

BILAN ENERGETIQUE DE L'USINE D'EGRENAGE DE COTON HOUNDE 2 DE LA SOFITEX ET PROPOSITION DE REDUCTION DE LA FACTURE ENERGETIQUE

MEMOIRE POUR L'OBTENTION DU MASTER 2 SPECIALISE EN GENIE ELECTRIQUE ENERGETIQUE ET ENERGIE RENOUVELABLE

OPTION: PRODUCTION ET DISTRIBUTION D'ELECTRICITE

Présenté et soutenu publiquement le [Date] par

Ousséni DIAWARA

Travaux dirigés par : Yézouma COULIBALY

Titre (Enseignant, Chercheur, Dr ...)

CENTRE COMMUN DE RECHERCHE ----

Jury d'évaluation du stage :

Président :

Membres et correcteurs :

Promotion [2011/2012]

Remerciements/ Dédicaces

Je remercie toutes les personnes qui de près ou de loin m'ont aidé durant ma formation. Je remercie tout particulièrement :

- Le Directeur Général de la SOFITEX pour avoir accepté de financer ma formation.
- ➤ Le Directeur des Ressources Humaines et des affaires Administratives de la SOFITEX
- Le Directeur Industriel pour avoir donné un avis favorable au financement de ma formation
- ➤ Le Chef de Service Energie Mr KOMPAORE Arsène pour m'avoir encadré pour le projet de fin d'étude.
- Monsieur COULIBALY Yezouma pour toute sa disponibilité à superviser le projet de fin d'étude.
- ➤ Tous les collaborateurs de l'usine Houndé 2 pour m'avoir aidé lors des campagnes de mesures de données.
- Et enfin ma famille qui m'a soutenu tout au long de ma formation

M2GEER Ousséni DIAWARA PROMOTION 2011-2012

RESUME

L'étude du bilan énergétique de l'usine HOUNDE 2 s'est déroulée en quatre phases : la première ; a concerné l'audit des circuits aérauliques qui représentent 70% de la puissance de l'usine à vide ; la deuxième a concerné l'étude du circuit d'air comprimé ; la troisième l'optimisation de la facturation et de la consommation d'énergie et la quatrième la gestion de la marche à vide de l'usine. Afin de pouvoir effectuer rigoureusement l'étude, nous avons fait des campagnes de mesures de données à l'aide de plusieurs instruments puis nous avons extrait ces données et les avons analysées minutieusement. Dans toutes les quatre phases, nous avons fait l'étude de l'existant et ensuite fait des propositions qui permettent de réduire la consommation énergétique. Puis nous avons évalué, la réduction d'énergie que nous aurions pu faire durant la campagne d'égrenage 2012-2013, à cinquante-deux millions quatre cent quatre-vingt-douze mille sept cent soixante-neuf FCFA (52 492 769 FCFA). Ce montant a pu être obtenu en adaptant, lors de l'étude, les puissances aérauliques des ventilateurs aux besoins réels de l'usine, en réduisant le taux de marche à vide et en adaptant la compensation d'énergie réactive au mode de fonctionnement de l'usine.

En somme, l'étude a montré qu'il existe un gisement important en matière de réduction de la facture énergétique dans l'usine d'égrenage de HOUNDE 2 et cette étude pourrait être répétée sur l'ensemble des quatorze usines d'égrenage restant de la SOFITEX.

Mots Clés:

- 1 Audit des circuits aérauliques
- 2 Audit de l'air comprimé
- 3 Optimisation des factures d'électricité
- 4 Gestion de la marche à vide de l'usine
- 5 Réduction de la facture énergétique

iii

ABSTRACT

The study of the energy balance of the plant Houndé 2 was conducted in four phases: first; concerned the audit of ventilation systems which represent 70% of the power plant vacuum; the second concerned the study of the compressed air system; the third optimizing billing and energy consumption and the fourth managing dry run of the mill. In order to strictly carry out the study, we did campaigns measures data using several instruments and then we extracted the data and have analyzed them thoroughly. In all four phases, we study the existing and then made proposals that reduce energy consumption. Then we have evaluated the reduction of energy that we could have done during the 2012-2013 ginning season, fifty-two millions four hundred ninety-two thousand seven hundred sixty-nine FCFA (52,492,769 FCFA). This amount could be achieved by adapting during the study, ventilation fans powers the real needs of the plant, reducing the rate of idling and adjusting the reactive power compensation mode of plant.

In sum, the study showed that there is a large deposit in reducing energy bills in the gin Hounde 2 and this study could be repeated on all the remaining fourteen ginneries SOFITEX.

Keywords:

- 1 Audit of the air circuits
- 2 Audit of the compressed air
- 3 Optimization of electricity bills
- 4 Management of the pace into empty space of the factory
- 5 Reduction of the energy bill

iv

LISTE DES ABRÉVIATIONS

CG : Coton graine

■ TGBT : Tableau Général Basse Tension

■ CGM : Coton Génétiquement Modifié

SONABEL : Société Nationale Burkinabè d'Electricité

SOFITEX : Société Burkinabè des Fibres Textiles

M2GEER Ousséni DIAWARA PROMOTION 2011-2012

SOMMAIRE

RES	SUME	iii
List	e des abréviations	V
I. I.	NTRODUCTION	4
II.	OBJECTIFS DU TRAVAIL	5
2.1.	. Objectif général	5
2.2.	. Objectif spécifique	5
III.	MATERIELS ET METHODES	6
3.1.	. Etude des circuits aérauliques	6
3.2.	. Etude de l'air comprimé	8
3.3.	. Etude de la facturation d'électricité	13
3.4.	. Etude de la gestion de la marche à vide de l'usine	15
IV.	RESULTATS	16
4.1.	. Etude des circuits aérauliques	16
4.2.	. Etude de l'air comprimé	20
4.3.	. Etude de la facturation d'électricité	24
4.4.	. Etude de la gestion de la marche à vide de l'usine	27
V.	DISCUTION ET ANALYSE	28
5.1.	. Etude des circuits aéraulique	28
5.2.	. Etude de l'air comprimé	29
5.3.	. Etude de la facturation d'électricité	30
5.4.	. Etude de la gestion de la marche à vide de l'usine	31
VI.	CONCLUSION	32
VII.	RECOMMANDATIONS ET PERSPECTIVES	33
VIII.	BIBLIOGRAPHIE	35
IY	ANNEYES	36

LISTE DES TABLEAUX

Tableau N°1	Répartition des puissances lors de la marche à vide de l'usine	16
Tableau N°2	Répartition des puissances lorsque l'usine égrène du coton	17
Tableau N°3	Récapitulatif des débits des ventilateurs et des taux de fuites	18
Γableau N°4	Récapitulatif des débits préconisés, le choix du moteur et l'économie potentielle de puissance	19
Гableau N°5	Récapitulatif des débits de fuites, d'utilisation des humidificateurs, d'utilisation de l'usine et du compresseur	21
Tableau N°6	Récapitulatif des économies potentielles par factures	26
Tableau N°7	Evaluation de l'investissement pour la compensation	27

LISTE DES SCHEMAS

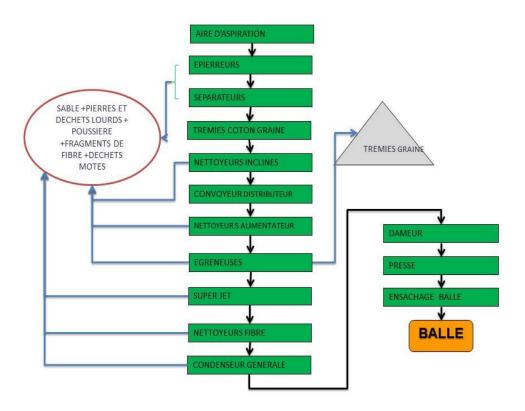
Schéma N°1 Synoptique de l'usine d'égrenage de coton HOUNDE2

5

I. INTRODUCTION

Au Burkina Faso la filière cotonnière fait vivre plus de quatre millions de personnes. Il existe trois sociétés cotonnières qui, au total, ont dix-neuf usines d'égrenage. La société Burkinabè des fibres textiles (SOFITEX) qui est la plus grande dispose de quinze usines d'égrenage et d'une usine de délintage chimique. Ces différentes usines sont reparties dans les sept (07) régions cotonnières de la société.

Aujourd'hui la filière se trouve menacée par les importantes fluctuations que connait le marché mondial. Fort de ce constat, les sociétés cotonnières s'elles veulent survivre doivent réduire leurs couts de production pour faire face aux éventuelles baisses importantes du cours de la fibre de coton.


Dans une usine d'égrenage il y a quatre étapes essentielles. La première consiste au nettoyage du coton graine, la deuxième à l'égrenage proprement dite où la fibre et la graine sont séparées, la troisième consiste au nettoyage de la fibre et la quatrième au conditionnement de la fibre sous forme de balles. La manutention du coton et de la fibre dans l'usine se fait de manière aéraulique pour la plus part du temps. (Voir ci-dessous le synoptique de l'usine dans le schéma N°1).

Parmi les coûts de production dans une usine d'égrenage, l'énergie occupe une part très importante. En réduisant donc l'énergie consommée à la tonne de fibre produite, nous contribuerons à diminuer le coût de revient de la fibre.

Notre étude s'effectuera sur l'usine d'égrenage « Houndé 2 » de la région cotonnière de houndé et portera sur le bilan énergétique et la réduction de la facture énergétique de cette usine.

Aussi, nous avons constaté avec l'analyseur de réseau que les ventilateurs représentaient entre 51% et 72% de la consommation d'énergie totale selon que l'usine égrène ou est en marche à vide. Afin de réduire la facture énergétique, nous ferons d'abord le bilan de l'existant en ce qui concerne les circuits aérauliques, l'air comprimé, la facture d'électricité et le taux de marche à vide de l'usine, puis nous ferons des propositions de réductions.

SCHEMA N°1: SYNOPTIQUE DE L'USINE D'EGRENAGE DE COTON HOUNDE2

II. OBJECTIFS DU TRAVAIL

2.1. Objectif général

A la fin de l'étude nous devrions arriver à diminuer la consommation d'énergie de l'usine Houndé 2 et par conséquent contribuer à la réduction de sa facture énergétique.

2.2. Objectif spécifique

Nos objectifs spécifiques s'énumèrent comme suit :

- > Faire l'étude de l'existant en ce qui concerne les circuits aérauliques, l'air comprimé et la facture d'électricité.
- > Faire des propositions de réduction de la consommation d'énergie par les ventilateurs, le compresseur d'air,

- > Optimiser la facture d'électricité
- Réduire le taux de marche à vide par une bonne gestion de la production.
- > Evaluer l'économie potentielle.

III. MATERIELS ET METHODES

3.1. Etude des circuits aérauliques

3.1.1. Consommation des ventilateurs par rapport à la consommation globale de l'usine à vide et en charge

Nous avons utilisé pour effectuer cette opération un analyseur de réseau modèle CA 8535 de Chauvin Arnoux et une pince ampère métrique.

- Dans un premiers temps nous avons branché l'analyseur réseau au niveau du TGBT de l'usine.
- Ensuite nous avons démarré (en mode manuel) tous les ventilateurs à vide pendant 15mn.
- Puis, après avoir arrêté tous les ventilateurs nous avons redémarré (en mode automatique) toutes l'usine et nous l'avons laissé marcher à vide pendant 15mn.
- L'analyseur étant toujours en mode enregistrement, nous avons commencé l'égrenage. Au même moment, avec la pince ampère métrique, nous avons relevé l'intensité et la tension composée par phase du moteur de chaque ventilateur. Les calculs ont été faits avec la moyenne des puissances.

3.1.2. Audit du réseau aéraulique

Nous avons utilisé un appareil de marque KIMO qui permet de mesurer la vitesse et la pression de l'air dans les tuyauteries en fonction de la température ambiante. Aussi nous avons utilisé l'analyseur de réseau (DIRIS) du pupitre d'égrenage et un tachymètre CA 1725 Chauvin Arnoux. Les annexes N°1 à N°19 donnent les détails sur les mesures et les données de bases pour les calculs.

3.1.2.1. Calcul des débits aux points de mesures et taux de fuites dans les différents circuits

Pour la campagne de mesure, l'usine était à l'arrêt et nous avons démarré individuellement les ventilateurs.

- Pour chaque ventilateur, nous avons mesuré à l'aide du KIMO la vitesse et la pression dynamique aux différents points du circuit.
- Au même moment, toujours pour chaque ventilateur, nous avons mesuré la vitesse de rotation de l'arbre de la turbine, l'intensité et la tension à chaque phase du moteur.
- Ensuite nous avons mesuré le diamètre de la tuyauterie aux différents points de relevés.
- Puis nous avons introduit dans un tableau EXCEL toutes les données.
- Avec des formules que nous avons insérées dans les cellules, nous avons calculé les débits des ventilateurs et ceux mis en jeux aux différents points de relevés. On a : débit = vitesse*section
- Nous avons calculé également les taux de fuites par circuit
- A partir de la quantité de 350 tonnes de coton graine à égrener par jour par l'usine en 21 heures de fonctionnement et en considérant un rendement fibre de 42%, nous avons déterminé les débits théoriques minimums à mettre en jeux.
- 3.1.2.2. Evaluation de l'économie potentielle de puissance électrique en réduisant le débit des ventilateurs dont le taux de fuite est supérieur à 15%
 - Pour les ventilateurs qui ont un taux de fuites supérieur à 15% nous avons déterminé avec les courbes débits-pressions de chaque ventilateur et la courbe caractéristique de chaque réseau, le nouveau débit et la nouvelle vitesse de rotation du ventilateur. On note que le nouveau débit doit être légèrement supérieur à celui préconisé.
 - A partir du débit et de la vitesse de rotation du ventilateur, nous avons déterminé à l'aide de la courbe débit-puissance, la puissance à l'arbre du ventilateur.
 - En considérant un rendement de transmission de 0,75, nous avons déterminé la puissance utile du moteur.
 - Nous avons choisi pour chaque ventilateur un moteur dont la puissance est égale ou immédiatement supérieure à celle calculée.

- En faisant la différence entre la puissance installée du ventilateur et la puissance du moteur choisi, nous obtenons l'économie en puissance installée.
 Ensuite, pour obtenir l'économie potentielle, nous avons considéré que seulement 80% de la différence de puissance installée pourra être réellement économisée.
- 3.1.2.3. Evaluation de l'énergie ($E_{a\acute{e}ro}$) qui aurait pu être économisée durant la campagne 2012-2013

Nous avons déterminé l'énergie que l'on aurait pu économiser durant la campagne 2012-2013 en considérant le temps de fonctionnement du condenseur général durant cette campagne. Pour cela, nous avons utilisé l'équation $E_{a\acute{e}ro} = puissance$ économisée * temps de marche condenseur (1)

- 3.1.2.4. Evaluation de l'économie financière potentielle (C_{aéro}) durant la campagne 2012-2013
 - Nous avons déterminé le coût moyen du kilowattheure (C_{kWh}) Annexe 21
 - En appliquant l'équation $C_{a\acute{e}ro} = C_{kWh} * E_{a\acute{e}ro}$ (2)
- 3.1.2.5. Evaluation de l'économie financière engrangée (C_{aéro-ps}) du fait de la réduction de la puissance souscrite
 - Nous avons considéré le coût (C_{ps}) du kW souscrit par an
 - Ensuite, nous avons considéré le nombre de mois de la campagne 2012-2013 (N_{mois})
 - puis, Nous avons déterminé (Caéro-ps) à l'aide de l'équation :

$$C_{a\acute{e}ro-ps} = \frac{C_{ps}*puissance \acute{e}conomis\acute{e}e*N_{mois}}{12}$$
 (3)

3.1.2.6. L'évaluation de l'économie financière totale (C_{Taéro}) que nous aurions pu engrangée durant la campagne 2012-2013

Nous avons déterminé (
$$C_{\text{Taéro}}$$
) à l'aide de l'équation $C_{Taéro} = C_{aéro} + C_{aéro-ps}$ (4)

3.2. Etude de l'air comprimé

Nous avons utilisé, pour cette étude, un chronomètre, un analyseur de réseau CA 8535, une caméra infrarouge FLIR IR50 et un hygromètre TROTEC.

M2GEER Ousséni DIAWARA PROMOTION 2011-2012 8

Nous avons fait tous les calculs de volumes et de débits volumiques en normal mètre cube (Nm3) selon la norme ISO 2533 (où la pression atmosphérique est de 101 325 Pa et la température de 15°C).

3.2.1. Etude de l'existant

- 3.2.1.1. Détermination du débit d'air de fuites, du débit d'air utilisé par les humidificateurs, du débit d'air utilisé par les autres machines de l'usine et le débit d'air du compresseur ainsi que le calcul du taux de fuite.
 - Pour les calculs nous avons utilisé les équations suivantes :
 - \triangleright l'équation d'état des gaz parfaits PV = nRT (5) où :
 - o P la pression (Pa)
 - o V le volume d'air (m3)
 - on le nombre de mole avec $n = \frac{m}{M}$
 - o m est la masse d'air (g)
 - M est la masse molaire moléculaire de l'air soit (28,96g)
 - R est la constante des gaz parfaits 8,31447
 J/°K/g
 - o T la température de l'air (°K)
 - L'équation du calcul de la masse d'air déplacée lors du passage du ballon de la pression de 8 bars à 5 bars, soit $m_{if} = \frac{P_{atm}*(V_i V_f)*M}{R*T}$ (6)
 - o m_{if} est la masse d'air déplacée de 8bars à 5bars
 - o P_{atm} est la pression atmosphérique (101325Pa)
 - o V_i est le volume d'air en Nm3 de l'état initial
 - o V_f est le volume d'air en Nm3 de l'état final
 - \triangleright L'équation du calcul du débit massique $q_m = \frac{m}{t}$ (7) où:
 - o q_m est le débit massique (kg/s)
 - o m est la masse d'air (kg)
 - o t est le temps mesuré (s)
 - ightharpoonup l'équation du calcul du débit volumique $q_v = \frac{q_m}{\rho}$ (8) où :
 - o q_v est le débit volumique (m3/s)
 - ρ est la masse volumique du gaz (kg/m3)

- Pour déterminer le débit de fuites, nous avons arrêté l'usine et les humidificateurs. Ensuite, nous avons rempli le réservoir d'air jusqu'à la pression de 8 bars; puis, nous avons chronométré le déchargement du réservoir de la pression de 8 bars à 5 bars.
- Pour déterminer le débit d'air utilisé par les humidificateurs, nous avons fermé la vanne de départ d'air de l'usine et nous avons maintenu ouverte seulement celle qui dessert les humidificateurs. Puis nous avons rempli le réservoir d'air jusqu'à la pression de 8 bars. Ensuite, nous avons chronométré le déchargement du réservoir de la pression de 8 bars à 5 bars.
- Pour déterminer le débit d'air utilisé par l'usine, nous avons laissé l'usine et les humidificateurs en marche, ensuite nous avons rempli le réservoir jusqu'à la pression de service de 8 bars. Puis nous avons chronométré le déchargement du réservoir de 8 bars à 5 bars. Cela nous a permis d'avoir le débit total à partir duquel nous avons déduit le débit d'air utilisé par les autres machines de l'usine connaissant le débit de fuites et celui utilisé par les humidificateurs.
- Pour déterminer le débit d'air du compresseur, nous avons fermé les vannes des réservoirs d'air qui desservent l'usine et les humidificateurs. Ensuite nous avons totalement vidé les réservoirs, puis nous avons chronométré le remplissage du ballon de Obar à 8bars.
- Ensuite, nous avons déterminé le taux de fuite, en faisant le rapport du débit de fuite et celui du débit total utilisé.
- 3.2.1.2. Le calcul du taux de charge, celui de la marche à vide et le nombre de cycle de régulation
 - Pour déterminer le taux de charge, nous avons utilisé l'enregistrement de l'analyseur de réseau CA8535 où nous avons fait le rapport du temps de charge et celui du temps total de l'enregistrement.
 - Pour déterminer le taux de marche à vide, nous avons également utilisé le même enregistrement de l'analyseur où nous avons fait aussi le rapport du temps de marche à vide et celui du temps total.
 - Pour déterminer le nombre de cycles de régulation, nous avons compté en une heure, le nombre de fois que le compresseur a été en charge, toujours avec l'enregistrement de l'analyseur de réseau.

