-rp /sec=2 Nprt-rp /sec=1 Nprt-rp /sec=2 Nprt-rp /sec=0 Nprt-rp /sec=1 Nprt-rp /sec=1

interior are in ingament action to promise the Danielle are Serial D	nones Binn	treat at 11austini jai
ΔHsimple4.3, sec, abaque	0,010	m/m
ΔHsimple6.1, sec, abaque	0,010	m/m
ΔHsimple6.2, sec, abaque	0,010	m/m
ΔHsimple6.3, sec, abaque	0,026	m/m
Facteur de correction F 3.1	0,535	-
Facteur de correction F 3.2	1	-
Facteur de correction F 3.1	1	-
Facteur de correction F 5.1	0,639	-
Facteur de correction F 5.2	1	-
Facteur de correction F 7.1	1	-
Facteur de correction F 7.2	1	-
Facteur de correction F 2.1	0,639	-
Facteur de correction F 2.2	1	-
Facteur de correction F 2.3	1	-
Facteur de correction F 4.1	0,639	-
Factour de correction F 4.2	1 0.620	-
Facteur de correction F 4.3 Facteur de correction F 6.1	0,639	-
Facteur de correction F 6.1	1 1	-
Facteur de correction F 6.1 Facteur de correction F 6.3	1	-
S7	1	-
A		
Perte de charge totale linéaire sur secondaire		
ΔHsecond3.1	1,9	m
Perte de charge totale linéaire sur secondaire ΔHsecond3.2	2,0	m
Perte de charge totale linéaire sur secondaire ΔHsecond3.3	5,2	m
SOMME AHsecond3	9,1	m
ΔΡ	8,4	m
В		
Perte de charge totale linéaire sur secondaireN∆Hsecond5.1	2,1	m
Perte de charge totale linéaire sur secondaire ΔHsecond5.2	5,2	m
SOMME AHsecond5	7,3	m
ΔΡ	6,6	m
C		
Perte de charge totale linéaire sur secondaire ΔHsecond7.1	2,5	m
Perte de charge totale linéaire sur secondaire ΔHsecond7.2	1,3	m
SOMME AHsecond7	3,8	m
ΔΡ	3,1	m
S6		
A		
Perte de charge totale linéaire sur secondaire ΔHsecond2.1	2,3	m
D . 1 1 1 11 /	2.0	
Perte de charge totale linéaire sur secondaire ΔHsecond2.2	2,0	m
Perte de charge totale linéaire sur secondaire ΔHsecond2.2 Perte de charge totale linéaire sur secondaire ΔHsecond2.3 SOMME ΔHsecond2	2,0 5,2 9,5	m m m

Amerioration de l'irrigation dans la plantation de Banane de Golden	1		
B		m	
Perte de charge totale linéaire sur secondaire ΔHsecond4.1	1,3	m	
Perte de charge totale linéaire sur secondaire ΔHsecond4.2	3,3	m	
Perte de charge totale linéaire sur secondaire ΔHsecond4.3	3,0	m	
SOMME AHsecond4	7,6	m	
ΔΡ		m	
C			
Perte de charge totale linéaire sur secondaire ΔHsecond6.1	3,0	m	
Perte de charge totale linéaire sur secondaire ΔHsecond6.2	2,0	m	
Perte de charge totale linéaire sur secondaire ΔHsecond6.3	5,2	m	
SOMME AHsecond6	10,2	m	
ΔΡ		m	
ΔP le plus élevé pour la suite du design	9,5	m	
SOMME ΔP poste vert	33,5	m	
SOMME ΔP poste jaune	28,6	m	
SOMME ΔP poste gris	34,3	m	
SOMME ΔP poste bleu	32,1	m	
SOMME ΔP poste blance	34,7	m	
			7,1 bars, donc on
choix classe du primaire	71	-	garder classe 8
		pour	la conduite
CONDUITES DE TRANSPORT (existant: PN10)		primai	re
,	1116	m 2 /h	Voir feuille Excel
Poste d'arrosage le plus important Qposte	1146	m3/h	des plots
Débit cond. Transp. Qtransp.1	1146	m3/h	
Débit cond. Transp. Qtransp.2	573	m3/h	M/ C/
Pression moyenne ou de service dans la conduite de transport Pm	4,8	bars	Vérifié sur terrain
Valeur absolue de perte de charge lin. sur cond.Transport			
ΔH=20%Pm	0,96	m	
pression amont transp. Pamt	5,5	m	
pression aval transp. Pavl	4,6	m	
différence de pression sur transp. $\Delta P = \Delta H = Pamt - Pavl$	0,96	m	
Vitesse admissible ds conduite en PVC ≤2 m/s V	1,7	m/s	
Diamètre du PVC Dtransp.1	488	mm	
Choix diamètre du PVC D'transp.1	500	mm	Ep:11,3 mm
Diamètre du PVC Dtransp.2	345	mm	
Choix diamètre du PVC D'transp.2	400	mm	Ep:17,2 mm
coefficient a	0,001	-	
CoefficientN	1,81	-	PVC250mm <d<1000mm; P87 cours</d<1000mm;
coefficient M	4,81	-	
C, C&L: ΔHsimple,transp.1	0,004	m/m	
C, C& L: ΔHsimple,transp.2	0,012	m/m	
Facteur de correction F de ΔHsimple	0,486	-	Nsecond. sim/primaire=4
Perte de charge linéaire sur transp. ΔHtransp.1	2,6	m	

