Etude technique détaillée d’un pont en béton précontraint de 640 m de portée sur le fleuve Niger

MEMOIRE POUR L’OBTENTION DU
MASTER EN INGENIERIE DE L’EAU ET DE L’ENVIRONNEMENT
OPTION : Génie civil/Route et Ouvrage d’art

Présenté et soutenu publiquement le 02/11/2017 par

TANKARY MAMANE Mamane Lawali

Travaux dirigés par :
Dr. David BELLO

Jury d’évaluation du stage:

Président : Dr. Adamah MESSAN
Membres et correcteurs : M. Moussa LO
M. Célestin OVONO MEZUI

Promotion [2015/2016]
REMERCIEMENTS

Je souhaite, tout d'abord, remercier chaleureusement le Professeur Latifou BELLO pour avoir accepté d’être l’encadrant de ce travail. Ses remarques et suggestions pertinentes ont permis d’améliorer très significativement le présent mémoire.

Je tiens également à remercier Elh Mahamane OUSMANE DOUTCHI directeur général et M. Kassoum MAMANE BAOUA directeur technique du Groupe GERMS consulting pour m’avoir permis d’effectuer mon stage dans un climat d’accompagnement et de quiétude.

Je souhaite également exprimer ma gratitude à tous le personnel du Groupe GERMS pour leur assistance tout au long de mon stage.

Comment oublier M. GATI Idrissa géotechnicien au LNBTP et Mr Abdoul Karim Mahamane, Abdel Aziz, Himo, Nafiou, connus tous à GERMS. J’ai passé d’excellents moments avec vous et j’espère retrouver un jour un environnement de travail aussi agréable.

Je remercie également mes amis et les collègues du 2ie.

Enfin, je ne sais comment remercier mes parents pour leur soutient inestimable. Ce travail j’espère fera leur fierté. Merci à mes frères et sœurs.
RESUME :

Dans la première partie du document, une brève présentation généralisée sur les ponts a été faite suivi d’une étude hydrologique et hydraulique. Les résultats de ces deux études associés aux contraintes environnementales, techniques et économiques ont conduit à la conception et au dimensionnement d’un pont en béton précontraint de 640 m de portée sur le fleuve Niger à Faré. Ce pont est constitué de 16 travées indépendantes de 40 mètre de portée chacune et d’un profil en travers fonction des voies d’accès à l’ouvrage. Ces voies sont surtout la RN1 et la RN4 situées de part et d’autre du fleuve Niger dans la région et évoluant sur les axes communautaires de l’UEMOA.

Le dimensionnement de l’ouvrage s’est porté sur les éléments de la superstructure et certains éléments de l’infrastructure (les piles) à l’exception des culées et des pieux. Les calculs développés ainsi que les plans de ferraillages des éléments étudiés sont présentés dans les annexes du document.

En fin du document, le coût d’investissement de l’ensemble des éléments étudiés de la structure a été présenté après avoir établi le devis quantitatif et estimatif.

Mots clés : ouvrage, superstructure, infrastructure, travée, culée, pile.
ABSTRACT:
To solve the problems of crossing the Niger River in the region of Tillabéry, the Government of Niger launched in 2012 the project to build a bridge in this region. This document deals with the detailed technical study of this bridge. In the first part of the document, a brief generalized presentation on bridges was made followed by a hydrological and hydraulic study. The results of these two studies associated with environmental, technical and economic constraints led to the design and sizing of a prestressed concrete bridge with a span of 640 m on the Niger River at Farié. This bridge consists of 16 independent spans of 40 meters each and a cross section according to the access routes to the structure. These routes are mainly RN1 and RN4, located on both sides of the Niger River in the region and evolving along the WAEMU.
The dimensioning of the structure focused on the elements of the superstructure and some elements of the infrastructure with the exception of abutments and stakes. Calculations developed as well as the reinforcement plans of the studied elements are presented in the annexes of the document.
At the end of the document, the investment cost of all the studied elements of the structure was submitted after having prepared the Quantitative and estimative quote.

Key words: structure, superstructure, infrastructure, span, abutment, stack:
TABLE DES MATIERES

REMERCIEMENTS ... i
RESUME : .. ii
ABSTRACT: ... iii
LISTE DES TABLEAUX : ... vi
LISTE DES FIGURES : .. vii
LISTE DES ABBREVIATIONS : .. viii

INTRODUCTION GERALE : .. 1

A. contexte et enjeu : ... 1

B. situation du projet : ... 2

C. Présentation de la structure d’accueil : .. 3

D. objet de l’étude : .. 3

E. Organisation de l’étude .. 3

CHAPITRE 1 : GENERALITE SUR LES PONTS .. 5

1.1 Classification des ponts : .. 5

1.2 Les éléments constitutifs d’un pont .. 7

1.3 Les équipements d’un pont ... 7

1.4 Données nécessaires pour un projet de pont : .. 8

1.4.a Données Fonctionnelles .. 8

1.4.b Données naturelles ou environnementales : .. 8

CHAPITRE 2 : ETUDE HYDRAULIQUE, HYDROLOGIQUE ET CONCEPTION DU PONT............................ 9

2.1 Etude Hydrologique : ... 9

2.1.1 Contexte hydrologique : .. 9

2.1.2 Données hydrométriques : ... 9

2.2 Etude hydraulique : .. 10

2.2.1 Tirant d’air : .. 10

2.2.2 Gabarit de Navigabilité : ... 10

2.2.3 Affouillement ... 10

2.2.4 Calage du pont .. 13

2.3 conception du pont .. 13

2.3.1 Données à prendre en compte : ... 13

2.3.2 Coulloir de franchissement : .. 13

2.3.3 Le profil en travers : .. 14

2.3.4 Solutions structurelles .. 14
Choix du type d’ouvrage : ... 15

CHAPITRE 3 : DIMENSIONNEMENT DE LA STRUCTURE OPTIMALE VIPP. .. 18

3.1 Identification des charges et surcharges : ... 18

3.2 Dimensionnement des éléments structuraux du Tablier : ... 20
 3.2.1 Dimensionnement des poutres principales : ... 20
 3.2.2 Etude de l’entretoise d’about : ... 38
 3.2.3 Dimensionnement du hourdis : ... 40
 3.2.4 Dimensionnement du coffrage perdu en béton armé : ... 44
 3.2.5 Etude de l’appareil d’appuis : .. 45
 3.2.6 Etude des joints de chaussée : .. 46
 3.2.7 Etude des appuis : ... 48

Analyse financière : ... 49

Conclusion : ... 50

Bibliographie .. 51
LISTE DES TABLEAUX :

Tableau 1: caractéristiques hydrologiques probables du fleuve Niger à Farié.......................... 9
Tableau 2: Hauteur libre minimale sous ouvrage d’art [1] ... 10
Tableau 3: récapitulatif de l’Etude hydraulique ... 12
Tableau 4: Récapitulatif des dimensions du tablier en béton précontraint 15
Tableau 9: valeurs des coefficients de pondération de la charge permanente 19
Tableau 10: caractéristiques de la section à mi-travée. ... 21
Tableau 11: récapitulatif des CRT de la poutre de rive ... 23
Tableau 12: Valeurs des CRT de la poutre intermédiaire ... 24
Tableau 13: Comparaison des valeurs de CRT pour les deux poutres 25
Tableau 14: tableau récapitulatif de la charge permanente sur la poutre de rive 25
Tableau 15: poids total des éléments de la travée. ... 26
Tableau 16: Poids total du système B sur la travée ... 27
Tableau 17: récapitulatif des sollicitations des deux poutres .. 28
Tableau 18: récapitulatif des caractéristiques des matériaux ... 28
Tableau 19: caractéristiques de la poutre pour différentes sections ... 29
Tableau 20: sollicitation de calcul de la précontrainte .. 30
Tableau 21: récapitulatif des coordonnées des câbles dans la demi-longueur de la poutre 33
Tableau 22: récapitulatif des pertes instantanées ... 33
Tableau 23: récapitulatif des pertes de précontraintes différées ... 34
Tableau 25: récapitulatif des sollicitations de l’entretoise ... 39
Tableau 26: armatures longitudinales de l’entretoise d’about ... 39
Tableau 27: sollicitations maximales de la flexion locale du houdis ... 41
Tableau 28: sollicitations de la flexion globale du houdis pour différents cas de charges 43
Tableau 29: récapitulatif des armatures du houdis calculées .. 44
Tableau 30: sollicitations de calcul de la prédalle ... 44
Tableau 33: résultat du calcul de la pile ... 49
LISTE DES FIGURES :

Figure 1: plan de situation du pont par rapport aux routes communautaires [8] 2
Figure 2: illustration d'un pont à voutes 4 ... 5
Figure 3: illustration d'un pont en arc [4] ... 6
Figure 4: illustration d'un pont à haubans [4] ... 6
Figure 5: illustration d'un pont suspendu [4] ... 6
Figure 6: illustration d'un pont à poutres [4] ... 7
Figure 7: schéma illustratif du phénomène d'affouillement local [12] 11
Figure 8: couloir de franchissement du fleuve Niger à Farié [8] 13
Figure 9: caractéristiques du tablier ... 14
Figure 10: coupe transversale du tablier en béton précontraint 16
Figure 11: sections des poutres à mi-travée et sur appuis .. 16
Figure 14: Modèle de calcul du tablier de pont d’après Guyon-Massonnet: 20
Figure 15: section de la poutre pour le calcul des paramètres fondamentaux 21
Figure 16: courbe du coefficient k de la poutre de rive ... 22
Figure 17: exemple de chargement de la courbe de k=k(e) sous charge A1 et q1 23
Figure 18: Courbe de K(e) de la poutre intermédiaire ... 24
Figure 19: section de la poutre et du hourdis à mi-travée et sur appuis 29
Figure 20: disposition des plaques d'ancrages du modèle C [6] 31
Figure 21: disposition des conduits dans les sections transversales des poutres ... 32
Figure 22: schéma du câblage longitudinal de la poutre précontrainte sur la demi-longueur 32
Figure 24: schéma de calcul de l'entretoise .. 38
Figure 25: appareil d’appui .. 45
Figure 26: dimensions retenues de la pile .. 48
LISTE DES ABBREVIATIONS :

UEMOA : Union économique et monétaire ouest africaine ;

RN : route nationale

CU : communautaire

UVP : unité de véhicule particulier

PDES : programme de développement économique et social

GERMS : groupe d’étude et de réalisation multiservices

BAEL : béton armé aux états limites

BPEL : béton précontraint aux états limites

VIPP : Viaduc à travées Indépendantes à Poutres Préfabriquées précontraintes par post tension

PSI-OM : passage supérieure ou inférieure en ossature métallique

PICF : passage inférieure cadre fermé

PIPO : passage inférieure en portique Ouvert

PI-POD : passage inférieure en portique double

PSI-DA : passage supérieure / inférieure en dalle armée

PSI-DP : passage supérieure / inférieure en dalle précontrainte

PHE : plus hautes eaux

PBE : plus basses eaux

SETRA : Service d’Etudes Techniques des Routes et Autoroutes

WSM: Weight Sum Method

HA: haute adherence

ELS : états limites de services

ELU : états limites ultimes
Lr: largeur roulable

Le: largeur chargeable

Nv: Nombre de voies

Be: système de convoi à Camion

Br: système de convoi à Roue

Bt: système de convoi à Tandem

F_{c,j}: résistance caractéristique du béton à \(j \) jours d’âge.

E: module de Young

E_{Vj}: Module d’élasticité longitudinal différé

E_{ij}: Module d’élasticité longitudinal instantané
INTRODUCTION GENERALE :

A. contexte et enjeu :
La région de Tillabéry, située au sud-ouest de la République du Niger, couvre une superficie de 97 251 km² (97 506 km² avec la Communauté Urbaine de Niamey enclavée), soit 7,7 % du pays.

C’est une région qui recèle d’importantes potentialités naturelles et économiques, d’une production agricole et d’élevage parmi les plus significatives du pays, plusieurs réserves minières (aurifères et d’uranium) ayant drainé les investissements nationaux et étrangers. Tillabéry possède en plus un potentiel appréciable en pêche et pisciculture offert par le fleuve Niger, ses sept affluents et plusieurs marres permanentes. Le fleuve parcourt la région sur environ 420 km et la divise en deux rives : la rive gauche et la rive droite. Chacune des deux rives se trouve joncher de villages d’une part et d’autres part se voit traverser par l’une des routes nationales : la RN4 et la RN1 qui évoluent le long de deux axes communautaires desservant la zone de l’UEMOA et reliant respectivement le Niger au Burkina Faso d’une part et d’autre part le Niger au Mali.

Ces axes sont :

Cette division de la région en deux rives crée un obstacle aux échanges internes à cause de l’insuffisance des moyens de navigation. Les seuls moyens actuellement en cours de service sont les pirogues et le Bac Farié. Ce dernier est un bateau de capacité ne dépassant pas 12 uvp (unités de véhicules particuliers), situé à Farié à environ 65 Km de la capitale Niamey et 55 km de la ville de Tillabéry. Il opère seulement sur 12 heures de la journée, soit de 6h:30 à 20h:30, avec une interruption de deux heures, de 12h:30 à 14h:30’. Cette situation engendre des pertes de temps et une élévation des coûts généralisés de transport.

Les conséquences de ce transport par bac, à savoir surtout l’allongement des temps de transport, la formation de files d’attente des usagers de part et d’autre du fleuve et aussi les aléas dues aux pannes éventuelles du bac, induisent sûrement une déviation d’une part des usagers vers un itinéraire plus long.

Toutes ces contraintes causées par la traversée du fleuve dans cette région, ont conduit de nos jours à la recherche de solution durable, sûre et adéquate, qu’est : la construction d’un pont en remplacement du bac sur le site de Farié.
Ce projet de construction du pont sincère dans le cadre de la mise en œuvre du Programme de Développement Economique et Social (PDES) du Niger, pour la période 2012-2015.

Ce pont qui sera construit sur le fleuve Niger à Farié, est prévu être un nœud de jonction d’une part entre les deux routes nationales et d’autre part entre les axes communautaires CU14 et CU3a.

Le projet revêt donc un caractère d’intégration à la fois nationale et internationale/régionale et permettra ainsi de renforcer et de faciliter la distribution des productions de la région avec le principal centre socio-économique du pays, Niamey, et sur toute la vallée du fleuve Niger, de booster les échanges de la région avec les deux pays immédiatement voisins, le Burkina Faso et le Mali.

B. situation du projet :
La zone du projet est comprise entre les deux axes communautaires CU14 et CU3a.

Figure 1: plan de situation du pont par rapport aux routes communautaires [8]
C. Présentation de la structure d’accueil :
Créé en 2001, le Groupe d’Etude et de réalisation multiservice (GERMS consulting) est un bureau d’étude nigérien spécialisé dans la conception et l’étude de projet lié au génie civil, à l’environnement et à l’hydraulique. A la suite de sa création, GERMS a réalisé plus de 180 projets, parmi lesquels nous pouvons citer entre autres :

- La construction de l’échangeur Mali Béro ;
- La construction de l’échangeur des Martyrs ;
- La construction de l’échangeur de Kataloko ;
- La construction du chemin de fer ;
- Le projet de construction du pont de Farié, etc.

L’expérience acquise lors de la réalisation de ces projets lui a valu une place parmi les 3 premiers bureaux d’étude du Niger. A l’état actuel, GERMS consulting offre ses services à l’international notamment au Burkina Faso et autres pays d’Afrique de l’ouest.

D. objet de l’étude :
De nos jours, au Niger, le domaine du génie civil subit un essor remarquable caractérisé par différents types d’ouvrages d’art qui étaient jadis évités à cause d’éventuels problèmes liés non pas à la conception mais aux comportements techniques et technologiques ainsi qu’aux problèmes matériels et financiers de nos entreprises du domaine.

Cet essor est lié essentiellement à l’avènement des investisseurs internationaux dans le secteur et qui ont permis à plusieurs projets de se réaliser. Parmi ces projets figurent dans la capitale Niamey, la construction de trois (3) échangeurs, des ponts routes, de chemin de fer, etc.

Mais, en général un problème reste toujours lié à la réalisation de ces projets cités, celui de leurs études. Pour chacun de ces projets, un bureau d’étude international reste lié à l’exécution à cause de leur degré d’expérience dans le domaine.

Ce pourquoi, dans le but d’intervenir dans des projets futurs d’ouvrage d’art, nous avions choisi, dans ce présent document de porter notre étude sur la construction du pont de Farié.

E. Organisation de l’étude
A partir des données recueillies dans le bureau d’étude (GERMS consulting) en charge du contrôle technique du projet, nous allons dans la première partie du projet procéder à une présentation généralisée sur les ponts. La deuxième partie sera basée sur une analyse de données obtenues à partir desquelles nous projetterons le type de structure suivant certains critères que
nous fixerons à la base. L’avant dernière partie consistera au dimensionnement de la structure retenue basé sur des normes couramment utilisées telles que le BAEL et le BPEL. Et enfin, suivra une analyse financière du projet dans la dernière partie du document.
CHAPITRE 1 : GENERALITE SUR LES PONTS

Un pont est une construction qui permet de franchir par-dessus un obstacle naturel (cours d’eau, vallée, ravin, canyon…) ou artificiel (voies de communications, habitations). Le franchissement supporte le passage d’hommes et de véhicules dans le cas d’un pont routier ou d’eau dans le cas d’un aqueduc. Selon la nature des voies portées, la structure ou bien les matériaux de construction, on classe les ponts en plusieurs catégories.

1.1 Classification des ponts :
Les paramètres de classifications des ponts sont divers et variables et permettent tous de distingués les ponts les uns des autres. Mais, en général la classification est axée sur les paramètres suivant :

- La portée : Ouvrage courant et non courant ;
- Le type structure : les ponts à poutres, ponts en arc, pont à haubans, pont à voute, ponts suspendus, etc.
- Le type de voies portées : ponts rails, ponts routes, pont aqueducs ; passerelles, etc.
- Les matériaux de construction : ponts métalliques, en béton précontraint, en béton armé, ponts en bois, ponts mixte acier-béton.
- La mobilité : ponts levants, ponts basculants, les ponts transbordeurs, les ponts levis, les ponts flottant et les ponts tournants.

Ci-dessous quelques figures illustratives de certains ponts présentées suivant le type de structure.

- Pont à voute ou pont en maçonnerie
Les ponts voûtés sont des ponts appartenant à la classe des ponts en arc. Leur tablier : élément surfacique de la structure assurant la continuité de la voie portée, repose sur plusieurs arcs qui à leur tour reposent sur des appuis intermédiaires. Pour la majeure partie de ce type de pont l’arc est fait en maçonnerie de pierrailles.

Figure 2: illustration d'un pont à voutes [4]
- **Pont en arc**
Dans un pont en arc, la rivière ou la brèche est franchie en une seule fois par une seule arche. Ce genre de pont sont composés essentiellement de deux appuis situés de part et d’autre de la rive.

![Figure 3: illustration d'un pont en arc](image)

- **Pont à haubans**
Les ponts à haubans se présentent sous la forme d'une structure comportant un tablier et des organes porteurs : pylônes, tous en acier ou en béton. Les ponts à haubans sont principalement différenciés selon leur nombre de pylônes.

![Figure 4: illustration d'un pont à haubans](image)

- **Pont suspendu**
Les ponts suspendus se présentent aussi sous la forme d'une structure comportant un tablier et des organes porteurs : les suspentes, les câbles et les pylônes. Les suspentes supportent le tablier et transmettent les charges aux câbles porteurs.

![Figure 5: illustration d'un pont suspendu](image)
Pont à poutres
Les ponts à poutres désignent tous les ponts dont l’organe porteur est une ou plusieurs poutres droites.

Figure 6: illustration d'un pont à poutres [4]

Notre étude portera sur ce dernier type de structure (ponts à poutres), parmi lesquels on distingue : les ponts bipoutres mixtes (acier-béton), les ponts à poutres en béton armé ou précontraint, etc.

1.2 Les éléments constitutifs d'un pont
- **Le tablier** : c’est l’élément constituant la superstructure d’un pont. Il assure le déplacement à niveau des personnes et des biens et défini par cette fonction la nature du pont.
- **Les appuis** : Partie du pont qui supporte le tablier aux extrémités par des culées ou piles-culées et au centre par des piles.
- **Les fondations** : C’est la partie du pont enfouie dans le sol, qui permet la transmission des efforts de l'ouvrage au terrain. On distingue deux types de fondation : Les fondations superficielles et les fondations profondes.

1.3 Les équipements d’un pont
- **Les corniches** : élément d’aspect architectural, la corniche permet d’une part de couronner le bord latéral extérieur du hourdis et le protège, et d’autre part permet l’ancrage d’autres équipements notamment les barrières, les lampadaires, etc.
- **Les barrières** : protection des personnes et des biens contre les chutes dans l’obstacle franchit ;
- **Les gargouilles** : dispositif d’évacuation des eaux de pluies hors de l’ouvrage ;
- **Les joints de chaussée** : permettent de lutter contre les fissurations de la chaussée
- **Les systèmes d’étanchéité** : protège le hourdis contre l’infiltration des substances nocifs telles que : l’eau de ruissellement, l’huile de moteur, etc.
- **La couche de roulement** : assure le confort de la circulation ;
- **Les trottoirs** : dispositifs de sécurité et de confort de la circulation piétonnière et animalière ;
La dalle de transition : facilite l’accès à l’ouvrage (pont).

1.4 Données nécessaires pour un projet de pont :
On distingue deux types de données : données Fonctionnelles et données naturelles.