10

- 3.2.1.3. L'énergie consommée par le compresseur en une heure de fonctionnement (E_{comp})
 - L'enregistrement de l'analyseur de réseau lorsque l'usine est en marche nous a donné la consommation d'énergie par le compresseur en deux heures, donc pour déterminer la consommation en une heure, nous avons divisé par deux la consommation totale enregistrée. On a donc : $E_{comp} = \frac{Energie\ enrégistrée\ en\ 2\ heures}{2}$ (9)
 - Connaissant le débit d'air total consommé par l'usine, nous avons déterminé la quantité total d'air consommée en une heure, puis nous avons déterminé la consommation spécifique (kWh/Nm3).

3.2.2. Etude d'amélioration de l'installation

- 3.2.2.1. Détermination des besoins en air comprimé de l'usine
 - Pour déterminer le débit réel (Q_{ru}) dont a besoin l'usine, nous avons admis 5% de fuites par rapport à la somme des débits des humidificateurs et des autres machines de l'usine. Soit :

$$Q_{ru} = 1.05 * (Q_H + Q_{AU})$$
 (10)

 $Q_H \rightarrow D\acute{e}bit$ utilisé par les humidificateurs

 $Q_{AU} \rightarrow D$ ébit utilisé par les autres machines de l'usine

- 3.2.2.2. Dimensionnement du réservoir d'air comprimé
 - Nous avons considéré que le réservoir d'air, lorsqu'il est rempli, doit pouvoir satisfaire pendant quinze minutes (15mn) les besoins de l'usine.
 - Ensuite, nous avons déterminé la quantité d'air (V_{15}) nécessaire pour les quinze minutes (15mn) de marche de l'usine. Soit $V_{15} = Q_{ru} * 15 * 60$ (11)
 - Nous avons déterminé la quantité d'air (V_{if}) fournie par un réservoir d'un mètre cube (1m3) lorsque la pression passe de 8 bars à 5 bars. On note que $V_{if} = \frac{m_{if}}{\rho}$ (12)
 - Pour déterminer le volume du réservoir (V_{RES}) nous avons fait le rapport entre la quantité d'air V_{15} et la quantité d'air V_{if} soit : $V_{RES} = \frac{V_{15}}{V_{if}}$ (13)
- 3.2.2.3. Détermination du temps de remplissage (t_{remp}) du nouveau réservoir et du temps de marche à vide (t_{vide}) du compresseur
 - Pour déterminer le temps de remplissage (t_{remp}) du réservoir de la pression de 5 bars à 8 bars, nous avons calculé le débit (Q_{remp}) du compresseur qui sert réellement au remplissage du réservoir. En effet, connaissant le débit du

compresseur (Q_{comp}) et le débit (Q_{ru}) réel utilisé par l'usine, nous avons déterminé le débit (Q_{remp}) qui sert au remplissage du réservoir. On a : $Q_{remp} = Q_{comp} - Q_{ru}$ (14) Aussi connaissant le volume d'air (V_{15}) nécessaire au remplissage du réservoir de 5 bars à 8 bars, on en déduit le temps (t_{remp}) à l'aide de l'équation : $t_{remp} = \frac{V_{15}}{Q_{remp}}$ (15)

- Le temps de marche à vide (t_{vide}) est réglé à partir de la platine de commande électronique (MCI01), ce temps peut varier entre une minute (1mn) et trente minutes (30mn). Nous avons réglé le temporisateur à un temps optimum.
- 3.2.2.4. Détermination du nombre de cycle de régulation (C_r) en une heure et de la puissance moyenne du compresseur lorsqu'il est en charge (P_{chg}) et à vide (P_{vide})
 - En considérant le temps de remplissage et celui de l'autonomie du réservoir, nous avons déterminé le nombre de cycles de régulation en une heure. On a : $C_r = \frac{3600}{((15*60) + t_{remp})}$ (16)
 - A partir de l'enregistrement de l'analyseur de réseau nous avons fait la moyenne des puissances lorsque le compresseur était en charge et lorsqu'il était en marche à vide.
- 3.2.2.5. Détermination de l'énergie théorique (E_{th}) consommée en une heure par le compresseur.
 - Nous avons déterminé d'abord, l'énergie consommée en charge (E_{chg}) en une heure avec l'équation $E_{chg} = P_{chg} * t_{remp} * C_r$ (17)
 - Ensuite nous avons déterminé l'énergie consommée à vide (E_{vide}) en heure avec l'équation $E_{vide} = P_{vide} * t_{vide} * C_r$ (18)
 - Puis, nous avons déterminé l'énergie théorique consommée en une heure en faisant la somme E_{chg} et E_{vide} . Soit : $E_{th} = E_{chg} + E_{vide}$ (19)
 - Après, nous avons déterminé la consommation spécifique (kWh/Nm3)
- 3.2.2.6. Economie d'énergie
 - En comparant la nouvelle consommation d'énergie à l'ancienne enregistrée par l'analyseur de réseau nous avons obtenu l'énergie économisée ($E_{\text{éco}}$) potentiellement en une heure de fonctionnement de l'usine avec l'équation $E_{\text{éco}} = E_{comp} E_{th}$ (20)

- En considérant le temps de marche de l'usine (t_{usine}) durant la campagne d'égrenage 2012-2013, nous avons déterminé la quantité d'énergie $(E_{gagnée})$ qu'on aurait pu économiser durant cette campagne avec l'équation $E_{gagnée} = E_{éco} * t_{usine}$ (21) Aussi nous avons pris le temps de marche de l'usine (t_{usine}) comme étant le temps de marche du condenseur général qui est une machine indispensable pour le fonctionnement de l'usine.
- 3.2.2.7. Evaluation de l'économie financière (C_{comp}) que nous aurions pu engranger durant la campagne 2012-2013

Nous avons déterminé l'économie
$$(C_{comp})$$
 à l'aide de l'équation :
$$C_{comp} = E_{gagn\acute{e}} * C_{kWh}$$
 (22)

3.3. Etude de la facturation d'électricité

Le compteur Moyenne Tension (MT) de la SONABEL mesure l'énergie électrique consommée par les usines HOUNDE 1, HOUNDE 2 et les Auxiliaires. Afin de mener à bien notre étude, nous avons analysé la facturation dans sa globalité dans un premier temps, puis nous avons ramené l'étude au cas spécifique de HOUNDE 2.

Il faut noter qu'avant la campagne d'égrenage 2011-2012, l'énergie électrique des usines était fournie par des groupes électrogènes et c'est seulement suite à la réalisation de l'inter connexion électrique entre Ouagadougou et Bobo-Dioulasso, que la SONABEL a pu fournir l'énergie électrique aux usines de la SOFITEX Houndé. Les **annexes N°20 à N°28** donnent des éléments de base et les détails des calculs.

3.3.1. Facturation réelle d'électricité

Etant donné les nombreuses erreurs de comptage d'énergie par le compteur MT de la SONABEL depuis la campagne 2011-2012 jusqu'au début de la campagne 2012-2013, nous étions dans l'obligation de reprendre le calcul de toutes les factures de la campagne 2012-2013, afin de pouvoir faire des analyses objectives.

Par ailleurs, lors de la campagne 2011-2012, la SOFITEX avait souscris, auprès de la SONABEL, à une puissance, de 1800 kW, qui était basée sur des mesures faites précédemment sur les deux (02) usines. Au cours de cette campagne 2011-2012, le compteur MT de la SONABEL a enregistré des puissances maximums d'environs 1200 kW. Alors, pour la campagne 2012-2013, la SOFITEX a souscris à une

puissance de 1200 kW. Après quelques corrections effectuées par la SONABEL, le compteur a enregistré une puissance maximum, au démarrage de la campagne 2012-2013, d'environ 1630 kW. Cependant, des erreurs persistaient toujours au niveau du comptage de l'énergie réactive. Après un deuxième passage de la SONABEL, ce problème fut réglé. Donc, pour évaluer les factures réelles que SONABEL aurait due émettre à l'endroit de la SOFITEX, nous avons considéré une puissance souscrite de 1650 kW et une valeur de 1+m égale à 1 pour les factures antérieures à la date de correction.

3.3.2. Optimisation des factures d'électricité de la campagne 2012-2013

• Choix de la puissance souscrite

Nous avons déterminé les puissances moyennes des deux (02) usines lorsqu'elles sont en charge. Puis, nous avons fait la somme de ces puissances pour obtenir la moyenne de puissance totale appelée par les des deux usines. Ensuite, nous avons choisi une puissance souscrite en admettant 2% de dépassement car le tarif de facturation du dépassement de puissance est inférieur à celui de la souscription de puissance.

• Choix du facteur de puissance

Nous avons choisi un facteur de puissance pour lequel, nous avons une minoration proche du maximum permis.

• Economies potentielles par factures

Pour obtenir l'économie potentielle d'une facture, nous avons fait la différence entre le montant optimisé et le montant normalement dû. La somme des économies potentielles de toutes les factures nous donne l'économie potentielle de la campagne 2012-2013.

• L'économie potentielle effectuée à l'usine HOUNDE 2 suite à l'optimisation des factures.

Pour déterminer la part de l'usine HOUNDE 2 dans l'économie générale, nous avons déterminé sur la période de la campagne, à l'aide des relevés décadaires d'énergie, la proportion de la consommation d'énergie de l'usine HOUNDE 2 par rapport à la consommation générale (SONABEL). Voir Annexe N°28

3.3.3. Compensation d'énergie réactive

3.3.3.1. Compensations d'énergie réactive de l'usine HOUNDE 2

- Nous avons d'abord déterminé le facteur de puissance moyen et la puissance moyenne de l'usine, à partir de l'enregistrement de l'analyseur de réseau CA8535.
- Ensuite, nous avons fixé l'objectif de facteur de puissance à atteindre.
- Puis, nous avons déterminé la puissance de batteries de condensateur à installer dans l'usine pour obtenir un facteur de puissance égale à l'objectif fixé. On a : $Q_{bat} = P_{act} * (\tan(\varphi) \tan(\varphi'))$ (23) où
 - o Q_{bat} est la puissance des batteries (kVar)
 - P_{act} est la puissance active moyenne de l'usine (kw)
 - ο φ est l'angle du facteur de puissance actuel
 - φ' est l'angle du facteur de puissance souhaité
- Enfin, nous avons choisi la puissance de chaque batterie de condensateur et le nombre à installer dans chacune des usines.
- 3.3.3.2. Coût d'investissement pour la compensation
 - Nous avons considéré les prix 2013 du magasin pièces détachées de la SOFITEX pour évaluer le coût de l'investissement.

3.4. Etude de la gestion de la marche à vide de l'usine

3.4.1. Les causes de la marche à vide

Nous avons supposé que nous observons la marche à vide lorsque l'usine est en marche et que nous avons l'une au moins des égreneuses qui n'égrène pas du coton.

3.4.2. Le taux de marche à vide (τ_{mv})

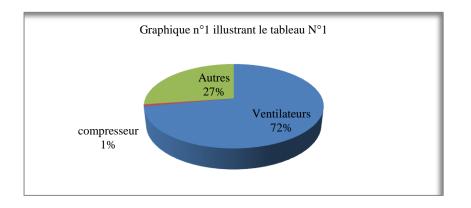
Il se détermine avec l'équation :

$$au_{mv} = 1 - rac{somme\ des\ temps\ de\ marche\ des\ égreneuses}{temps\ de\ marche\ du\ condenseur\ général*3}$$
 (24)

- **3.4.3.** La consommation d'énergie due aux marches à vide durant la campagne 2012-2013
 - Nous avons d'abord déterminé le temps (t_{mv}) de marche à vide $t_{mv} = \tau_{mv} * temps de marche du condenseur$ (25)
 - Ensuite nous avons déterminé l'énergie (E_{mv}) consommée par la marche à vide, connaissant la puissance moyenne (P_{mv}) de l'usine lors d'une marche à vide. On note que la puissance moyenne est donnée par l'analyseur de réseau. On a par conséquent l'énergie consommée par la marche à vide durant la campagne qui est : $E_{mv} = t_{mv} * P_{mv}$ (26)
- **3.4.4.** Le coût (C_{mv}) de la marche à vide durant la campagne 2012-2013

- Nous avons utilisé le coût moyen (C_{kWh}) du kilowattheure durant cette campagne.
- Ensuite, avec l'équation $C_{mv} = E_{mv} * C_{kWh}$ (27) nous avons déterminé le coût de la marche à vide.
- 3.4.5. L'économie potentielle ($C_{\text{écov}}$) en tolérant un taux de marche à vide de 5% Nous avons déterminé l'économie potentielle que nous aurions pu faire durant la campagne 2012-2013 en tolérant un taux de marche à vide de 5% à l'aide de l'équation $C_{\text{écov}} = (\tau_{mv} 5\%) * temps de marche du condenseur * <math>P_{mv} * C_{kWh}$ (28)

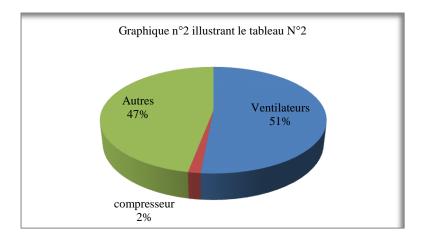
IV. RESULTATS


4.1. Etude des circuits aérauliques

4.1.1. Consommation des ventilateurs par rapport à la consommation globale de l'usine à vide et en charge

Ci-dessous vous trouverez les tableaux N°1&2 ainsi que leurs illustrations sous la forme graphique.

<u>Tableau N°1</u>: Répartition des puissances lors de la marche à vide de l'usine


	Puissance (W)	taux
Ventilateurs	431 271	71,97%
compresseur	4 384	0,73%
Autres	163 612	27,30%
usine	599 267	100,00%

16

Tableau N°2: Répartition des puissances lorsque l'usine égrène du coton

	Puissance (W)	taux
Ventilateurs	456 524	52,28%
compresseur	13 267	1,52%
Autres	416 741	47,72%
usine	873 266	100,00%

4.1.2. Audit du réseau aéraulique

4.1.2.1. Calcul des débits aux points de mesures et taux de fuites dans les différents circuits

Le tableau N°3 ci-dessous récapitule les calculs des débits aux différents points de mesure et donne également le taux de fuite par circuit en prenant en compte le débit des ventilateurs et les débits aux points d'utilisation.

4.1.2.2. Evaluation de l'économie potentielle de puissance électrique en réduisant le débit des ventilateurs dont le taux de fuite est supérieur à 15%

Le tableau N°4 ci-dessous récapitule les calculs des débits théoriques préconisés, le débit des ventilateurs en fonction de la nouvelle vitesse de rotation, le choix des moteurs des ventilateurs et les potentielles d'économie de puissance.