Perte de charge linéaire sur transp. ΔHtransp.2	6,2	m
Perte de charge TOTALE Ahtotal,ransp.	8,8	m
variation totale de pression le long d'un transp. ΔP	7,8	m
CONDUITES DE TRANSPORT PACK-HOUSE (PN8)		<u>I</u>
Débit tronçon1 cond.pack-house Qrp1	100	m3/h
Débit tronçon1 cond.pack-house Qrp2	50	m3/h
Pression moyenne ou de service dans la conduite Pm	4,5	bars
Valeur absolue de perte de charge lin. sur la conduite $\Delta H = 20\% \text{Pm}$	1	m
pression amont conduite Pamt	5	m
pression aval conduite Pavl	4	m
différence de pression sur conduite $\Delta P = \Delta H = Pamt - Pavl$	1	m
Vitesse admissible ds conduite en PE ou autre \leq 1,7 m/s $$ $$ $$ $$ $$ $$ $$ $$	1,7	m/s
Diamètre de la conduite Dcond.1	144	mm
Diamètre de la conduite Dcond.2	102	mm
Choix D'cond.1	160	mm
Choix D'cond.2	110	mm
ΔHsimple,cond.1 (abaque)	0,01	m/m
ΔHsimple,cond.2 (abaque)	0,023	m/m
Facteur de correction F de ΔHsimple	1	-
Longueur1 de la conduite de la station au pack-house L1cond.	1000	m
Longueur1 de la conduite de la station au pack-house L2cond.	500	m
Perte de charge linéaire sur cond.1 ΔHcond.1	11,0	m
Perte de charge linéaire sur cond.2 ΔHcond.2	11,5	m
SOMME Perte de charge linéaire sur cond. ΔHcond.	22,5	m
variation totale de pression le long d'une cond. ΔP	21,2	m
Vitesse dans la conduite d'aspiration de la pompe Vaspiration	3,3	m/s
Perte de charge d'aspiration ΔHaspiration	0,6	m
Charge totale Htotale	43	m
Perte de charge dans les pièces ΔHpièces	4,3	m
Perte de charge dans les filtres Δhfiltre, inject.	7	m
Hauteur geometrique de refoulement la plus contraignante Hgeom	5	m
Point le plus élevé où l'eau doit arriver sur le périmètre Zmax	0	m
cote de la surface de l'eau à la station 6&7 Zeau	5	m

56 soit 5,6bars donc PN8 des conduites pack house est ok.

Ep.=6,9 mm
Ep.=4 mm
ABAQUE STR-PE
ABAQUE STR-PE
1pack-house par sect.