1.4.a Données Fonctionnelles
Les données fonctionnelles à collecter pour dimensionner correctement l’ouvrage sont : le tracé en plan de la voie, le profil en travers, le profil en long, les charges d'exploitation (normales et exceptionnelles) ; les hauteurs libres et ouvertures à réserver (route, voie ferrée, voie navigable), la qualité architecturale.

1.4.b Données naturelles ou environnementales :
- La topographie :
C’est l’ensemble des caractéristiques physiques (présence des collines, des vallées, des ravins, les dénivellations, etc.) que présente le site d’implantation du projet, obtenues après une campagne de relevé topographique ou à l’aide des cartes topographique.

- Hydraulique et environnement :
Ces données regroupent, Dans le cas de franchissement d'un cours d'eau, le régime hydraulique (fréquence et importance des crues, débit solide, charriage éventuel de corps flottants susceptibles de heurter les piles), les caractéristiques de la faune et de la flore, ainsi que les écosystèmes aquatiques et la qualité de la ressource en eau.

- Géotechnique :
C’est l’ensemble des caractéristiques physiques que présente le sol de fondation du site du projet. Elles sont déterminées d’une part par des cartes géologiques et d’autre part après les campagnes de sondage géotechniques.
CHAPITRE 2 : ETUDE HYDRAULIQUE, HYDROLOGIQUE ET CONCEPTION DU PONT

2.1 Etude Hydrologique :
Cette étude nous permet de déterminer le débit des crues du cours d’eau (fleuve) ainsi que les côtes de plus hautes eaux pour le calage de l’intrados du tablier et le calcul de l’affouillement local et général.

2.1.1 Contexte hydrologique :
Pour les besoins d’étude hydrologique du fleuve Niger à Farié, les données de base (les débits de crues, d’étiages, etc.) pour différentes périodes d’observations sont obtenues au niveau de deux stations limnimétriques : la station principale de Niamey et la station secondaire de Farié.

La station principale de Niamey, dispose de périodes d’observations continues depuis 1985, tandis que celle de Farié située à 65 km au nord-ouest de Niamey, a fonctionné par intermittence [8], la qualité de ses données est imparfaite.

2.1.2 Données hydrométriques :
Pour un projet de pont de grande envergure, la période de retour ‘‘T’’ de crue exceptionnelle prise pour le calcul des paramètres hydrologiques est de 100 ans.

Or, dans le cadre de ce projet, ne disposant que des données de 24 ans (1985 à 2010) à la station principale de Niamey et de 12 ans (1985 à 1997) à la station secondaire de Farié [8], l’on doit procéder au traitement statistique de ces données recueillies afin d’estimer à grande échelle les données nécessaires pour l’étude : c’est l’analyse fréquentielle.

Le bureau d’étude STUDI international, consultant pour la réalisation de ce projet, a effectué cette analyse fréquentielle à partir des données d’observations recueillies et mis en sa disposition. Les résultats de cette analyse sont présentés dans le tableau ci-dessous :

Tableau 1: caractéristiques hydrologiques probables du fleuve Niger à Farié

<table>
<thead>
<tr>
<th>Résultat de l'analyse statistique</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHE (m)</td>
</tr>
<tr>
<td>192,15</td>
</tr>
</tbody>
</table>

La cote Zéro « 0 » de l’échelle limnimétrique est à 187,35 m, ce qui équivaut à la cote des plus basses eaux de période de retour centennale.
Les différentes étapes de l’étude hydrologique, ainsi que les hypothèses de calcul sont présentées dans l’annexe 1.

2.2 Etude hydraulique :

2.2.1 Tirant d’air :
Le tableau ci-dessous présente la hauteur minimale libre des ponts en milieu urbain et en rase campagne.

Tableau 2: Hauteur libre minimale sous ouvrage d’art [1]

<table>
<thead>
<tr>
<th>Fonction à rétablir</th>
<th>Hauteur libre minimale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petite faune</td>
<td>0,70 m</td>
</tr>
<tr>
<td>Piétons, pêcheurs, bétails</td>
<td>2,00 m</td>
</tr>
<tr>
<td>cyclistes</td>
<td>2,50 m</td>
</tr>
<tr>
<td>chevreuil, sanglier, cavaliers,…</td>
<td>3,50 m</td>
</tr>
<tr>
<td>cerf, daim,…</td>
<td>4,00 m</td>
</tr>
<tr>
<td>Agricole, forestier</td>
<td>4,60 m</td>
</tr>
</tbody>
</table>

Notre ouvrage, situé en rase campagne, traverse le fleuve Niger de travers donc le tirant d’air à dégager est de 2,00 m.

2.2.2 Gabarit de Navigabilité :
Outre le niveau des PHE et le tirant d’air, le calage de l’intrados du tablier doit tenir compte de la classe de navigabilité du fleuve.
Le gabarit à respecter selon la classe de navigation est présenté sous forme de tableau (voir annexe 1).
En considérant au plus la classe de navigation IV [8] visée pour la navigation du fleuve Niger dans la section du Niger, la hauteur libre recommandée pour la navigation du fleuve est de 5,25m au-dessus du niveau de PHE et pour une largeur de 36m au minimum.

2.2.3 Affouillement :
L’affouillement est le creusement de fosse par des eaux courantes (fluviales ou marines, etc.) au niveau du lit d’un cours d’eau, des berges, des falaises ou des ouvrages d’art (digues, piles de pont, etc.).
On distingue deux types d’affouillements : l’affouillement local et l’affouillement global.
Affouillement local :

La présence d’une pile dans une rivière interrompt l’écoulement uniforme et développe des vortex. Ces derniers engendrent des affouillements du lit de la rivière qui se traduisent par la formation des fosses dont l’évolution dépend des paramètres hydrauliques tels que : la vitesse, le tirant d’eau, etc.

Figure 7: schéma illustratif du phénomène d’affouillement local [12].

Calcul de la profondeur d’affouillement local en eau chargée autour d’une pile cylindrique.

BREUSERS propose une formule empirique $H_l = 1.5 P$.

H_l : profondeur de l’affouillement

P : diamètre ou largeur de la pile sur un plan perpendiculaire à l’écoulement en (m).

En supposant le diamètre maximal des piles $d < 1,5 m$, nous aurons :

$P = 1,5 m \Rightarrow H_l = 1.5 P = 2,25 m$

Affouillement global : H_g

Il concerne l’ensemble du lit de l’écoulement. Il se produit suite à une crue qui met en suspension le sol du fond. Quand ce phénomène est important, il peut conduire à la ruine de l’ouvrage. Afin d’éviter ce problème, on place l’assise des fondations au-dessous de la hauteur maximale d’affouillement.

L’affouillement global se calcule par la formule de Hayni et Simons :

$H_g = 0,48 \times Q^{0,36} - S_m/B$ (Pour un lit à sédiments fins $d_{90} < 6 mm$)

Avec :

$Q = \frac{3000 m^3}{s}$, débit de crue calculé

S_m : Section mouillée correspondant à la PHE,
$S_m = 2053 \text{ m}^2$;
$B : \text{Largeur du lit mineur}, B = 325 \text{ m}$;
$H_g = 0,48 \times (3000)^{0,36} - \frac{2053}{325} = 2,25 \text{ m}$

Affouillement total : H_t

$H_t = H_g + Hl = 2,25 + 2,25 = 4,5 \text{ m}$

Protection des piles contre l’affouillement

Pour éviter tout risque d’affouillement, il convient d’appliquer les protections localisées telle que la mise en place des pierres (roches) tout autour des piles dans le rayon probable de la fosse qui peut être créé.

Le diamètre de l’enrochement est donné par la formule d’Izbach suivante :

$$V = 0,6 \sqrt{2g \times \frac{\rho_S - \rho}{\rho} \times \Delta}$$

Avec :

V: Vitesse de l’écoulement en crue (m/s)

$$V = \frac{Q_{\text{max}}}{S} = \frac{3000}{2053} = 1,46 \text{ m/S}$$

ρ_S: Masse volumique de l’enrochement (Kg/m3)

$\rho_S = 26 \text{ KN/m}^3$

ρ: Masse volumique de l’eau (1000kg/m3)

Δ: Diamètre de l’enrochement (m)

g: la pesanteur $= 9,81 \text{ m/s}^2$

$$\Delta = \frac{V^2}{0,6^2 \times 2g} \times \frac{\rho}{\rho_S - \rho} = \frac{1,46}{0,6^2 \times 2 \times 9,81} \times \frac{10}{26 - 10} \approx 0,13 \text{ m}$$

Le diamètre des enrochements est $\Delta = 13 \text{ cm}$

Tableau 3: récapitulatif de l’Étude hydraulique

<table>
<thead>
<tr>
<th>Désignation</th>
<th>unité</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tirant d'air</td>
<td>m</td>
<td>2</td>
</tr>
<tr>
<td>profondeur d'affouillement local</td>
<td>m</td>
<td>2,25</td>
</tr>
<tr>
<td>profondeur d'affouillement total</td>
<td>m</td>
<td>4,5</td>
</tr>
<tr>
<td>hauteur libre de Navigation</td>
<td>m</td>
<td>5,25</td>
</tr>
<tr>
<td>Largeur minimal pour la Navigation</td>
<td>m</td>
<td>36</td>
</tr>
</tbody>
</table>
2.2.4 Calage du pont :
Le fleuve Niger est appelé à être aménagé en voie navigable. L’ouvrage projeté sera réalisé avec une cote de calage vraisemblablement fixée en fonction de la cote PHE de crue du projet (192,15 m) rehaussée de la cote de navigabilité du fleuve.
Cote ouvrage = cote PHE + hauteur de Navigation +hauteur du tablier.
Cote ouvrage = 192,15 + 5,25 + 2,35 = 199,75m

2.3 Conception du pont

2.3.1 Données à prendre en compte :
- Le couloir de franchissement ;
- Le type de profil en travers compatible avec les prévisions de trafic, plus les options de trottoirs ;
- La classe de navigation du fleuve afin de prévoir les structures d’ouvrage d’art compatibles avec les gabarits de navigation.

2.3.2 Couloir de franchissement :
Le franchissement est proposé au voisinage du bac actuel avec une longueur d’ouvrage limitée à 640 m. La route d’accès au pont prend origine au niveau de la RN1 au point de raccordement avec la chaussée existante qui mène vers le bac et se termine sur la RN4. La longueur totale du projet est de 3,5 km.

Figure 8: couloir de franchissement du fleuve Niger à Farié [8].
2.3.3 Le profil en travers :
Les voies d’accès au pont partant de la RN1 et la RN4 sont des chaussées bidirectionnelles à 2 × 1 voie. Pour ces voies, le trafic cumulé équivalent à l’essieu standard de 13 tonnes évalué sur la base de l’étude de trafic est estimé à NE = 1,71.10^6 [8] pour une durée de vie de 20ans. La classe de trafic correspondante est T3 (1,5 à 4.10^6).
Ainsi en fonction du type de voies d’accès, de l’importance du trafic et sa composition (camion, véhicules particuliers et à traction animale, 2 Roues, piétons et bétails en circulation libre), nous projetons un profil en travers composé de :
• Une chaussée bidirectionnelle compatible avec le trafic, composée de 2 voies de largeur chacune 3,5 m ;
• Deux trottoirs latéraux.
❖ Largeur des trottoirs :
Sur les routes non classées routes express ou autoroutes, la circulation des piétons doit être assurée en prévoyant deux espaces pour piétons de 1,00 m de largeur au moins [2].
Dans notre cas nous choisissons une largeur de trottoir de 1,75 m et une surlargeur des voies de 0,25 m pour marquage horizontal à cause de l’intensité de la circulation piétonnières et des bétails libres.
Ainsi la largeur totale du tablier se lève à 11 m ajoutée de la largeur occupée par les corniches latérales qui est de (0,5 × 2 m).

Figure 9:caractéristiques du tablier

2.3.4 Solutions structurelles
Le projet consiste au franchissement du fleuve Niger sur une portée de 640 m avec une classe de navigation IV composée des pirogues et des bateaux, ce qui nous mène à proposer des solutions qui ont une portée de la travée respectant le gabarit de navigation fluviale : hauteur libre supérieure ou égale à 5,25 m et une largeur d’au moins 36 m.
Choix du type d’ouvrage :
En fonction de l’élancement maximal du tablier, la gamme des ponts possibles à exécuter sur le site est limitée. Les tableaux présentés en annexe 2 définissent la gamme de portée des différents types de ponts.

Suivant ces tableaux, deux types de ponts permettent de dégager notre largeur minimale de navigation de 36m dont : le pont VIPP, le pont bipoutre mixte. Mais, le pont à choisir doit être celui qui présente plus d’intérêt sur le plan économique, technique, socio-environnemental par suite d’une analyse multicritère faite entre les différents types de pont.

Dans ce projet, cette analyse multicritère a été faite par le bureau « STUDI international » qui a abouti au pont en béton précontraint (VIPP).

Prédimensionnement des poutres :
Notre prédimensionnement est basé sur les dispositions règlementaires du « Guide de conception VIPP » du SETRA.
Les dimensions des éléments structurels du tablier en béton précontraint obtenues sont résumées dans le tableau 5 (voir annexe 2 pour les calculs détaillés).

| Tableau 4: Récapitulatif des dimensions du tablier en béton précontraint |
|-----------------|---------|-----------|
| Désignation | Unité | valeur |
| classe du béton | MPa | 35 |
| Portée | m | 40 |
| Espacement de la poutre | m | 3,25 |
| épaisseur hourdis | m | 0,2 |
| Hauteur de poutre | m | 2,15 |
| Epaisseur de l’âme des poutres | m | 0,3 |
| largeur de la Table de compression | m | 2,25 |
| base du Talon | m | 0,8 |
| Longueur des abouts | m | 0,5 |
| largeur du coffrage perdu | m | 1,1 |
| épaisseur coffrage perdu | m | 0,06 |
| hauteur entretoise | m | 1,65 |
| épaisseur d'âme des entretoises | m | 0,25 |
Figure 10: coupe transversale du tablier en béton précontraint

Figure 11: sections des poutres à mi-travée et sur appuis.
Dans le tableau ci-dessus, sont énumérés les avantages et les inconvénients liés au tablier en béton précontraint.

<table>
<thead>
<tr>
<th>Avantages</th>
<th>Inconvénients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Permet de s’affranchir de tout cintre ou échafaudage ;</td>
<td>1. Les appuis intermédiaires sont tous des appuis doubles et donc plus d’appareils d’appuis et les dimensions des chevètres sont plus importantes ;</td>
</tr>
<tr>
<td>2. Exécution facile. (Simplicité de leur conception) ;</td>
<td>2. L’esthétique de l’ouvrage ;</td>
</tr>
<tr>
<td>3. Rapidité du délai de construction ;</td>
<td>3. Nécessité de grands moyens de manutention tel que le lanceur ;</td>
</tr>
<tr>
<td>4. Bonne qualité d’exécution (avantage de la préfabrication) ;</td>
<td>4. Besoin d’une main d’œuvre qualifiée</td>
</tr>
<tr>
<td>5. Insensible à d’éventuels tassements d’appuis (travées indépendantes) ;</td>
<td></td>
</tr>
<tr>
<td>6. Economique (coût relativement modéré).</td>
<td></td>
</tr>
</tbody>
</table>
CHAPITRE 3 : DIMENSIONNEMENT DE LA STRUCTURE OPTIMALE VIPP

Caractéristiques à prendre en compte :

Les charges d’exploitation ne s’appliquent pas sur toute la largeur du tablier, il est donc important de déterminer la largeur chargeable qui sera prise en compte pour le chargement.

Largeur roulable L_r : c’est la largeur du tablier comprise entre dispositifs de retenue.

$L_r = 7,5\,\text{m}$ Pour ce cas présent.

Largeur chargeable L_{ch} : Elle est déduite de la largeur roulable.

$L_{ch} = L_r - n \times 0,5\,\text{(m)}$

n : nombre de dispositif de retenue.

En l’absence de disposition de retenue, tel notre cas: $L_{ch} = L_r = 7,5\,\text{m} > 7\,\text{m}$, donc nous avons un pont de 1ère classe.

Nombre de voies N_v :

$N_v = \text{Entier} \left(\frac{L_{ch}}{3} \right) = \frac{7,5}{3} = 2$ voies

Largeur d’une voie (V) : $V = \frac{L_{ch}}{N_v} = \frac{7,5}{2} = 3,75\,\text{m}$

3.1 Identification des charges et surcharges :

Les règlements de charges des ponts routes sont regroupés dans le fascicule 61 titre II du CPC (cahier de prescriptions communes). Ce document définit les différents cas de charges à prendre en compte et les conditions de leur application pour le dimensionnement des ponts.

- **Les charges permanentes :**

Elles sont constituées de l’ensemble de poids propre des éléments permanents d’un pont.

Pour éviter tout problème d’incertitude de poids propre des éléments d’un pont, des coefficients de pondération sont pris en compte dans le calcul de la charge permanente.
Tableau 5: valeurs des coefficients de pondération de la charge permanente

<table>
<thead>
<tr>
<th>Nature</th>
<th>Masse volumique</th>
<th>Coefficient de pondération</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids propre</td>
<td>On prendra un poids volumique du béton armé 2,5 t/m³</td>
<td>1.03</td>
</tr>
<tr>
<td>remblai</td>
<td>On considérera un poids volumique du remblai de 1,8t/m³</td>
<td>1.05</td>
</tr>
<tr>
<td>étanchéité</td>
<td>Poids évalué par métré en prenant en compte un poids volumique de 2,4t/m³</td>
<td>1.2</td>
</tr>
<tr>
<td>Béton bitumineux</td>
<td>Poids évalué par métré en prenant en compte un poids volumique de 2,4t/m³</td>
<td>1.4</td>
</tr>
<tr>
<td>trottoir</td>
<td>poids volumique du béton armé 2,5 t/m³</td>
<td>1.05</td>
</tr>
<tr>
<td>corniche</td>
<td>poids volumique du béton armé 2,5 t/m³</td>
<td>1.05</td>
</tr>
<tr>
<td>Barrières de sécurité BN4</td>
<td>poids linéaire de 0.65 kN/ml</td>
<td>1.05</td>
</tr>
</tbody>
</table>

- **Les charges d’exploitation :**

Les charges d’exploitation sont constituées des différents types de trafics susceptibles d’emprunter l’ouvrage dès sa mise en service et durant toute sa durée de vie. Elles sont constituées dans le cas des ponts routes de petits véhicules aux grands camions, et parfois des chars militaires. Ce pourquoi, pour les besoins d’études, les différents types de trafics ont été regroupés en charge routière normale, militaires et exceptionnelles. Les charges routières normales sont à leur tour réparties en systèmes de charge parmi lesquels on distingue :

Le système de charge A :

Il se définit par une charge uniformément repartie A_L appliquée sur toute la surface de la chaussée du tablier.

$$A_L = 2,3 + \frac{360}{L+12} \text{ en kN/m}^2$$

La charge de calcul obtenue est :

$$A_2 = a_2 \times A_1 = 0,93 \times 8,66 \approx 8,054 \text{ KN/m}^2 \text{ (voir annexe 3).}$$

Le système de charge B :

Ce système est subdivisé en trois sous-systèmes suivant :

- Le sous-système Bc : composé de camion type de 30t
- Le sous-système Br : composé d’une roue isolée de 10t
- Le sous-système Bt : composé de deux essieux tandems.
Les charges militaires : elles sont composées de véhicules militaires (char) à chenilles ou sur pneumatiques tels que : M_{c120}, M_{e120}, M_{e80}, etc. Les différentes dispositions de ces charges sur le tablier pour le calcul des sollicitations sont présentées dans l’annexe 3.

3.2 Dimensionnement des éléments structuraux du Tablier :

3.2.1 Dimensionnement des poutres principales :

La répartition transversale des charges sur les poutres principales d’un pont à poutres sans entretoises intermédiaires se fait par la méthode de Guyon-Massonnet.

Méthode de Guyon-Massonnet :

Cette méthode consiste à la détermination d’un coefficient appelé coefficient de répartition transversale « CRT ». Ce coefficient permet de répartir proportionnellement les charges placées sur le hourdis aux poutres en fonction de leur position par rapport à la charge.

![Diagramme de calcul du tablier de pont d'après Guyon-Massonnet](image)

Figure 12 : Modèle de calcul du tablier de pont d’après Guyon-Massonnet:

Où :

b : demi largeur du tablier
L : portée de la travée indépendante
L1 : entraxe des entretoises
b1 : entraxe des poutres principales

Pour utiliser la méthode de Guyon-Massonnet, certains paramètres du tablier doivent être déterminés : ce sont les paramètres fondamentaux.
Calcul des paramètres fondamentaux :
Les paramètres fondamentaux sont deux, et sont fonctions de la section transversale du tablier (poutre et hourdis). Ce sont :

- Le paramètre de torsion : \(\alpha = \frac{\gamma_p + \gamma_E}{\sqrt{\rho_p \rho_E}} \)

- le paramètre d’entretoisement : \(\theta = \frac{b \sqrt{\rho_p}}{l \sqrt{\rho_E}} \)

La valeur du paramètre \(\theta \) doit être supérieure à 0,3 pour satisfaire la condition d’utilisation de la méthode de Guyon-Massonnet.

Figure 13: section de la poutre pour le calcul des paramètres fondamentaux

Les paramètres fondamentaux de notre section sont présentés dans le tableau suivant :

Tableau 6: caractéristiques de la section à mi-travée.