M2GEER Ousséni DIAWARA PROMOTION 2011-2012

17

Tableau N°3: Récapitulatif des débits des ventilateurs et des taux de fuites

MACHINE	Débit actuel ventilateur					Débit aux autres points du circuit					Fuites			
	Туре	vitesse de rotation du ventilateur tr/mn	point de prise de débit	Diamètre tuyau principal (m)	Section (m²)	Vitesse m/s	débit (m3/h)	point de prise de débit	Diamètre ou cotés tuyau (m)	Section (m²)	Vitesse m/s	débit (m3/h)	débit (m3/h)	Taux (%)
Ventilateur aspiration N°1	RBO 923	1919	1-1	0,5955	0,2785	32,48	32 566,56	1-6	0,4395	0,1517	24,59	13 429,77	19 136,79	58,76%
Ventilateur aspiration N°2	RBO 923	1896	2-1	0,5955	0,2785	30,08	30 160,17	2-6	0,4395	0,1517	22,18	12 113,56	18 046,61	59,84%
Ventilateur reprise N°1	RBO 926	1528	1-1	0,6624	0,3446	16,85	20 904,17	1-6	0,414	0,1346	16,53	8 010,62	12 893,55	61 68%
ventilatedi reprise N 1	NBO 320	1328	1-1	0,0024	0,5440	10,83	20 904,17	1-7	0,414	0,1346	0	0,00	12 093,33	01,0876
Ventilateur reprise N°2	HF 238	1735	2-1	0,6624	0,3446	20,68	25 655,68	2-6	0,414	0,1346	0	0,00	14 659,86	57 1 1%
ventilateur reprise N-2	ПГ 236	1/55	2-1	0,0024	0,3440	20,08	23 033,08	2-7	0,414	0,1346	22,69	10 995,82	14 039,80	57,14%
Ventilateur nettoyeur fibre N°1	KGM D50	1115	1-1	0,6115	0,2937	15,66	16 556,83	1-2	2,38x0,14	0,3332	10,36	12 427,03	4 129,80	24,94%
Ventilateur nettoyeur fibre N°2	VA 24"		2-1	0,6115	0,2937	10,19	10 773,57	2-2	2,38x0,14	0,3332	7,53	9 032,39	1 741,18	16,16%
Ventilateur nettoyeur fibre N°3	VA 24"		3-1	0,6115	0,2937	12,6	13 321,58	3-2	2,38x0,14	0,3332	9,78	11 731,31	1 590,28	11,94%
Ventilateur déchet LC	HF1910	1724	1	0,4873	0,1865	5 20,02	13 441,55	2	0,4456	0,1559	15,05	8 449,27		
ventilatedi dechet LC		1724	_				13 441,33	3	0,3344	0,0878	10,03	3 171,22		
								2	1,07	0,8992	11,03	35 705,53	17 707,09	33,15%
Ventilateur condenseur général	BC402 M1	1592	1	1,07	0,8992	16,5	53 412,62	3	0,8822	0,6113	11,38	25 041,99		
								4	0,6178	0,2998	13,83	14 924,86		
								2	0,4363	0,1495	13,52	7 276,78	1 673,88	18,70%
								3	0,3439	0,0929	3,43	1 146,97		
Ventilateur déchet Feeder	HF1910	1704	1	0,4363	0,1495	16,63	8 950,66	4	0,2834	0,0631	4,13	937,87		
								5	0,207	0,0337	3,12	378,00		
								6	0,2166	0,0368	2,99	396,63		
Ventilateur trop plein	HF196	1942	1	0,4936	0,1914	18	12 399,81	5	0,3185	0,0797	17,68	5 071,00	7 328,82	59,10%

<u>Tableau N°4:</u> Récapitulatif des débits préconisés, le choix du moteur et l'économie potentielle de puissance

MACHINE	Débit théorique préconisé				Choix du moteur du ventilateur selon courbe débit-pression-puissance						ECONOMIE POTENTIELLE DE PUISSANCE					
	Туре	débit unitaire pour 1 kg (m3)	quantité de CG et fibre(kg)	nombre d'heure de fonctmt	débit (m3/h)	Débit choisi (m3/h)	Nouvelle vitesse de rotation du ventilateur	Pression statique (mbar)	Puissance à l'arbre du ventilateur (kw)	rendeme nt transmis sion	Puissance utile du moteur (kw)	choix du moteur (kw)	moteur existant (kw)	Puissance consommée à vide (kw)	Ecart entre existant et nouveau (Kw)	economie
Ventilateur aspiration N°1	RBO 923	1,5	175 000	21	12 500	14790	1854	80	52,67	0,75	70,23	75,00	110	94,62	35,00	28
Ventilateur aspiration N°2	RBO 923	1,5	175 000	21	12 500	14790	1854	80	52,67	0,75	70,23	75,00	90	92,36	15,00	12
Ventilateur reprise N°1	RBO 926	1,5	175 000	21	12 500	17000	1250	33	32,00	0,75	42,67	45,00	75	55,97	30,00	24
Ventilateur reprise N°2	HF 238	1,5	175 000	21	15 000	17000	1150	38	39,00	0,75	52,00	55,00	75	67,11	20,00	16
Ventilateur nettoyeur fibre N°1	KGM D50	6	49 000	21	14 000											
Ventilateur nettoyeur fibre N°2	axial 24"	6	49 000	21	14 000											
Ventilateur nettoyeur fibre N°3	axial 24"	6	49 000	21	14 000											
Ventilateur déchet LC	HF1910															
Ventilateur condenseur général	BC402 M1	6	147 000	21	42 000	42500	1516	35	56,12	0,75	74,83	75,00	90	76,05	15,00	12
Ventilateur déchet Feeder	HF1910															
ventuated decret recuer	111 1310															
Ventilateur trop plein	HF196	1,5	105 000	20	5 250	10000	1550	30	18,50	0,75	24,67	30,00	30	24,28	0,00	0
															115,00	92,00

4.1.2.3. Evaluation de l'énergie (E_{aéro}) qui aurait pu être économisée durant la campagne 2012-2013

Au cours de cette campagne, l'usine a fonctionné pendant 2544,6 heures (temps de marche du condenseur général). Connaissant la puissance économisée et le temps de fonctionnement de l'usine, nous avons déduit en appliquant l'équation (1) $E_{a\acute{e}ro} = 92 * 2544,6 = 234104$ soit une économie d'énergie $E_{a\acute{e}ro} = 234 \ 104 \ kWh$ que nous aurions pu faire durant la campagne 2012-2013.

- 4.1.2.4. Evaluation de l'économie financière potentielle (C_{aéro}) qui aurait pu durant la campagne 2012-2013
 - L'annexe N° donne le coût moyen du kilowattheure qui est C_{kWh}=106,59 FCFA/kWh
 - En appliquant l'équation (2) on a : $C_{a\acute{e}ro} = 106,59 * 234104 = 24953145,36$ d'où $\underline{C_{a\acute{e}ro}} = 24953146$ FCA
- 4.1.2.5. Evaluation de l'économie financière en engrangée (C_{aéro-ps}) du fait de la réduction de la puissance souscrite
 - Le coût de la puissance souscrite (C_{ps}) est 64 387 FCFA/kW/an
 - Le nombre de mois de la campagne 2012-2013 (N_{mois}) est six (6)
 - Aussi, connaissant l'économie de puissance qui est 92 kW et le coût de la puissance souscrite, nous pouvons déduire de l'équation (3) que :

$$C_{a\acute{e}ro-ps} = \frac{64\ 387*92*6}{12} = 2\ 961\ 802$$
 d'où on a : Caéro-ps = **2 961 802 FCFA**

4.1.2.6. Evaluation de l'économie financière totale (C_{Taéro}) que nous aurions pu engrangée durant la campagne 2012-2013

Nous avons déterminé ($C_{Ta\acute{e}ro}$) en appliquant l'équation (4), nous avons donc : $C_{Ta\acute{e}ro}=24953146+2961802=27914948$ soit $C_{Ta\acute{e}ro}$ =27 914 948 FCFA

4.2. Etude de l'air comprimé

4.2.1. Etude de l'installation existante

Lors de l'étude, l'air ambiant était à une température de 33,7°C et avait une hygrométrie de 42%. Aussi, nous avons évalué l'altitude du site à environ 300m.

M2GEER Ousséni DIAWARA PROMOTION 2011-2012

Nous avons effectué les calculs dans les conditions de la norme ISO2533 (pression atmosphérique P_{atm}=101325 Pa et la température =15°C soit 288,15°K). Cela nous a permis de déterminer, aux pressions de 8bars et 5bars, en normal mètre cube (Nm3) le volume correspondant à un mètre cube (1m3). Nous avons donc obtenu pour :

- o 8bars un volume de 7,3935 Nm3
- o 5bars un volume de 4.6132 Nm3

Le circuit d'air comprimé de l'usine dispose de deux (02) ballons de 500 litres chacun. Soit une réserve totale d'un mètre cube (1m3).

- 4.2.1.1. Détermination du débit d'air de fuites, du débit d'air utilisé par les humidificateurs, du débit d'air utilisé par les autres machines de l'usine et du débit du compresseur ainsi que le calcul du taux de fuite
 - Nous avons calculé la masse d'air déplacée lorsque le réservoir passe de la pression de 8bars à 5bars avec l'équation (6) et nous avons obtenu :

$$m_{if} = \frac{101325*(7,3935-4,132)*28,96}{8,31447*288,15} = 3406g \text{ Soit } \underline{m_{if}} = 3,406 \text{ kg}$$

- Pour le débit du compresseur, nous avons calculé la masse d'air déplacée lors du remplissage du réservoir de 0 bars à 8 bars avec l'équation (6) et nous avons obtenu : $m_{if} = \frac{101325*(7,3935-0)*28,96}{8.31447*288.15} = 9056g$ soit $\underline{m_{if}} = 9,056 \text{ kg}$
- Nous avons ensuite déterminé les différents débits en appliquant les équations (7) et
 (8), et nous les avons récapitulés dans le tableau N°5 ci-dessous.

<u>Tableau N°5:</u> Récapitulatif des débits de fuites, d'utilisation des humidificateurs, d'utilisation de l'usine et du compresseur

Désignation	Volume ballons (m3)	temps (s)	Press essai Début		masse d'air déplacée	Débit massique	Masse volumique	Débit volumique
E that the transfer			Debut	FIN	(kg)	(kg/s)	(kg/m3)	(m3/s)
Fuites (usine et humidificateurs à l'arrêt)	1	442	8	5	3,406	0,00771	1,22570	0,00629
utilisation des humidificateurs uniquement	1	414	8	5	3,406	0,00823	1,22570	0,00671
Utilisation usine et humidificateurs en marche avec les fuites	1	172	8	5	3,406	0,01980	1,22570	0,01616
débit du compresseur	1	244	0	8	9,056	0,03711	1,22570	0,03028
Utilisation véritable des autres machines de l'usine	1							0,00316

- Nous avons déterminé un taux de fuites de 38,91%
- 4.2.1.2. Le calcul du taux de charge, celui de la marche à vide et le nombre de cycle de régulation
 - Le taux de charge = $\frac{temps de charge}{temps total de marche} = \frac{4789}{7200} = 66,51\%$
 - Le taux de marche à vide = $\frac{\text{temps de marche à vide}}{\text{temps total de marche}} = \frac{2411}{7200} = 33,49\%$
 - Le nombre de cycle à l'heure dénombré est huit (08)
- 4.2.1.3. L'énergie consommée par le compresseur en une heure de fonctionnement
 - L'analyseur de réseau a enregistré en deux (2) heures une consommation d'énergie de 19175,14 Wh, en remplaçant donc cette valeur dans l'équation (9) on a : $E_{comp} = \frac{19175,14}{2} = 9587,57 \quad \text{soit une énergie consommée à l'heure de fonctionnement } \underline{E_{comp}} = 9,59 \text{ KWh}$
 - En une heure la quantité totale d'air consommée = débit volumique d'utilation * 3600 soit une quantité d'air de 68,22 Nm3.
 - La consommation spécifique = $\frac{l'$ énergie consommée en une heure}{quantité totale d'airconsommée en une heure} = $\frac{9,59}{68,22}$ Soit une consommation spécifique égale à **0,141 kWh/Nm3**

4.2.2. Etude d'amélioration de l'installation

4.2.2.1. Détermination des besoins en air comprimé de l'usine

En remplaçant les débits d'utilisation des humidificateurs (Q_H) et celui utilisé par les autres machines de l'usine (Q_{AU}) dans l'équation (10) on obtient le débit réel dont a besoin l'usine (Q_{ru})

$$Q_{ru} = 1,05 * (0,00671 + 0,00316) = 0,01036$$
 d'où on a: $Q_{ru} = 0,01036$ m3/s

- 4.2.2.2. Dimensionnement du réservoir d'air comprimé
 - En nous réfèrent à l'équation (11) on a: $V_{15} = 0.01036 * 15 * 60 = 9.33 Nm3$
 - La quantité d'air fournie par un réservoir d'un mètre cube de la pression de 8bars à 5bars est donnée par l'équation (12) : $V_{if} = \frac{3,406}{1,2257} = 2,78 \text{ Nm}3$
 - L'équation (13) nous donne le volume (V_{RES}) du réservoir. On a : $V_{RES} = \frac{9,33}{2,78} = 3,36$ soit un volume de réservoir $V_{RES} = 3,5 \text{ m}$

- 4.2.2.3. Détermination du temps de remplissage (t_{remp}) du nouveau réservoir et du temps de marche à vide (t_{vide}) du compresseur
 - Pour la détermination du temps de remplissage nous avons calculé d'abord le débit d'air (Q_{remp}) de remplissage avec l'équation (**14**) ce qui nous donne : $Q_{remp} = 0.03028 0.01036 = 0.01992$ soit un débit $Q_{remp} = 0.01992$ m3/s.
 - Ensuite nous avons déterminé avec l'équation (15) le temps de remplissage du nouveau réservoir de 5 bars à 8 bars (t_{remp}) et cela nous donne $t_{remp} = \frac{9,33}{0,01992} = 468,37$ soit un temps de remplissage $\underline{t_{remp}} = 469 \text{ s}$
 - Pour le temps de marche à vide (t_{vide}), nous avons choisi de régler le temporisateur à deux minutes (2mn), afin de réduire la consommation due à la marche à vide. Cela nous donne un temps t_{vide}=120 s
- 4.2.2.4. Détermination du nombre de cycle de régulation (C_r) et de la puissance moyenne du compresseur en marche en charge (P_{chg}) et à vide (P_{vide})
 - En considérant le temps de remplissage, celui de l'autonomie du réservoir et en appliquant l'équation (16) on a :

$$C_r = \frac{3600}{((15*60)+469)} = 2,63$$
 Soit un cycle de régulation $\underline{C_r} = 2,63$

- A partir de l'enregistrement de l'analyseur de réseau, nous avons obtenu les puissances moyennes suivantes :
 - ✓ $P_{cha} = 13\ 266,18\ w$ (compresseur en charge)
 - ✓ $P_{vide} = 4383,30 w$ (compresseur en marche à vide)
- 4.2.2.5. Détermination de l'énergie théorique (E_{th}) consommée en une heure par le compresseur et la consommation spécifique
 - Nous avons déterminé l'énergie consommée en charge (E_{chg}) avec l'équation (17) ce qui nous a donné : $E_{chg} = 13266,18 * 0,1303 * 2,63 = 4546,17$ soit une énergie consommée en charge en une heure de fonctionnement du compresseur, $E_{chg} = 4546,17$ Wh

- Nous avons déterminé l'énergie consommée lors de la marche à vide (E_{vide}) avec l'équation (18) ce qui nous donne : E_{vide} = 4383,30 * 0,0333 * 2,63 = 384,27 soit une énergie consommée lors de la marche à vide en une heure de fonctionnement du compresseur, E_{vide}=384,27 Wh.
- En appliquant l'équation (19) nous avons déterminé l'énergie théorique consommée en une heure par le compresseur ce qui donne : $E_{th} = 4546,17 + 384,27 = 4930,44$. D'où on a l'énergie théorique consommée en une heure $E_{th} = 4,93$ kWh.
- la consommation spécifique = $\frac{4,93}{0,01036*3600}$ = 0,13219 kWh/Nm3

4.2.2.6. Economie d'énergie

- Nous avons d'abord déterminé l'économie d'énergie en une heure de fonctionnement du compresseur avec l'équation (20) ce qui nous donne : $E_{\text{éco}} = 9,59 4,93 = 4,66$ soit à l'heure une économie potentielle d'énergie $\underline{E}_{\text{éco}} = 4,66 \text{ kWh}$
- Le temps de marche de l'usine durant la campagne 2012-2013 est $\underline{t_{usine}} = 2544,6 \text{ h}$
- L'économie d'énergie que nous aurions pu économiser durant la campagne précédente s'obtient en appliquant l'équation (21). On a donc $E_{gagnée} = 4,66 * 2544,6 = 11857,84$ soit une économie potentielle totale d'énergie $E_{gagnée} = 11857,84$ kWh
- 4.2.2.7. Evaluation de l'économie financière (C_{comp}) que nous aurions pu engranger durant la campagne 2012-2013

Nous avons déterminé l'économie (C_{comp}) à l'aide de l'équation (22) : $C_{comp} = 11857,84 * 106,59 = 1263928$ d'où on a $C_{comp} = 1$ 263 928 FCFA

4.3. Etude de la facturation d'électricité

4.3.1. Facturation réelle d'électricité

- Le tableau N°6 ci-dessous récapitule les montants des factures émises, des factures réelles qu'aurait due émettre la SONABEL
- Les annexes N°20 à 28 donnent les informations sur les bases des calculs et les détails des factures.

4.3.2. Optimisation des factures d'électricité de la campagne 2012-2013

Choix de la puissance souscrite

L'analyseur de réseau CA 8535 nous a permis d'obtenir pour l'usine HOUNDE 2 une puissance moyenne de 916,76 kW. Par ailleurs, pour l'usine HOUNDE 1, nous avons obtenu par calcul, à partir des relevés journaliers d'intensité des moteurs, une moyenne de puissance égale à 660,10 kW.

En faisant la somme des moyennes des puissances des deux (02) usines, nous obtenons une puissance totale de 1576,76 kW. En admettant un taux de dépassement de puissance égal à 2%, nous choisissons une puissance de 1545 kW à laquelle SOFITEX devra souscrire pour ces usines de HOUNDE durant la campagne d'égrenage.

Choix du facteur de puissance

Nous avons choisi un facteur de puissance égale à 0,99 pour bénéficier d'une bonification 1+m= 0,943. Les **annexes** N°21 à N°27 donnent les détails de l'optimisation des factures.

• Economies potentielles par facture

Pour obtenir l'économie potentielle sur une facture, nous avons fait la différence entre le montant optimisé et le montant normalement dû.

• L'économie potentielle effectuée à l'usine HOUNDE 2 suite à l'optimisation des factures

L'annexe N° récapitule l'énergie active consommée par l'usine HOUNDE 2 et celle comptée par le compteur SONABEL durant la campagne 2012-2013. Elle donne également la part de l'usine HOUNDE 2 dans la facture générale. Nous avons pu observer que l'énergie consommée par l'usine représente 58,67% de la consommation générale. Par conséquent, nous pouvons déduire que l'économie potentielle, à l'usine HOUNDE 2, suite à l'optimisation des factures est au moins 58,67% de l'économie potentielle générale. Ce qui nous donne un montant de dixsept millions trois cent quarante-huit mille sept cent vingt-huit francs CFA 17 348 728 FCFA.

25

<u>Tableau N°6: Récapitulatif des économies potentielles par</u> factures

Mois	Montant facture émise	Montant normalement dû	Montant après Optimisation	Economies potentielles	
déc-12	12 793 545	14 971 872	14 225 970	745 902 FCFA	
janv-13	71 258 600	78 065 439	73 213 485	4 851 953 FCFA	
févr-13	87 822 858	88 846 547	83 385 265	5 461 282 FCFA	
mars-13	78 829 547	79 957 666	74 950 387	5 007 279 FCFA	
avr-13	76 743 708	77 872 768	73 492 482	4 380 287 FCFA	
mai-13	51 532 588	52 646 268	49 530 588	3 115 680 FCFA	
juin-13	32 845 708	35 265 523	29 257 891	6 007 632 FCFA	
TOTAL	411 826 553	427 626 082	398 056 067	29 570 015 FCFA	

4.3.3. Compensation d'énergie réactive

- 4.3.3.1. Compensations d'énergie réactive de l'usine HOUNDE 2
 - L'enregistrement de l'analyseur de réseau nous a donné une puissance moyenne active de l'usine de 916,76 kW et un facteur de puissance de 0,89
 - L'objectif de facteur de puissance que nous nous sommes fixé est 0,99
 - En appliquant l'équation (23) on a la puissance des batteries $Q_{bat} = 916.76 * (\tan(\arccos(0.9) \tan(\arccos(0.99))) = 339.04 \, kVar$
 - En prenant une puissance de 50 kVar par batterie de condensateurs, il faut sept (07) batteries.
 - Etant donné qu'il y a déjà des compensations locales pour les gros moteurs, nous allons procéder à une compensation globale avec un régulateur VARMETRIQUE ALPTEC 7. Après paramétrage du facteur de puissance, le régulateur met en marche progressivement les batteries de condensateurs jusqu'à obtenir la valeur du cos φ souhaité.