estimé par levé

<u>Tableau 17 : DETAILLES DES COÛTS D'EXPLOITATION DU RESEAU D'IRRIGATION</u> <u>GOUTTE A GOUTTE DES SECTEURS 6 ET 7</u>

LIBELLES		Coûts pour S6 (€)	Coûts pour S7 (€)
	Ventilation quotte part frais commun aux Secteurs	296983	
Engrais	Engrais	213910,22	241895,34
	Sous traitance	12157,03	11359,91
	Ventil. quotte part Tracteur	539	539
	Appointements&salaires Local staff	61006,93	70001,84
	Bonus & Reward Local Staff	37542,88	44133,77
	Annual Bonus Local Staff	5110,32	5236,25
BLOC EQUIPE MOBILE	Congés payés staff	189,97	458,64
	Indemnités Préavis staff	69,98	69,98
	SSNIT STAFF	7959,6	9118,23
	Main d'œuvre occasionnelle	4787,93	6953,9
BUREAU MAGASIN COMMUN	Ventil. quotte part frais com. Sect.	27707	
AUX SECT	Ventil. quotte part Tracteur	44	
COMMUNICATION	Ventil. quotte part frais com. Sect.	2347	
	Fongicides export	7841,29	
	Désinfectants	238,89	
	Petits outillages agricoles & EPI	2271,8	
	Electricité Plantation	6094,36	
	Autres achat fournitures d'entretien	98,12	
	Fourniture bureau non stockable	209,22	
	Autre achat petit mat. et outillage	556,73	
	Cartons	277204,95	
	Consommables cartons	65305,12	
	Palettisation	40310,63	
CONDITIONNEMENT STATION	Consommables palettes	13770,15	
SIATION	Transports sur achats groupe	42,85	
	Transport de plis	315,4	
	Location engins	25,14	
	Entretien bâtiment de service	11,02	11,02
	Entretien Pack house	12323,06	
	Assurance sur transport achats	3,29	
	Transit arrivée Ghana	93,81	
	GFZB FORM	3	
	Transit départ hors Ghana (import)	77,22	
	Appointements&salaires Local staff	34964,8	

Bonus & Reward Local Staff 31689,08 Annual Bonus Local Staff 2935,06 Congés payés staff 331,37 Indemnités Préavis staff 209,95 SSNIT STAFF 4557,22 Main d'œuvre occasionnelle 1009,36 Vêtements professionnels 2685,8 Ventil. quotte part Tracteur 6564 Ventil. quotte part Générateur 515 Ventil. quotte part Engin lourd 360	
Congés payés staff Indemnités Préavis staff SSNIT STAFF Main d'œuvre occasionnelle Vêtements professionnels Ventil. quotte part Tracteur Ventil. quotte part Générateur 515	
Indemnités Préavis staff SSNIT STAFF Main d'œuvre occasionnelle Vêtements professionnels Ventil. quotte part Tracteur Ventil. quotte part Générateur 515	
SSNIT STAFF 4557,22 Main d'œuvre occasionnelle 1009,36 Vêtements professionnels 2685,8 Ventil. quotte part Tracteur 6564 Ventil. quotte part Générateur 515	
Main d'œuvre occasionnelle 1009,36 Vêtements professionnels 2685,8 Ventil. quotte part Tracteur 6564 Ventil. quotte part Générateur 515	
Vêtements professionnels 2685,8 Ventil. quotte part Tracteur 6564 Ventil. quotte part Générateur 515	
Ventil. quotte part Tracteur 6564 Ventil. quotte part Générateur 515	
Ventil. quotte part Générateur 515	
Ventil. quotte part Engin lourd 360	
Appointements&salaires Local staff 1940,72	
Bonus & Reward Local Staff 1561,47	
CONTROLE QUALITE SUIVI Annual Bonus Local Staff 216,49	
QUALITE Congés payés staff	
Indemnités Préavis staff	
SSNIT STAFF 252,31	
Fuel (Gas-oil) 2512,5	
Produits pétroliers lubrifiants 1117,58	
Pièces de rechange 255,09	
Autres achat fournitures d'entretien 4,23	
Γransport sur achats hors groupe 14,29	
Γransport de plis 6,46	
Entretien Haubanage et Cable way 13217,91	
Assurance sur transport achats 2,03	
Transit arrivée Ghana 141,17	
COUPE GFZB FORM	
Transit départ hors Ghana (import) 19,31	
Appointements&salaires Local staff 22098,69	
Bonus & Reward Local Staff 14803,65	
Annual Bonus Local Staff 1490,2	
Congés payés staff 94,26 Indemnités Préavis staff	
SSNIT STAFF 2879,75	
Main d'œuvre occasionnelle 3259,85	
Ventil. quotte part Tracteur 592	
DEPENSES SOCIALES Ventil. quotte part frais com. Sect. 2723	
DEPENSES SOCIALES Ventil. quotte part frais com. Sect. 5253	
INTERNE Ventil. quotte part Tracteur 246	
Γransport de plis	
DRAINAGE Entretien système d'irrigation 13268,39	
Transit arrivée Ghana 11,74	