<table>
<thead>
<tr>
<th>Désignation</th>
<th>symbole</th>
<th>unité</th>
<th>valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>centre de gravité Y</td>
<td>(y)</td>
<td>m</td>
<td>1,165</td>
</tr>
<tr>
<td>moment d'inertie</td>
<td>IGZ</td>
<td>m4</td>
<td>0,763</td>
</tr>
<tr>
<td>rigidité de flexion de la poutre</td>
<td>(\rho_p)</td>
<td>MPa</td>
<td>0,235E</td>
</tr>
<tr>
<td>rigidité de torsion de la poutre</td>
<td>(\gamma_p)</td>
<td>MPa</td>
<td>0,0108E</td>
</tr>
<tr>
<td>rigidité de torsion du hourdis</td>
<td>(\gamma_E)</td>
<td>MPa</td>
<td>6,67*10^-4E</td>
</tr>
<tr>
<td>rigidité de flexion du hourdis</td>
<td>(\rho_E)</td>
<td>MPa</td>
<td>6,67*10^-4E</td>
</tr>
<tr>
<td>paramètre de torsion</td>
<td>(\alpha)</td>
<td></td>
<td>0,92</td>
</tr>
<tr>
<td>paramètre d'entretoisement</td>
<td>(\theta)</td>
<td></td>
<td>0,31</td>
</tr>
</tbody>
</table>

En l’absence des entretoises intermédiaires, le hourdis joue le rôle d’entretoisement. Ce pourquoi dans notre cas, la rigidité de torsion des entretoises est égale à celle du hourdis.
\[\theta = 0,31 > 0,3 \text{ Donc méthode de Guyon-Massonnet.} \]

3.2.1a Calcul du coefficient de répartition transversale :

Ce coefficient se calcule à l’aide des tables de Guyon-Massonnet (voir annexe 5) et est fonction pour chaque poutre de sa position (poutre de rive ou intermédiaire) et de la nature de la charge appliquée.

La valeur de ce coefficient est donnée par l’expression suivante :

\[\eta = \frac{K}{n} \]

Où :
- n= nombre de poutres du tablier ;
- K : coefficient de Guyon-Massonnet.

Le coefficient K est déterminé pour chaque poutre à partir d’une courbe tracée à l’aide des tables de Guyon-Massonnet.

CRT de la poutre de rive :

La figure 17 représente la courbe de K de la poutre de rive obtenue dans notre cas après différentes interpolations entre les valeurs de \(\theta, \alpha, \) et \(y \) (ordonnée de la poutre).

Les calculs détaillés du CRT sont présentés dans l’annexe 5.

Figure 14: courbe du coefficient k de la poutre de rive.
Figure 15: exemple de chargement de la courbe de k=k(e) sous charge A_l et q_{tr}

La valeur de K est obtenue à partir des expressions suivantes :

- Pour les charges surfaciques : \(K = \frac{\omega}{L} \)

 \(\omega \) : L’aire délimitée par les charges sur la courbe de k.

 \(L \) : La largeur chargeable occupée par la charge.

- Pour les charges ponctuelles :

 \[K = \frac{1}{2} \sum_{i=1}^{2} K_i = \frac{1}{2} (K_1 + K_2) \]

 \(K_i \) : l’ordonnée de la charge sur la courbe.

Les CRT calculés pour la poutre de rive sont présentés dans le tableau ci-dessous :

Tableau 7: récapitulatif des CRT de la poutre de rive

<table>
<thead>
<tr>
<th>Poutre de rive</th>
<th>Charge</th>
<th>CRT</th>
<th>Caractéristiques</th>
<th>cas le plus défavorable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Al</td>
<td>0,26</td>
<td>a1=1 et Lal=7,5m</td>
<td>2 voies chargées</td>
</tr>
<tr>
<td></td>
<td>qtr</td>
<td>0,52</td>
<td>Ltr=2,0m</td>
<td>2 trottoirs chargés</td>
</tr>
<tr>
<td></td>
<td>Bc</td>
<td>0,67</td>
<td>bc=1,1 et P=12t</td>
<td>2 files de camion Bc</td>
</tr>
<tr>
<td></td>
<td>Mc120</td>
<td>0,37</td>
<td>L_{Mc}=1m et P=55t</td>
<td>1 char Mc120</td>
</tr>
</tbody>
</table>
Calcul du CRT de la poutre intermédiaire :

La démarche de calcul du CRT de la poutre intermédiaire est analogue à celle de la poutre de rive. La seule différence réside au niveau de la position de la poutre et des interpolations sur y qui changent.

Figure 16: Courbe de K(e) de la poutre intermédiaire.

Les valeurs du CRT calculées sont indiquées dans le tableau ci-dessous (voir annexe 5 pour les calculs).

Tableau 8: Valeurs des CRT de la poutre intermédiaire

<table>
<thead>
<tr>
<th>Poutre intermédiaire</th>
<th>Charge</th>
<th>CRT</th>
<th>Caractéristiques</th>
<th>cas le plus défavorable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0,25</td>
<td></td>
<td>a1=1 et Lal=7,5m</td>
<td>2 voies chargées</td>
</tr>
<tr>
<td>qtr</td>
<td>0,49</td>
<td></td>
<td>Ltr=2,0m</td>
<td>2 trottoirs chargés</td>
</tr>
<tr>
<td>Bc</td>
<td>0,52</td>
<td></td>
<td>bc=1,1 et P=12t</td>
<td>2 files de camions Bc</td>
</tr>
<tr>
<td>Mc120</td>
<td>0,29</td>
<td></td>
<td>L_Mc =1m et P=55t</td>
<td>1 char Mc120</td>
</tr>
</tbody>
</table>
Ci-dessous, le tableau récapitulatif des valeurs de CRT pour les deux poutres.

Tableau 9: Comparaison des valeurs de CRT pour les deux poutres

<table>
<thead>
<tr>
<th>charge</th>
<th>poutre de rive</th>
<th>poutre intermédiaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al (a1.ηAl.Lal)</td>
<td>1,95</td>
<td>1,88</td>
</tr>
<tr>
<td>qtr (ηtr)</td>
<td>0,52</td>
<td>0,49</td>
</tr>
<tr>
<td>Bc (bc.ηBc)</td>
<td>0,74</td>
<td>0,57</td>
</tr>
<tr>
<td>Mc120</td>
<td>0,37</td>
<td>0,29</td>
</tr>
</tbody>
</table>

Nous utiliserons les valeurs des CRT les plus défavorables c'est-à-dire les plus élevées pour dimensionner une poutre (poutre maîtresse) dont le ferraillage sera adopté pour toutes les autres poutres.

3.2.1b Calcul des sollicitations des poutres principales :

Poutre de rive :

- Charge permanente :

Pour le calcul du poids propre, la masse volumique du béton est prise à $\rho_b = 25\text{kN/m}^3$.

Toutes les charges permanentes sur la poutre de rive sont calculées et présentées dans le tableau ci-dessous (voir annexe 6 pour les calculs détaillés).

Tableau 10: tableau récapitulatif de la charge permanente sur la poutre de rive.

<table>
<thead>
<tr>
<th>Nature</th>
<th>charges sans majoration (KN/m)</th>
<th>coefficient de majoration</th>
<th>charges majorées (KN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poutre</td>
<td>40,63</td>
<td>1,03</td>
<td>41,85</td>
</tr>
<tr>
<td>hourdis</td>
<td>16,13</td>
<td>1,03</td>
<td>16,61</td>
</tr>
<tr>
<td>corniche</td>
<td>6,25</td>
<td>1,05</td>
<td>6,56</td>
</tr>
<tr>
<td>trottoir</td>
<td>10</td>
<td>1,05</td>
<td>10,5</td>
</tr>
<tr>
<td>couche de roulement en béton bitumineux</td>
<td>0,72</td>
<td>1,4</td>
<td>1,01</td>
</tr>
<tr>
<td>couche d'étanchéité</td>
<td>1,99</td>
<td>1,2</td>
<td>2,39</td>
</tr>
<tr>
<td>barrière de sécurité BN4</td>
<td>0,65</td>
<td>1,05</td>
<td>0,68</td>
</tr>
<tr>
<td>Total charges</td>
<td>76,36</td>
<td></td>
<td>79,6</td>
</tr>
</tbody>
</table>
Le coefficient de pondération de la charge permanente est :
\[\gamma_G = 1,35 \text{ à l’ELU et } \gamma_G = 1,00 \text{ à l’ELS} \]

- Charges d’exploitation :

Système de charge Al :

Composé de charge uniformément repartie d’intensité : \(A_1 = 8,054 \frac{KN}{m^2} \)

Le coefficient de pondération de la charge Al est : \(\gamma_{Q1} = 1,6 \text{ à l’ELU et } \gamma_{Q1} = 1,2 \text{ à l’ELS} \)

Système B :

Les sollicitations du système de charge B sont majorées d’un coefficient de majoration dynamique \(\delta_B \) et d’un Coefficient de pondération des charges (\(\gamma_{Q1} = 1,6 \text{ à l’ELU et } \gamma_{Q1} = 1,2 \text{ à l’ELS} \)).

Coefficient de majoration dynamique du système B :
\[\delta_B = 1 + \frac{0,4}{1 + 0,2L} + \frac{0,6}{1 + 4 \frac{G}{S}} \]

L : longueur de la travée \(L_{\text{travée}} = 40 \text{ m} \);
G : poids total de la travée ;

Tableau 11: poids total des éléments de la travée.

<table>
<thead>
<tr>
<th>Nature de la charge</th>
<th>charges sans majoration (KN)</th>
<th>coefficient de majoration</th>
<th>charges majorées (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>poutres</td>
<td>6500,8</td>
<td>1,03</td>
<td>6695,82</td>
</tr>
<tr>
<td>hourdis + forme de pente</td>
<td>3474</td>
<td>1,03</td>
<td>3578,22</td>
</tr>
<tr>
<td>couche de roulement</td>
<td>403,2</td>
<td>1,4</td>
<td>564,48</td>
</tr>
<tr>
<td>couche d'étanchéité</td>
<td>316,8</td>
<td>1,2</td>
<td>380,16</td>
</tr>
<tr>
<td>trottoirs</td>
<td>746</td>
<td>1,05</td>
<td>783,30</td>
</tr>
<tr>
<td>barrière de sécurité</td>
<td>52</td>
<td>1,05</td>
<td>54,60</td>
</tr>
<tr>
<td>corniches</td>
<td>490</td>
<td>1,05</td>
<td>514,50</td>
</tr>
<tr>
<td>entretoises</td>
<td>182,53</td>
<td>1,03</td>
<td>188,01</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>12759,09</td>
</tr>
</tbody>
</table>

\(G_{\text{total}} = \sum g_i = 12759,09 \text{ KN}. \)

S : poids total le plus élevé du système B.
\(S = \max(S_{Bc}; S_{Bt}; S_{Br}) \)
Tableau 12: Poids total du système B sur la travée.

<table>
<thead>
<tr>
<th>Type de convoi</th>
<th>poids total des convois sans majoration (KN)</th>
<th>Coefficient de majoration</th>
<th>poids total majorée (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>1200</td>
<td>1,1</td>
<td>1320</td>
</tr>
<tr>
<td>Bt</td>
<td>640</td>
<td>1</td>
<td>640</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

\[S = S_{BC} = 1440 \text{ KN} \]

\[\delta_B = 1 + \frac{0.4}{1 + 0.2 \times 40} + \frac{0.6}{1 + 4 \times \frac{12759.09}{1320}} = 1,06 \]

\[\delta_B = 1,06 \]

Charge militaire: \(M_{C120} \)

Les sollicitations dues aux charges militaires sont majorées d’un coefficient de majoration dynamique \(\delta_M \) et d’un Coefficient de pondération des charges \(\gamma_Q1 \)

\[\gamma_Q1 = 1,35 \text{ à l’ELU et } \gamma_Q1 = 1 \text{ à l’ELS} \]

Coefficient de majoration dynamique :

\[\delta_B = 1 + \frac{0.4}{1 + 0.2L} + \frac{0.6}{1 + 4 \times \frac{G}{S}} \]

\(S \) : est la surcharge de \(M_{C120} \) placée sur la poutre.

\[S = 110t = 1100\text{KN} \]

\[\delta_B = 1 + \frac{0.4}{1 + 0.2 \times 40} + \frac{0.6}{1 + 4 \times \frac{12759.09}{1100}} \approx 1,06 \]

Pour les charges uniformément réparties telles que : la charge permanente, la charge du trottoir et la charge \(A1 \), les sollicitations maximales sont déterminées par les formules de la RDM \((M_{max} = \frac{q1^2}{8} \text{ et } T_{max} = \frac{q1}{2}) \), tandis que celles des charges mobiles (système B et charges militaires) sont déterminées par les lignes d’influence des poutres.

Dans le tableau 18 ci-dessous nous récapitulons les sollicitations calculées de la poutre de rive et de la poutre intermédiaire. Les calculs détaillés sont présentés dans l’annexe 6.
Tableau 13: récapitulatif des sollicitations des deux poutres

<table>
<thead>
<tr>
<th>CHARGE</th>
<th>Poutre de rive</th>
<th>Poutre intermédiaire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moment fléchissant maximal (kN.m)</td>
<td>Effort tranchant maximal (kN)</td>
</tr>
<tr>
<td></td>
<td>ELS</td>
<td>ELU</td>
</tr>
<tr>
<td>permanente</td>
<td>13272,87</td>
<td>17918,37</td>
</tr>
<tr>
<td>Al</td>
<td>240,72</td>
<td>320,96</td>
</tr>
<tr>
<td>qtr</td>
<td>256,2</td>
<td>409,93</td>
</tr>
<tr>
<td>Bc</td>
<td>6015,9</td>
<td>8021,2</td>
</tr>
<tr>
<td>Mc120</td>
<td>3843,25</td>
<td>5188,3875</td>
</tr>
</tbody>
</table>

3.2.1c Etude de la précontrainte de la poutre maitresse :

Caractéristique des Matériaux :

L’ouvrage traverse un cours d’eau, la fissuration est donc considérée préjudiciable.

Tableau 14: récapitulatif des caractéristiques des matériaux

<table>
<thead>
<tr>
<th>Béton</th>
<th>Acier passif (HA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fc28</td>
<td>35 Mpa</td>
</tr>
<tr>
<td>FeE500</td>
<td>500 Mpa</td>
</tr>
</tbody>
</table>

armatures de précontraintes (T15S)

force de rupture garantie fprg	1860 Mpa
force élastique garantie fpeg	1650 MPa
diamètre d'un toron	15,7 mm
diamètre de la gaine de précontrainte Φ	80 mm
section d'un toron A	150 mm²
coefficient de frottement linéaire φ	0.002 m⁻¹
module d'élasticité de l'acier de précontrainte Ep	195000 MPa
Nous sommes en classe II de vérification de la précontrainte qui correspond au cas des éléments exposés à des ambiances agressives ou comportant de nombreux joints (ouvrages d’art). Donc les câbles seront des torons à basse relaxation $\rho_{1000} = 2.5\%$.

Système utilisé : précontrainte Freyssinet

Caractéristiques de la poutre :

La section de la poutre précontrainte varie de la travée aux appuis. De ce fait, ces caractéristiques changent de même suivant qu’on est en travée ou sur appuis.

![Figure 17: section de la poutre et du hourdis à mi-travée et sur appuis.](image)

Tableau 15: caractéristiques de la poutre pour différentes sections

<table>
<thead>
<tr>
<th>Désignation</th>
<th>en travée</th>
<th>sur appuis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>poutre seule</td>
<td>poutre + hourdis</td>
</tr>
<tr>
<td>moment d’inertie I_{GZ} (m4)</td>
<td>0,76</td>
<td>1,18</td>
</tr>
<tr>
<td>section S (m2)</td>
<td>1,28</td>
<td>1,93</td>
</tr>
<tr>
<td>distance de la fibre supérieure au centre de surface de la section V (m)</td>
<td>0,985</td>
<td>0,81</td>
</tr>
<tr>
<td>distance de la fibre inférieure au centre de surface de la section V' (m)</td>
<td>1,165</td>
<td>1,54</td>
</tr>
<tr>
<td>rendement géométrique ρ (%)</td>
<td>52</td>
<td>49</td>
</tr>
</tbody>
</table>
Le rendement géométrique est calculé par la formule suivante : \(\rho = \frac{I}{S.V.V'} \)

Sollicitations de calcul :

Pour le calcul de la précontrainte, les sollicitations à considérer doivent être les plus élevées, obtenues en travées (moment fléchissant maximum) et sur appuis (effort tranchant maximum).

Le calcul de la force de précontrainte se fait dans la section la plus sollicitée en flexion (section à mi-travée).

Tableau 16: sollicitation de calcul de la précontrainte

<table>
<thead>
<tr>
<th>Moment fléchissant de calcul (ELS)</th>
<th>symbole</th>
<th>valeur (MN.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>moment dû au poids propre de la poutre</td>
<td>Mgp</td>
<td>6,23</td>
</tr>
<tr>
<td>moment dû au poids propre du hourdis sur la poutre</td>
<td>Mgh</td>
<td>3,12</td>
</tr>
<tr>
<td>Moment dû au poids de la superstructure</td>
<td>Mgs</td>
<td>3,97</td>
</tr>
<tr>
<td>Moment maximum dû au charge d'exploitation</td>
<td>MQ</td>
<td>6,27</td>
</tr>
<tr>
<td>Moment totale (ELS)</td>
<td>Mmax</td>
<td>19,59</td>
</tr>
</tbody>
</table>

Valeur minimale de la précontrainte dans la section :

Pour le prédimensionnement de la précontrainte, le BPEL définit clairement deux valeurs de précontrainte \(P_1 \) et \(P_2 \) dont le maximum des deux est la précontrainte minimale de calcul :

\[
P_{\text{min}} = \text{max}[P_1; P_2].
\]

Les deux précontraintes dans notre cas valent :

En section sous-critique : \(P_1 = -1,48 \) MN

En section sur-critique : \(P_2 = 9,6 \) MN

La précontrainte minimale de calcul est donc : \(P_{\text{min}} = P_2 = 9,6 \) MN, la section est alors sur critique. Dans ce cas l’excentricité est imposée à sa valeur maximale admissible, compatible avec les conditions d’enrobage.

Les calculs détaillés sont présentés en annexes 7.
Calcul du nombre de câbles :

Le câblage longitudinal des poutres comporte deux familles de câbles associées aux deux phases de bétonnage :

- Une première famille de câbles mise en tension sur les poutres seules, assez rapidement après le bétonnage des poutres ;
- La seconde famille de câbles est mise en tension lorsque le béton du hourdis a acquis une résistance suffisante.

En tenant compte des deux différentes phases de mise en tension et des contraintes limites du béton liées à chaque phase, le nombre de câbles calculé est :

- 1ère famille : 4 câbles 12T15S ;
- 2ème famille : 2 câbles 12T15S ;

Disposition des câbles de précontrainte dans la poutre :

Plaque d’ancrage :

Les plaques d’ancrages sont dimensionnées à partir de la force à recevoir lors de la mise en tension du câble. Elles sont agréées pour chaque brevet. Ci-dessous, différentes dispositions des ancrages du modèle C [6].

Figure 18: disposition des plaques d’ancrages du modèle C [6].

Espacement des armatures de précontraintes :

En section courante, si e_v est l’espacement vertical et e_h l’espacement horizontal, nous aurons :

Pour des conduits isolés : \(\begin{cases} e_v \geq \varnothing \\ e_h \geq \varnothing \end{cases} \)

\(\varnothing \) est le diamètre d’encombrement maximal des conduits de câbles.

\(\varnothing = 80 \text{ mm} \) Pour les torons T15S.
Figure 19: disposition des conduits dans les sections transversales des poutres.

Figure 20: schéma du câblage longitudinal de la poutre précontrainte sur la demi-longueur.

Equation des câbles:

Chaque câble de précontrainte est défini par une équation parabolique de forme \(y = ax^2 + b \).

Pour les câbles de première famille (câble sortant d’about):

Premier câble :

\[
\begin{align*}
\text{pour } x &= 0 \rightarrow y = b = 0,12 \text{ m} \\
\text{pour } x &= \frac{L}{2} = 19,38 \rightarrow y = 0,24 \text{ m} \rightarrow a \times (19,38)^2 + 0,12 = 0,24 \rightarrow a = 3,2 \times 10^{-4}
\end{align*}
\]

Donc l’équation du premier câble devient : \(y = 3,2 \times 10^{-4}x^2 + 0,12 \)

L’angle d’inclinaison \(\alpha \) vaut : \(\tan \alpha = \frac{dy}{dx} \rightarrow \tan \alpha = 2 \times 3,2 \times 10^{-4} \times 19,38 \)

\(\Rightarrow \alpha = 0,71^\circ \)

Pour les autres câbles, la démarche est analogue à celle du 1er (voir annexe 7).
Tableau 17: récapitulatif des coordonnées des câbles dans la demi-longueur de la poutre

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Coordonnées</th>
<th>Angle d'inclinaison α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x=0</td>
<td>x=L/4</td>
</tr>
<tr>
<td>1er câble</td>
<td>0,12</td>
<td>0,15</td>
</tr>
<tr>
<td>2ème câble</td>
<td>0,12</td>
<td>0,27</td>
</tr>
<tr>
<td>3ème câble</td>
<td>0,12</td>
<td>0,40</td>
</tr>
<tr>
<td>4ème câble</td>
<td>0,12</td>
<td>0,52</td>
</tr>
<tr>
<td>5ème câble</td>
<td>0,16</td>
<td>0,84</td>
</tr>
<tr>
<td>6ème câble</td>
<td>0,16</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Calcul des pertes de précontrainte :
La tension d’une armature de précontrainte en un point et à un instant donné est différente de la tension appliquée au câble par le vérin lors de la mise en œuvre. Cette variation est due à un phénomène de pertes de précontrainte. Ces pertes de précontrainte se répartissent en deux groupes : les pertes instantanées et les pertes différées.