26

4.3.3.2. coût d'investissement pour la compensation

Tableau N°7: Evaluation de l'investissement de la compensation

Item	Désignation	quantité	prix unitaire	total (FCFA)
1	Batteries de condensateurs 50 kVar 400 V TRI ALPIVAR	7	365 855	2 560 985
2	Contacteur LC1	7	195 500	1 368 500
3	Sect Fuser bloc 3*125A	7	122 784	859 488
4	Serticosses 25mm2	28	300	8 400
5	Fil souple 35mm2	42	1 658	69 636
6	Régulateur Varmétrique	1	1 116 460	1 116 460
	5 983 469			

4.4. Etude de la gestion de la marche à vide de l'usine

4.4.1. Les causes de la marche à vide

Les causes de la marche à vide sont diverses. On peut observer la marche à vide:

- Lors d'une panne ou d'une incidence de marche ne nécessitant pas l'arrêt total de l'usine.
- Lors d'une mauvaise alimentation de l'usine en coton graine
- Lors d'un retard dans l'approvisionnement de l'usine en coton graine
- Lors du démarrage de l'usine
- Lors de l'arrêt volontaire de l'usine
- Lors de l'égrenage de la semence
- **4.4.2.** Le taux de marche à vide (τ_{mv})

En remplaçant dans l'équation (24) les temps de marche des égreneuses et celui du condenseur général, on obtient : $\tau_{mv} = 1 - \frac{2441 + 2384,7 + 2146,6}{2544,6*3} = 8,67\%$ d'où $\underline{\tau}_{mv} = 8,67\%$

- **4.4.3.** La consommation d'énergie due aux marches à vide durant la campagne 2012-2013
 - En appliquant l'équation (25) on a le temps (t_{mv}) de marche à vide $t_{mv} = 0.0867 * 2544,6 = 220,62 d'où <math>\underline{t_{mv}} = 220,62 \underline{h}$
- **4.4.4.** Le tableau N°1 nous la puissance moyenne de l'usine lorsqu'elle est à vide on a donc P_{mv} =599,267 kW. En appliquant l'équation (**26**) l'énergie consommée (E_{mv}) par la marche à vide durant la campagne 2012-2013 est : E_{mv} = 220,62 * 599,267 = 132208,38 d'où l'énergie consommée est E_{mv} =132 208,38 kWh
- **4.4.5.** Le coût (C_{mv}) de la marche à vide durant la campagne 2012-2013

- **L'annexe N°21** donne un coût moyen C_{kWh}=106,59 FCFA/kWh pour cette campagne.
- En appliquant l'équation (27) on a : $C_{mv} = 132208,38 * 106,59 = 14092091,21$ d'où le coût de la marche à vide est $\underline{C}_{mv} = 14092092$ FCFA
- **4.4.6.** L'économie potentielle ($C_{\text{écov}}$) en tolérant un taux de marche à vide de 5%
 - Le taux de marche à vide sur lequel l'économie est effectuée est égal à 8,67%-5% soit un taux de 3,67%
 - En appliquant l'équation (28) on a : $C_{\acute{e}cov} = 0.0367 * 2544.6 * 599.267 * 106.59 = 5965164.33$ on en déduit que l'économie potentielle due aux marches vides $C_{\acute{e}cov} = 5965165$ FCFA

V. DISCUTION ET ANALYSE

5.1. Etude des circuits aéraulique

L'aéraulique dans une usine d'égrenage, représente plus de 50% de la consommation d'énergie lorsque l'usine égrène du coton, et plus de 70% lorsque l'usine marche à vide. Elle mérite donc une attention particulière lors d'études d'économie d'énergie.

Lorsque nous analysons le tableau N°3 nous constatons que les circuits d'aspirations et de reprises connaissent des taux de fuites importants. Malgré ces taux importants de fuites, l'usine arrive à respecter le tonnage moyen jour à égrener. Il se dégage deux possibilités qui sont : soit les vitesses de rotation des ventilateurs sont très élevées ce qui expliquerait leurs débits élevés, soit les ventilateurs sont surdimensionnés.

Après avoir déterminé des débits préconisés (voir Tableau N°4) et lorsque nous avons réduit les vitesses de rotation des ventilateurs pour obtenir les débits souhaités, nous avons constaté que nous atteignons la limite de la vitesse admissible par les ventilateurs, sans pour autant obtenir les débits préconisés. Nous nous sommes rendu compte par conséquent que les ventilateurs étaient surdimensionnés. Par ailleurs, nous avons constaté que les rendements aéraulique des ventilateurs sont très bas aux vitesses de rotation à partir desquelles nous avons calculé les économies potentielles.

Cependant, dans notre étude nous n'avons pas voulu redimensionner les ventilateurs car cela aurait représenté un coût d'investissement élevé. Nous avons, par contre, voulu estimer l'économie potentielle que nous ferions si nous réduisions juste les débits en diminuant les vitesses de rotations des ventilateurs. Cela nous a permis d'évaluer une

économie de *vingt-sept millions neuf cent quatorze mille neuf cent quarante-huit francs CFA* (27 914 948 FCFA) qui aurait pu être engrangé durant la campagne 2012-2013.

Au regard, du rendement bas des ventilateurs aux vitesses de rotation qui ont servies aux calculs d'économie, nous pensons qu'il y a encore de la marge pour la réduction de l'énergie consommée par l'aéraulique pour peu que nous redimensionnions la tuyauterie et les ventilateurs et que nous choisissons des ventilateurs à haut rendement.

D'autres parts, les fuites importantes sur les différents circuits nous ont renseignées sur l'état général de la tuyauterie qui est défectueuse. Avant donc, toutes modifications il faudrait remédier d'abord aux fuites.

5.2. Etude de l'air comprimé

L'étude de l'installation existante a montré qu'il y avait un taux de fuites important (soit 38,91%) dans les circuits d'air comprimé. Au cours de cette étude nous avons pu constater, avec l'enregistrement de l'analyseur de réseau, que le facteur de puissance était très faible (soit environ 0,3) lorsque le compresseur était en marche à vide.

Lors de l'étude nous avons voulu, tout en gardant le même compresseur ROLLAIR 20T, arriver à faire des économies en réduisant les fuites à un taux de 5% et en redimensionnant le réservoir de sorte à avoir un nombre de cycle réduit. Nous avons aussi, reconfiguré, sur la platine de commande électronique MCI01, le temps de marche à vide à deux minutes (2mn) de sorte que le compresseur s'arrête à chaque fois que le réservoir est plein, puisqu'il a une autonomie de quinze minutes (15mn). Cela permet d'éviter une longue marche à vide avec un mauvais facteur de puissance.

Nous constatons que le débit d'air utilisé par les humidificateurs constituent plus de la moitié des besoins en air comprimé de l'usine. Les humidificateurs sont placés près des réservoirs, ce qui réduit les pertes de charge ainsi que les risques de fuites. Par contre le réseau de distribution d'air à l'intérieur de l'usine est assez complexe et les points d'utilisations sont distants les uns des autres, ce qui favorise les risques de fuites et les chutes de pressions.

Malgré les efforts pour réduire la consommation spécifique, nous ne sommes pas parvenus à atteindre la valeur autorisée par la norme qui est de 0,12 kWh/Nm3. Cela indique que nous devrions non seulement redimensionner le réseau de distribution mais aussi remplacer le compresseur par un modèle moins énergétivore, qui sera munie sans doute de variateur de vitesse pour une meilleure régulation en fonction des besoins.

Cependant, l'étude nous a permis d'évaluer une économie d'un million deux cent soixante-trois mille neuf cent vingt-huit francs CFA (1 263 928 FCFA) que nous aurions

pu engranger durant la campagne 2012-2013 si nous avions réduit les fuites à un taux de 5% et augmenté la capacité de stockage à 3,5 m3. Par ailleurs, pour un bon suivi des fuites en campagne, il faudrait procéder au moins une fois par semaine à un test de fuites qui consiste à remplir dans un premiers temps le réservoir d'air (usine à l'arrêt) ensuite chronométré la décharge du ballon de la pression de 8 bars à 5 bars. Puis déterminer le débit de fuite. Aussi, pendant cette opération, des agents doivent être mis sur les différents circuits à l'affut de sifflement indiquant des fuites.

5.3. Etude de la facturation d'électricité

Les usines de la SOFITEX HOUNDE disposent d'un seul compteur d'énergie MT de la SONABEL.

Pour évaluer et optimiser la consommation d'énergie de l'usine HOUNDE 2, nous avons étudié les factures dans leurs globalités, puis nous avons déduit la part de l'usine HOUNDE 2 à l'aide des relevés décadaires et mensuels d'énergie effectués au cours de la campagne 2012-2013.

Au cours de l'optimisation des factures, nous avons souscrit à une puissance de 1545 kW en tenant compte de la puissance moyenne totale des deux usines qui est supérieur de 2% à cette valeur. Ensuite, nous avons choisis un facteur de puissance tel que la bonification soit le plus proche du maximum autorisé.

En ce qui concerne la compensation d'énergie réactive, nous avons étudié seulement le cas de HOUNDE 2, et nous avons suggéré l'utilisation d'un régulateur var métrique ALPTEC7 pour la gestion des batteries de condensateurs dont la mise en marche est fonction du facteur de puissance que nous souhaitions obtenir.

Aux termes de l'étude de l'optimisation de la facture d'électricité de l'usine HOUNDE 2, nous avons évalué un montant de dix-sept millions trois cent quarante-huit mille sept cent vingt-huit *francs CFA* (17 348 728 FCFA) que nous aurions pu engranger durant la campagne 2012-2013. Par ailleurs, nous pensons que d'énormes économies peuvent être effectuées si la demande de la diminution de la puissance souscrite est faite au bon moment. Aussi, il faut noter que notre étude s'est essentiellement portée sur la facturation en campagne; cependant après les analyses des factures des mois d'intercampagne, une puissance souscrite de 80 kW semble adéquate pour cette période.

5.4. Etude de la gestion de la marche à vide de l'usine

On peut être tenté de dire que l'usine est en marche à vide lorsque toutes les machines sont en marche et qu'aucune des égreneuses n'égrène du coton. Dans notre cas, nous disons que l'usine est en marche à vide lorsque l'une au moins des égreneuses n'égrène pas du coton pendant que l'usine est totalement ou partiellement en marche. Cette dernière définition de la marche à vide permet de prendre en compte les trous d'alimentation des égreneuses et les arrêts de ligne d'égrenage.

Lors de notre étude de la marche à vide, nous avons toléré un taux de 5% compte tenu du fait que certaines marches à vide sont inévitables. Nous avons déterminé un taux de marche à vide total de l'usine qui est 8,67% et lorsque nous déduisons les 5% tolérés, nous obtenons un taux de 3,67% supplémentaire. Ce taux de 3,67% représente une somme de cinq millions neuf cent soixante-cinq mille cent soixante-cinq FCFA (5 965 165 FCFA) que nous aurions pu engranger durant la campagne 2012-2013 si nous avions pu gérer au mieux la marche à vide de l'usine. Ce montant vient prouver que la marche à vide de l'usine contribue à augmenter la facture énergétique. Par ailleurs, étant donné que lors de la marche à vide de l'usine les ventilateurs représentent plus de 70% de la consommation d'énergie ; il faudrait trouver un moyen de diminuer au maximum l'appel de courant par les ventilateurs pendant cette phase. Nous pouvons par exemple placer au niveau de l'aspiration, des ventilateurs, des registres dont la fermeture et l'ouverture sont commandées par des vérins pneumatiques. Ensuite, nous asservissons la fermeture automatique de ces registres à la sortie des poitrinières* de toutes les égreneuses. Les ouvertures des registres pourront être asservis à l'entrée d'une au moins des poitrinières. Nous pensons que ce dispositif pourra permettre d'engranger des économies énormes surtout lors des bourrages et de petites pannes de machines principales ou lors de retard d'approvisionnement par le camion de cours ou lors d'égrenage de semence ou de changement de variété de semence. Pour ce dernier cas, une bonne organisation peut aider à réduire le temps de nettoyage de l'usine entre l'égrenage de semence de variétés différentes. Pour cela il faudrait par exemple, commencer l'égrenage de la semence de la plus jeune multiplication du CGM vers la plus grande multiplication de la conventionnelle.

*poitrinières : partie mobile de l'égreneuse dont l'entrée permet l'égrenage du coton et la sortie l'arrêt de l'égrenage bien que l'égreneuse soit en marche.

VI. CONCLUSION

En somme, l'étude a nécessité l'utilisation de plusieurs instruments de mesures qui ont permis d'obtenir des résultats assez fiables.

Aussi, au cours de cette étude, nous nous sommes penchés particulièrement sur les circuits aérauliques, l'air comprimé, les factures d'électricité et la marche à vide de l'usine en respectant une méthodologie que nous avons pris le soin de détaillé afin de facilité sa reproduction sur l'ensemble des usines de l'entreprise.

L'étude des circuits aérauliques, nous a révélé qu'il y avait d'énormes fuites principalement sur les circuits de déchargements et de reprises. D'autres parts, nous avons constaté que les ventilateurs de ces circuits étaient surdimensionnés. Cependant en agissant sur les vitesses de rotation des ventilateurs, nous sommes parvenus à réduire la consommation d'énergie des ventilateurs et par conséquent nous avons dégagé une économie financière, de vingt-sept millions neuf cent quatorze mille neuf cent quarante-huit francs CFA (27 914 948 FCFA), que nous aurions pu faire durant la campagne 2012-2013.

L'étude de l'air comprimé, quant à elle, a révélée qu'à l'état actuel, malgré l'augmentation du réservoir et la réduction des fuites, l'installation restait toujours onéreuse par rapport à la consommation spécifique, de 0,12kWh/Nm3, préconisée par la norme. Afin de réduire d'avantage la consommation d'énergie liée à l'air comprimé, il faudrait non seulement remplacer le compresseur par un nouveau moins énergétivore mais également repenser et redimensionner toute l'installation. Cependant, nous enregistrons une légère économie financière, d'un million deux cent soixante-trois mille neuf cent vingt-huit francs CFA (1 263 928 FCFA) que nous aurions pu engranger durant la campagne 2012-2013.

En ce qui concerne l'optimisation des factures d'électricité, nous avons étudié les factures dans leurs globalités, puis nous avons ramené cette étude à l'usine HOUNDE 2 en déterminant la part de l'usine dans la facture générale. Cela a été rendu possible grâce aux relevés d'énergie décadaires et mensuels effectués durant la campagne 2012-2013. Au cours de l'étude, il est ressorti que le facteur de puissance de l'usine ne permettait pas d'obtenir une bonification sur la facturation, nous avons donc déterminé la puissance de batteries de condensateurs à installer et à gérer à l'aide d'un régulateur var métrique afin de bénéficier d'une bonne minoration de la facture. Aux termes de l'étude de l'optimisation de la facture d'électricité de l'usine HOUNDE 2, nous avons évalué un montant de dix-sept millions trois

cent quarante-huit mille sept cent vingt-huit *francs CFA* (17 348 728 FCFA) que nous aurions pu engranger durant la campagne 2012-2013.

La gestion de la marche à vide exige, aux équipes de production, une bonne coordination entre les postes de travail et une réelle maitrise des temps d'intervention sur les pannes et les incidences de marche. Aussi, la marche à vide, étant le fait que l'une au moins des poitrinières des égreneuses de l'usine ne soit pas embrayée, prend en compte les trous d'alimentations des égreneuses et des arrêts de ligne d'égrenage. L'étude de la marche à vide a révélé que nous pouvons réduire la consommation d'électricité en travaillant à améliorer le coefficient d'exploitation des machines qui est le rapport du temps de marche du condenseur général (machine principale) et celui des égreneuses de l'usine. Aux termes de l'étude de la gestion de la marche à vide, nous avons pu évaluer une somme de *cinq millions neuf cent soixante-cinq mille cent soixante-cinq francs CFA* (5 965 165 FCFA) que nous aurions pu engranger durant la campagne 2012-2013.

Aux termes de notre étude, nous avons évalué une économie de cinquante-deux millions quatre cent quatre-vingt-douze mille sept soixante-neuf FCFA (52 492 769 FCFA) que nous aurions pu faire durant la campagne 2012-2013. Nous pensons que le redimensionnement des circuits aérauliques et de l'air comprimé pourront permettre de réduire davantage la facture énergétique. En nous réfèrent au montant total que nous devrions payer à la SONABEL durant la campagne 2012-2013 et la proportion de 58,67%, qui représente la part de l'usine HOUNDE 2 dans la facture générale, nous en déduisons que l'économie que nous aurions pu engranger durant la campagne 2012-2013 représente 20,92% de la consommation de l'usine.

VII. RECOMMANDATIONS ET PERSPECTIVES

Afin de réduire la facture énergétique de l'usine HOUNDE 2 de la SOFITEX, nous recommandons de:

- Remédier aux fuites sur les circuits aérauliques et d'air comprimé.
- Réduire les vitesses de rotation des ventilateurs en remplaçant les poulies réceptrices ou motrices.

- Monter sur l'aspiration, des ventilateurs de déchargements et de reprises, des registres dont l'ouverture et la fermeture sont commandées par des vérins pneumatiques et asservi aux sorties poitrinières des égreneuses.
- Augmenter la capacité de stockage d'air comprimé à 3,5 m3
- Régler le temps de marche à vide sur la platine de commande électronique à 2mn.
- Installer des batteries de condensateurs d'une puissance totale de 350 kvar et les gérer à l'aide d'un régulateur VAREMETRIQUE.
- Initier une rencontre avec la SONABEL dans le but de trouver un accord sur les périodes de souscription de puissance et de réduction de puissance.
- Souscrire à une puissance de 1545 kW en campagne pour les deux usines de HOUNDE.
- Souscrire à une puissance de 80 kW en inter-campagne.
- Donner des consignes, de bonne gestion de la marche à vide, aux équipes de production.
- Faire les essais en charge de l'usine dans le mois du démarrage de la campagne pour éviter de souscrire inutilement à une puissance élevée.

En perspective il faudrait prévoir :

- Effectuer une étude de redimensionnement des circuits aéraulique et choisir des ventilateurs à haut rendement.
- Redimensionner le circuit d'air comprimé et choisir un compresseur qui possède un variateur de vitesse.
- Faire l'audit énergétique du système d'humidification qui utilise une quantité énorme de pétrole pour fonctionner.
- Faire l'audit énergétique dans les quatorze (14) autres usines de la SOFITEX.
- Mettre en place un bureau d'étude au niveau central qui va effectuer les études d'économie d'énergie dans toutes les usines, élaborer des normes de consommation, entériner tout projet de modification ou d'amélioration des usines, faire des études qui vises à résoudre les pannes récurrentes et résoudre les problèmes de qualité des produits finis inhérents aux usines.