	Appointements&salaires Local staff	2219,6	
	Bonus & Reward Local Staff	1304,51	
	Annual Bonus Local Staff	218,7	
	SSNIT STAFF	288,58	
	Main d'œuvre occasionnelle	<u> </u>	
	Ventil. quotte part Tracteur	2003	
	Ventil. quotte part Engin lourd	5533	
ENCADREMENT (INCLUS MJ/JMT/JMB)	Ventil. quotte part frais com. Sect.	31307	
	Désherbants	1859,54	1918,64
	Petits outillages agricoles & EPI	4523,7	6679,84
	Autre achat petit mat. et outillage	741,59	742,02
	Sous traitance	777,85	1574,99
	Entretien Atelier	2616,52	2616,55
	Transit arrivée Ghana	45,19	45,2
ENTRETIEN COURANT	Appointements&salaires Local staff	11635,41	1317,38
(DESHERBAGE)	Bonus & Reward Local Staff	9561,05	604,32
	Annual Bonus Local Staff	1049,71	190,39
	Indemnités Préavis staff		
	SSNIT STAFF	1503,26	174,57
	Main d'œuvre occasionnelle		
	Vêtements professionnels	1215,49	1222,56
	Ventil. quotte part Tracteur	1433	1338
ENTRETIEN DES FRUITS /	Matières plastiques	1320,21	1399,42
REGIMES	Gaines	30927,27	29312,98
ENTRETIEN MATERIEL ET	Ventil. quotte part frais com. Sect.	18379	
ATELIER	Ventil. quotte part Générateur	258,85	
EVDEDITION	Transport sur ventes	254,98	
EXPEDITION	Ventil.quote part Sect. Auxil.EXP	49506	
	Fongicides	10430,29	11175,8
FONGICIDE	Sous-traitance	13824,65	13824,86
	Ventil. quotte part Tracteur	360	360
GARDIENNAGE ET SECURITE	Ventil. quotte part frais com. Sect.	21143	
	Matières plastiques	14039,98	13712,49
	Entretien Haubanage et Cable way	363,57	363,61
HALIDANINA CE	Appointements&salaires Local staff	579,77	1156,02
HAUBANNAGE	Bonus & Reward Local Staff	377,31	763,5
	Annual Bonus Local Staff	63,69	127,37
	SSNIT STAFF	75,39	150,31
	Location engins	60,9	12,37
IRRIGATION	Entretien système d'irrigation	861,2	861,39
	Transit arrivée Ghana	37,47	37,47

	Appointements&salaires Local staff	8714,04	8229,71						
	Bonus & Reward Local Staff	7295,17	6995,29						
	Annual Bonus Local Staff	679,31	758,03						
	Congés payés staff	77,95							
	Indemnités Préavis staff		139,97						
	SSNIT STAFF	1141,65	1069,93						
	Main d'œuvre occasionnelle	427,32	422,51						
	Ventil. quotte part Tracteur	296	184						
	Ventil. quotte part Générateur	3674	1644						
	Ventil. quotte part Irrigation	106483,34	88232,49						
LOGEMENT	Ventil. quotte part frais com. Sect.	8618							
LOGEMENT	Ventil. quotte part Générateur	440							
LOYER TERRAIN	Ventil. quotte part frais com. Sect.	14255							
PETITS ENCADREMENTS COMMUN AUX SECT	Ventil. quotte part frais com. Sect.	56019							
	Transports sur achats groupe	50	50						
	Entretien Atelier	752,71	752,65						
PREPARATION DE TERRAIN	Assurance sur transport achats	2,98	2,97						
	Transit arrivée Ghana								
	Transit départ hors Ghana (import)	1,49	1,49						
Quote part Dir.Ressources Humaines	Ventilation quotte part DGE	8454							
Quote part Direction Agence	Ventilation quotte part AGE	23779							
QUOTE PART DIRECTION AGRONIMIQUE	Ventilation quotte part AGR	28432							
Quotte part Direction Financière	Ventilation quotte part DGE	49481							
QUOTE PART DIRECTION GENERALE	Ventilation quotte part DGE	64147							
Quotte part Direction Technique	Ventilation quotte part DET	16474							
TRANSPORT APPROVISIONNEMENT	Transport sur achats hors groupe		5246,47						
TRANSPORT APROVISIONNEMENT	Transport sur achats hors groupe	4377,8							
TRANSPORT DU PERSONNEL	Déplacement du personnel	65314,31	65311,08						
(DE PLANTAT)	Assurances matériel de transport	262,8	262,74						
VOIRIE	Autres entretiens et réparations	7548,86	7754,14						
VOINIE	890	329							
TOTAL GI	ENERAL (€)	1 991 743,6	668 846,4						
TOTAL GI	ENERAL (€)	2 660 590							
TOTAL GEN	1 745 232 635 6 790 788								
TOTAL GEN	TOTAL GENERAL (GHC)								