Pertes instantanées :
Ce sont des pertes de tension qui se produisent lors de la mise en tension des câbles de précontrainte. On distingue parmi elles :

- Les pertes par frottement des câbles sur les gaines \((\Delta \sigma_f)\) ;
- Les pertes par recul d’ancrage ;
- Les pertes par déformation instantanée du béton.

Tableau 18: récapitulatif des pertes instantanées

<table>
<thead>
<tr>
<th>pertes instantanées</th>
<th>1ère famille</th>
<th>2ème famille</th>
</tr>
</thead>
<tbody>
<tr>
<td>par frottement</td>
<td>79,17</td>
<td>110,31</td>
</tr>
<tr>
<td>par recul d'ancrage</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Par déformation instantanée du béton</td>
<td>73,15</td>
<td>19,97</td>
</tr>
<tr>
<td>Total</td>
<td>152,32</td>
<td>130,23</td>
</tr>
<tr>
<td>En % de la précontrainte initiale</td>
<td>10%</td>
<td>9%</td>
</tr>
</tbody>
</table>
Les pertes différées :

Ce sont des pertes à long terme qui se produisent après relâchement des câbles de précontrainte. Elles sont reparties comme suit :

- Les pertes dues au retrait du béton $\Delta \sigma_{\text{ret}}$;
- Pertes par relaxation des aciers $\Delta \sigma_{\text{rel}}$;
- Pertes par fluage du béton $\Delta \sigma_{\text{fl}}$.

Tableau 19: récapitulatif des pertes de précontraintes différées

<table>
<thead>
<tr>
<th>pertes différées</th>
<th>Valeur moyenne (Mpa) à L/2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1ère famille</td>
</tr>
<tr>
<td>dues aux retraits du béton</td>
<td>57</td>
</tr>
<tr>
<td>par relaxation des aciers</td>
<td>0,54</td>
</tr>
<tr>
<td>dues au fluage du béton</td>
<td>121,66</td>
</tr>
<tr>
<td>totale</td>
<td>179,11</td>
</tr>
<tr>
<td>En % de la précontrainte initiale</td>
<td>12%</td>
</tr>
</tbody>
</table>

Les pertes différées totales se calculent par l’expression suivante :

$$\Delta \sigma_d = \Delta \sigma_{\text{retrait}} + \Delta \sigma_{\text{fluage}} + \frac{5}{6} \Delta \sigma_{\text{relaxation}}$$

Les détails du calcul des pertes de précontrainte sont présentés dans l’annexe 7.

Vérification à l’état limite ultime :

La vérification à ce niveau porte sur la résistance de la section sous l’effet des charges ultimes en combinaisons fondamentales.

Moment ultime sollicitant : $M_u = 17,98 + 8,43 = 26,41 \text{ MN.m}$

Moment résistant de la table :

$$M_{tc} = F_{tc} \times Z = 11,70 \times 1,89 = 22,11 \text{ MN.m} < M_u = 26,41 \text{ MN.m},$$ donc l’axe neutre est dans la nervure.

Moment repris par la nervure :
\[M_n = M_u - M_{tc} = 26,41 - 22,11 = 4,3 \text{ MN.} \]
\[m \rightarrow \mu = 0,183 \rightarrow \Delta \varepsilon_3 = 10^° / \infty \]

Calcul de la contrainte dans les câbles de précontraintes :

\[\varepsilon_3 = \frac{\sigma_3}{E_p} + 100 \left(\frac{Y_p \times \sigma_3}{f_{prg}} - 0,9 \right)^5 \]

Allongement \(\varepsilon_1 \):

\[\varepsilon_1 = \frac{\sigma_1}{E_p} = \frac{1050}{190000} = 5,53^° / \infty \]

Allongement \(\varepsilon_2 \):

Donc \(\varepsilon_2 = \frac{\sigma_2}{E_p} = \frac{1098,7}{190000} = 5,78^° / \infty \)

Allongement \(\varepsilon_3 \):

\[\varepsilon_3 = \varepsilon_2 + \Delta \varepsilon_3 = 5,78^° / \infty + 10^° / \infty = 15,78^° / \infty \rightarrow \sigma_3 = 1630,74 \text{ MPa, donc la} \]

précontrainte des câbles vaut :

\[P_3 = A_t \times \sigma_3 = 6 \times 1800 \times 10^{-6} \times 1630,74 = 17,61 \text{ MN} \]

Avec \(A_t \): section de tous les câbles de précontrainte.

Résultante de compression du béton :

\[F_n = 0,8 \times \xi \times b \times d \times \sigma_{bu} = 0,8 \times 0,255 \times 0,3 \times 1,99 \times 19,83 = 2,41 \text{ MN} \]

\[F_b = F_{tc} + F_n = 11,70 + 2,41 = 14,11 \text{ MN} \]

\[P_3 = 17,61 \text{ MN} > F_b = 14,11 \text{ MN}, \text{ La section d’acier de précontrainte est suffisante sans que} \]

l’on prenne en compte les aciers passifs. *(Voir annexe 7 pour les calculs détaillés)*.

Vérification du cisaillement :

L’évaluation de la sécurité vis-à-vis du cisaillement résultant du chargement de la poutre se fera par le biais des contraintes suivantes :

- \(\sigma_x \): la contrainte normale suivant l’axe longitudinal de l’élément ;
- \(\tau \): la contrainte tangentielle.
Contrainte de compression du béton :
\[
\sigma_x = \frac{P}{B} = \frac{12.55}{2.61} = 4.8 \text{ MPa}
\]
Vérification de \(\sigma_x\):
\[
\sigma_x < 0.4f_{cj} \Rightarrow \sigma_x = 4.8 < 0.4 \times 35 = 14 \text{ MPa} \text{ Vérifiée}
\]
Contrainte de cisaillement \(\tau\):
\[
\tau = \frac{1.8}{0.72 \times 1.72} = 1.45 \text{ MPa}
\]

Domaine de sécurité :
\[
\sigma_x = 11.35 \text{ MPa} > 0 \text{ (Compression)}
\]
- \(\tau^2 \leq 0.4 \times f_{tj} \times \left[f_{tj} + \frac{2}{3} \times \sigma_x \right] \) (1)
\[
\tau^2 = 1.45^2 = 2.1 \text{ MPa} < 11.09 \text{ MPa} \text{ Condition (1) Vérifiée}
\]
- \(\tau^2 \leq 2 \times \frac{f_{tj}}{f_{cj}} \times [0.6 \times f_{cj} - \sigma_x] \times \left[f_{tj} + \frac{2}{3} \times \sigma_x \right] \) (2)
\[
\Rightarrow 2 \times \frac{f_{tj}}{f_{cj}} \times [0.6 \times f_{cj} - \sigma_x] \times \left[f_{tj} + \frac{2}{3} \times \sigma_x \right] = 15.29 \text{ MPa} > \tau^2 = 2.1 \text{ MPa} \text{ Condition (2) satisfaite.}
\]
Contrainte de cisaillement à l’ELU à \(x = 1.5 \text{ m des appuis}:
\[
\tau_u = \frac{T_{ru}}{b_n \times Z}
\]
Effort tranchant ultime réduit :
Les charges appliquées sur une poutre au voisinage de ses appuis tendent à diffuser directement dans les appuis sans apporter leur pleine contribution à l’effort tranchant. C’est pourquoi le BPEL prévoit la possibilité de prendre en compte un effort tranchant réduit.
\[
T_{ru} = 1.35T_G + 1.35T_{Mc120} + 1.6T_{tr} - P_{sina}
\]
\[
\Rightarrow T_{ru} \equiv 2.43 \text{ MN}
\]
\[
\Rightarrow \tau_u = \frac{2.43}{0.72 \times 1.72} = 1.96 \text{ MPa}
\]
Vérification de l’effort tranchant ultime réduit :
\[
\tau_u \leq \frac{f_{cj}}{4 \times Y_b}
\]
\[
\tau_u = 1.96 \text{ MPa} \leq \frac{35}{4 \times 1.5} = 5.83 \text{ MPa Vérifiée.}
\]
Angle d’inclinaison des bielles :

tang \(2\beta_u = \frac{2\tau_u}{\sigma_{xu}}\)

\[\Rightarrow \beta_u = 14^\circ < 30^\circ\]

Justification des armatures transversales :

Densité de ferraillement transversale :

\[
\frac{A_t}{S_t} \geq \left[\tau_u - \frac{f_{lj}}{3} \right] \times b_n \times \frac{Y_s}{f_{e}} \times \tan \beta_u
\]

\[\Rightarrow \frac{A_t}{S_t} \geq \left[1,96 - \frac{2,7}{3} \right] \times 0,72 \times \frac{1,15}{500} \times \tan 30^\circ = 1,013 \times 10^{-3} \text{m} = 0,10 \text{cm} \]

Or: \(S_t \leq \min\{0,8h; 3b_0; 1m\}\)

Prenons \(S_t = 0,25 \text{ m} = 25 \text{cm}\).

\(A_t \geq 25 \times 0,1 = 2,5 \text{ cm}^2\) Soit 5HA8

Minimum d’armature transversale dans les âmes des poutres :

\[
\frac{A_t \times f_e}{b_n \times S_t \times Y_s} \geq 0,4 \text{ MPa}
\]

\[
\frac{A_t \times f_e}{b_n \times S_t \times Y_s} = \frac{2,5 \times 10^{-4} \times 500}{0,72 \times 0,25 \times 1,15} = 0,6 \text{ MPa} > 0,4 \text{ MPa} ;
\]

\[\Rightarrow\text{Le minimum d’armature transversale est dépassé, condition satisfaite.}\]

Justification des bielles de béton comprimé :

Pour \(\beta_u < 30^\circ \Rightarrow \tau_u < \frac{f_{cj}}{6} \Rightarrow \tau_u = 1,96 \text{ MPa} < \frac{35}{6} = 5,83 \text{ MPa}\) donc les bielles de compression sont justifiées.

Les plans de ferraillement de la poutre en travée et sur appuis sont établis et présentés en annexe 14.

Ferraillage passif :

Dans les poutres précontraintes, en plus des armatures de précontrainte (câbles), sont disposées d’autres armatures appelées armatures passives. On distingue parmi elles :

Les armatures de peau :

- dans le sens longitudinal : \(A_L = \max\{3\text{cm}^2/\text{ml}; 0,1\%B\}\)

B: Section brute de la poutre à mi-travée ;
• Dans le sens transversal : $A_T = 2 \text{ cm}^2/\text{ml}$

<table>
<thead>
<tr>
<th>position</th>
<th>section de la poutre (m²)</th>
<th>longitudinales</th>
<th>transversales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>choix</td>
<td>choix</td>
</tr>
<tr>
<td>en travée</td>
<td>1,28</td>
<td>12,8</td>
<td>8HA14</td>
</tr>
<tr>
<td>sur appuis</td>
<td>1,97</td>
<td>19,7</td>
<td>10HA16</td>
</tr>
</tbody>
</table>

3.2.2 Etude de l’entretoise d’about :

Inventaires des charges appliquées à l’entretoise :

• Poids propre des entretoises sans pondération :
 \[g_{\text{ent}} = 0,45 \times 1,65 \times 25 = 18,56 \text{ KN/m} \]

• Charge provenant de la poutre de rive sans pondération :
 \[g_{\text{pr}} = \frac{79,61 \times 40}{2} = 1592,2 \text{ kN} \]

• Charge provenant de la poutre intermédiaire sans pondération : $g_{\text{pi}} = 77,8 \text{ KN/ml}$
 \[g_{\text{pr}} = \frac{77,61 \times 40}{2} = 1552,2 \text{ KN} \]

Figure 21: schéma de calcul de l’entretoise.

Calcul des sollicitations :

Nous allons utiliser le logiciel RDM6 afin de déterminer les sollicitations engendrées par les charges appliquées sur les entretoises (voir annexe 8).

Ci-dessous, le tableau récapitulatif des sollicitations calculées.
Tableau 20: récapitulatif des sollicitations de l’entretoise.

<table>
<thead>
<tr>
<th>Etat limite</th>
<th>moment fléchissant maximal (kN.m)</th>
<th>Effort tranchant (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>appuis</td>
<td>travée</td>
</tr>
<tr>
<td>ELS</td>
<td>-2611,83</td>
<td>-15,99</td>
</tr>
<tr>
<td>ELU</td>
<td>-3525,98</td>
<td>-21,58</td>
</tr>
</tbody>
</table>

Calcul du ferraillage de l’entretoise :

La fissuration est considérée préjudiciable, donc le calcul des armatures se fera à l’ELS suivi d’une vérification à l’ELU.

Les armatures obtenues en travée et aux appuis après calcul sont présentées dans le tableau ci-dessous.

Tableau 21: armatures longitudinales de l'entretoise d'about.

<table>
<thead>
<tr>
<th>armatures longitudinales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etat limite</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>ELS</td>
</tr>
<tr>
<td>ELU</td>
</tr>
</tbody>
</table>

Condition de non-fragilité :

Sur appui :

\[\frac{A_{st}}{b_0 \times d} = 0,013 \geq \frac{0,23 \times f_{tj}}{f_e} = 0,0012 \] Condition vérifiée

En travée :

\[\frac{A_{st}}{b_0 \times d} = 0,00023 < \frac{0,23 \times f_{tj}}{f_e} = 0,0012 \] Condition non vérifiée, il faut donc calculer les armatures minimales.

Détermination des armatures minimales :

\[\frac{A_{st}}{b_0 \times d} \geq \frac{0,23 \times f_{tj}}{f_e} \Rightarrow A_{st} \geq \frac{0,23 \times f_{tj} \times b_0 \times d}{f_e} = \frac{0,23 \times 2,7 \times 0,45 \times 1,485}{500} = 8,3 \times 10^{-4} \text{ m}^2 = 8,3 \text{ cm}^2 \]

\[\Rightarrow 8HA12 = 9,05 \text{ cm}^2 \]

Justification des armatures transversales :

Calcul de la contrainte conventionnelle \(\tau_u \) :

\[\tau_u = \frac{V_u}{b_0 \times d} \Rightarrow \tau_u = \frac{2,19}{0,45 \times 0,9 \times 1,65} \equiv 3,28 \text{ MPa} \]
\[\tau_u = 3.28 \text{ MPa} \leq \min \left(\frac{0.15 \times f_{c28}}{\gamma_b} = \frac{0.15 \times 35}{1.5} = 3.5 \text{ MPa; 4 MPa} \right) \text{ Condition vérifiée.} \]

Calcul des armatures d’âme des entretoises :

\[
\frac{A_t}{b_0 \times S_t} \geq \frac{\gamma_s (\tau_u - 0.3k \times f_{c28})}{0.9f_e (\sin \alpha + \cos \alpha)}
\]

Nous obtenons après calcul : \(A_t = 9.43 \text{ cm}^2 \) Prenons 9HA12=10,18 cm²

Condition de non fragilité :

\[
\frac{A_t \times f_e \times b_0 \times d}{b_0 \times S_t} = \frac{10.18 \times 10^{-4} \times 500}{0.45 \times 0.9 \times 1.65} = 0.76 \text{MPa} > 0.4 \text{ MPa} \text{ Condition vérifiée.} \]

Espacement maximal des armatures transversales :

\[S_t \leq \min(0.9d; 40 \text{ cm}) = \min(133,65 \text{ cm}; 40 \text{ cm}) \]

\[S_t \leq 40 \text{ cm} \]

Diamètre maximal des armatures transversales :

\[\varnothing_t \leq \min \left(\frac{h}{35}; \varnothing_L; \frac{b_0}{10} \right) \]

\[\varnothing_t \leq \min(47; 32 ; 45) \Rightarrow \varnothing_t \leq 32 \text{ mm} \]

Les plans de ferraillage de l’entretoise en travée et sur appui sont présentés en annexe 15.

3.2.3 Dimensionnement du hourdis :

Coefficient de majoration dynamique du hourdis : (voir annexe 9 pour les détails)

Convoi Bc : \(S_{Bc} = 1320 \text{ kN} \)

\[
\delta_B = 1 + \frac{0.4}{1 + 0.2 \times 9.75} + \frac{0.6}{1 + \frac{4 \times 5482}{1320}} = 1.17
\]

Convoi militaire MC120 : \(S_{MC120} = 110t \times 2 = 220t = 2200 \text{ kN} \)

\[
\delta_B = 1 + \frac{0.4}{1 + 0.2 \times 9.75} + \frac{0.6}{1 + \frac{4 \times 5482}{2200}} = 1.2
\]

- **Calcul des sollicitations du hourdis :**

Le hourdis est dimensionné en flexion locale (déformation transversale) et en flexion globale (déformation longitudinale) lorsqu’il ne dispose pas d’entretoises intermédiaires.

En résumé flexion totale du hourdis = flexion locale + flexion globale.

Flexion locale :
C’est la déformation transversale du tablier due aux différentes charges d’exploitations : Bc, Mc120, Al, etc.

Le calcul des sollicitations en flexion locale se fera par la méthode de superposition avec les abaques de Mougin (voir dans l’annexe 9).

Les sollicitations obtenues après calcul pour les différentes charges sont présentées dans le tableau suivant :

Tableau 22: sollicitations maximales de la flexion locale du hourdis

<table>
<thead>
<tr>
<th>Etat limite</th>
<th>travée de rive</th>
<th>travée intermédiaire</th>
<th>appui de rive</th>
<th>appui intermédiaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELS (kN.m)</td>
<td>sur l’axe x</td>
<td>sur l’axe y</td>
<td>sur l’axe x</td>
<td>sur l’axe y</td>
</tr>
<tr>
<td></td>
<td>59,5</td>
<td>15,4</td>
<td>55,8</td>
<td>-37,2</td>
</tr>
<tr>
<td></td>
<td>79,5</td>
<td>20,6</td>
<td>74,6</td>
<td>-49,7</td>
</tr>
<tr>
<td>ELU (kN.m)</td>
<td>sur l’axe x</td>
<td>sur l’axe y</td>
<td>sur l’axe x</td>
<td>sur l’axe y</td>
</tr>
<tr>
<td></td>
<td>-37,2</td>
<td>-37,2</td>
<td>-37,2</td>
<td>-49,7</td>
</tr>
<tr>
<td></td>
<td>-37,2</td>
<td>-49,7</td>
<td>-49,7</td>
<td></td>
</tr>
</tbody>
</table>

Moment d’encorbellement :

A L’ELU :

\[M_e = -1,35 \times \frac{18,55KN}{m} \times \frac{1,125^2}{2} m^2 - 1,6 \times \max \left(7,875 \left(1,125 - \frac{1,75}{2}\right), 60 \frac{7,5}{7,5} \times 1,125m\right) \]

\[M_e = -15,85 - 1,6 \max(1,97; 9) = - 30,25KN/m \]

A l’ELS:

\[M_e = -11,74 - \max(1,97; 9) = - 20,74KN/m \]

Flexion globale :

Les sollicitations en flexion globale du hourdis se calculent par la méthode de Guyon-Massonnet.

On calcule le moment fléchissant maximal par la formule suivante :

\[M_y(x, y) = \frac{b}{8} \times \sum_{n=1}^{\infty} \mu_n \times q_n \times \sin \frac{n. \pi. x}{L_C} \]

Pour déterminer la valeur de \(\mu_n \), la courbe de \(\mu_n = f(\alpha, \theta, y, e) \) doit être tracée à partir des tables de Guyon-Massonnet et les charges disposées sur cette courbe suivant les caractéristiques du tablier. Les valeurs de \(\mu_n \) correspondent aux ordonnées des charges appliquées sur la courbe pour les charges ponctuelles et la surface délimitée par la position des charges sur la courbe pour les charges surfacique.
Figure : courbe de μ_1 et μ_3 en fonction de e.

Les sollicitations de la flexion globale du houdis calculées par la méthode de Guyon-Massonnet sont les suivantes :

Figure : chargement de la courbe de μ_1 et μ_3 par la charge permanente.
Tableau 23: sollicitations de la flexion globale du hourdis pour différents cas de charges.

<table>
<thead>
<tr>
<th>Etat limite</th>
<th>Charge du trottoir</th>
<th>charge permanente</th>
<th>charges normales</th>
<th>charge militaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELU (kN.m)</td>
<td>-34,4</td>
<td>-0,67</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>ELS (kN.m)</td>
<td>-21,5</td>
<td>-0,44</td>
<td>11,3</td>
<td>8,3</td>
</tr>
</tbody>
</table>

Condition relative au poinçonnement sous charge localisée :

\[h_d \geq \frac{Q_u}{0,045 \times u_c \times f_{c28}/\gamma_b} \]

\[h_d \geq \frac{Q_u}{0,045 \times u_c \times f_{c28}/\gamma_b} = \frac{100 \times 1,17 \times 1,6}{0,045 \times 1,8 \times 35,18} \approx 0,01 \text{ Condition vérifiée.} \]

Condition relative au Non emploi d’armatures d’effort tranchant :

\[\tau_u = \frac{T}{b_d \times d} \leq 0,07 \frac{f_{c28}}{\gamma_b} \]

Dans la direction de lx :\(T = 10,88 \text{ t} = 108,8 \text{ KN} \)

\[\tau_u = 604,44 \frac{\text{KN}}{m^2} \leq 0,07 \frac{f_{c28}}{\gamma_b} = 1633,33 \text{KN/m}^2 \text{ Condition vérifiée.} \]

Dans la direction de ly :\(T = 11,77 \text{ t} \)

\[\tau_u = 653,89 \text{KN/m}^2 < 0,07 \frac{f_{c28}}{\gamma_b} = 1633,33 \text{KN/m}^2 \text{ Condition vérifiée} \]

Calcul du ferraillage du hourdis :

Le calcul des armatures du hourdis se fera à l’ELS suivi d’une vérification à l’ELU. Les armatures du hourdis calculées dans notre cas sont présentées dans le tableau 29. Pour les détails de calcul voire Annexe 9.
Tableau 24: récapitulatif des armatures du hourdis calculées.