VIII. BIBLIOGRAPHIE

Ouvrages et Articles

CFDT. Document de formation sur les manutentions dans une usine d'égrenage

J.-C. Mauclerc, Y.aubert, A. Domenach (2007-2008). Guide du technicien en électrotechnique Maitriser les systèmes de conversion d'énergie

LUMMUS Industries, INC. Fans service manuel

P.Dal Zotto, J.-M. Larre, A. Merlet, L. Picau (2000). Mémotech Génie Energétique

Théodore, Wildi (1999). Electrotechnique, 2ème édition

Worthington Creyssensac. Notice d'instruction Compresseur ROLLAIR type 15 (X-XT), 20-25-30 (M-X-MT-XT) 40 5ME-XE-MET-XET)

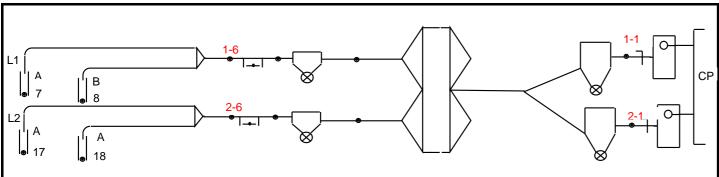
Y. Coulibaly (2009). Cours de thermodynamique classique

Y. Coulibaly (2009). Cours de thermodynamique appliquée 1&2

Sites internet

www.kaezer.com visité le 09 mai 2013

www.tcf.com visité le 03 mai 2013

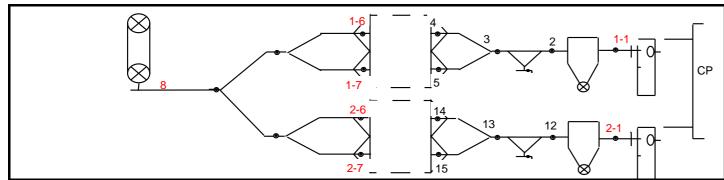

M2GEER Ousséni DIAWARA PROMOTION 2011-2012

IX. ANNEXES

Sommaire des annexes

Annexe N°1	Circuits aérauliques des ventilateurs d'aspiration et de reprise du CG	37
Annexe N°2	Circuits aérauliques du ventilateur du trop-plein et des ventilateurs des LC	38
Annexe N°3	Circuits aérauliques des ventilateurs déchets feeder et LC	39
Annexe N°4	Circuits aérauliques du ventilateur du condenseur général et des humidificateurs	40
Annexe N°5	Données relatives au point 1 du ventilateur aspiration N°1	41
Annexe N°6	Données relatives au point 6 du ventilateur aspiration N°1	42
Annexe N°7	Données relatives au point 1 du ventilateur aspiration N°2	43
Annexe N°8	Données relatives au point 6 du ventilateur aspiration N°2	44
Annexe N°9	Données relative au point 1 du ventilateur reprise N°1	45
Annexe N°10	Données relative au point 6 du ventilateur reprise N°1	46
Annexe N°11	Données relative au point 1 du ventilateur reprise N°2	47
Annexe N°12	Données relative au point 7 du ventilateur reprise N°2	48
Annexe N°13	Caractéristiques du BC 402	49
Annexe N°14	Courbes puissance débit ventilateur HF238	50
Annexe N°15	Courbes débit pression ventilateur HF238	51
Annexe N°16	Courbes puissance débit ventilateur HF196	52
Annexe N°17	Courbes débit pression ventilateur HF196	53
Annexe N°18	Caractéristiques du RBO 923	54
Annexe N°19	Courbes débits pression puissance ventilateur RBO 926	55
Annexe N°20	Grille tarifaire de la SONABEL	56
Annexe N°21	Facture du mois de décembre 2013	57
Annexe N°22	Facture du mois de janvier 2013	58
Annexe N°23	Facture du mois de février 2013	59
Annexe N°24	Facture du mois de mars 2013	60
Annexe N°25	Facture du mois d'avril 2013	61
Annexe N°26	Facture du mois de mai 2013	62
Annexe N°27	Facture du mois de juin 2013	63
Annexe N°28	Consommation d'énergie Houndé 2 et comptage SONABEL Campagne 2012-2013	64
Annexe N°29	Processus d'égrenage	65

Annexe N°1: Circuits aérauliques des ventilateurs d'aspiration et de reprise du coton graine


SOFITEX

Relevé pression en mb

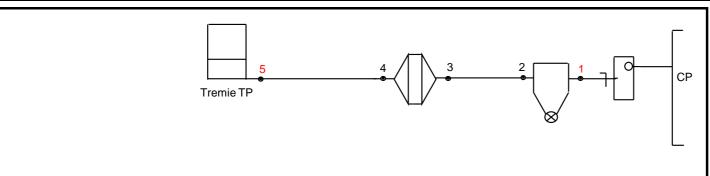
Usine de : HOUNDE II Circuit : Aspiration C.G.

Date:						
type ventil.	ventilateur aspi	ration N°1	RBO 923			
t/mn ventil.				Diamètre t	uyau	
Int.absorbée	point 1-1			59,55	cm	
In moteur	point 1-6			43,95	cm	
prise 1 (mb)						
2	ventilateur aspiration N°2		RBO 923			
3						
4	point 2-1			59,55	cm	
5	point 2-6			43,95	cm	

Enregistrements		
ASP1_1:		
ASP2_1		
ASP1_6		
ASP2_6		

SOFITEX

Relevé pression en mb


Usine de : HOUNDE II Circuit : Reprise C.G.

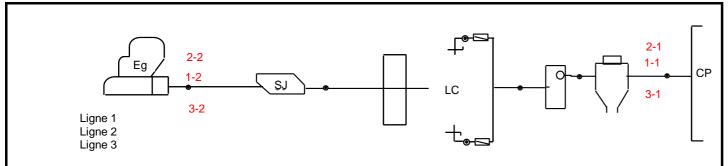
		=		
Date:				
Type V.1&2	ventilateur reprise N°1	HF 238		
In Vent.1&2			Diamètre tuyau	
	point 1-1		66,24 cm	
	point 1-6		41,4 cm	
	point 1-7		41,4 cm	
	ventilateur reprise N°2	RBO 926		
			Diamètre tuyau	
	point 2-1		66,24 cm	
	point 2-6		41,4 cm	
	point 2-7		41,4 cm	
	point 8		85,35 cm	

Enrégistrements

REP1_1:	
REP2_1:	
REP1_6	
REP1_7	
REP2_6	
REP2_7	
REP8:	

Annexe N°2: Circuits aérauliques du ventilateur du trop plein et des ventilateurs des LC

SOFITEX


Relevé pression en mb

Usine de : HOUNDE II Circuit : Trop Plein C.G.

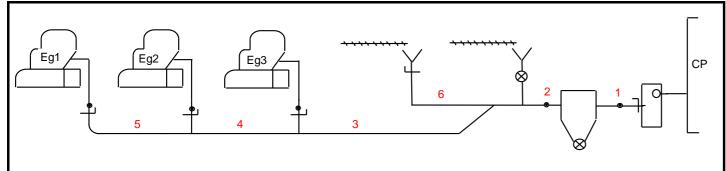
Date:				
type ventil.	ventilateur trop plein	HF 176		
t/mn ventil.			Diamètre tuyau	
Int.absorbée	point 1		49,36 cm	
In moteur	point 5		31,85 cm	

Enrégistrements

TP1
TP5

SOFITEX

Relevé pression en mb


Usine de : HOUNDE II Circuit : Axiaux L.C.

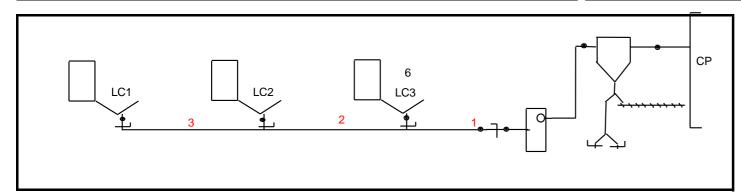
Date:									
type ventil.			ventilateur r	nettoyeur l	N°1 KGM				
D.mot.1/2/3	/	/		-			Diamètre t	uyau	
D.Ven.1/2/3	/	/	point 1-1				61,15	cm	
			point 1-2			238 x	14	cm	
			ventilateur r	nettoyeur l	N°2 axial 24"				
							Diamètre t	uyau	
			point 2-1				61,15	cm	
			point 2-2			238 cmx	14	cm	
			ventilateur r	nettoyeur l	N°3 axial 24"				
							Diamètre t	uyau	
			point 3-1				61,15	cm	
			point 3-2			238 x	14	cm	

Enrégistrements

NETF1-1 NETF2-1 NETF3-1 NETF1-2 NETF2-2 NETF3-2

Annexe N°3: Circuits aérauliques des ventilateurs déchets feeder et LC

SOFITEX


Relevé pression en mb

Usine de : HOUNDE II Circuit : Déchet Feeder

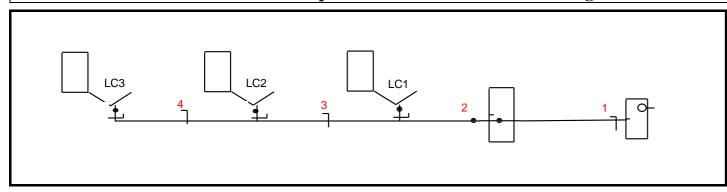
Date:				
type ventil.	ventilateur déchet feede	er HF		
t/mn ventil.			Diamètre ti	ıyau
Int.absorbée	point 1		43,63	cm
In moteur	point 2		43,63	cm
	point 3		34,39	cm
	point 4		28,34	cm
	point 5		20,7	cm
	point 6		21.66	cm

Enrégistrements	
DEF 1	
DEF 2	
DEF 3	

DEF 4 DEF 5 DEF 6

SOFITEX

Relevé pression en mb


Usine de : HOUNDE II Circuit : Déchet L.C.

Date:							
type ventil.	ventilateur déchet nettoyeurs fibre						
t/mn ventil.					Diamètre t	uyau	
Int.absorbée	point 1				48,73	cm	
In moteur	point 2				44,56	cm	
	point 3				33,44	cm	

Enrégistrement:		
	n	-

DLC1
DLC2
DLC3 et DLC33

Annexe N°4: Circuits aérauliques du ventilateur du condenseur général et des humidificateurs

SOFITEX

Relevé pression en mb

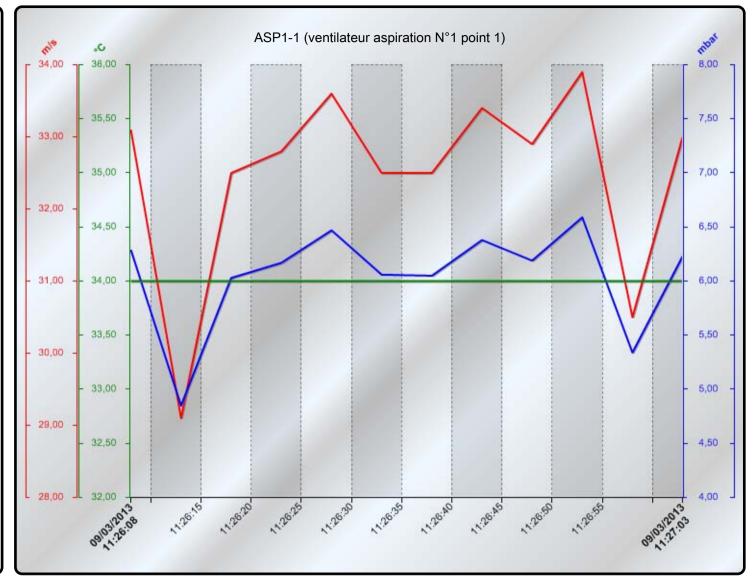
Usine de : HOUNDE II

Circuit :Condenseur général

Date:						
type ventil.	ventilateur c	ondenseur général E				
t/mn ventil.				Diamètre t	uyau	
Int.absorbée	point 1			107	cm	
In moteur	point 2			107	cm	
	point 3			88,22	cm	
prise 1 (mb)	point 4			61,78	cm	

Enrégistrements		
CG1		
CG2		
CG3 CG4		
CG4		

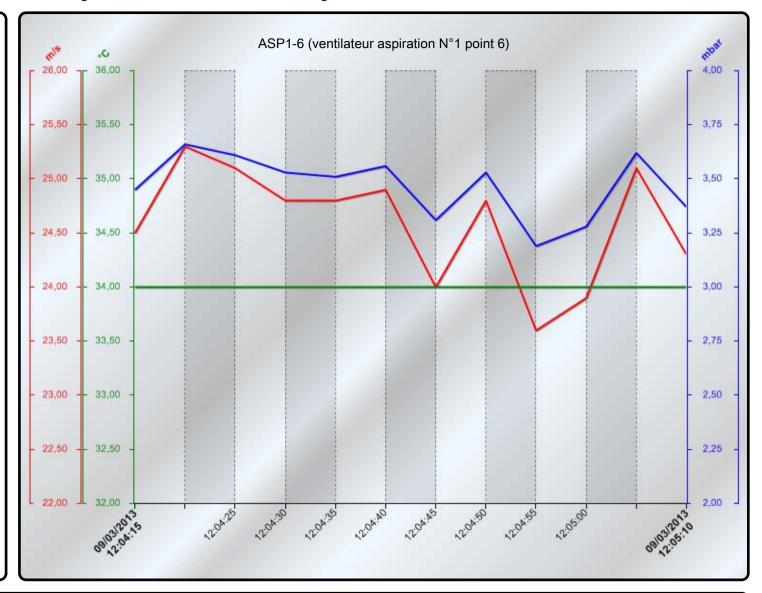
SOFITEX Relevé pression en mb


Usine de : HOUNDE II

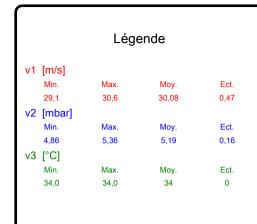
Date:						
type ventil.						
t/mn ventil.	ventilateur l	HCG3				
Int.absorbée				Diamètre t	uyau	
In moteur	point 1			33,12	cm	
prise 1 (mb)	ventilateur	HF				
2				Diamètre t	uyau	
3	point 1			35,03	cm	
4						
5	ventilateur	HFACS				
6				Diamètre t	uyau	
	point 1			30,89	cm	

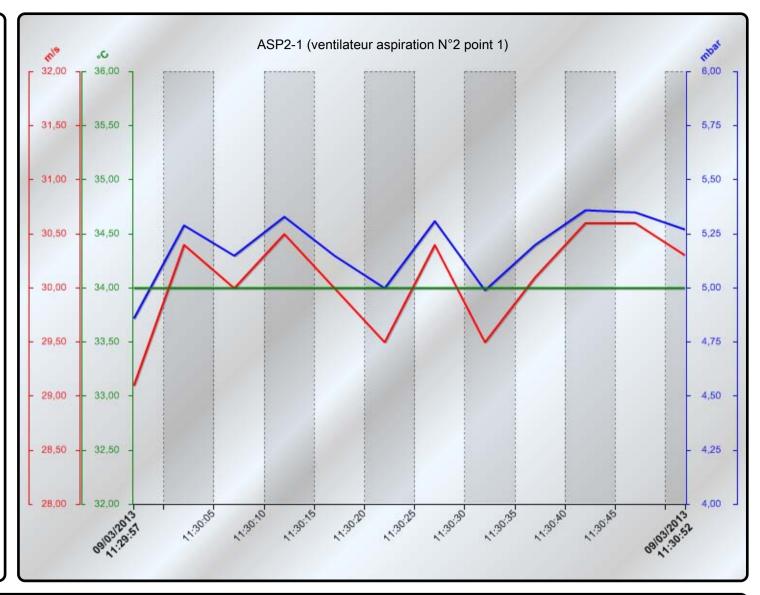
Enrégistrements	
Ventilateur humidaire coton graine	
HCG3	
Ventilateur humidaire fibre	
HF3	
HFACS3	
Blower	
BLOWER	

Annexe N°5: données relatives au point 1 du ventilateur aspiration N°1


	Lég	ende	
v1 [m/s]			
Min.	Max.	Moy.	Ect.
29,1	33,9	32,48	1,3
v2 [mbar]			
Min.	Max.	Moy.	Ect.
4,85	6,59	6,05	0,47
v3 [°C]			
Min.	Max.	Moy.	Ect.
34,0	34,0	34	0

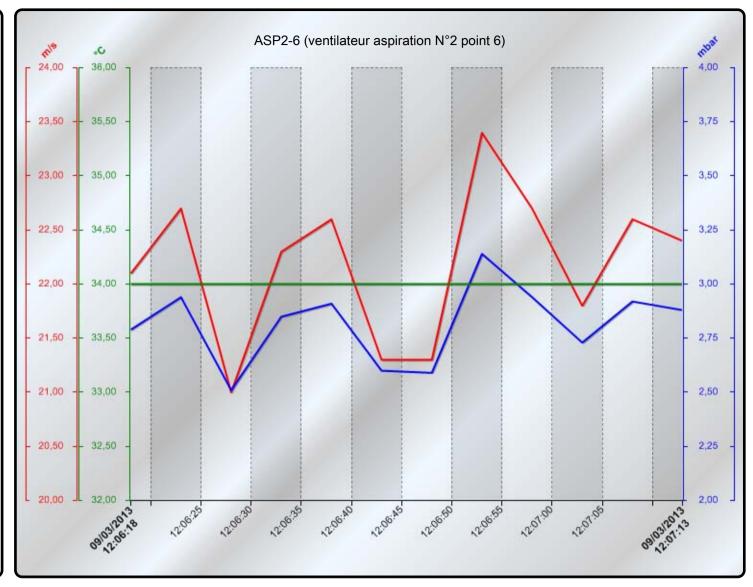
09/05/2013 19:04:15	Appareil : DIAM - 11.09.0957	Bridge (August) (All the same
ASP1-1 (ventilateu	r aspiration N°1 point 1)	DIAMLOG

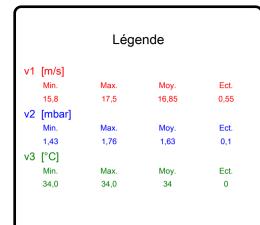

Annexe N°6: données relatives au point 6 du ventilateur aspiration N°1

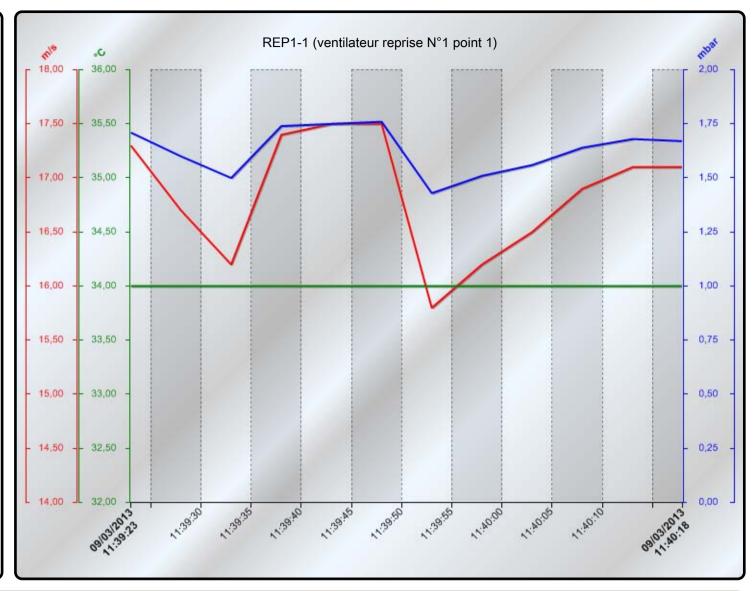

	Lég	ende	
v1 [m/s]			
Min.	Max.	Moy.	Ect.
23,6	25,3	24,59	0,51
v2 [mbar]			
Min.	Max.	Moy.	Ect.
3,19	3,66	3,47	0,14
v3 [°C]			
Min.	Max.	Moy.	Ect.
34,0	34,0	34	0