<u>Tableau 18 : DETAILLES DU CALCUL DE LA REDUCTION DE 50% DE LA MAIN D'ŒUVRE</u>

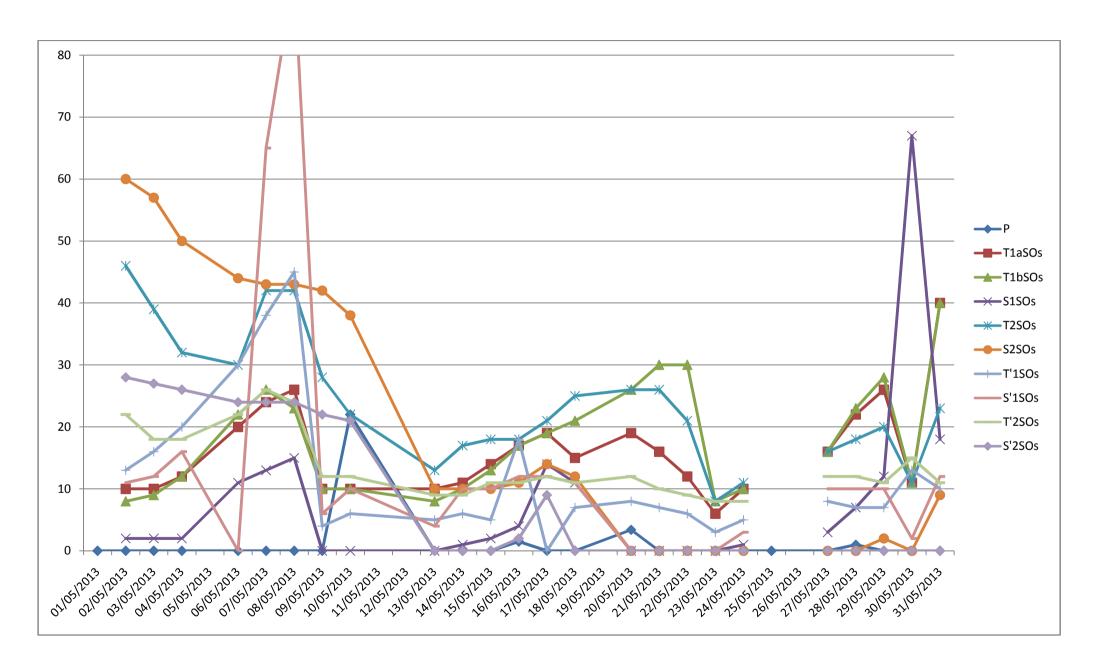

		Charges S6 (ou S7)	Réduction de la main d'œuvre de 50%	Charges après réduction
	Location engins	36,6	-	36,6
	Entretien système d'irrigation	861,3	430,6	430,6
	Transit arrivée Ghana	37,5	ı	37,5
	Appointements & salaires Local staff	8471,9	4235,9	4235,9
	Bonus & reward Local Staff	7145,2	3572,6	3572,6
	Annual Bonus Local Staff	718,7	359,3	359,3
IRRIGATION	Congés payés staff	39,0	19,5	19,5
	Indemnités Préavis staff	70,0	35,0	35,0
	SSNIT STAFF	1105,8	552,9	552,9
	Main d'œuvre occasionnelle	424,9	212,5	212,5
	Ventil. quotte part Tracteur	240,0	-	240,0
	Ventil. quotte part Generateur	2659,0	-	2659,0
	Ventil. quotte part Irrigation	97357,9	48679,0	48679,0
TOT	AL		58 097,3	61 070,4