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Direction X-X</th>
<th>Direction Y-Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>travée intermédiaire</td>
<td>Travée de rive</td>
</tr>
<tr>
<td>Ast (cm²)</td>
<td>27,65</td>
<td>28,63</td>
</tr>
<tr>
<td>Armatures supérieures HA500</td>
<td>9HA14</td>
<td>10HA14</td>
</tr>
<tr>
<td>armatures inférieures HA500</td>
<td>9HA14</td>
<td>10HA14</td>
</tr>
<tr>
<td>Espacement (cm)</td>
<td>11 cm</td>
<td>10 cm</td>
</tr>
</tbody>
</table>

Les plans de ferraillage du hourdis + poutre précontrainte sont présentés en **annexe 15**.

3.2.4 Dimensionnement du coffrage perdu en béton armé :

Caractéristiques :

Section : \((1,10 \times 2,8) \text{m}^2 \)

Epaisseur : \(e_p = 6 \text{ cm} \)

Calcul des sollicitations :

Les charges appliquées sur la prédalle sont :

- Les charges permanentes :
 \(g_p = 6,5 \text{ kN/ml} \)

- Une charge d’exploitation de 1kN/ml prévue par le BPEL.

Tableau 25: sollicitations de calcul de la prédalle.

<table>
<thead>
<tr>
<th>Sollicitations de calcul</th>
<th>Moment fléchissant</th>
<th>Effort tranchant</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELU (kN.m)</td>
<td>ELS (kN.m)</td>
<td>ELU (kN)</td>
</tr>
<tr>
<td>10,05</td>
<td>7,35</td>
<td>14,39</td>
</tr>
</tbody>
</table>
Ferraillage de la prédalle (voir annexe 10):
A l’ELU :
\[A_{st} = 4,62 \text{ cm}^2 \]
Soit 10HA8 = 5,03 cm² espacées de \(S_t = 10 \text{ cm} \)
A l’ELS :
\[A_{st} = 6,7 \text{ cm}^2 \]; soit 9HA10 = 7,07 cm²

Condition de non fragilité :
\[A_{s,min} \geq 0,23 \times b \times d \times \frac{f_{zu}}{f_e} = 0,23 \times 1 \times 0,054 \times \frac{2,7}{500} = 0,67 \text{ cm}^2 \text{ condition vérifiée} \]

Les plans de ferraillage du coffrage perdu sont présentés en **annexe 15**.

3.2.5 Etude de l’appareil d’appuis :

Sollicitations normales :
- L’effort normal maximal: \(N_{max} = 2760,95 \text{ kN} \)
- L’effort normal minimal \(N_{min} = 1890,64 \text{ kN} \)

Sollicitations horizontales :
- Forces de freinages : 300 kN
- Dilatation linéaire thermique \{ courte durée: 1,55 cm \}
- \{ longue durée: 1,16 cm \}
- Retrait et fluage : 2,71 cm
- Rotation : 14,33°

Les dimensions de l’appareil d’appui obtenues après calcul sont les suivantes (voir annexe) :

![Figure 22: appareil d’appui.](image-url)
Vérification des contraintes :

Limitation des contraintes de cisaillement :
\[\tau = \tau_N + \tau_H + \tau_\alpha \leq 5G \]
\[\tau = 1,37 + 0,47 + 0,97 = 2,81 \text{ MPa} < 5G = 4,5 \text{ MPa} \] Condition vérifiée
\[\tau_{H1} \leq 0,5G \]
\[\tau_{H1} = 0,4 \text{ MPa} < 0,5G = 0,45\text{MPa} \] Condition vérifiée
\[\tau_H \leq 0,7G \]
\[\tau_H = 0,47 \text{ MPa} < 0,7G = 0,63 \text{ MPa} \] Condition vérifiée

Condition de non-cheminement et de non-glissement :
\[\sigma_{m,\text{min}} = \frac{N}{axb} \geq 2\text{MPa} \]
\[\sigma_{m,\text{min}} = \frac{N}{axb} = \frac{1890,64 \times 10^3}{500 \times 550} = 6,9 \text{ MPa} > 2\text{MPa} \] Condition vérifiée

N : effort normal minimal

Condition de non soulevement :
\[\alpha_t \leq \frac{3}{\beta} \left(\frac{a}{\alpha} \right)^2 \times \frac{\sigma_m}{G} \]
\[\alpha_t = 0,00125 \text{ rad} \leq \frac{3}{10,91} \times \left(\frac{12}{500} \right)^2 \times \frac{10}{0,9} = 0,00175 \] Condition vérifiée

3.2.6 Etude des joints de chaussée :

Détermination du souffle :
Le souffle d’un joint est le déplacement relatif maximal prévisible des deux éléments en regard, mesuré entre les positions extrêmes.
Sollicitations :

- **Dilatation linéaire thermique** :

 Action de courte durée \(U_t = 1,55 \times 10^{-2} \) m

 Action de longue durée \(U_t = 1,16 \times 10^{-2} \) m

- **Retrait et fluage** :

 \(U_t = 2,71 \times 10^{-2} \) m

- **Rotation** :

 \[
 \Delta l_{\text{rotation}} = \frac{4 \times f}{L} \times H_p
 \]

 \(\Delta l_{\text{rotation}} = 4 \) cm Sous charge permanente (ELU)

 \(\Delta l_{\text{rotation}} = 3,6 \) cm Sous charge permanente (ELS)

- **Freinage** :

 \(v_x = 0,73 \) cm

Le souffle obtenu dans notre cas à l’ELS est : \(S = 8,55 \) cm = 85,5 mm (voir calculs détaillés en annexe 12).

Dans le catalogue de Freyssinet le modèle CIPEC Wd110 présente les caractéristiques suivantes :

Souffle nominale : 110 mm, l’intervalle entre deux éléments métalliques en vis-à-vis peut varier de 10 mm à 120 mm
3.2.7 Étude des appuis :

Le prédimensionnement des piles de pont se fait suivant les dispositions indiquées dans le guide SETRA « PP73 ».

Le schéma ci-dessous résume l’ensemble des dimensions calculées de la pile de notre pont :

Figure 23: dimensions retenues de la pile.
Après le prédimensionnement et la descente des charges, des combinaisons d’action ont été faites afin de déterminer le ferraillage élémentaire des différents éléments de la pile. Le résultat du calcul de ferraillage est présenté dans le tableau ci-dessous. Les calculs détaillés sont présentés dans l’annexe 13.

Tableau 26: résultat du calcul de la pile.

<table>
<thead>
<tr>
<th>Elément</th>
<th>Dimensions (m)</th>
<th>effort</th>
<th>Sollicitation de calcul</th>
<th>ferraillage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vertical (MN)</td>
<td>Horizontal (MN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moment fléchissant (MN.m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Effort tranchant (MN)</td>
<td></td>
</tr>
<tr>
<td>chevêtre</td>
<td>2,10x1,5x1,2</td>
<td>ELS : V=2,02</td>
<td>ELS : V=2,76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELU : V=2,02</td>
<td>En travée : Mt = 2,0</td>
<td>En travée :</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sur appui : Ma= -3,08</td>
<td>15HA25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T=4,36</td>
<td>Sur appui :</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14HA32</td>
</tr>
<tr>
<td>fût</td>
<td>Φ1,0</td>
<td>ELS : V=7,03</td>
<td>ELS : H=1.10^-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>En travée : Mt=2,14</td>
<td>T=6,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sur appui : Ma=2,58</td>
<td>Sur appui :</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13HA32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15HA32</td>
</tr>
<tr>
<td>semelle</td>
<td>2,0x4,2x12</td>
<td>ELS : V=7,03</td>
<td>En travée : Mt=2,14</td>
<td>En travée :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELU : V=5,2</td>
<td>T=6,28</td>
<td>13HA32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15HA32</td>
</tr>
</tbody>
</table>

Les plans de ferraillage de tous les éléments de la pile sont présentés dans l’annexe 15.

Analyse financière :

Après le dimensionnement, nous procédons à la détermination des quantités de matériaux des éléments de la structure étudiée à partir de leurs dimensions effectives. Cette quantité de matériaux étant déterminée, s’en suivra le devis quantitatif et estimatif du projet basé sur les bordereaux de prix national d’ouvrage d’art.

Le coût d’investissement des éléments de la structure étudiée se lève à la somme de : **5 258 655 000 FCFA HTT** (voir annexe 10 pour les calculs détaillés).
Conclusion :

L'étude des différents éléments de la structure nous mène à un pont en béton précontraint de 16 travées indépendantes constituées chacune en superstructure d'un houdis général de 20cm d'épaisseur, de deux entretoises d'about et de 4 poutres préfabriquées précontraintes par post-tension.

Le houdis général est répartie sur toute la surface des travées et est coffré à l'aide des prédalles en béton armé de 6 cm d’épaisseur. Il permettra de repartir les charges appliquées sur toutes les poutres de la travée.

Pour les poutres, la mise en tension doit suivre le calendrier d’exécution fixé lors de l’étude de la précontrainte afin d’éviter les risques de rupture du béton dont la résistance en compression doit être d’au moins 35MPa. Le type de coffrage prévu pour la préfabrication de ces poutres est le coffrage métallique qui peut servir à exécuter plusieurs poutres à la fois. Ces poutres sont solidarisées aux extrémités par des entretoises d’about qui serviront au changement des appareils d’appui à l’aide de deux vérins choisis à cet effet. Ces vérins seront placés sur le chevêtre à l’emplacement prévu dans les calculs c'est-à-dire au droit des bossages. Quant au appareils d’appui, ils sont en élastomère fretté composés de 12 feuillets et de 8 frettes en acier. Ces appareils d’appui sont disposés 4 par ligne d’appui soit au total 8 par appui intermédiaire.

En infrastructure, nous avons comme appuis intermédiaires des piles constituées de quatre (4) colonnes circulaires. Le choix de la section circulaire a été fait en fonction de l’environnement du projet (ouvrage en rase campagne) et de la résistance qu’offre la section circulaire en tout point. Ces piles seront fondées sur des fondations profondes à la limite des profondeurs d’affouillement calculées pour la section de Farié.

Le manque de certaines données telles que les données hydrologiques et géotechniques ne nous a pas permis de pousser plus les études sur certains éléments de la structure notamment les culées et les pieux. Dans ce sens nous recommandons au mieux la poursuite de notre étude avec des données plus complètes. Aussi, du fait de la complexité de l’étude de la précontrainte, nous recommandons la continuation des vérifications de sections des éléments précontraints qui ne se limitent pas à celles que nous avions effectué dans ce document.
Bibliographie

[7]GUIDE DE CONCEPTION VIPP. SETRA.

ANNEXES
LISTE DES ANNEXES :

ANNEXE 1 : ETUDE HYDROLOGIQUE ET HYDRAULIQUES...54
ANNEXE 2 : PREDIMENSIONNEMENT DES TABLIERS...60
ANNEXE 3 : IDENTIFICATION DES CHARGES D’EXPLOITATION...............................63
ANNEXE 4 : CALCUL DES PARAMETRES FONDAMENTAUX DE LA POUTRE...........68
ANNEXE 5 : CALCUL DU COEFFICIENT DE REPARTITION TRANSVERSALE.............71
ANNEXES 6 : CALCUL DES SOLLICITATIONS DES POUTRES.................................79
ANNEXE 7 : CALCUL DE LA PRECONTRAINTE..99
ANNEXE 8 : ETUDE DE L’ENTRETOISE D’ABOUT..120
ANNEXE 9 : ETUDE DU HOURDIS...127
ANNEXE 10 : ETUDE DE LA PREDALLE..160
ANNEXE 11 : ETUDE DE L’APPAREIL D’APPUI..162
ANNEXE 12 : DIMENSIONNEMENT DU JOINT DE CHAUSSEE.................................171
ANNEXE 13 : ETUDE DES APPUIS DU PONT...174
ANNEXE 14 : DEVIS QUANTITATIF ET ESTIMATIF DEFINITIF..................................197
ANNEXE 15 : PLAN DE FERRAILLAGE..200
ANNEXE 1 : ÉTUDE HYDROLOGIQUE ET HYDRAULIQUES

Hypothèse : Etant donné que le bassin versant ne rencontre pas un affluent important entre Farié et Niamey[8], pour les besoins de l’étude, on considère:

- Comme on remonte le bassin versant de Niamey à Farié, la taille du bassin versant est légèrement inférieure à Farié qu’à Niamey, ce qui permet d’estimer les débits en amont de Niamey (station hydrométrique principale) dans le sens de la sécurité.

❖ Débits de crues à Niamey :
Les débits maximaux annuels s’ajustent à la loi de Gumbel et permettent l’estimation des débits maximaux probables pour les différentes périodes de retour suivantes :

Figure : Ajustement à une loi de Gumbel des débits journaliers maximaux Niamey (1985 – 2010).
Tableau : débits journaliers maximaux à Niamey pour différentes périodes de retour.

<table>
<thead>
<tr>
<th>Fréquence</th>
<th>Période de retour</th>
<th>Débits de crue probables</th>
<th>Borne inférieure (80%)</th>
<th>Borne supérieure (80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>2 ans</td>
<td>1574</td>
<td>1510</td>
<td>1653</td>
</tr>
<tr>
<td>0,8</td>
<td>5 ans</td>
<td>1828</td>
<td>1735</td>
<td>1975</td>
</tr>
<tr>
<td>0,9</td>
<td>10 ans</td>
<td>1997</td>
<td>1874</td>
<td>2198</td>
</tr>
<tr>
<td>0,95</td>
<td>20 ans</td>
<td>2158</td>
<td>2004</td>
<td>2414</td>
</tr>
<tr>
<td>0,98</td>
<td>50 ans</td>
<td>2367</td>
<td>2172</td>
<td>2695</td>
</tr>
<tr>
<td>0,99</td>
<td>100 ans</td>
<td>2524</td>
<td>2297</td>
<td>2907</td>
</tr>
<tr>
<td>0,995</td>
<td>200 ans</td>
<td>2680</td>
<td>2422</td>
<td>3118</td>
</tr>
<tr>
<td>0,998</td>
<td>500 ans</td>
<td>2885</td>
<td>2585</td>
<td>3397</td>
</tr>
<tr>
<td>0,999</td>
<td>1000 ans</td>
<td>3041</td>
<td>2709</td>
<td>3607</td>
</tr>
</tbody>
</table>

Le débit maximum probable de période de retour 100 ans est égal à 2524 m3/s (2907 m3/s pour la borne supérieure de l’ajustement statistique). A titre sécuritaire par rapport à l’importance du projet on adoptera une crue de projet égale à 3000 m3/s à la station de Niamey (ce débit de projet est sensiblement celui observé à Farié qui se trouve à quelques dizaines de kilomètres en amont de Niamey).

Débits d’étiage à Niamey

Les débits journaliers minimaux annuels s’ajustent également à la loi de Gumbel et permettent d’estimer les débits d’étiages probables suivants :

![Figure : Ajustement à une loi de Gumbel des débits journaliers minimaux Niamey (1985 – 2010).](image-url)
Tableau : débits journaliers minimaux à Niamey pour différentes périodes de retour.

<table>
<thead>
<tr>
<th>Fréquence</th>
<th>Période de retour</th>
<th>Débits d’étiage probables</th>
<th>Borne inférieure (80%)</th>
<th>Borne supérieure (80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>2 ans</td>
<td>29</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>0,8</td>
<td>5 ans</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0,9</td>
<td>10 ans</td>
<td>9</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>0,95</td>
<td>20 ans</td>
<td>5</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>0,98</td>
<td>50 ans</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>0,99</td>
<td>100 ans</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0,995</td>
<td>200 ans</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0,998</td>
<td>500 ans</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0,999</td>
<td>1000 ans</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Le débit d’étiage probable de période de retour 100 ans est égal à 0 m³/s. Le débit d’étiage centennal à Niamey et Farié est sensiblement nul.

➢ Cotes des plus hautes eaux (PHE) à Niamey :

Les plus hautes eaux (hauteurs journalières maximales annuelles) s’ajustent à la loi de Gumbel et permettent l’estimation des cotes PHE probables suivantes :

Tableau : plus hautes eaux à Niamey pour différentes périodes de retour

<table>
<thead>
<tr>
<th>Fréquence</th>
<th>Période de retour</th>
<th>Plus hautes eaux probables</th>
<th>Borne inférieure (80%)</th>
<th>Borne supérieure (80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>2 ans</td>
<td>465</td>
<td>455</td>
<td>477</td>
</tr>
<tr>
<td>0,8</td>
<td>5 ans</td>
<td>506</td>
<td>491</td>
<td>529</td>
</tr>
<tr>
<td>0,9</td>
<td>10 ans</td>
<td>533</td>
<td>513</td>
<td>565</td>
</tr>
<tr>
<td>0,95</td>
<td>20 ans</td>
<td>559</td>
<td>534</td>
<td>600</td>
</tr>
<tr>
<td>0,98</td>
<td>50 ans</td>
<td>592</td>
<td>561</td>
<td>645</td>
</tr>
<tr>
<td>0,99</td>
<td>100 ans</td>
<td>617</td>
<td>581</td>
<td>679</td>
</tr>
<tr>
<td>0,995</td>
<td>200 ans</td>
<td>643</td>
<td>601</td>
<td>713</td>
</tr>
<tr>
<td>0,998</td>
<td>500 ans</td>
<td>676</td>
<td>627</td>
<td>758</td>
</tr>
<tr>
<td>0,999</td>
<td>1000 ans</td>
<td>701</td>
<td>647</td>
<td>792</td>
</tr>
</tbody>
</table>

La cote des plus hautes eaux probables de période de retour 100 ans est égale à 617 cm (679 cm pour la borne supérieure de l’ajustement statistique). A titre sécuritaire par rapport à l’importance du projet on adoptera une PHE égale à 700 cm à la station de Niamey.

➢ Cotes des plus basses eaux (PBE) à Niamey :

Les plus basses eaux (hauteurs journalières minimales annuelles) s’ajustent à la loi de Gumbel et permettent l’estimation des cotes PBE probables suivantes :
Tableau : plus basses eaux à Niamey pour différentes périodes de retour

<table>
<thead>
<tr>
<th>Fréquence</th>
<th>Période de retour</th>
<th>Plus basses eaux probables</th>
<th>Borne inférieure (80%)</th>
<th>Borne supérieure (80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>2 ans</td>
<td>110</td>
<td>103</td>
<td>117</td>
</tr>
<tr>
<td>0,2</td>
<td>5 ans</td>
<td>91</td>
<td>84</td>
<td>98</td>
</tr>
<tr>
<td>0,1</td>
<td>10 ans</td>
<td>84</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>0,05</td>
<td>20 ans</td>
<td>78</td>
<td>68</td>
<td>85</td>
</tr>
<tr>
<td>0,02</td>
<td>50 ans</td>
<td>72</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>0,01</td>
<td>100 ans</td>
<td>69</td>
<td>56</td>
<td>77</td>
</tr>
<tr>
<td>0,005</td>
<td>200 ans</td>
<td>66</td>
<td>52</td>
<td>75</td>
</tr>
<tr>
<td>0,002</td>
<td>500 ans</td>
<td>62</td>
<td>47</td>
<td>72</td>
</tr>
<tr>
<td>0,001</td>
<td>1000 ans</td>
<td>60</td>
<td>44</td>
<td>70</td>
</tr>
</tbody>
</table>

La cote des plus basses eaux probables de période de retour 100 ans est égale à 69 cm (56 cm pour la borne inférieure de l’ajustement statistique). On adoptera une PBE de projet sensiblement égale à 50 cm à la station de Niamey.

➢ Cotes des plus hautes eaux (PHE) à Farié :

Les plus hautes eaux à Farié (hauteurs journalières maximales annuelles) s’ajustent également à la loi de Gumbel et permettent l’estimation des cotes PHE probables suivantes :

Tableau : plus hautes eaux à Farié pour différentes périodes de retour

<table>
<thead>
<tr>
<th>Fréquence</th>
<th>Période de retour</th>
<th>Plus hautes eaux probables</th>
<th>Borne inférieure (80%)</th>
<th>Borne supérieure (80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>2 ans</td>
<td>282</td>
<td>272</td>
<td>296</td>
</tr>
<tr>
<td>0,8</td>
<td>5 ans</td>
<td>308</td>
<td>295</td>
<td>335</td>
</tr>
<tr>
<td>0,9</td>
<td>10 ans</td>
<td>326</td>
<td>308</td>
<td>363</td>
</tr>
<tr>
<td>0,95</td>
<td>20 ans</td>
<td>342</td>
<td>321</td>
<td>390</td>
</tr>
<tr>
<td>0,99</td>
<td>50 ans</td>
<td>364</td>
<td>337</td>
<td>425</td>
</tr>
<tr>
<td>0,995</td>
<td>100 ans</td>
<td>381</td>
<td>349</td>
<td>451</td>
</tr>
<tr>
<td>0,998</td>
<td>200 ans</td>
<td>397</td>
<td>361</td>
<td>477</td>
</tr>
<tr>
<td>0,999</td>
<td>500 ans</td>
<td>418</td>
<td>376</td>
<td>512</td>
</tr>
<tr>
<td>0,9999</td>
<td>1000 ans</td>
<td>434</td>
<td>388</td>
<td>539</td>
</tr>
</tbody>
</table>

La cote des plus hautes eaux probables de période de retour 100 ans est égale à 381 cm (451 cm pour la borne supérieure de l’ajustement statistique). Par rapport à l’importance du projet on adoptera en première estimation une PHE égale à 450 cm à la station de Farié.