09/05/2013 19:19:01	Appareil : DIAM - 11.09.0957	En de Augusta (de como	l
ASP1-6 (ventilateu	r aspiration N°1 point 6)	DIAMLOG	

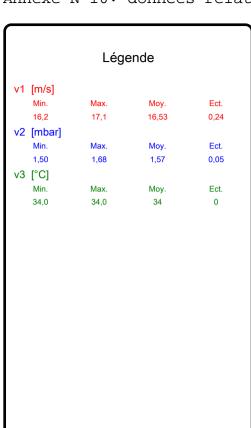
Annexe N°7: données relatives au point 1 du ventilateur aspiration N°2

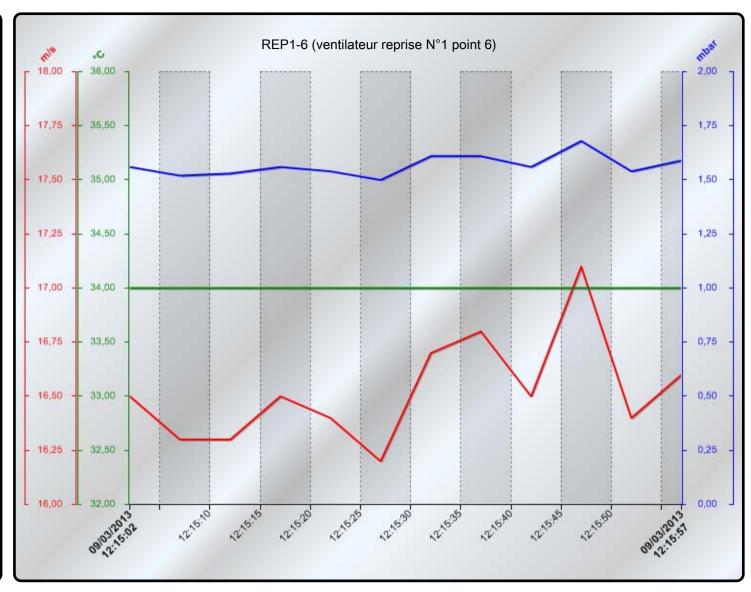



Annexe 8: données relatives au point 6 du ventilateur aspiration N°2

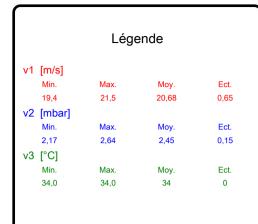

	Lég	ende	
v1 [m/s]			
Min.	Max.	Moy.	Ect.
21,0	23,4	22,18	0,68
v2 [mbar]			
Min.	Max.	Moy.	Ect.
2,51	3,14	2,82	0,17
v3 [°C]			
Min.	Max.	Moy.	Ect.
34,0	34,0	34	0

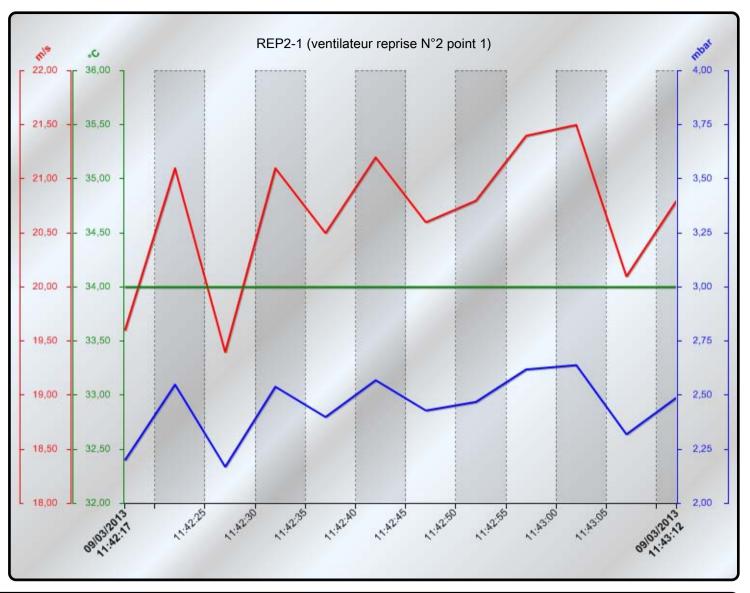
09/05/2013 19:18:18	Appareil : DIAM - 11.09.0957	No de Aspergo agreco
ASP2-6 (ventilateu	r aspiration N°2 point 6)	DIAMLOG


Annexe N°9: données relatives au point 1 du ventilateur reprise N°1

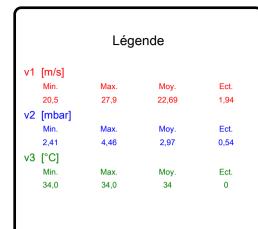


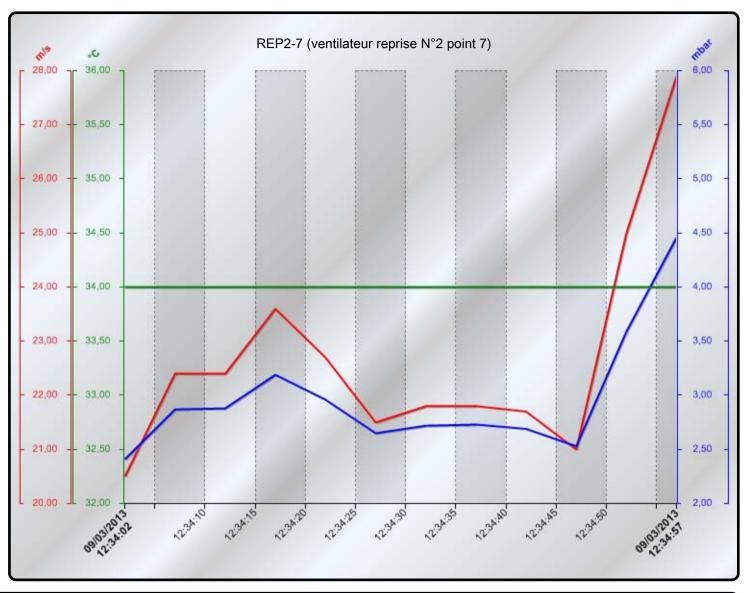
09/05/2013 19:10:52	Appareil : DIAM - 11.09.0957	EVA ASPONICE COMMISSION OF THE PARTY OF THE
REP1-1 (ventilateu	r reprise N°1 point 1)	DIAMLOG


Annexe N°10: données relatives au point N°6 du ventilateur reprise N°1



09/05/2013 19:10:34	Appareil : DIAM - 11.09.0957	Bridge (August) (All the same
REP1-6 (ventilateu	reprise N°1 point 6)	DIAMLOG


Annexe N°11: données relatives au point 1 du ventilateur reprise N°2



09/05/2013 19:09:58	Appareil : DIAM - 11.09.0957	Brown Agents
REP2-1 (ventilate	ur reprise N°2 point 1)	DIAMLOG

Annexe N° 12: données relatives au point 7 du Ventilateur reprise N°2

09/05/2013 19:09:23	Appareil : DIAM - 11.09.0957	ET STATE OF THE ST
REP2-7 (ventilate	ur reprise N°2 point 7)	DIAMLOG

402 M1 Outlet Area: 9.31 ft² Class FG Max. RPM: 1543 Tip Speed (FPM) = 10.54 x RPM
Wheel Dia.: 40.25" Class CF Max. RPM: 1884 Fan Efficiency Grade: FEG 85

CFM	ov	4"	SP	7"	SP	10"	SP	12"	SP	14"	SP	16"	SP	18"	SP	20"	SP	22"	SP
СРМ	UV	RPM	ВНР																
9600	1031	795	9.38																
14200	1525	821	12.12	1053	23.08														
18800	2019	875	15.75	1084	27.96	1266	41.93	1376	51.91	1482	62.54								
23400	2513	956	20.39	1134	34.16	1302	49.28	1406	60.15	1503	71.65	1595	83.64	1683	96.00	1769	108.90	1853	122.31
28000	3008	1055	26.57	1207	41.49	1353	58.16	1448	69.96	1541	82.25	1629	94.95	1712	108.15	1792	121.94	1869	136.11
32600	3502	1160	34.24	1296	50.56	1425	68.52	1509	81.33	1591	94.62	1672	108.28	1752	122.36	1829	136.73		
37200	3996	1269	43.58	1396	61.69	1510	80.73	1585	94.30	1659	108.50	1731	123.05	1803	138.27	1874	153.75		
41800	4490	1384	54.97	1500	74.72	1607	95.50	1673	109.61	1739	124.43	1805	139.91	1870	155.88				
46400	4984	1502	68.39	1607	89.91	1708	112.32	1771	127.75	1831	143.36								
51000	5478	1624	84.39	1719	107.74	1813	131.75	1872	148.05										
55600	5972	1748	103.06	1834	128.10														
60200	6466	1874	124.72																

402 M2 Outlet Area: 9.31 ft² Class FG Max. RPM: 1747 Tip Speed (FPM) = 10.54 x RPM Wheel Dia.: 40.25" Class CF Max. RPM: 2233 Fan Efficiency Grade: FEG 80

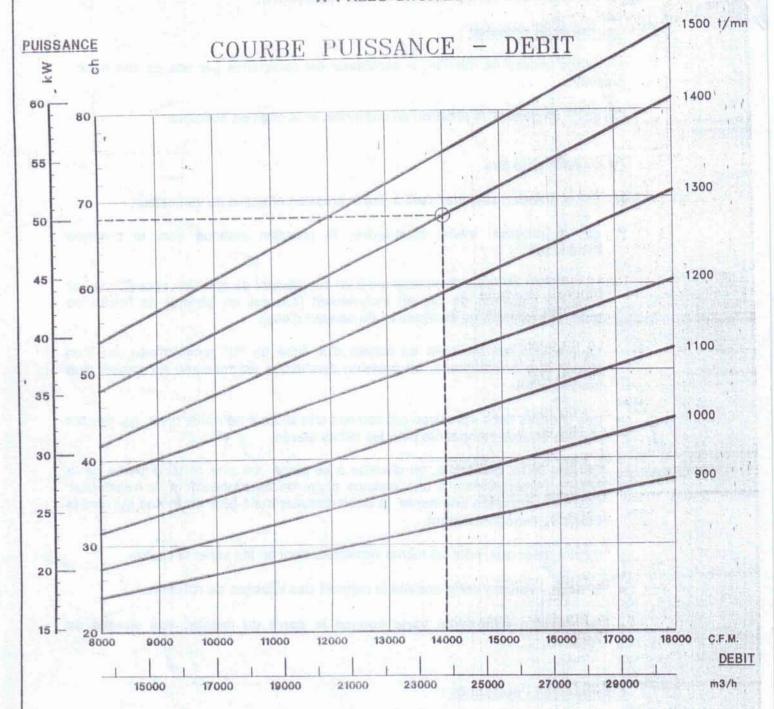
CEM	ov	4"	SP	8"	SP	12"	SP	15'	SP	18"	SP	21"	SP	24"	SP	27"	SP	30"	'SP
CFM	OV	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР								
9800	1053	812	9.91																
15100	1622	852	13.50	1150	29.36														
20400	2191	934	18.41	1193	36.56	1418	57.31	1570	74.54										
25700	2760	1049	25.30	1262	45.55	1465	68.57	1608	87.26	1738	106.97	1861	127.87	1978	149.52	2092	172.23		
31000	3330	1177	34.41	1361	56.85	1535	82.14	1661	102.49	1785	123.83	1903	146.16	2013	169.37	2118	193.59	2218	218.37
36300	3899	1311	45.95	1479	71.19	1629	98.18	1740	120.22	1849	143.51	1955	167.35	2061	192.30	2162	217.65		
41600	4468	1453	60.50	1605	88.49	1741	117.91	1838	141.12	1935	165.81	<u>2030</u>	<u>191.50</u>	<u>2124</u>	<u>218.26</u>	<u>2216</u>	245.41		
46900	5038	1600	78.30	1735	109.05	1863	141.29	1951	166.14	2037	192.05	2123	219.26	2207	247.20				
52200	5607	1751	99.95	1871	133.52	1990	168.43	2073	195.36	2152	222.95	2228	251.03						
57500	6176	1905	125.87	2012	162.13	2121	199.90	2200	228.89										
62800	6745	2061	156.46	2158	195.52														
68100	7315	2218	192.00																

402 H1 Outlet Area: 8.36 ft² Class FG Max. RPM: 1679 Tip Speed (FPM) = 10.54 x RPM Class CF Max. RPM: 2113 Fan Efficiency Grade: FEG 80

CFM	ov	6"	SP	9"	SP	12"	SP	15"	SP	18'	SP	21"	SP	23"	SP	25'	SP	27"	SP
CFM	OV	RPM	ВНР																
9200	1100	994	13.62																
13000	1555	1018	16.95	1220	27.09														
16800	2010	1067	21.17	1254	32.33	1420	44.75	1571	58.07	1714	72.27								1
20600	2464	1145	26.42	1305	38.82	1460	52.26	1603	66.60	1735	81.96	1859	98.04	1939	109.19	2017	120.61	2093	132.29
24400	2919	1242	33.07	1381	46.52	1515	61.11	1647	76.69	1774	92.96	1892	109.96	1967	121.80	2039	133.84	2110	146.38
28200	3373	1350	41.31	1473	55.81	1592	71.44	1709	88.25	1822	105.63	1935	123.88	2007	136.15	2078	149.01		
32000	3828	1462	51.12	1577	67.04	1683	83.65	1787	101.26	1890	119.97	1990	139.25	2057	152.68				l I
35800	4282	1579	62.86	1686	80.08	1785	98.06	1878	116.52	1971	136.09	2063	156.61						
39600	4737	1701	76.72	1799	95.29	1893	114.67	1980	134.46	2064	154.90								
43400	5191	1826	92.70	1916	112.86	2004	133.49	2087	154.71										l I
47200	5646	1955	111.31	2036	132.78														
51000	6100	2086	132.62																1 1

402 H2 Outlet Area: 8.36 ft² Class FG Max. RPM: 1928 Tip Speed (FPM) = 10.54 x RPM
Wheel Dia.: 40.25" Class CF Max. RPM: 2380 Fan Efficiency Grade: FEG 75

СЕМ	ov	6"	SP	9"	SP	12"	SP	15"	SP	18"	SP	21"	SP	25"	SP	29"	SP	33"	SP
CFM	UV	RPM	ВНР																
9400	1124	1014	14.35																
13600	1627	1052	18.52	1253	29.19	1432	41.01												
17800	2129	1122	23.88	1301	35.93	1467	49.03	1616	63.15	1755	78.12	1889	94.07						
22000	2632	1227	30.91	1377	44.26	1522	58.81	1662	74.04	1794	90.28	1916	107.29	2070	131.27	2216	156.29	2357	182.49
26200	3134	1351	40.01	1480	54.57	1605	70.30	1727	87.11	1847	104.72	1964	122.92	2111	148.26	2248	174.93	2378	202.74
30400	3636	1483	51.32	1600	67.35	1709	84.18	1817	102.21	1923	121.22	2026	140.83	2163	168.15	2295	196.18		
34600	4139	1620	65.06	1729	82.78	1829	101.13	1924	120.16	2018	140.14	2111	161.07	2233	190.19	2353	220.42		
38800	4641	1764	81.69	1863	101.13	1957	121.08	2045	141.64	2129	162.69	2212	184.55	2322	215.04				
43000	5144	1913	101.45	2001	122.48	2089	144.16	2172	166.26	2251	188.97	2326	211.87						
47200	5646	2066	124.77	2145	147.48	2225	170.75	2303	194.38	2378	218.65								
51400	6148	2222	152.02	2294	176.45	2366	201.29												
55600	6651	2379	183.24																

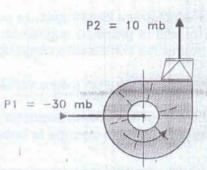

Class FG (Fiberglass Wheel) Clas

Class CF (Carbon Fiber Wheel)

NOTES:

- 1. Performance certified is for installation Type B: Free inlet, Ducted outlet.
- 2. Power rating (BHP) does not include transmission losses.
- 3. Performance ratings do not include the effects of appurtenances (accessories).
- 4. <u>Underlined values</u> indicate maximum static efficiency.