Tableau 19: RELEVES JOURNALIERS DU MOIS DE MAI AU SECTEUR 0

SITE SYSTEMATIQUE P3A

Jours	01er	02	03	04	06	07	08	09	10	13	14	15	16	17	18	20	21	22	23	24	25	27	28	29	30	31
Pluies (mm)	0	0	0	0	0	0	0	0	22	0	0	0	1,5	0	0	3,4	0	0	0	0	0	0	1	0	0	0
T1aSOs (cbars)		10	10	12	20	24	26	10	10	10	11	14	17	19	15	19	16	12	6	10		16	22	26	11	40
T1bSOs		8	9	12	22	26	23	10	10	8	10	13	17	19	21	26	30	30	8	10		16	23	28	11	40
S1SOs		2	2	2	11	13	15	0	0	0	1	2	4	14	11	0	0	0	0	1		3	7	12	67	18
T2SOs		46	39	32	30	42	42	28	22	13	17	18	18	21	25	26	26	21	8	11		16	18	20	11	23
S2SOs		60	57	50	44	43	43	42	38	10	10	10	11	14	12	0	0	0	0	0		0	0	2	0	9
T'1SOs		13	16	20	30	38	45	4	6	5	6	5	18	0	7	8	7	6	3	5		8	7	7	13	10
S'1SOs		11	12	16	0	65	93	6	10	4	10	10	12	12	11	0	0	0	0	3		10	10	10	2	12
T'2SOs		22	18	18	22	26	24	12	12	9	9	11	11	12	11	12	10	9	8	8		12	12	11	15	11
S'2SOs		28	27	26	24	24	24	22	21	0	0	0	2	9	0	0	0	0	0	0		0	0	0	0	0
Volume d'eau d'irrigation après relevés = Durée d'irr. * Nb asp/plot * Qasp (m3)	0	0	107,1	107,1	142,9	142,9	142,9	0	0	0	0	0	0	142,9	142,9	142,9	0	0	0	0	0	0	0	142,9	142,9	142,9

Volume total apporté 1500 m³.

SITE TENSIOMETRIQUE P3B

Jours	01 ^{er}	02	03	04	06	07	08	09	10	13	14	15	16	17	18	20	21	22	23	24	25	27	28	29	30	31
Pluies (mm)	0	0	0	0	0	0	0	0	22	0	0	0	1,5	0	0	3,4	0	0	0	0	0	0	1	0	0	0
T1aSOt (cbars)		4	4	5	12	12	12	6	4	5	7	0	12	12	12	13	14	14	6	8		10	12	12	32	12
T1bSOt		2	2	4	12	12	13	4	4	4	6	7	10	10	10	13	14	15	4	7		10	10	10	33	
S1SOt		28	27	28	35	50	49	27	27	25	26	26	32	33	33	0	0	0	0	27		53	59	0	15	
T2SOt		8	6	5	10	10	8	7	6	7	8	8	10	9	0	11	10	10	11	11		12	13	12	22	
S2SOt		0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0		0	0	0	5	
T'1SOt		2	2	7	16	14	14	4	4	4	8	8	12	13	12	13	16	0	4	7		10	11	12	8	
S'1SOt					0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0		0	0	64	11	
T'2SOt		5	4	8	10	10	12	6	10	8	13	11	12	10	12	13	13	0	10	7		12	10	12	11	
S'2SOt		0	0	0	0	1	4	0	0	0	0	0	0	15	0	0	0	0	0	0		0	0	0	0	
Volume d'eau d'irrigation après relevés = Durée d'irr. * Nb asp/plot * Qasp (m3)	0	0	107, 1	107, 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Volume total apporté 214,3 m³.