➢ Cotes des plus basses eaux (PBE) à Farié :

Les débits journaliers minimaux annuels s’ajustent également à la loi de Gumbel et permettent d’estimer les débits d’étiages probables suivants :
La cote des plus basses eaux (PBE) probables de période de retour 100 ans est égales à 0 cm. On adoptera une PBE de projet égale à 0 cm à la station de Farié.

Validation et précaution d’usage :

Afin de valider les résultats probables de crues et PHE de projet, il est possible de tester la corrélation des PHE entre les deux stations. La relation obtenue est relativement significative ($R^2 = 0,86$) :

Figure : corrélations sur les hauteurs des stations Farié-Niamey

L’application de la relation permet de corroborer la démarche et de rehausser légèrement la cote PHE Farié. On adoptera en définitif une cote PHE de projet à Farié rehaussée de 450 cm à 480 cm par rapport au « zéro » de l’échelle.

<table>
<thead>
<tr>
<th>Fréquence</th>
<th>Période de retour</th>
<th>Plus basses eaux probables</th>
<th>Borne inférieure (80%)</th>
<th>Borne supérieure (80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>2 ans</td>
<td>31</td>
<td>23</td>
<td>43</td>
</tr>
<tr>
<td>0,2</td>
<td>5 ans</td>
<td>16</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>0,1</td>
<td>10 ans</td>
<td>10</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>0,05</td>
<td>20 ans</td>
<td>6</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>0,02</td>
<td>50 ans</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>0,01</td>
<td>100 ans</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>0,005</td>
<td>200 ans</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>0,002</td>
<td>500 ans</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0,001</td>
<td>1000 ans</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Tableau : plus basses eaux à Farié pour différentes périodes de retour
En tenant compte du rattachement de l’échelle confirmé lors de l’investigation topographique sur terrain, cette cote PHE correspond à une cote de 192,15 m et celle des plus basses eaux correspond à une cote de 187,35 m.

Tableau : Caractéristiques générales des voies navigables [8]

<table>
<thead>
<tr>
<th>Classe</th>
<th>Tracé en plan : courbes</th>
<th>Rectangle de navigation minimal</th>
<th>Section mouillée normale</th>
<th>Profil normal avec berges à 2/1</th>
<th>Écluses</th>
<th>Ponts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rayon minimal normal (m)</td>
<td>Rayon minimal réduit (m)</td>
<td>Sur-largeur (m)</td>
<td>Largeur (m)</td>
<td>Profondeur (m)</td>
<td>Largeur au plafond (m)</td>
</tr>
<tr>
<td>I</td>
<td>400</td>
<td>250</td>
<td>800 R</td>
<td>16,00</td>
<td>2,70 ou 3,00</td>
<td>62 ou 72</td>
</tr>
<tr>
<td>III</td>
<td>700</td>
<td>450</td>
<td>2,000 R</td>
<td>18,00</td>
<td>2,70 ou 3,00</td>
<td>72 ou 82</td>
</tr>
<tr>
<td>IV</td>
<td>800</td>
<td>500</td>
<td>5,500 R</td>
<td>36,00</td>
<td>3,50 ou 4,00</td>
<td>170 ou 200</td>
</tr>
<tr>
<td>V</td>
<td>1 000</td>
<td>750</td>
<td>16 000 R</td>
<td>36,00</td>
<td>3,50</td>
<td>170</td>
</tr>
<tr>
<td>VI</td>
<td>1 000</td>
<td>750</td>
<td>16 000 R</td>
<td>36,00</td>
<td>4,00</td>
<td>200</td>
</tr>
</tbody>
</table>

(1) R représente le rayon réel de la courbe.
(2) Les deux valeurs indiquées correspondent à des sous-classes, selon que l’enfoncement (ou tirant d’eau) des bateaux est de 2,20 m ou 2,50 m pour les classes I et III, et de 2,50 m ou 3,00 m pour la classe IV.
(3) Pour une passe navigable à double sens.
ANNEXE 2 : PREDIMENSIONNEMENT DES TABLIERS

Tableau : Gammes de portées et élancements – Ouvrages construits sur cintres au sol

<table>
<thead>
<tr>
<th>TYPE D'OUVRAJE</th>
<th>GAMME DE PORTEE</th>
<th>ELANCIMENT</th>
<th>OBSERVATIONS</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>domaine privilégié</td>
<td>Max</td>
<td>sur pile</td>
</tr>
<tr>
<td>Cadre PICF</td>
<td>2 à 10 m</td>
<td>12 m</td>
<td>l/32 + 0,125</td>
<td>épaisseur du tablier</td>
</tr>
<tr>
<td>Portiques PIPO-POD</td>
<td>8 m</td>
<td>10 à 20 m</td>
<td>22 m</td>
<td>1/20</td>
</tr>
<tr>
<td></td>
<td>7 m</td>
<td>8 à 15 m</td>
<td>15 m</td>
<td>1/28</td>
</tr>
<tr>
<td>Pont dalle armée PSIDA</td>
<td>6 m</td>
<td>8 à 18 m</td>
<td>20 m</td>
<td>1/28</td>
</tr>
<tr>
<td>Ponts dalles précontraintes de type PSIDP</td>
<td>14 m</td>
<td>14 à 20 m</td>
<td>25 m</td>
<td>1/22 à 1/25</td>
</tr>
<tr>
<td>dalles pleines</td>
<td>15 m</td>
<td>18 à 25 m</td>
<td>30 m</td>
<td>1/22 à 1/25</td>
</tr>
<tr>
<td>dalles à larges encochelements</td>
<td>10 à 20 m</td>
<td>25 m</td>
<td>1/28</td>
<td>≥ 3 travées continues</td>
</tr>
<tr>
<td>dalle pleine pousée (1)</td>
<td>15 m</td>
<td>18 à 25 m</td>
<td>30 m</td>
<td>1/28</td>
</tr>
<tr>
<td>Pont en dalle nervurée de hauteur constante (≥ 2 nervures)</td>
<td>25 à 30 m</td>
<td>35 m</td>
<td>1/25</td>
<td>travée isostatique</td>
</tr>
<tr>
<td>nervures larges</td>
<td>25 à 30 m</td>
<td>35 m</td>
<td>1/15 à 1/20</td>
<td>2 travées continues</td>
</tr>
<tr>
<td>nervures étroites</td>
<td>25 à 30 m</td>
<td>35 m</td>
<td>1/17 à 1/22</td>
<td>≥ 3 travées continues</td>
</tr>
<tr>
<td>Pont en dalle nervurée de hauteur variable (≥ 2 nervures)</td>
<td>35 à 45 m</td>
<td>50 m</td>
<td>1/24</td>
<td>travée isostatique</td>
</tr>
<tr>
<td>nervures larges</td>
<td>35 à 45 m</td>
<td>50 m</td>
<td>1/20</td>
<td>≥ 3 travées continues</td>
</tr>
<tr>
<td>nervures étroites</td>
<td>35 à 45 m</td>
<td>50 m</td>
<td>1/24</td>
<td>≥ 3 travées continues</td>
</tr>
<tr>
<td>Pont à béquilles PSBQ</td>
<td>20 à 40 m</td>
<td>50 m</td>
<td>1/23 à 1/28</td>
<td>trois travées portée en tête de béquilles</td>
</tr>
</tbody>
</table>

(1) surcoût 10 à 15 %
Prédimensionnement du tablier en béton précontraint :

Espacement des poutres :
L’espacement des poutres est compris dans le cas courant entre 2,5 à 3,5 m, exceptionnellement 4 m.
Prenons un espacement de 3,25 m afin de réduire la largeur du coffrage perdu.

Hauteur des poutres :
L’élancement usuel (poutre + hourdis) est égal à 1/17 de la portée.
Donc pour une portée de 40 m, nous aurons :

$$H_t = \frac{1}{17}$$

$$H_t = \frac{40}{17} \approx 2,35 \text{ m}$$

Avec : H_t – hauteur du tablier (poutre + hourdis)

1- la portée de la travée
Épaisseur des âmes :
En cas de coffrage métallique, l’épaisseur de l’âme varie entre 20 cm et 22 cm à mi-travée et 30 cm sur appuis et sur une longueur pouvant atteindre le quart de la portée pour qu’elle résiste à l’effort tranchant.

Table de compression :
\[L_{\text{min}} = 60\% \times H_t = 0.6 \times 2.35 = 1.41 \text{ m} \]
Avec \(L_{\text{min}} \) : largeur minimale de la table de compression.
L’épaisseur de la table de compression est au moins égale à 10 cm dans le cas d’un hourdis général.
L’épaisseur de la table à la jonction avec le gousset d’âme est majorée de 5 cm pour tenir compte de la légère pente de 1/10 à 1/15 de la face inférieure de la membrure.

Dimensions du gousset supérieur : 15 x15 cm, inclinaison \(i=45^\circ \)

Talon :
La largeur du talon des poutres varie de 0,60 à 0,90 m (si élancement égale à \(L/17 \)).
La partie verticale du talon est égale à :
- 10 cm pour une largeur de talon de 60 cm
- 20 cm pour une largeur de talon de 90 cm
Le pan incliné du talon forme un angle avec l’horizontal dont La tangente est comprise entre 1 et 1,5.

About :
C’est la partie de la poutre où se trouve la jonction des poutres avec les entretoises, l’ancrage des câbles de précontrainte et la Zone d’appui sur le chevêtre via l’appareil d’appui. La longueur d’about est souvent voisine de 0,5m.

Prédimensionnement des entretoises :
L’épaisseur des entretoises en pratique est voisine de 25 à 30 cm.
Pour faciliter l’accès aux appareils d’appui, il convient mieux de laisser une distance entre chevêtre d’appui et entretoise d’au moins 50 cm.

Prédimensionnement du hourdis :
En fonction de l’écartement \(e \) des poutres :
- 0,18m pour 2,75m < \(e \) < 3,50 m. Prenons 0,2 m d’épaisseur

Coffrage perdu : prédalles en béton armé
En pratique, ce type de coffrage est utilisé à partir de 0,80 m de portée libre. L’épaisseur strictement minimale à lui donner est de l'ordre de 6 cm.
ANNEXE 3 : IDENTIFICATION DES CHARGES D’EXPLOITATION

Les charges routières normales :

Système de charges A :

Il se définit par une charge uniformément repartie \(A_l \) appliquée à toute la surface de la chaussée du tablier.

\[
A_l = 2,3 + \frac{360}{L+12} \text{ en kN/m}^2
\]

L : longueur chargée en m.

AN : longueur chargée \(L = 40 \) m.

\[
A_l = 2,3 + \frac{360}{40 + 12} = 9,22 \text{ kN/m}^2
\]

La valeur de \(A_l \) est à multiplier par les coefficients de correction \(a_1 \) et \(a_2 \).

Tableau : valeur du coefficient \(a_1 \) en fonction du nombre de voie \(N_v \) et de la classe du pont.

<table>
<thead>
<tr>
<th>Nombre de voies chargées</th>
<th>1ère</th>
<th>2ème</th>
<th>3ème</th>
<th>4ème</th>
<th>(\geq 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe du pont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1ère</td>
<td>1</td>
<td>1</td>
<td>0,9</td>
<td>0,75</td>
<td>0,7</td>
</tr>
<tr>
<td>2ème</td>
<td>1</td>
<td>0,9</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3ème</td>
<td>0,9</td>
<td>0,8</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Soit : \(A_1 = a_1 \times A_l \leq (4 - 0,002L) \)

\[
A_1 = \sup \left[a_1 \left(2,3 + \frac{360}{L+12} \right), (4 - 0,002L) \right]
\]

AN : pont de première classe à deux voies chargées \(a_1 = 1 \)

\[
A_1 = \sup \left[1 \left(2,3 + \frac{360}{40 + 12} \right), (4 - 0,002 \times 45) \right] = 9,22 \text{ KN/m}^2
\]

Cette valeur de \(A_1 \) est à multiplier par le coefficient \(a_2 \) :

\[
a_2 = \frac{V_0}{V} \quad \text{avec} \quad V \text{ : largeur d’une voie ;}
\]

\(V_0 = 3,5 \text{ m pour les ponts de première classe} \)

AN : pont de 1ère classe donc \(V_0 = 3,5 \text{ m} \)

\[
a_2 = \frac{3,5}{3,75} = 0,93
\]

La charge à considérer s’obtient par :

\[
A_2 = a_2 \times A_1 = 0,93 \times 8,66 \approx 8,054 \text{ KN/m}^2
\]
Système de charge B :

Ce système composé d’un ensemble de charges mobiles, se subdivise en trois (3) sous-systèmes suivant :

Sous système BC :

Il se compose de camions types de 30t disposés comme suit :

Longitudinalement :

Le nombre de camions est limité à deux par file (2), orientés dans le même sens.

![Diagramme longitudinal du convoi Bc sur le tablier](image1)

Transversalement :

On peut disposer autant de camions qu’on a de voies de circulation.

![Diagramme transversal du convoy Bc sur le tablier](image2)
La charge Bc est multipliée par un coefficient bc fonction de la classe du pont et du nombre de files de camions.

Tableau : valeur du coefficient bc en fonction de la classe du pont et du nombre de files de camions.

<table>
<thead>
<tr>
<th>Nombre de files de camions</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>≥5</th>
</tr>
</thead>
<tbody>
<tr>
<td>classe du pont</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1ère</td>
<td>1,2</td>
<td>1,1</td>
<td>0,95</td>
<td>0,8</td>
<td>0,7</td>
</tr>
<tr>
<td>2ème</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème</td>
<td>1</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sous système Bt :

Ce sous système est composé de 2 essieux tandems comportant chacun quatre (4) roues isolées.

Longitudinalement :

Un seul tandem est disposé par file.

![Figure : disposition longitudinale du convoi Bt sur le tablier](image)

Transversalement :

Deux (2) tandems seulement sont disposés sur 2 voies de circulation suivant les dispositions indiquées ci-dessous.

![Figure : disposition transversale et en plan du convoi Bt sur le tablier](image)

La charge Bt est multipliée par un coefficient bt fonction de la classe du pont.
Tableau : valeur du coefficient bt en fonction de la classe du pont

<table>
<thead>
<tr>
<th>Classe de pont</th>
<th>1ère</th>
<th>2ème</th>
<th>3ème</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient bt</td>
<td>1,0</td>
<td>0,9</td>
<td></td>
</tr>
</tbody>
</table>

Sous système Br:

Ce système se compose d’une roue simple isolée, disposée à l’axe longitudinale de la chaussée.

Figure : différentes dispositions de la charge Br sur le tablier

Les charges du système B sont multipliées par un coefficient de majoration dynamique δ.

Les charges militaires :

Convoi Mc120 : ce type de convoi se compose de chars à chenilles de 110t, disposés comme suit :

Distance longitudinale minimale entre 2 chars

Figures : différentes dispositions du convoi Mc120 sur le tablier
Les charges de trottoirs :
Les charges de trottoirs à prendre en compte dans le dimensionnement des éléments de la structure sont de deux sortes.
- Charges locales (pour le calcul du houdis et des entretoises) :
 \[M_{tr} = \max(M_{qtr}; M_{ptr}) \]
 Avec :
 - \(M_{qtr} \) : Charge uniformément repartie d’intensité \(q_{tr} = 4.5 \text{ KN/m}^2 \)
 - \(M_{ptr} \) : Charge d’une roue \(P_{tr} = 60 \text{ kN} \) dont la surface d’impact est un carré de côté \(0.25 \text{ m} \) à disposer sur les trottoirs en bordure d’une chaussée.
- Charges générales (calcul des poutres principales) :
 C’est une charge uniformément repartie d’intensité \(q_{tr} = 1.5 \text{ kN/m}^2 \) placée sur la surface des trottoirs de telle sorte à obtenir l’effet le plus défavorable.

Charge sur Remblai :
C’est une charge uniformément repartie d’intensité \(S_r = 10 \text{ KN/m}^2 \) appliquée sur toute la surface du remblai d’accès.
ANNEXE 4 : CALCUL DES PARAMETRES FONDAMENTAUX DE LA POUTRE

Calcul du moment d’inertie de flexion :

\[Y_G = \frac{\sum s_i \times d_i}{\sum s_i} \]

\[\sum s_i \times d_i = 0,8 \times \frac{0,35^2}{2} + 0,35 \times 0,25 \times 0,47 + 0,3 \times 1,8 \times 1,25 + (0,35 + 0,2) \times 0,15 \times 1,875 + (0,2 + 0,15) \times 0,825 \times 1,975 \]

\[\sum s_i \times d_i = 1,49 \text{ m}^3 \]

\[\sum s_i = 0,8 \times 0,35 + 0,35 \times 0,25 + 0,3 \times 1,8 + 0,55 \times 0,15 + 0,35 \times 0,825 \]

\[\sum s_i = 1,279 \text{ m}^2 \]

\[Y_1 = 1,165 \text{ m} \]

\[Y_2 = h_p - Y_1 = 2,15 - 1,165 = 0,985 \text{ m} \]

D’après le théorème de Huygens, le moment d’inertie d’une section par rapport à un axe quelconque (\(\Delta \)) est donné par la formule :

\[I_{\Delta} = I_x + S \times d^2 \]

d : distance entre le solide et l’axe \(\Delta \);

s : section du solide ;

\(I_x \) : Moment d’inertie du solide par rapport à x.

En décomposant la figure, nous obtenons :

\[I_1 = \frac{0,8 \times 0,35^3}{12} + 0,99 \times 0,8 \times 0,35 = 0,277 \text{ m}^4 \]

\[I_2 = 0,0432 \text{ m}^4 \]

\[I_3 = 0,0541 \text{ m}^4 \]

\[I_4 = 0,0956 \text{ m}^4 \]

\[I_5 = 0,233 \text{ m}^4 \]

\[I_6 = 0,0593 \text{ m}^4 \]

Donc le moment d’inertie de la poutre par rapport à son centre de gravité est :

\[I_p = 0,763 \text{ m}^4 \]

\[\rho_p = \frac{I_p E}{h_1} = \frac{0,763}{3,25} E \approx 0,235 E \text{ (Rigidité de flexion de la poutre).} \]
Moment d’inertie de torsion :
Théorie de l’analogie de la membrane :
Soit un rectangle de dimension $b \times a$ telque $(b > a)$:

![Rectangle](image)

Figure : rectangle pour la détermination d’inertie de torsion :

Le moment d’inertie de torsion est obtenu par la relation suivante :

$$\Gamma = k \left(\frac{b}{a} \right) \times b \times a$$

K : une fonction du rapport b/a.

Tableau : valeur du coefficient k en fonction de b/a.

<table>
<thead>
<tr>
<th>b/a</th>
<th>1,0</th>
<th>1,2</th>
<th>1,5</th>
<th>1,75</th>
<th>2,0</th>
<th>2,25</th>
<th>2,5</th>
<th>3,0</th>
<th>4</th>
<th>5</th>
<th>10</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>0,141</td>
<td>0,166</td>
<td>0,196</td>
<td>0,213</td>
<td>0,229</td>
<td>0,240</td>
<td>0,249</td>
<td>0,263</td>
<td>0,281</td>
<td>0,292</td>
<td>0,312</td>
<td>0,333</td>
</tr>
</tbody>
</table>

Ainsi nous avons :

$$\Gamma_1 = K \left(\frac{0,7}{0,3} \right) \times 0,7 \times 0,3^3$$

Or $\frac{b}{a} = \frac{0,7}{0,3} = 2,33$ cette valeur est comprise entre 2,25 et 2,5 dans le tableau ci-dessus. En effectuant une interpolation linéaire entre ces deux valeurs, nous obtenons :

$$k = \frac{0,08 \times 0,009}{0,25} + 0,240 \approx 0,243$$

$$\Gamma_1 = 0,243 \left(\frac{0,7}{0,3} \right) \times 0,7 \times 0,3^3 = 0,0107$$

Ainsi par la même démarche nous obtenons les valeurs suivantes pour Γ :

Tableau : différentes valeurs de Γ pour le

<table>
<thead>
<tr>
<th>SECTION</th>
<th>b/a</th>
<th>K</th>
<th>Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,33</td>
<td>0,243</td>
<td>0,0107</td>
</tr>
<tr>
<td>2</td>
<td>2,86</td>
<td>0,259</td>
<td>0,00198</td>
</tr>
<tr>
<td>3</td>
<td>9,42</td>
<td>0,31</td>
<td>0,0258</td>
</tr>
<tr>
<td>4</td>
<td>2,4</td>
<td>0,245</td>
<td>0,0003445</td>
</tr>
<tr>
<td>5</td>
<td>1,17</td>
<td>0,162</td>
<td>0,00179</td>
</tr>
<tr>
<td>6</td>
<td>3,67</td>
<td>0,275</td>
<td>0,0299</td>
</tr>
</tbody>
</table>

$$K_p = \sum \Gamma_i = 0,0705$$
\[\gamma_p = K_p \times \frac{E}{2b_1} = 0,0705 \times \frac{E}{2 \times 3.25} = 0,0108E \]

\[\gamma_E = \rho_E = E \times \frac{h^3_d}{12} = \frac{0.20^3}{12} E = 0,000667E = 6.67 \times 10^{-4}E \]

Avec :

E : module de Young

\(\gamma_p \) et \(\gamma_E \) : Rigidité de torsion respectivement de la poutre et de l’entretoise.