A PALES DROITES

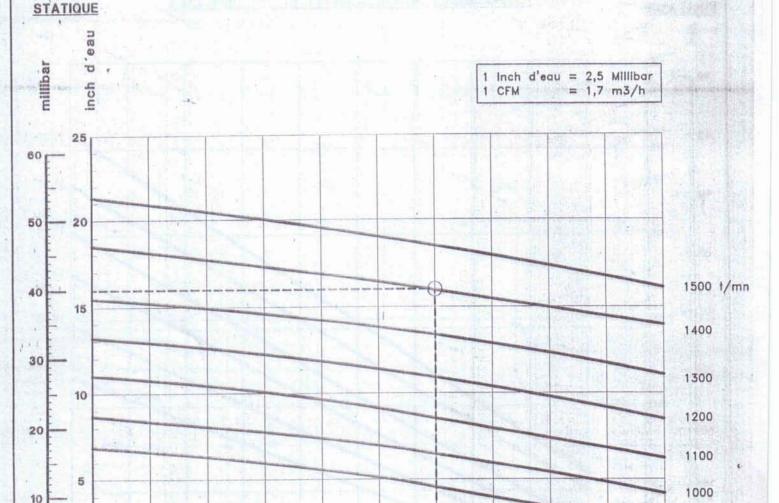


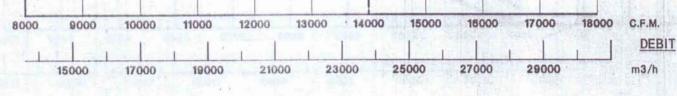
EXEMPLE

VITESSE = 1400 t/mn

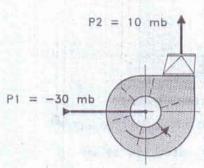
DEBIT: = 14000 CFM ou 23800 m3/h

PUISSANCE: = 68 ch ou 50 kW




1 ch = 0.736 kW1 CFM = 1.7 m3/h

A PALES DROITES

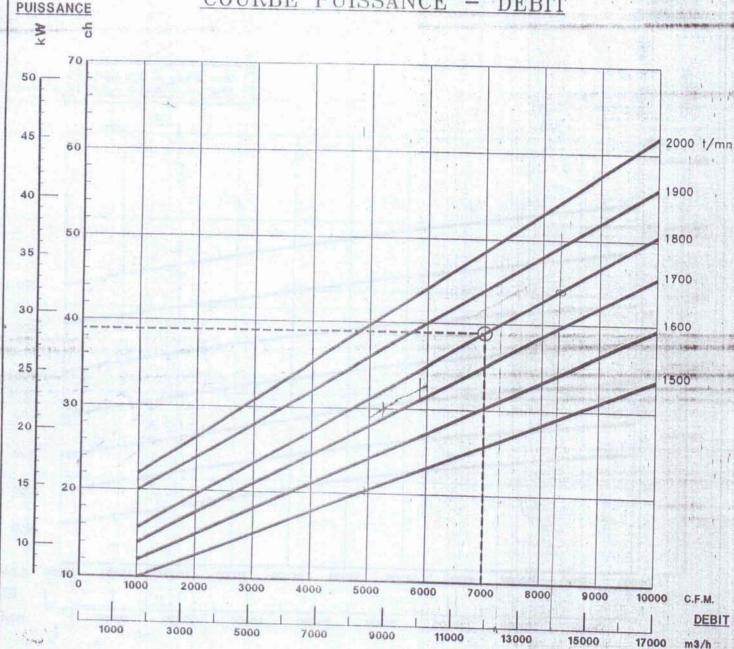


EXEMPLE

VITESSE = 1400 t/mn

P. Statique = |P1| + |P2| = 40 mb

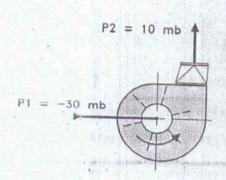
DEBIT: = 14000 CFM ou 23800 m3/h



PRESSION

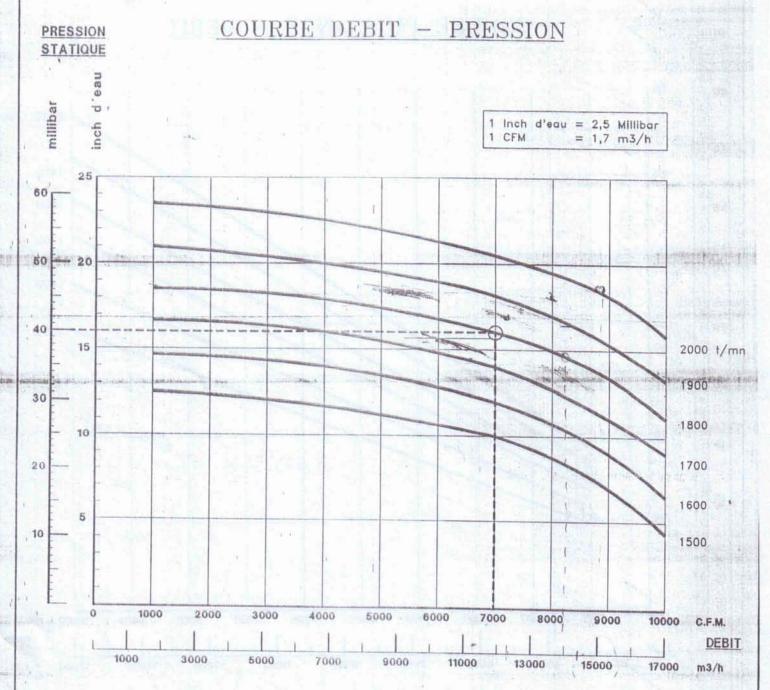
900

A PALES DROITES



EXEMPLE

VITESSE = 1800 t/mn


DEBIT: = 7000 CFM ou 11900 m3/h

PUISSANCE: = 39 ch ou 29 kW

A PALES DROITES

EXEMPLE

VITESSE = 1800 t/mn

P. Statique = |P1| + |P2| = 40 mb

DEBIT: = 7000, CFM ou 11900 m3/h

923

Wheel Diameter: 40"

Tip Speed (FPM): 10.47 x RPM Inlet Dia

Inlet Area: 2.76 ft² Inlet Diameter: 23" O.D.

Outlet Area: 2.90 ft²

Outlet Dimension: 193/4" x 221/8"

CFM	ov	32'	SP	33	" SP	34'	'SP	35	" SP	36'	'SP	37	" SP	38'	SP	40	" SP	42'	'SP	44	" SP	46'	' SP
CFIVI	UV	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	ВНР
8700	3000	1854	71.56	1882	73.96	1909	76.30	1936	78.70	1963	81.17	1989	83.58	2015	86.04	2066	91.03	2116	96.12			1	
10440	3600	1859	84.11	1887	86.85	1914	89.51	1940	92.10	1967	94.89	1993	97.60	2018	100.22	2069	105.79	2118	111.28	2166	116.85	2212	122.31
12180	4200	1867	97.07	1894	100.10	1921	103.20	1948	106.35	1974	109.41	1999	112.35	2025	115.52	2075	121.69	2123	127.74	2171	134.01	2217	140.13
13920	4800	<u>1877</u>	<u>109.84</u>	<u>1904</u>	<u>113.30</u>	<u>1931</u>	<u>116.83</u>	<u>1957</u>	<u>120.26</u>	<u>1983</u>	123.76	<u>2008</u>	<u>127.15</u>	2033	130.60	2083	137.71	2131	144.65	2178	151.60	2224	158.55
15660	5400	<u>1891</u>	123.33	<u>1917</u>	<u>127.00</u>	<u>1943</u>	130.75	<u>1969</u>	<u>134.57</u>	<u>1994</u>	138.27	<u>2019</u>	142.04	2044	145.89	<u>2093</u>	<u>153.59</u>	2140	<u>161.13</u>	<u>2187</u>	<u>168.94</u>	2233	<u>176.79</u>
17400	6000	1910	137.88	1936	<u>141.98</u>	<u>1961</u>	<u>145.94</u>	<u>1985</u>	<u>149.76</u>	<u>2010</u>	<u>153.87</u>	<u>2034</u>	<u>157.83</u>	<u>2058</u>	<u>161.86</u>	<u>2106</u>	<u>170.15</u>	<u>2152</u>	<u>178.24</u>	2198	<u>186.60</u>	<u>2243</u>	<u>194.98</u>
19140	6600	1937	154.44	1962	158.77	1985	162.69	2009	166.93	2033	171.25	2056	175.39	2079	179.60	2125	188.25	2169	196.65	2214	205.59	2257	214.24
20880	7200	1969	172.69	1992	176.97	2015	181.33	2038	185.77	2061	190.27	2084	194.86	2106	199.24	2150	208.21	2193	217.18	2235	226.11	<u>2277</u>	<u>235.32</u>

MAXIMUM RPM: CLASS 45 = 2292

RBA 923

CFM	ov	321	SP	33	" SP	34'	' SP	35	" SP	36¹	' SP	37	" SP	38'	" SP	40	" SP	42'	' SP	44	" SP	46'	" SP
CFIM	UV	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
12180	4200																						
13920	4800	1869	101.06	1895	104.20	1922	107.58	1948	110.84	1974	114.15	1999	117.35	2024	120.59								
15660	5400	<u>1885</u>	<u>112.58</u>	<u>1910</u>	<u>115.97</u>	<u>1936</u>	<u>119.60</u>	<u>1961</u>	<u>123.13</u>	<u>1986</u>	<u>126.</u> 71	2011	130.36	2035	133.87	2083	141.08	2130	148.31	2176	155.55	2222	162.96
17400	6000	<u>1907</u>	124.87	1932	128.65	<u>1956</u>	132.31	<u>1981</u>	136.23	2005	140.03	2028	143.68	2052	147.61	2099	<u>155.44</u>	2144	163.08	2189	<u>170.96</u>	2233	178.83
19140	6600	<u>1933</u>	<u>137.96</u>	<u>1957</u>	<u>141.92</u>	<u>1981</u>	<u>145.95</u>	<u>2005</u>	<u>150.05</u>	<u>2028</u>	<u>154.01</u>	<u>2051</u>	<u>158.04</u>	<u>2074</u>	<u>162.13</u>	<u>2119</u>	<u>170.30</u>	<u>2164</u>	<u>178.74</u>	2207	<u>186.94</u>	<u>2250</u>	<u>195.38</u>
20880	7200	1964	152.25	1988	156.62	2011	160.83	2034	165.11	2056	169.22	2079	173.64	<u>2101</u>	<u>177.89</u>	<u>2145</u>	<u>186.58</u>	<u>2188</u>	<u>195.27</u>	2230	203.97	<u>2271</u>	<u>212.65</u>

MAXIMUM RPM: CLASS 45 = 2292

926

Wheel Diameter: 45.125" Tip Speed (FPM): 11.81 x RPM Inlet Area: 3.55 ft² Inlet Diameter: 26" O.D.

Outlet Area: 3.69 ft²

Outlet Dimension: 221/4" x 2415/16"

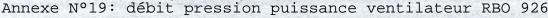
RBR 926

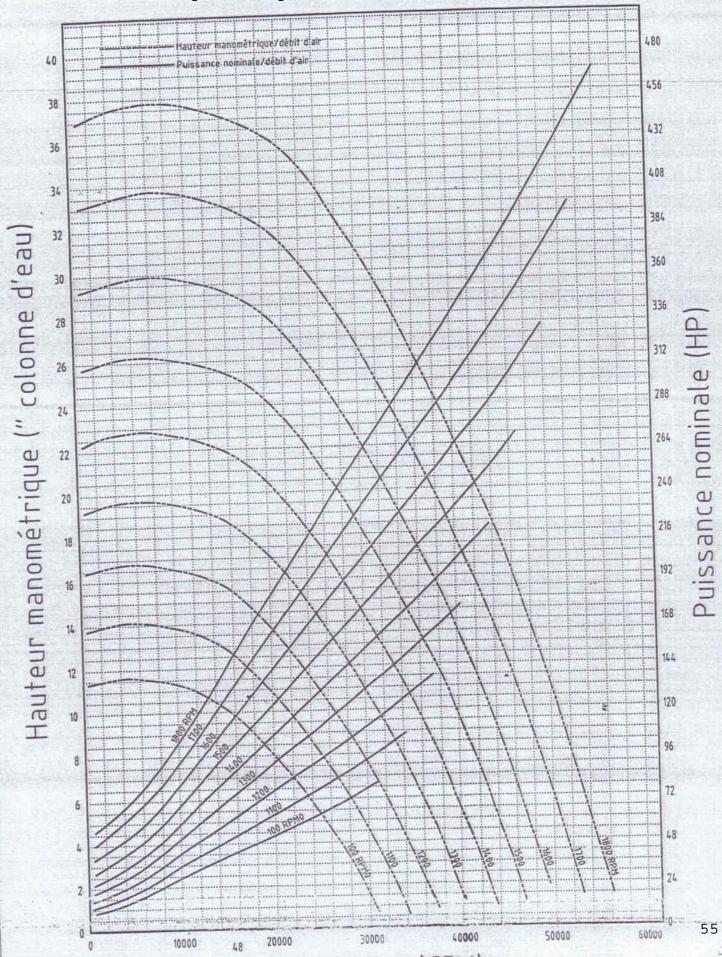
CFM	ov	321	' SP	33	" SP	34'	' SP	35	" SP	36'	' SP	37	" SP	381	SP	40	" SP	42'	SP	44'	" SP	46'	" SP
CFIVI	OV	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	BHP
11070	3000	1643	90.99	1668	94.07	1692	97.06	1716	100.13	1740	103.28	1763	106.33	1786	109.46	1831	115.76	1876	122.37				
13284	3600	1648	107.05	1672	110.37	1696	113.78	1720	117.26	1743	120.62	1767	124.26	1789	127.57	1834	134.61	1877	141.50	1920	148.69	1961	155.69
15498	4200	1655	123.53	1679	127.40	1703	131.36	1726	135.15	1750	139.26	1772	142.97	1795	146.99	1839	154.76	1882	162.58	1924	170.41	1965	178.26
17712	4800	<u>1664</u>	<u>139.82</u>	<u>1688</u>	<u>144.23</u>	<u>1711</u>	<u>148.48</u>	<u>1735</u>	<u>153.09</u>	1758	157.54	1780	161.80	1802	166.16	1846	175.11	1889	184.07	1931	193.01	1971	201.62
19926	5400	<u>1676</u>	156.87	1699	161.53	1722	166.28	1745	<u>171.13</u>	1768	176.09	1790	180.84	1812	185.68	1855	195.34	1897	205.04	1939	215.10	1979	224.82
22140	6000	<u>1693</u>	<u>175.43</u>	<u>1716</u>	180.63	<u>1738</u>	185.62	<u>1760</u>	<u>190.71</u>	<u>1782</u>	<u>195.89</u>	<u>1803</u>	200.84	<u>1825</u>	206.21	<u>1867</u>	216.57	<u>1908</u>	226.95	<u>1949</u>	237.67	<u>1988</u>	248.02
24354	6600	1717	196.52	1739	201.97	1760	207.17	1781	212.47	1802	217.87	1822	222.99	1843	228.58	<u>1883</u>	239.29	<u>1923</u>	250.36	<u>1962</u>	<u>261.39</u>	<u>2001</u>	272.75
26568	7200	1745	219.61	1766	225.29	1787	231.07	1807	236.57	1827	242.15	1847	247.83	1867	253.61	1905	264.61	1944	276.38	1981	287.65	<u>2018</u>	299.26

MAXIMUM RPM: CLASS 45 = 2032

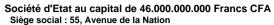
RBA 926

OFM	OV	32"	SP	33'	" SP	34"	SP	35'	" SP	36¹	' SP	37	" SP	381	' SP	40	" SP	42'	" SP	44	" SP	46'	" SP
CFM	ov	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP
15498	4200																						
17712	4800	1656	128.42	1680	132.65	1703	136.72	1727	141.10	1749	145.06	1772	149.33	1794	153.41								
19926	5400	<u>1671</u>	143.28	<u>1693</u>	<u>147.55</u>	<u>1716</u>	<u>152.16</u>	<u>1738</u>	<u>156.60</u>	<u>1760</u>	<u>161.11</u>	<u>1782</u>	<u>165.71</u>	1804	170.38	1846	179.40	1888	188.70	1929	197.97	1969	207.16
22140	6000	1690	158.78	1712	163.55	1734	168.40	1756	173.35	1777	178.10	1798	182.93	1819	187.84	1860	197.60	1901	207.68	1940	217.41	1979	227.42
24354	6600	1714	175.73	1735	180.68	1756	185.72	1777	190.85	1798	196.08	1818	201.08	1839	206.50	1879	216.94	1918	227.37	1956	237.75	1994	248.45
26568	7200	1741	193.76	1762	199.23	1782	204.45	1803	210.11	1823	215.52	1842	220.65	<u>1862</u>	226.23	<u>1901</u>	237.28	<u>1939</u>	248.29	<u>1977</u>	<u>259.67</u>	2013	270.57


MAXIMUM RPM: CLASS 45 = 2032


Performance shown is for installation type B & D: Free or ducted inlet, ducted outlet. Power ratings (BHP) does not include belt drive losses.

Performance ratings do not include the effects of appurtenances in the airstream.


<u>Underlined figures</u> indicate maximum static efficiency.

Ventilateur 926 RBO - R
Annexe N°19: débit pression puissance ventilateur RBO 926

SOCIETE NATIONALE D'ELECTRICITE DU BURKINA

01 B.P. 54 Ouagadougou 01

Tél.: (226) 50 30 61 00 / 02 / 03 / 04 / Fax: (226) 50 31 03 40

Site web: www.sonabel.bf

Annexe N°20: Grille tarifaire de la SONABEL

Arrêté n°...../MMCE/MCPEA/MFB du 26 juillet 2006

	TENSION	Catégories et tranches tarifaires		Tarifs du kWh (l	-CFA)	Redevance (F CFA)	PRIME FIXE (F CFA)	Avance sur Consommation (F CFA)	Frais ETS police et de pose (F CFA)	Timbres (F CFA)	Liasses (F CFA)	TOTAL Abonnement (F CFA)
		I) USAGE DOMESTIQUE PARTICULIERS ET ADMINISTRATION										
		Tarif type A (monophasé)	Tranche 1 0 à 50 kWh	Tranche 2 51 à 100 kWh	Tranche 3 plus de 100 kWh							
		1 à 3A	75	128	138	1 132	-	3 375	691	400	108	4 574
В	MONOPHASE	Tarif type B (monophasé)	Tranche 1 0 à 50 kWh	Tranche 2 51 à 200 kWh	Tranche 3 plus de 200 kWh							
Α		5A	96	102	109	457	1 774	8 175	691	400	108	9 374
s	2 FILS	10A	96	102	109	457	3 548	16 350	691	400	108	17 549
s		15A	96	102	109	457	5 322	24 525	691	400	108	25 724
E		20A	96	102	109	764	7 097	32 700	691	400	108	33 899
		25A	96	102	109	764	8 870	40 875	691	400	108	42 074
Т		30A	96	102	109	764	10 644	49 050	691	400	108	50 249
E N S I		II) USAGE DOMESTIQUE ET FORCE MOTRICE PARTICULIERS ET ADMINISTRATION	Tranche 1 0 à 50 kWh	Tranche 2 51 à 200 kWh	Tranche 3 plus de 200 kWh							
0		Tarif type C (triphasé)										
N	TRIPHASE 4FILS	10A	96	108	114	1 226	10 613	51 300	1 380	400	108	53 188
		15A	96	108	114	1 226	15 918	76 950	1 380	400	108	78 838
		20A	96	108	114	1 373	21 224	102 600	1 380	400	108	104 488
В		25A	96	108	114	1 373	26 531	128 250	1 380	400	108	130 138
Т		30A	96	108	114	1 373	31 837	153 900	1 380	400	108	155 788
	DOUBLE TARIF	III) B.T. / TARIFS HORAIRES PARTICULIERS ET ADMINISTRATION	Heures		Heures pleines							
		Tarif type D1 Non industriel		165	88	8 538	34 582 par kW par an	PS X 100 X 165	1 380	4 000	108]
		Tarif type D2 Industriel		140	75	7 115	28 818 par kW par an	PS X 100 X 140	1 380	4 000	108]
MO	YENNE TENSION (MT)	IV) M.T. / TARIFS HORAIRES PARTICULIERS ET ADMINISTRATION	Heures		Heures pleines							
	\····/	Tarif type E1 Non industriel		139	64	8 538	70 826 par kW par an	PS X 100 X 139	1 380	4 000	108	1
		Tarif type E2 Industriel		118	54	7 115	64 387 par kW par an	PS X 100 X 118	1 380	4 000	108	1
					5A - 15A mono	381	- PS = Puissance Souscr	ite				
		ECLAIRAGE PUBLIC	TARIF	UNIQUE	20A et plus mono	637	- Pour la BT double tarif et la	a MT : Pénalisation si C	Cos phi < 0,8 et Bo	nification si Co	os phi > 0,9	
		Tarif type F			10A - 15A triphasé	1 022	- Heures de pointe : de 1	0h à 14 h et de 16h	à 19h			
		. a ypo i	1:	22	20A et plus triphasé	1 144	- Heures pleines : de (- L'administration est disp	,			tion	