Amélie KOUSSE 2013 Page 91

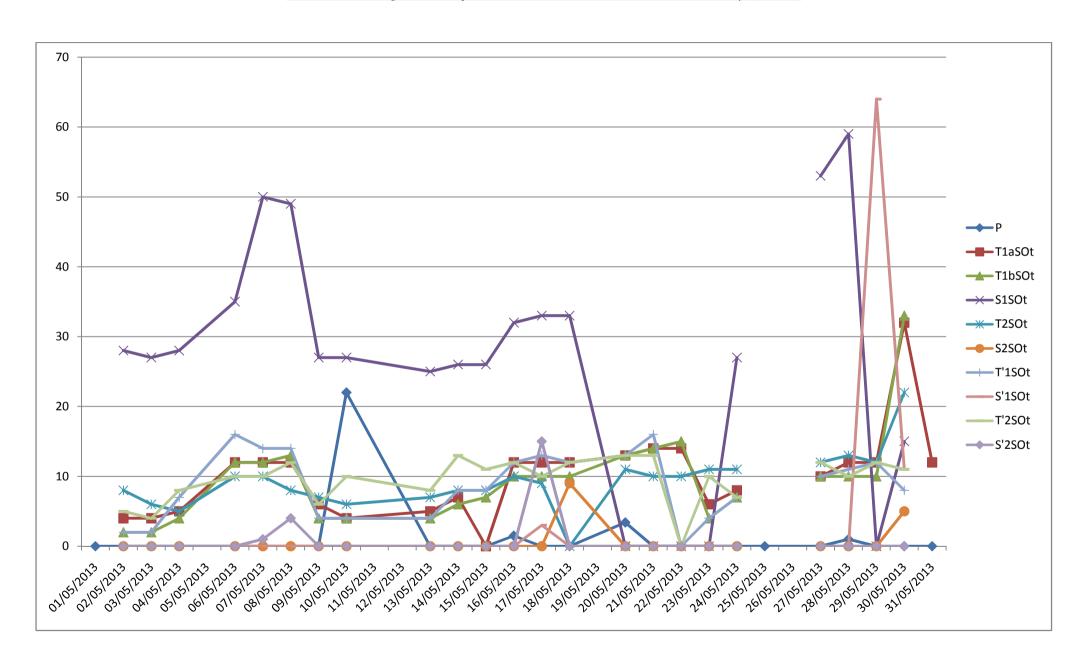


Tableau 20: CALCUL DE LA PART DE L'EAU D'IRRIGATION AUX SECTEURS 6&7

			Part de	Part de			
	Volume	Volume	l'irrigation	l'irrigation			
	d'eau	d'eau	dans	dans			
	d'irrigation	d'irrigation	l'ensemble	l'ensemble			
	S6 (m3)	S7 (m3)	consommé	consommé			
			S6 (%/mois)	S7 (%/mois)			
OCT	105124	85943	82	77			
NOV	151578	118838	93	90			
DEC	172096	106535	93	91			
	Moyenne (%)	89	86			
Moyenno	e de la part p (%)	ar secteur	88				

<u>Tableau 21 : COÛT DE L'EAU D'IRRIGATION DANS LA CONSOMMATION EN EAU DE \$6&7</u>

2012	Consommat ion totale du réseau (m³)	Consommati on totale du réseau (KWH)	Cout total en	m^3	Coût du m³ (CFA/m ³)	du m ³	Coût du KWH	Consomm ation irrigation (m ³)	PART DE L'EAU D'IRRIGATIO N (88%) en GH¢
OCT.	105124	13923	6120	0,06	15	0,023	0,44	91 400	5 385
NOV.	151578	25398	8986	0,06	15	0,023	0,35	140 400	7 908
DEC.	172096	19992	7619	0,04	11	0,017	0,38	161 300	6 705
Coût moyen (GH¢)			7575	0,05	14	0,021	0,39		6 666

<u>Tableau 22 : CALCUL DE L'ECONOMIE D'EAU SUR LES SITES TENTIOMETRIQUES</u>

	Plots	Superficie des parcelles d'essai (ha)	Durée total d'irrigation en mai par plots (h/mois)	Débit d'irrigation (m³/h)	Volume d'eau apporté par plots en mai (m³/mois)	Prix du m³ d'eau d'irrigati on (€/m³)	Montant total dépensé (€)
	P3A/S0	2	33	196	6468	0,021	135,8
SYST.	M2/S1	4,3	33	580	19140	0,021	401,9
3131.	G2/S2	4,1	26	640	16640	0,021	349,4
	F1/S6	3,5	30	725	21750	0,021	456,8
	P3B/S0	3,7	3	196	588	0,021	12,3
TENSI O.	M1/S1	4,1	24	580	13920	0,021	292,3
	G3/S2	4,1	12	640	7680	0,021	161,3
	F2/S6	2,1	0	725	0	0,021	0

2012-2013 Page 95

Tableau 23: DETAILLES SUR LA POMPE KSB

Feuilles de données

N° de poste client:

Date de commande: 15/10/2012 No. de commande: 2GI GHANA

Quantité: 3

Poste: 100 Date: 15/10/2012 Page: 1 / 6

Numéro: ES 2023766

No. de version: 1

Etanorm RM 150-500.1

Pompe à volute en construction process

Caractéristiques de fonctionnement

Débit demandé Hauteur manométrique totale

demandée

Liquide pompé

Eau Eau pure

Ne contenant pas de substances attaquant chimiquement ou

matériaux 998 kg/m³

1.00 mm²/s

Température liquide pompé Densité liquide pompé Viscosité liquide pompé

Pression d'aspiration max. Débit massique Puissance max. courbe Débit mini, autorisé pour assurer un service stable