\(\rho_E \) : Rigidité de flexion du hourdis.

Paramètre de torsion \(\alpha \) :

\[\alpha = \frac{\gamma_p + \gamma_E}{\sqrt[2]{\rho_p \rho_E}} = \frac{0,0108 + 6.67 \times 10^{-4}}{\sqrt[2]{0,235 \times 6.67 \times 10^{-4}}} = 0,92 \]

Paramètre d’entretoisement \(\theta \) :

\[\theta = \frac{b \times 4}{L \sqrt[4]{\rho_E}} = \frac{6}{38.75} \sqrt[4]{6.67 \times 10^{-4}} \approx 0,31 > 0,3. \text{Donc méthode de Guyon-Massonnet} \]
ANNEXE 5 : calcul du coefficient de répartition transversale.

Calcul du CRT pour la poutre de rive :

- Ligne d’influence de k.

Interpolation sur α :

$0,1 < \theta = 0,31 < 1$ donc nous avons la relation suivante :

$K_\alpha = K_0 + (K_1 - K_0) \times \alpha (1 - e^{\theta_0})$ avec $\theta_0 = \frac{0,065 - \theta}{0,663} = \frac{0,065 - 0,31}{0,663} = -0,37$

$K_\alpha = K_0 + (K_1 - K_0) \times 0,92(1 - e^{-0,37})$

$K_\alpha = K_0 + (K_1 - K_0) \times 0,28 = 0,72K_0 + 0,28K_1$

$K_\alpha = 0,72K_0 + 0,28K_1$

Interpolation sur θ:

Dans notre cas $0,3 < \theta = 0,31 < 0,35$, donc nous allons interpoler par rapport à ces deux valeurs extrêmes.

D’où :

$K_\theta = 0,2K_{\theta=0,35} + 0,8K_{\theta=0,3}$

Interpolation sur y :

$Y = 3,25 + \frac{3,25}{2} = 4,875$ m et $b=6$m

$\Rightarrow Y = \frac{4,875}{6}b \approx 0,81b$

$\Rightarrow Y = 0,81b$

Dans les tableaux de Guyon-Massonnet nous avons les valeurs suivantes :

$K_{0,75b} = K_{y=\frac{3b}{4}}$ ET $K_b = K_{y=b}$

Par interpolation linéaire entre les deux valeurs de k nous avons :

$K_{0,81} = K_{0,75b} + (K_b - K_{0,75b}) \frac{0,81 - 0,75}{1 - 0,75}$

$K_{0,81} = 0,76K_{0,75b} + 0,24K_b$

Pour $\theta = 0,30$
Tableau : valeurs du coefficient K pour $\theta=0,3$

<table>
<thead>
<tr>
<th align="left">$\theta=0,3$</th>
<th align="left"></th>
<th>0-b</th>
<th>0-3b/4</th>
<th>0-b/2</th>
<th>0-b/4</th>
<th>0</th>
<th>b/4</th>
<th>b/2</th>
<th>3b/4</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">K</td>
<td align="left">0,81b</td>
<td>-1,3781</td>
<td>-0,7993</td>
<td>-0,2185</td>
<td>0,3685</td>
<td>0,9665</td>
<td>1,5792</td>
<td>2,2072</td>
<td>2,8463</td>
<td>3,4887</td>
</tr>
<tr>
<td align="left">K0</td>
<td align="left">K3b/4</td>
<td>-1,2094</td>
<td>-0,6698</td>
<td>-0,1284</td>
<td>0,4183</td>
<td>0,9742</td>
<td>1,5149</td>
<td>2,1209</td>
<td>2,7062</td>
<td>3,2901</td>
</tr>
<tr>
<td align="left">K0</td>
<td align="left">Kb</td>
<td>-1,9123</td>
<td>-1,2095</td>
<td>-0,5038</td>
<td>0,2109</td>
<td>0,9423</td>
<td>1,6974</td>
<td>2,4805</td>
<td>3,2901</td>
<td>4,1177</td>
</tr>
<tr>
<td align="left">K1</td>
<td align="left">K3b/4</td>
<td>0,7345</td>
<td>0,7876</td>
<td>0,8453</td>
<td>0,9104</td>
<td>0,9840</td>
<td>1,0652</td>
<td>1,1508</td>
<td>1,2351</td>
<td>1,3126</td>
</tr>
<tr>
<td align="left">K1</td>
<td align="left">Kb</td>
<td>0,6733</td>
<td>0,7345</td>
<td>0,8012</td>
<td>0,8776</td>
<td>0,9664</td>
<td>1,0689</td>
<td>1,1849</td>
<td>1,3126</td>
<td>1,4474</td>
</tr>
<tr>
<td align="left">Kα</td>
<td align="left">$K_{\theta=0,3}$</td>
<td>-0,7907</td>
<td>-0,3586</td>
<td>0,0764</td>
<td>0,5180</td>
<td>0,9702</td>
<td>1,4355</td>
<td>1,9137</td>
<td>2,4004</td>
<td>2,8885</td>
</tr>
</tbody>
</table>

Pour $\theta = 0,35$:

Tableau : valeurs du coefficient K pour $\theta=0,35$

<table>
<thead>
<tr>
<th align="left">$\theta=0,35$</th>
<th align="left"></th>
<th>0-b</th>
<th>0-3b/4</th>
<th>0-b/2</th>
<th>0-b/4</th>
<th>0</th>
<th>b/4</th>
<th>b/2</th>
<th>3b/4</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">K</td>
<td align="left">0,81b</td>
<td>-1,3360</td>
<td>-0,7805</td>
<td>-0,2212</td>
<td>0,2630</td>
<td>0,9393</td>
<td>1,5561</td>
<td>2,2008</td>
<td>2,8658</td>
<td>3,5367</td>
</tr>
<tr>
<td align="left">K0</td>
<td align="left">K3b/4</td>
<td>-1,1765</td>
<td>-0,6554</td>
<td>-0,1311</td>
<td>0,4027</td>
<td>0,9532</td>
<td>1,5250</td>
<td>2,1176</td>
<td>2,7215</td>
<td>3,3228</td>
</tr>
<tr>
<td align="left">K0</td>
<td align="left">Kb</td>
<td>-1,8411</td>
<td>-1,1765</td>
<td>-0,5067</td>
<td>-0,1793</td>
<td>0,8954</td>
<td>1,6545</td>
<td>2,4642</td>
<td>3,3228</td>
<td>4,2142</td>
</tr>
<tr>
<td align="left">K1</td>
<td align="left">K3b/4</td>
<td>0,6624</td>
<td>0,7255</td>
<td>0,7958</td>
<td>0,8781</td>
<td>0,9741</td>
<td>1,0824</td>
<td>1,1983</td>
<td>1,3115</td>
<td>1,4123</td>
</tr>
<tr>
<td align="left">K1</td>
<td align="left">Kb</td>
<td>0,5926</td>
<td>0,6624</td>
<td>0,7408</td>
<td>0,8340</td>
<td>0,9466</td>
<td>1,0808</td>
<td>1,2369</td>
<td>1,4123</td>
<td>1,6001</td>
</tr>
<tr>
<td align="left">K0</td>
<td align="left">K01</td>
<td>-0,7811</td>
<td>-0,3630</td>
<td>0,0598</td>
<td>0,4323</td>
<td>0,9472</td>
<td>1,4233</td>
<td>1,9227</td>
<td>2,4374</td>
<td>2,9545</td>
</tr>
</tbody>
</table>

Après interpolation sur θ nous obtenons les valeurs de $k=k(e)$ suivantes :

Tableau : valeurs k en fonction de e.

<table>
<thead>
<tr>
<th align="left">$\theta=0,31$</th>
<th align="left"></th>
<th>-6</th>
<th>-4,5</th>
<th>-3</th>
<th>-1,5</th>
<th>0</th>
<th>1,5</th>
<th>3</th>
<th>4,5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">K</td>
<td align="left">-0,79</td>
<td>-0,36</td>
<td>0,07</td>
<td>0,50</td>
<td>0,97</td>
<td>1,43</td>
<td>1,92</td>
<td>2,41</td>
<td>2,90</td>
<td></td>
</tr>
</tbody>
</table>
A partir du dernier tableau ci-dessus, la courbe de $k(e)$ peut être tracée en reportant sur l’axe des ordonnées les valeurs du coefficient k et sur l’axe des abscisses l’excentricité e des charges.

Charge uniformément repartie A_l:

La charge sera disposée sur la surface du tablier suivant une voie ou deux de façon à obtenir le cas le plus défavorable:

1er cas : Deux (2) voies chargées $A_l = 8,054 \text{ kN/m}^2$ et $L_{ch} = 7,5 \text{ m}$.

$$K_{A_l} = \frac{\omega_{A_l}}{L_{A_l}} = \frac{1}{2} \times \frac{1}{7,5} (7 \times 2,19) = 1,022$$

$$\eta_{A_l} = \frac{K_{A_l}}{n_{POUTRES}} = \frac{1,022}{4} \approx 0,26$$

Nous avons un pont de 1er classe donc $a_1 = 1$:

$$a_1 \times \eta_{A_l} \times L_{A_l} = 1 \times 0,26 \times 7,5 = 1,95$$

2ème cas: Une (1) voie chargée, $L_{ch} = 3,75 \text{ m}$.

$$K_{A_l} = \frac{\omega_{A_l}}{L_{A_l}} = \frac{1}{3,75} \times \frac{1}{2} \times (2,19 + 0,97) \times 3,75 = 1,58$$

$$\eta_{A_l} = \frac{K_{A_l}}{n_{POUTRES}} = \frac{1,58}{4} \approx 0,395$$

Nous avons un pont de 1er classe donc $a_1 = 1$:

$$a_1 \times \eta_{A_l} \times L_{A_l} = 1 \times 0,395 \times 3,75 = 1,48$$

Charge du trottoir qtr :

Cas le plus défavorable : deux trottoirs chargés : $L_{tr} = 1,75 \text{ m}$

$$K_{tr} = \frac{\omega_{A_l}}{L_{tr}} = \frac{1}{2} \times (2,8 + 2,15) \times \frac{L_{tr}}{L_{tr}} - \frac{1}{2} \times (0,17 + 0,65) \times \frac{L_{tr}}{L_{tr}}$$

$$K_{tr} = 2,065$$

$$\eta_{tr} = \frac{K_{A_l}}{n_{POUTRES}} = \frac{2,065}{4} \approx 0,52$$
Charges Bc :

1ère cas : une file de camions Bc, pont de première classe ⇒ bc = 1,2

\[K_{Bc} = \frac{1}{2} \sum_{i=1}^{2} K_i = \frac{1}{2} (K_1 + K_2) \]

\[K_{Bc} = \frac{1}{2} (K_1 + K_2) = \frac{1}{2} \times (2,1 + 1,4) = 1,75 \]

\[\eta_{Bc} = \frac{1,75}{4} \approx 0,44 \]

bc \times \eta_{Bc} = 1,2 \times 0,44 ≈ 0,53

2ème cas : deux (2) files de camions Bc, pont de première classe ⇒ bc = 1,1

\[K_{Bc} = \frac{1}{2} \sum_{i=1}^{4} K_i = \frac{1}{2} (K_1 + K_2 + K_3 + K_4) = \frac{1}{2} (2,1 + 1,4 + 1,28 + 0,59) \]

\[K_{Bc} = 2,685 \]

\[\eta_{Bc} = \frac{2,685}{4} \approx 0,67 \]

bc \times \eta_{Bc} = 1,1 \times 0,67 ≈ 0,74

Charge Mc120 :

\[K_{Mc} = \frac{1}{2} \left(\frac{1}{2} \times (K_1 + K_2) \times \frac{1}{2} (K_3 + K_4) \right) \times \frac{L_{Mc}}{L_{Mc}} \]

\[K_{Mc} = \frac{1}{4} (2,19 + 1,85 + 1,1 + 0,8) = 1,485 \]

\[\eta_{Bc} = \frac{1,485}{4} \approx 0,37 \]

Calcul du CRT pour la poutre intermédiaire :

Les paramètres \(\alpha \) et \(\theta \) de la poutre de rive restent les mêmes que pour la poutre intermédiaire.
Seule la valeur de l’ordonnée \(y \) de la poutre change, par conséquent l’interpolation aussi change.

\[Y = \frac{3,25}{2} = 1,625 \text{ m et } b = 6 \text{ m} \]

\[Y = \frac{1,625b}{6} = 0,27 \]
Les tableaux de Massonnet donnent les valeurs de k pour :

\[K_{0.25b} = K_{\gamma = \frac{b}{4}} \quad \text{et} \quad K_{0.5b} = K_{\gamma = \frac{b}{2}} \]

Par interpolation nous avons :

\[k_{0.27b} = K_{0.5b} + \left(K_{0.25b} - K_{0.5b} \right) \frac{0.27 - 0.5}{0.25 - 0.5} \]

\[K_{0.27b} = K_{0.5b} + 0.92K_{0.25b} - 0.92K_{0.5b} \]

\[K_{0.27b} = 0.08K_{0.5b} + 0.92K_{0.25b} \]

\[K_{0.27b} = 0.08K_{\gamma = \frac{b}{4}} + 0.92K_{\gamma = \frac{b}{4}} \]

1er cas : $\theta = 0.3$

Tableau : valeurs du coefficient K pour $\theta=0.3$

<table>
<thead>
<tr>
<th>$\theta=0.3$</th>
<th>e</th>
<th>0-b</th>
<th>0-3b/4</th>
<th>0-b/2</th>
<th>0-b/4</th>
<th>0</th>
<th>b/4</th>
<th>b/2</th>
<th>3b/4</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_0</td>
<td>K b/4</td>
<td>-0.5038</td>
<td>-0.1284</td>
<td>0.2477</td>
<td>0.6252</td>
<td>1.0044</td>
<td>1.3833</td>
<td>1.7572</td>
<td>2.1209</td>
<td>2.4805</td>
</tr>
<tr>
<td></td>
<td>K b/2</td>
<td>0.1537</td>
<td>0.3746</td>
<td>0.5950</td>
<td>0.8126</td>
<td>1.0264</td>
<td>1.2281</td>
<td>1.4132</td>
<td>1.5882</td>
<td>1.7601</td>
</tr>
<tr>
<td>K_1</td>
<td>K b/4</td>
<td>0.8776</td>
<td>0.9104</td>
<td>0.9453</td>
<td>0.9820</td>
<td>1.0173</td>
<td>1.0451</td>
<td>1.0591</td>
<td>1.0652</td>
<td>1.0689</td>
</tr>
<tr>
<td></td>
<td>K b/2</td>
<td>0.8012</td>
<td>0.8453</td>
<td>0.8929</td>
<td>0.9453</td>
<td>1.0018</td>
<td>1.0591</td>
<td>1.1108</td>
<td>1.1508</td>
<td>1.1849</td>
</tr>
<tr>
<td></td>
<td>K 0.27b</td>
<td>0.8715</td>
<td>0.9052</td>
<td>0.9411</td>
<td>0.9791</td>
<td>1.0161</td>
<td>1.0462</td>
<td>1.0632</td>
<td>1.0720</td>
<td>1.0782</td>
</tr>
<tr>
<td>K_α</td>
<td>$K_0=0.3$</td>
<td>0.3547</td>
<td>0.5231</td>
<td>0.6919</td>
<td>0.8592</td>
<td>1.0235</td>
<td>1.1772</td>
<td>1.3152</td>
<td>1.4437</td>
<td>1.5692</td>
</tr>
</tbody>
</table>
Tableau : valeurs du coefficient K pour θ=0,35

<table>
<thead>
<tr>
<th>θ=0,35</th>
<th></th>
<th>0-b</th>
<th>0-3b/4</th>
<th>0-b/2</th>
<th>0-b/4</th>
<th>0-b</th>
<th>0-b</th>
<th>0-b</th>
<th>0-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>K0</td>
<td>K b/4</td>
<td>0,1793</td>
<td>0,4027</td>
<td>0,6252</td>
<td>0,8437</td>
<td>1,0514</td>
<td>1,2369</td>
<td>1,3903</td>
<td>1,5250</td>
</tr>
<tr>
<td></td>
<td>K b/2</td>
<td>-0,5067</td>
<td>-0,1311</td>
<td>0,2457</td>
<td>0,6252</td>
<td>1,0079</td>
<td>1,3903</td>
<td>1,7633</td>
<td>2,1176</td>
</tr>
<tr>
<td></td>
<td>K 0,27b</td>
<td>0,1244</td>
<td>0,3600</td>
<td>0,5948</td>
<td>0,8262</td>
<td>1,0479</td>
<td>1,2492</td>
<td>1,4201</td>
<td>1,5724</td>
</tr>
<tr>
<td>K1</td>
<td>K b/4</td>
<td>0,8340</td>
<td>0,8781</td>
<td>0,9261</td>
<td>0,9777</td>
<td>1,0279</td>
<td>1,0659</td>
<td>1,0807</td>
<td>1,0824</td>
</tr>
<tr>
<td></td>
<td>K b/2</td>
<td>0,7408</td>
<td>0,7958</td>
<td>0,8568</td>
<td>0,9261</td>
<td>1,0025</td>
<td>1,0807</td>
<td>1,1496</td>
<td>1,1983</td>
</tr>
<tr>
<td></td>
<td>K 0,27b</td>
<td>0,8265</td>
<td>0,8715</td>
<td>0,9206</td>
<td>0,9736</td>
<td>1,0259</td>
<td>1,0671</td>
<td>1,0862</td>
<td>1,0917</td>
</tr>
<tr>
<td>Kα</td>
<td>K0=0,35</td>
<td>0,3210</td>
<td>0,5032</td>
<td>0,6860</td>
<td>0,8675</td>
<td>1,0417</td>
<td>1,1982</td>
<td>1,3266</td>
<td>1,4378</td>
</tr>
</tbody>
</table>

Après interpolation sur θ nous obtenons les valeurs de k=k(e) suivantes :

Tableau : Valeur de k=k(e)

<table>
<thead>
<tr>
<th>θ=0,31</th>
<th>0-b</th>
<th>0-3b/4</th>
<th>0-b/2</th>
<th>0-b/4</th>
<th>0-b</th>
<th>0-b</th>
<th>0-b</th>
<th>0-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0,35</td>
<td>0,52</td>
<td>0,69</td>
<td>0,86</td>
<td>1,03</td>
<td>1,18</td>
<td>1,32</td>
<td>1,44</td>
</tr>
</tbody>
</table>

Charge A₁ :

1er cas : 2 voies chargées, L₁ = 7,5 m, a₁ = 1

\[K_{A₁} = \frac{\omega_{A₁}}{L_{A₁}} = \frac{7,61}{7,5} = 1,015 \]

\[\eta_{A₁} = \frac{K_{A₁}}{n_{POUTRES}} = \frac{1,015}{4} \approx 0,25 \]

\[a₁ \times \eta_{A₁} \times L_{A₁} = 1 \times 0,25 \times 7,5 \approx 1,88 \]

2ème cas : une voie chargée, L₁ = 3,75 m et a₁ = 1

\[K_{A₁} = \frac{\omega_{A₁}}{L_{A₁}} = \frac{4,545}{3,75} = 1,212 \]

\[\eta_{A₁} = \frac{K_{A₁}}{n_{POUTRES}} = \frac{1,212}{4} \approx 0,3 \]

\[a₁ \times \eta_{A₁} \times L_{A₁} = 1 \times 0,3 \times 3,75 \approx 1,13 \]
Charges qtr :

Les deux trottoirs chargés

\[K_{tr} = \frac{\omega_{li}}{L_{tr}} = \frac{1}{2} (0,35 + 0,6) \frac{L_{tr}}{L_{tr}} + \frac{1}{2} (1,38 + 1,56) \frac{L_{tr}}{L_{tr}} = 1,945 \]

\[\eta_{tr} = \frac{K_{tr}}{n_{POUTRES}} = \frac{1,945}{4} \approx 0,49 \]

Charge Bc :

1er cas : une (1) voie chargée, bc=1,2

1ère position : une file de roues placée sur l’axe centrale :

\[K_{Bc} = \frac{1}{2} \sum_{i=1}^{2} K_i = \frac{1}{2} (K_1 + K_2) \]

\[K_{Bc} = \frac{1}{2} (1,03 + 1,22) = 1,125 \]

\[\eta_{Bc} = \frac{K_{Bc}}{n_{POUTRES}} = \frac{1,125}{4} = 0,28 \]

\[bc \times \eta_{Bc} = 1,2 \times 0,28 = 0,34 \]

2ème position : une file de roues symétrique par rapport à l’axe du tablier.

\[K_{Bc} = \frac{1}{2} (K_1 + K_2) = \frac{1}{2} (1,12 + 0,92) = 1,02 \]

\[\eta_{Bc} = \frac{K_{Bc}}{n_{POUTRES}} = \frac{1,02}{4} \approx 0,26 \]

\[bc \times \eta_{Bc} = 1,2 \times 0,26 \approx 0,31 \]

2ème cas : deux voies chargées, bc=1,1

1ère position : une file de roue placée sur l’axe du tablier.

\[K_{Bc} = \frac{1}{2} \sum_{i=1}^{4} K_i = \frac{1}{2} (K_1 + K_2 + K_3 + K_4) \]

\[K_{Bc} = \frac{1}{2} \times (1,28 + 1,08 + 1,03 + 0,8) = 2,095 \]

\[\eta_{Bc} = \frac{K_{Bc}}{n_{POUTRES}} = \frac{2,095}{4} \approx 0,52 \]

\[bc \times \eta_{Bc} = 1,1 \times 0,52 = 0,57 \]
2ème position : une file de roues symétrique par rapport à l’axe de la chaussée.

\[K_{BC} = \frac{1}{2} \times (1,25 + 1,05 + 1 + 0,76) = 2,03 \]

\[\eta_{BC} = \frac{K_{BC}}{n_{POUTRES}} = \frac{2,03}{4} \approx 0,51 \]

\[bc \times \eta_{BC} = 1,1 \times 0,51 = 0,56 \]

Charge Mc120 :

1ère position : une chenille dont l’extrémité est sur l’axe central.

\[K_{Mc120} = \frac{1}{4} \times (K_1 + K_2 + K_3 + K_4) = \frac{1}{4} (1,36 + 1,26 + 1,03 + 0,92) \]

\[K_{Mc120} = 1,14 \]

\[\eta_{Mc120} = \frac{K_{Mc120}}{n_{POUTRES}} = \frac{1,14}{4} \approx 0,29 \]

2ème position : deux chenilles symétrique par rapport à l’axe du tablier.

\[K_{Mc120} = \frac{1}{4} (1,24 + 1,15 + 0,91 + 0,76) = 1,015 \]

\[\eta_{Mc120} = \frac{K_{Mc120}}{n_{POUTRES}} = \frac{1,015}{4} \approx 0,25 \]
ANNEXES 6 : CALCUL DES SOLLICITATIONS DES POUTRES.