Annexe N° 22: La Facture du mois de janvier 2013

N°POLICE 374G SOFITEX HOUNDE				N°POLICE	374G	SOFITEX HOU	NDE		
N	1ois	janv-13						Mois	janv-13
Facture réelle en supposant une			Facture O	ptimisée					
puissance soucrite réelle et un NATURE DE L'ABONNEMENT	MT				NATURE D	E L'ABONNEME	INT	MT	
cos phi réel PUISSANCE DES TRANSFORMAT	2 400 KVA				PUISSANC	E DES TRANSFO	RMATEURS	2 400	(VA
PUISSANCE SOUSCRITE	1 650 KW				PUISSANC	E SOUSCRITE		1 545 I	(W
PUISSANCE CONDENSATEURS	KVAr				PUISSANC	E CONDENSATE	URS	1	(VAr
TARIFICATION					TARIFICA	ΓΙΟΝ			
TARIF HEURES PLEINES :	54 FCFA/K					JRES PLEINES			CFA/KWh
TARIF HEURES DE POINTE :	118 FCFA/K				TARIF HEU	JRES DE POINT	E :		CFA/KWh
	64 387 FCFA/K					E ANNUELLE	:		CFA/KW/AN
LOCATION ET ENTRETIEN COMI	7 115 FCFA/N	10IS				ET ENTRETIEN			CFA/MOIS
ENERGIE REACTIVE CONSOMMI 4						REACTIVE CONS		105 000 I	
PUISSANCE MAX ENREGISTRE	1 625 KW					E MAX ENREGIS	STRE	1 545	
DEPASSEMENT	0 KW				DEPASSEM	IENT		0 1	(W
MAJORATION OU MINORATION (1 P= 0,55			MAJORATION	OU MINORA	P=	0,14			
Puissance souscrite Tarifs	1+m T	otal				Puissance souscrite	Tarifs	1+m	Total
1/12x 1 650 64 387	1	8 853 213			1/12x	1 545	64 387	0,943	7 819 790
Consommation Pertes Total à				Consommati	Pertes	Total à			
actives facturer				on	actives	facturer			
Heures pleines (K 536 491 536 491 54		28 970 514	Heures pleine	536 491		536 491	~ .	0,94329966	27 327 876
Heures pointes (K 214 593 214 593 118	1 2	25 321 974	Heures pointe	214 593		214 593	118	0,94329966	23 886 209
Location et entretien compteurs		7 115	Location et er	tretien comp	teurs				7 115
Location poste		0	Location post	2					0
TSAAE		1 502 168	TSAAE						1 502 168
Dépassement		0	Dépassement						0
TDE		1 502 168	TDE						1 502 168
TVA		11 908 287	TVA						11 168 159
		78 065 439							73 213 485

Annexe N°23 : La Facture du mois de février 2013

	N°POLICE	374G	SOFITEX HOU	NDE				N°POLICE	374G	SOFITEX HOU	NDE		
					Mois	févr-13						Mois	févr-13
Facture réelle en puissance soucri cos ph	ite réelle et un i réel	PUISSAN PUISSAN TARIFIC TARIF H TARIF H PRIME F LOCATION	DE L'ABONN ICE DES TRAN ICE SOUSCRI' ICE CONDENS CATION EURES PLEIN EURES DE PO TIXE ANNUEL ON ET ENTRE E REACTIVE (EMENT NSFORMAT FE SATEURS FES : DINTE : LE : CTIEN COM	MT 2 400 1 650 54 118 64 387 7 115	KVA KW KVAr FCFA/KWh FCFA/KW/AN FCFA/KW/AN	Facture O	ptimisée	PUISSANCI PUISSANCI TARIFICAT TARIF HEU TARIF HEU PRIME FIX LOCATION	E L'ABONNEME DES TRANSFOE SOUSCRITE E CONDENSATION URES PLEINES URES DE POINTE ANNUELLE ET ENTRETIEREACTIVE CON	ENT DRMATEURS EURS : : IE : :	MT 2 400 1 545 54 118 64 387	KVA KW KVAr FCFA/KWh FCFA/KW/AN FCFA/KW/AN
		PUISSAN	ICE MAX ENR	EGISTRE	1 637	KW			PUISSANCI	E MAX ENREGI	STRE	1 545	(W
		DEPASSI	EMENT		0	KW			DEPASSEM	ENT		0 1	(W
MAJORATION OU	MINORATION (n	P=	0,54				MAJORATION	OU MINORA	□P =	0,14			
			Puissance souscrite	Tarifs	1+m	Total				Puissance souscrite	Tarifs	1+m	Total
		1/12x	1 650	64 387	1	8 853 213			1/12x	1 545	64 387	0,943	7 816 795
	Consommation	Pertes	Total à					Consommati		Total à			
		actives	facturer					on	actives	facturer			
Heures pleines (K			624 042	54	1	33 698 268	Heures pleine		2	624 042		0,94293836	31 775 389
Heures pointes (K			247 860	118	1	29 247 480	Heures pointe			247 860	118	0,94293836	27 578 571
Location et entret	ien compteurs					7 115	Location et er	tretien comp	teurs				7 115
Location poste						0	Location post	9					0
TSAAE						1 743 804	TSAAE						1 743 804
Dépassement						0	Dépassement						0
TDE						1 743 804	TDE						1 743 804
TVA						13 552 863	TVA						12 719 786
						88 846 547							83 385 265

Annexe N° 24: La Facture du mois de mars 2013

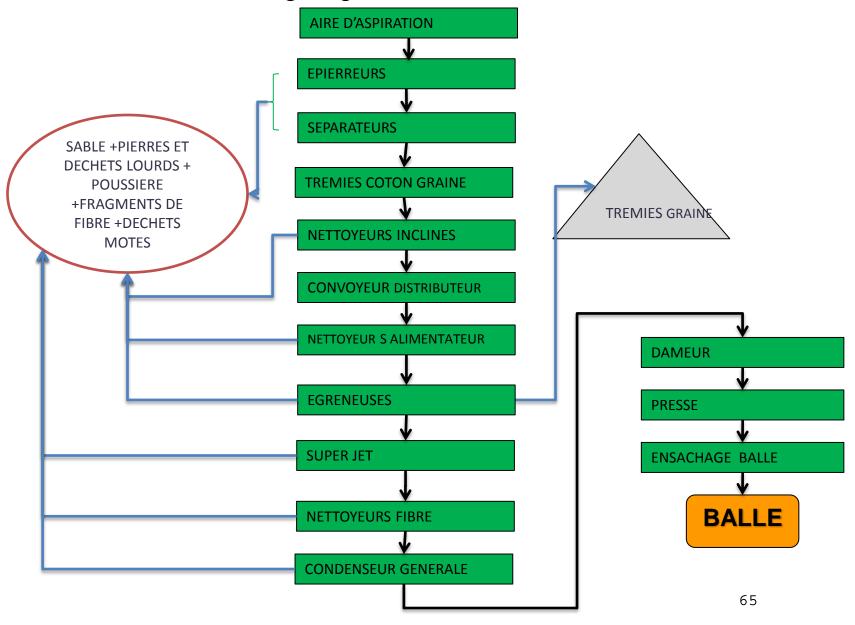
N°POLICE 374G SOFITEX HOUNDE	40		N°POLICE	374G	SOFITEX HOU	NDE		40
Mois	mars-13	Es atuma O	antanta (a				Mois	mars-13
TARIF HEURES DE POINTE : 118 PRIME FIXE ANNUELLE : 64 387	O KVA O KW KVAr FCFA/KWh FFCFA/KWh FFCFA/KWH	Facture O		PUISSANCE PUISSANCE PUISSANCE TARIFICATI TARIF HEUI TARIF HEUI PRIME FIXE	CONDENSATE ON RES PLEINES RES DE POINT ANNUELLE	ORMATEURS URS : E : :	1 545 54 118 64 387	KW KVAr FCFA/KWh FCFA/KWh FCFA/KW/AN
ENERGIE REACTIVE CONSOMMI 386 887 PUISSANCE MAX ENREGISTRE 1 612				ENERGIE RI	ET ENTRETIEN EACTIVE CONS MAX ENREGIS ENT	SOMMEE	105 000 1 545	
MAJORATION OU MINORATION (1 P= 0,50		MAJORATION	OU MINORA	P=	0,14			
Puissance souscrite Tarifs 1+m	Total				Puissance souscrite	Tarifs	1+m	Total
1/12x 1 650 64 387 1	8 853 213			1/12x	1 545	64 387	0,943	7 813 822
Consommation Pertes actives Total à facturer			Consommati on	Pertes actives	Total à facturer			
Heures pleines (K 557 084 557 084 1	30 082 536	Heures pleine	557 084		557 084		0,94257974	28 355 189
Heures pointes (K 217 947 217 947 118 1	25 717 746	Heures pointe			217 947	118	0,94257974	24 241 026
Location et entretien compteurs	7 115	Location et er		teurs				7 115
Location poste TSAAE	1 550 062	Location post	2					1 550 062
Dépassement	0	Dépassement						1 330 002
TDE	1 550 062	TDE						1 550 062
TVA	12 196 932	TVA						11 433 110
	79 957 666							74 950 387

Annexe N°25 : La Facture du mois de avril 2013

N°POLICE 374G SOFITEX HOUNDE			I	N°POLICE	374G	SOFITEX HOUN	IDE			
Mois	avr-13							Mois	avr-13	
Facture réelle en supposant une			Facture O	ptimisée						
puissance soucrite réelle et un NATURE DE L'ABONNEMENT M	Т				NATURE DE	L'ABONNEME	NT	MT		
cos phi réel PUISSANCE DES TRANSFORMAT 2 40	0 KVA				PUISSANCE	DES TRANSFO	RMATEURS	2 400	KVA	
PUISSANCE SOUSCRITE 1 65	0 KW				PUISSANCE	SOUSCRITE		1 545	KW	
PUISSANCE CONDENSATEURS	KVAr		PUISSANCE CONDENSATEURS						KVAr	
TARIFICATION					TARIFICAT	ON				
TARIF HEURES PLEINES : 5	4 FCFA/KWh				TARIF HEU	RES PLEINES	:	54	FCFA/KWh	
TARIF HEURES DE POINTE : 11	8 FCFA/KWh				TARIF HEU	RES DE POINT	E :	118	FCFA/KWh	
PRIME FIXE ANNUELLE : 64 38	7 FCFA/KW/AN				PRIME FIXE	ANNUELLE	:	64 387	FCFA/KW/AN	
LOCATION ET ENTRETIEN COM 7 11	5 FCFA/MOIS				LOCATION	ET ENTRETIE	N COMPTEU	7 115	FCFA/MOIS	
ENERGIE REACTIVE CONSOMM 338 67	2 KVArh				ENERGIE R	EACTIVE CON	SOMMEE	105 000	KVArh	
	7 KW				PUISSANCE	MAX ENREGIS	STRE	1 545		
DEPASSEMENT	0 KW				DEPASSEMI	ENT		0	KW	
MAJORATION OU MINORATION (m P= 0,44		N	MAJORATION	OU MINORAT	「P=	0,14				
Puissance souscrite Tarifs 1+m	Total					Puissance souscrite	Tarifs	1+m	Total	
1/12x	8 791 240		_		1/12x	1 545	64 387	0,943	7 815 608	
Consommation Pertes Total à			(Consommati	Pertes	Total à				
actives facturer			ا	on	actives	facturer				
Heures pleines (K) 563 798 563 798 54 0,993	30 231 976	Н	Heures pleine	563 798		563 798		0,94279518	28 703 486	
Heures pointes (K 203 908 203 908 118 0,993	23 892 716		Heures pointe	203 908		203 908	118	0,94279518	22 684 731	
Location et entretien compteurs	7 115	L	ocation et ent	tretien comp	teurs				7 115	
Location poste	1 535 412	L	ocation poste	! 					0	
TSAAE		TSAAE						1 535 412		
Dépassement	0		Dépassement						0	
TDE	1 535 412	Ţ	TDE						1 535 412	
TVA	11 878 897	Ţ	TVA					11 210 718		
	77 872 768								73 492 482	

Annexe N°26 : La Facture du mois de mai 2013

N°POLICE	374G	SOFITEX HOUN	NDF					N°POLICE	374G	SOFITEX HOU	NDF			
				Mois	mai-13							Mois	mai-13	
Facture réelle en supposant un	e						Facture O	ptimisée						
puissance soucrite réelle et un		DE L'ABONNI	EMENT	MT					NATURE DI	E L'ABONNEMI	ENT	MT		
cos phi réel PUISSANCE DES TRANSFORMATI 2 400 KVA					KVA				PUISSANCE	DES TRANSFO	RMATEURS	2 400	2 400 KVA	
PUISSANCE SOUSCRITE 1 650 KW							PUISSANCE SOUSCRITE					1 545	1 545 KW	
					KVAr		PUISSANCE CONDENSATEURS						KVAr	
	TARIFIC	CATION							TARIFICAT	ION				
	TARIF H	EURES PLEIN	ES :	54	FCFA/KWh				TARIF HEU	RES PLEINES	:	54	FCFA/KWh	
	TARIF H	EURES DE PO	INTE:	118	FCFA/KWh				TARIF HEU	RES DE POINT	E :	118	FCFA/KWh	
	PRIME F	TIXE ANNUELL	Æ :		FCFA/KW/AN				PRIME FIX	E ANNUELLE	:		887 FCFA/KW/AN	
		ON ET ENTRE			FCFA/MOIS				LOCATION	ET ENTRETIEN	N COMPTEUR		FCFA/MOIS	
		E REACTIVE C								EACTIVE CONS		65 000		
		ICE MAX ENRI	EGISTRE	1 610						MAX ENREGIS	STRE	1 545		
	DEPASS	EMENT		0	KW				DEPASSEM	ENT		0	KW	
MAJORATION OU MINORATION	m P =	0,43					MAJORATION	OU MINORA	T P =	0,14				
		Puissance souscrite	Tarifs	1+m	Total					Puissance souscrite	Tarifs	1+m	Total	
	1/12x	1 650	64 387	0,992	8 782 387		_		1/12x	1 545	64 387	0,943	7 817 573	
Consommation	Pertes	Total à						Consommati	Pertes	Total à				
	actives	facturer						on	actives	facturer				
Heures pleines (KV 332 55		332 556	54	- /	17 814 360		Heures pleine			332 556		0,94303225	16 934 996	
Heures pointes (K) 137 79	9	137 799	118	0,992	16 130 200		Heures pointe		_	137 799	118	0,94303225	15 333 970	
Location et entretien compteurs					7 115		Location et en		teurs				7 115	
Location poste					0 40 740		Location poste						0.40.740	
TSAAE					940 710		TSAAE						940 710	
Dépassement TDF					940 710		Dépassement TDF	940 710						
					8 030 787	TVA						7 555 513		
IVA					52 646 268		IVA						49 530 588	
					J2 040 200								75 550 566	


Annexe N°27 : La Facture du mois de juin 2013

N°POLIC	CE	374G	SOFITEX HOU	NDE				N°POLICE	374G	SOFITEX HOU	NDE			
					Mois	juin-13						Mois	juin-13	
Facture réelle en supposa							Facture O	ptimisée						
puissance soucrite réelle	e et un	NATURE	DE L'ABONNI	EMENT	MT					L'ABONNEME		MT		
cos phi réel		PUISSAN	CE DES TRAN	SFORMAT	2 400	KVA	PUISSANCE DES TRANSFORMATEURS 2 400						KVA	
	PUISSANCE SOUSCRITE 1 650 KW						PUISSANCE SOUSCRITE 80						KW	
PUISSANCE CONDENSATEURS KVAr						PUISSANCE CONDENSATEURS					KVAr			
		TARIFIC					TARIFICATION							
			EURES PLEIN			FCFA/KWh				RES PLEINES			FCFA/KWh	
			EURES DE PO			FCFA/KWh				RES DE POINT	E :		FCFA/KWh	
			IXE ANNUELI			FCFA/KW/AN				E ANNUELLE	:		FCFA/KW/AN	
			ON ET ENTRE			FCFA/MOIS				ET ENTRETIE			FCFA/MOIS	
			E REACTIVE C							EACTIVE CON		33 000		
			CE MAX ENRI	EGISTRE	1 298					MAX ENREGIS	STRE	80		
		DEPASSI	EMENT		0	KW			DEPASSEM	ENT		1 218	KW	
MAJORATION OU MINORATION (r P= 0,44						MAJORATION	OU MINORA	A' P=	0,14					
			Puissance souscrite	Tarifs	1+m	Total				Puissance souscrite	Tarifs	1+m	Total	
		1/12x	1 650	64 387	0,993	8 791 240	_		1/12x	80	64 387	0,943	404 714	
Consom	mation	Pertes	Total à					Consommati	Pertes	Total à				
		actives	facturer				_	on	actives	facturer				
	127 157		127 157	54	0,993	6 818 413	Heures pleine	127 157		127 157		0,94284831	6 474 047	
' ' -	113 561		113 561	118	0,993	13 306 397	Heures pointe	113 561	-	113 561	118	0,94284831	12 634 354	
Location et entretien com	pteurs					7 115	Location et en	7 115						
Location poste						0	Location poste						0	
					481 436	TSAAE						481 436		
Dépassement					0	Dépassement						4 311 720		
					481 436	TDE						481 436		
						5 379 487	TVA						4 463 068	
						35 265 523							29 257 891	

<u>Annexe N°28 : Consommation d'énergie Houndé 2 et comptage SONABEL</u> <u>Campagne 2012-2013</u>

Energie active (KWh)										
			Proportion de Houndé 2							
Période	HOUNDE 2	SONABEL	par rapport à LA							
			SONABEL							
déc-12	439 184	751 084	58,47%							
janv-13	517 238	871 902	59,32%							
févr-13	486 162	775 031	62,73%							
mars-13	444 728	767 706	57,93%							
avr-13	263 534	470 355	56,03%							
mai-13	123 555	240 718	51,33%							
TOTAL	2274401	3876796	58,67%							

Annexe N°29: Processus d'égrenage de l'usine HOUNDE 2