350.00 m³/h 65,00 m

mécaniquement les

0,00 bar.r

97,03 kg/s 104,11 kW 111.15 m³/h admissible Pression de refoulement

Hauteur manométrique totale

Débit masse mini. autorisé pour assurer un service

stable Hauteur à débit nul

Débit

Rendement

NPSH requis

Puissance absorbée

Pression de service

Vitesse de rotation pompe

Essai hydraulique Norme de réception 30,81 kg/s 71,86 m

349.99 m³/h

65,00 m

78,8 %

2.72 m

78 49 kW

1486 rpm

10,00 bar.r

6.36 bar.r

Non sans ; tolérances suivant ISO 9906 classe 2A / 3B ; en dessous de 10 kW suivant

par. 4.4.2

Exécution

Norme de pompe FN 733 Pour montage sur socle

Mode d'installation

Diamètre nominal tubulure d'aspiration

Pression nominale tubulure

d'aspiration

Position tubulure d'aspiration Norme de raccordement

aspiration Diamètre nominal refoulement Pression nominale

refoulement Position tubulure de

refoulement

Norme de bride de

refoulement

Туре

Étanchéité d'arbre Fabricant

axial

Horizontale

DN 200

PN 10

EN 1092-2

DN 150 PN 16

en haut (0°/360°)

Vue sur la bride d'aspiration

EN 1092-2

Garniture à tresse

KSB RT-P

Code matériau

Mode de fonctionnement

P1 Garniture de presseétoupe, liquide de blocage interne (Na)

On suppose que le fluide ne contient pas de substances Chambre de garniture

standard Protection contre les contacts avec fortuits

Baque d'usure

Diamètre de roue Sens de rotation vu du moteur

Type de palier Taille lanterne de palier Joint de palier Type de palier

Type de lubrification côté entraînement Couleur

Baque d'usure 443,0 mm Sens horaire

Chambre d'étanchéité

Standard (normal) WE65

jeu lisse Paliers à roulements Graisse

bleu d'outremer (RAL 5002)

bleu KSB

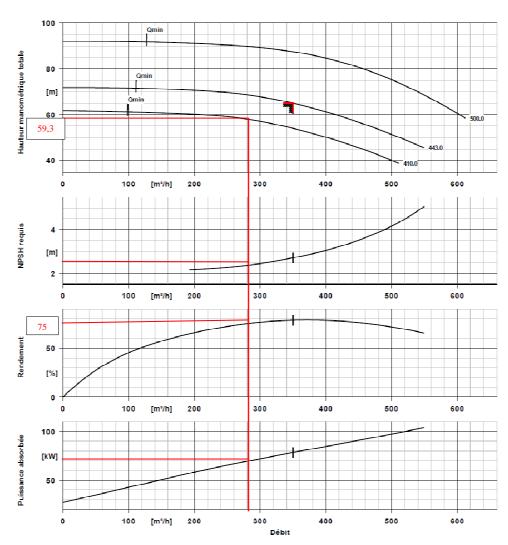
2012-2013 Page 96

Courbe caractéristique hydraulique

N° de poste client:

Date de commande: 15/10/2012 No. de commande: 2GI GHANA

Quantité: 3


Numéro: ES 2023766

Poste:100 Date: 15/10/2012 Page: 3 / 6

No. de version: 1

Etanorm RM 150-500.1

Pompe à volute en construction process

Caractéristiques de courbe

totale demandée

Vitesse de rotation
Densité liquide pompé
Viscosité
Débit
Débit
Débit demandé
Hauteur manométrique
totale
Hauteur manométrique
1486 rpm
998 kg/m³
1,00 mm²/s
349,99 m³/h
350,00 m³/h
65,00 m

Rendement
Puissance absorbée
NPSH requis
Numéro de courbe
Diamètre de roue effectif
Norme de réception

78,8 % 78,49 kW 2,72 m K34615 443,0 mm sans ; tolérances suivant ISO 9906 classe 2A / 3B

ISO 9906 classe 2A / 3B ; en dessous de 10 kW suivant par. 4.4.2