Calcul de la charge permanente sur la poutre de rive :

- Poids propre de la poutre :
 \[g_p = s_p \times \gamma_b \] (kN/m)
 Avec :
 \[g_p : \text{Poids propre de la poutre (KN/m)} ; \]
 \[s_p : \text{Section de la poutre (m}^2) ; \]
 \[\gamma_b : \text{Masse volumique du béton} = 25 \text{ kN/m}^3 \]
 \[g_p = 1,28 \times 25 = 32 \text{ kN/m} \]

- Poids du hourdis sur la poutre : largeur d’influence \(L_{\text{inf}} = 2,75 \text{ m} \)
 \[g_h = s_h \times \gamma_b = 0,645 \times 25 \approx 16,13 \text{ KN/m} \]

- Poids propre du trottoir : \(L_{\text{tr}} = 2 \text{ m} \)
 \[g_{\text{tr}} = s_{\text{tr}} \times \gamma_b = 0,4 \times 25 = 10 \text{ KN/m} \]

- Poids propre de la corniche :
 \[g_c = s_c \times \gamma_b = 0,25 \times 25 = 6,25 \text{ KN/m} \]

- Poids propre du garde-corps :
 \[g_{gc} = 0,65 \text{ KN/m} \]

- Poids propre de la couche de roulement :
 \[g_{re} = s_{re} \times \gamma_{re} = 0,03 \times 24 = 0,72 \text{ KN/m} \]

- Poids propre de la couche d’étanchéité :
 \[g_r = s_r \times \gamma_r = 0,083 \times 24 = 1,99 \text{ KN/m} \]

Pour pallier au problème d’incertitude du poids propre des éléments du pont, un coefficient de majoration est prévu à cet effet :

Calcul des sollicitations de la poutre de rive :
Calcul du moment fléchissant :

Figure : schéma de calcul du moment fléchissant de la poutre sous charge permanente.

\[
M_{\text{max}} = \frac{G_p \times L_p^2}{8} = \frac{79.6 \times 38.75^2}{8} = 14940.55 \text{ KN.m}
\]

Tableau : valeur du moment fléchissant maximal de la poutre de rive.

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN/m)</th>
<th>ELU (KN/m)</th>
<th>ELS (KN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp/2</td>
<td>14940.55</td>
<td>20169.74</td>
<td>14940.55</td>
</tr>
</tbody>
</table>

Calcul de l’effort tranchant :

Pour le calcul de l’effort tranchant, en plus du poids propre de la poutre, intervient le poids des entretoises d’about appliqué sur les poutres au point d’appui.

Calcul du poids des entretoises d’about sur la poutre :

\[
g_e = s_e \times \gamma_b \times L_{\text{inf}} = (0.25 \times 1.65) \times 25 \times 1.625 \approx 16.76 \text{ KN}
\]

Ce poids est aussi à pondérer par un coefficient \(\gamma_p = 1.03 \)

\[
g_e = 16.76 \times 1.03 = 17.03 \text{ KN}
\]
Figure : effort tranchant due à la charge permanente.

L’effort tranchant maximal est obtenu au droit des appuis de la poutre :

\[T_{\text{max}} = G_p \times \frac{L_p}{2} = 79,6 \times \frac{38,75}{2} = 1542,25 \text{ KN} \]

Tableau : valeur maximal de l’effort tranchant de la poutre de rive.

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN)</th>
<th>ELU (KN)</th>
<th>ELS (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=0 et L=38,75 m</td>
<td>1542,25</td>
<td>2082</td>
<td>1542,25</td>
</tr>
</tbody>
</table>

Sollicitations dues à la charge Al :

\[A_l = 8,054 \text{kN/m}^2 \]

Pour trouver la charge linéaire qui s’applique sur la poutre, il suffit tout simplement de multiplier cette charge surfacique par la largeur d’influence \(L_{\text{inf}} \) de la poutre.

\[A_l = 8,054 \times 0,50 = 4,11 \text{ KN/m} \]

Coefficient de pondération de la charge Al :

\[\gamma_{Q_1} = 1,6 \text{ à l’ELU} \quad \text{et} \quad \gamma_{Q_1} = 1,2 \text{ à l’ELS} \]

Coefficient de répartition transversale CRT=0,26
Calcul du moment fléchissant :

La charge Al s’applique sur la poutre linéairement, donc le calcul du moment fléchissant et de l’effort tranchant est analogue à celui de la charge permanente.

Ainsi nous avons :

$$M_{L/2} = \frac{A_l \times L_p^2}{8} = \frac{4,11 \times 38,75^2}{8} = 771,53 \text{KN.m}$$

$$M_{L/2} \times \eta_{Al} = 200,6 \text{KN/m}$$

$$M_{\text{max}} = \eta_{Al} \times \gamma_{Q1} \times M_{L/2}$$

Tableau : valeur du moment fléchissant maximal dû à la charge Al sur la poutre de rive

<table>
<thead>
<tr>
<th>position</th>
<th>Moment fléchissant maximal (KN/m)</th>
<th>ELU (KN/m)</th>
<th>ELS (KN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_p/2</td>
<td>200,6</td>
<td>320,96</td>
<td>240,72</td>
</tr>
</tbody>
</table>

Calcul de l’effort tranchant :

$$T_{\text{app}} = A_l \times \frac{L_p}{2} = 4,11 \times \frac{38,75}{2} = 79,63 \text{ KN}$$

$$T_{\text{app}} \times \eta_{Al} \approx 20,70 \text{ KN}$$

$$T_{\text{max}} = \eta_{Al} \times \gamma_{Q1} \times T_{\text{app}}$$

Tableau : valeur de l’effort tranchant maximal dû à la charge Al sur la poutre de rive

<table>
<thead>
<tr>
<th>position</th>
<th>Effort tranchant maximal (KN)</th>
<th>ELU (KN)</th>
<th>ELS (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=0 et L=38,75 m</td>
<td>20,70</td>
<td>33,13</td>
<td>24,84</td>
</tr>
</tbody>
</table>

Sollicitations dues à la charge du trottoir :

On utilise la charge générale de valeur constante :

$$q_{tr} = 1,5 \text{ KN/m}^2$$

La charge linéairement repartie sur la poutre est :

$$q_{tr} = \frac{1,5 \text{ KN}}{m^2} \times L_{tr} = 1,5 \times 1,75 = 2,625 \text{KN/m}$$
Les coefficients de pondération de la charge q_{tr} sont :

$\gamma_{Q1} = 1,6$ à l’ELU et $\gamma_{Q1} = 1,00$ à l’ELS

Le coefficient de répartition transversale $CRT = 0,52$.

Calcul du moment fléchissant :

$$M_{L/2} = \frac{q_{tr} \times L_p^2}{8} = \frac{2,625 \times 38,75^2}{8} = 492,7 \text{ KN/m}$$

$$M_{L/2} \times \eta_{tr} = 0,52 \times 492,7 = 256,20 \text{ KN/m}$$

$$M_{max} = \eta_{tr} \times \gamma_{Q1} \times M_{L/2}$$

Tableau : valeur du moment fléchissant dû à la charge du trottoir sur la poutre de rive.

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN/m)</th>
<th>ELU (KN/m)</th>
<th>ELS (KN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_p/2$</td>
<td>256,20</td>
<td>409,93</td>
<td>256,20</td>
</tr>
</tbody>
</table>

Calcul de l’effort tranchant :

$$T_{tr} = q_{tr} \times \frac{L_p}{2} = 2,625 \times \frac{38,75}{2} = 50,86 \text{ KN}$$

$$T_{tr} \times \eta_{tr} \approx 26,45\text{KN}$$

$$T_{max} = \eta_{tr} \times \gamma_{Q1} \times T_{tr}$$

Tableau : valeur de l’effort tranchant maximal dû à la charge du trottoir sur la poutre de rive.

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN)</th>
<th>ELU (KN)</th>
<th>ELS (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L=0 \text{ et } L=38,75 \text{ m}$</td>
<td>26,45</td>
<td>42,32</td>
<td>26,45</td>
</tr>
</tbody>
</table>

Sollicitations dues à la charge Bc :

Calcul du coefficient de majoration dynamique de la poutre :

Le coefficient de répartition transversale $CRT=0,67$

Pour les charges concentrées (ponctuelles) appliquées sur une poutre donnée, le moment maximal est obtenu par les lignes d’influences de la poutre.
Lignes d’influences d’une poutre :

La ligne d’influence est la déformation d’une poutre au droit d’une section donnée sous l’influence d’une charge mobile unitaire.

Soit une charge unitaire P mobile placée sur la poutre. Les lignes d’influences dues à cette charge sont :

Figure : Ligne d’influence des réactions d’appuis :

\[\sum \frac{M}{B} = 0 \Rightarrow R_A \times L - P \times (L - X) = 0 \]

\[R_A = P \frac{L - X}{L} \Rightarrow \begin{cases} X = 0 & R_A = P = 1 \\ X = L & R_A = 0 \end{cases} \]

\[\sum \frac{M}{A} = 0 \Rightarrow R_B \times L - P \times X = 0 \]

\[R_B = P \frac{X}{L} \Rightarrow \begin{cases} X = L & R_B = P = 1 \\ X = 0 & R_B = 0 \end{cases} \]
Ligne d’influence du moment fléchissant :

\[
\sum M/\text{droite} = 0 \quad R_B \times b - M_{SE} = 0 \Rightarrow M_{SE} = R_B \times b = \frac{X}{L} \times b
\]

\[
\begin{cases}
 X = 0 & \Rightarrow M_{SE} = 0 \\
 X = L & \Rightarrow M_{SE} = b
\end{cases}
\]

Si la charge mobile \(P=1 \) est à gauche de la section SE :

\[
\sum M/\text{gauche} = 0 \quad R_A \times a - M_{SE} = 0 \Rightarrow M_{SE} = R_A \times a
\]

\[
M_{SE} = \frac{L - X}{L} \times a \Rightarrow \begin{cases}
 X = 0 & M_{SE} = a \\
 X = L & M_{SE} = 0
\end{cases}
\]

Ligne d’influence de l’effort tranchant :

Figure : ligne d’influence du moment fléchissant.

Si la charge mobile \(P=1 \) est à droite de la section SE :

\[
\sum M/\text{droite} = 0 \quad R_B \times b - M_{SE} = 0 \Rightarrow M_{SE} = R_B \times b = \frac{X}{L} \times b
\]

\[
\begin{cases}
 X = 0 & \Rightarrow M_{SE} = 0 \\
 X = L & \Rightarrow M_{SE} = b
\end{cases}
\]
Figure : ligne d’influence de l’effort tranchant :

\[\sum \frac{y}{gauche} = 0 \Rightarrow R_A - T_g = 0 \Rightarrow T_g = R_A = \frac{L - X}{L} \]

\(\text{si} \ X = 0 \Rightarrow T_g = 1 \)
\(\text{si} \ X = L \Rightarrow T_g = 0 \)

\[\sum \frac{y}{droite} = 0 \Rightarrow R_B + T_g = 0 \Rightarrow T_g = -R_B = -\frac{X}{L} \]

\(\text{si} \ X = 0 \Rightarrow T_g = 0 \)
\(\text{si} \ X = L \Rightarrow T_g = -1 \)

Calcul du moment fléchissant :

Théorème de Barré Saint venant :

Le moment fléchissant est maximum au droit d’un essieu lorsque cet essieu et la résultante générale du convoi se trouvent dans des sections symétriques par rapport au milieu de la poutre.
Figure : position de la charge critique.

Soit la charge N° 3, P/2 symétrique à la résultante par rapport au milieu de la travée.

\[\sum \frac{M}{B} = 0 \Rightarrow R_A \times L - R \left(\frac{L}{2} - (\Delta - \delta) \right) = R_A \times L - R \left(\frac{L}{2} - \Delta + \delta \right) \]

\[\Rightarrow R_A = \frac{R}{L} \left(\frac{L}{2} - \Delta + \delta \right) \]

Or : \(\Delta = 3 \) m; \(\delta = 1,5 \) m; \(P = 12t \)

\[R = \sum P_i = (12 + 12 + 6) \times 2 = 60t = 600 \text{ KN} \]

\[\Rightarrow R_A = \frac{60}{38,75} \left(\frac{38,75}{2} - 3 + 1,5 \right) = 27,68 \text{ t} \]

\[\sum \frac{M}{P3} = 0 \Rightarrow R_A \times \left(\frac{L}{2} - \delta \right) - P_2 \times 4,5 - P_1 \times 6 - M = 0 \]

\[M = R_A \times \left(\frac{L}{2} - \delta \right) - P_2 \times 4,5 - P_1 \times 6 \]

\[M = 27,68 \times \left(\frac{38,75}{2} - 1,5 \right) - 12 \times 4,5 - 12 \times 6 = 368,78 \text{ t.m} \]

\[M = 368,78 \text{ t.m} = 3687,8 \text{ KN.m} \]

Une étude basée sur ce théorème a été faite pour le convoi réglementaire Bc. Les dispositions les plus défavorables des essieux pour différentes longueurs de travées et les expressions des moments maximaux correspondants sont données dans le tableau ci-dessous pour le cas de travée indépendante.
Tableau : Expression du moment maximal sous l’effet du convoi Bc dans une poutre à travée indépendante.

<table>
<thead>
<tr>
<th>Portées (Lc en m)</th>
<th>Dispositions des essieux</th>
<th>δ (m)</th>
<th>Moments maximaux (M_{max})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < Lc < 2,56 m</td>
<td>P</td>
<td>0</td>
<td>M = 0,25 P Lc</td>
</tr>
<tr>
<td>2,56 < Lc < 9,19</td>
<td>P</td>
<td>0,375</td>
<td>M = P (0,50 Lc + \frac{0,281}{Lc} - 0,75)</td>
</tr>
<tr>
<td>9,19 < Lc < 11,75</td>
<td>P</td>
<td>0,15</td>
<td>M = P (0,625 Lc + \frac{0,056}{Lc} - 1,875)</td>
</tr>
<tr>
<td>11,75 < Lc < 17,44</td>
<td>P</td>
<td>0,375</td>
<td>M = P (0,75 Lc + \frac{0,422}{Lc} - 3,375)</td>
</tr>
<tr>
<td>17,44 < Lc < 18,38</td>
<td>P</td>
<td>0,844</td>
<td>M = P (Lc + \frac{2,848}{Lc} - 7,875)</td>
</tr>
<tr>
<td>18,38 < Lc</td>
<td>P</td>
<td>1,725</td>
<td>M = P(1,25 Lc + \frac{14,878}{Lc} - 13,125)</td>
</tr>
</tbody>
</table>

Nous déduisons ainsi que notre moment maximal est : Lc = 38,75 m > 18,38 m

\[
M = P(1,25Lc + \frac{14,878}{Lc} \times 13,125)
\]

\[
M = 12 \left(1,25 \times 38,75 + \frac{14,878}{38,75} \times 13,125\right) = 641,72 \text{ t.m}
\]

M = 641,72 t.m = 6417,2 KN.m

On suppose que ce moment maximal est à L/2 et est égale à :

\[
M_{\text{max}} = \gamma_{Q1} \times \eta_{Bc} \times \delta_{B} \times bc \times M
\]

\[
\eta_{Bc} \times \delta_{B} \times bc \times M = 0,67 \times 1,06 \times 1,1 \times 6417,2 = 5013,25 \text{ KN.m}
\]
Tableau : valeur du moment maximal dû à la charge Bc sur la poutre de rive.

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN.m)</th>
<th>ELU(KN.m)</th>
<th>ELS(KN.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp/2</td>
<td>5013,25</td>
<td>8021,2</td>
<td>6015,9</td>
</tr>
</tbody>
</table>

Calcul de l’effort tranchant :

Figure : Ligne d'influence de l’effort tranchant.

\[T = \sum P_i \times y_i \]

L’effort tranchant est maximal au droit des appuis.

Pour \(x = 0 \)\(y_1 = 1 - \frac{x}{L_c} = 1 \) m

En appliquant le théorème de Thalès nous obtenons les valeurs suivantes :

\[y_2 = \frac{37,25 \times y_1}{38,75} \approx 0,96 \text{ m} \]

\[y_3 = \frac{32,75 \times y_1}{38,75} \approx 0,85 \text{ m} \]

\[y_4 = \frac{28,25 \times y_1}{38,75} \approx 0,73 \text{ m} \]
\[y_5 = \frac{26.75 \times y_1}{38.75} \approx 0.69 \text{ m} \]

\[y_6 = \frac{22.25 \times y_1}{38.75} \approx 0.57 \text{ m} \]

\[T = 12 \times 1 + 12 \times 0.96 + 6 \times 0.85 + 12 \times 0.73 + 12 \times 0.69 + 6 \times 0.57 \]

\[T = 49.08 \text{ KN} \]

\[\delta_{bc} \times \eta_{bc} \times bc \times T = 1.06 \times 0.67 \times 1.1 \times 49.08 = 38.34 \text{ KN} \]

Tableau : valeur de l’effort tranchant maximal de la poutre de rive.

<table>
<thead>
<tr>
<th>position</th>
<th>Valeur sans pondération (KN)</th>
<th>ELU (KN)</th>
<th>ELS (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sur appui</td>
<td>38.34</td>
<td>61.34</td>
<td>46</td>
</tr>
</tbody>
</table>

Sollicitations dues à la charge militaire Mc120 :

Coefficient de pondération de la charge :

\[\gamma_{Q1} = 1.35 \text{ à l’ELU et } \gamma_{Q1} = 1.00 \text{ à l’ELS} \]

Coefficient de répartition transversale \(\eta_{MC120} = 0.37 \)

Figure : représentation longitudinale de la charge Mc 120.
Ligne d’influence de la charge Mc120 pour un convoi sur la poutre.

Lorsque la longueur de la poutre ne permet de disposer qu’un seul char sur la poutre, le moment fléchissant maximal est obtenu en plaçant la charge à une distance \(t \) de l’appui gauche.

\[
t = \frac{x}{L_c} (L_c - 6,1)[\text{m}].
\]

\(M = q \times \omega \) avec \(\omega \) : l’aire maximal correspondant à la charge (figure ci dessus).

Pour \(X = \frac{L}{2} \) \(\Rightarrow \) \(t = \frac{1}{2} (38,75 - 6,1) \approx 16,33 \text{ m} \)

\[
y = \frac{x}{L_c} (L_c - x) = \frac{1}{2} (38,75 - \frac{38,75}{2}) \approx 9,69 \text{ m}
\]

\[
y_1 = 8,16 \text{ m}
\]

\[
y_2 = 8,16 \text{ m}
\]

\[
\omega = 2 \left(\frac{y + y_1}{2} \times 3,05 \right) = (y + y_1) \times 3,05 = 54,44 \text{ m}^2
\]
M = q × ω = \(\frac{180}{m} \) KN × 54,44 m\(^2\) = 9799,2 KN·m

\[M_{\text{max}} = \gamma_{Q1} \times \eta_{\text{Mc120}} \times \delta_{\text{Mc120}} \times M \]

\[\eta_{\text{Mc120}} \times \delta_{\text{Mc120}} \times M = 0,37 \times 1,06 \times 9799,2 = 3843,25 \text{ KN·m} \]

Tableau : valeur du moment fléchissant maximal dû à la charge Mc120.

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN/m)</th>
<th>ELU (KN/m)</th>
<th>ELS (KN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp/2</td>
<td>3843,25</td>
<td>5188,3875</td>
<td>3843,25</td>
</tr>
</tbody>
</table>

La portée de calcul de notre tablier de 38,75 m, permet de disposer un char sur toute sa longueur et partiellement un deuxième char.

Deuxième disposition possible du convoi militaire Mc120 :

Figure : ligne d’influence du moment fléchissant.

\[\omega_1 = \frac{1}{2} (3,05 \times 2,79) + \frac{1}{2} (2,79 + 2,57) \times 3,05 \approx 12,43 \text{ m}^2 \]
\[\omega_2 = \frac{1}{2} \times 0,17 \times 2,15 = 0,18 \text{ m}^2 \]

\[\omega = 12,43 + 0,18 = 12,61 \text{ m}^2 \]

\[M = q \times \omega = 180 \times 12,61 = 2269,8 \text{ KN.m} \]

\[\eta_{Mc120} \times \delta_{Mc120} \times M = 0,37 \times 1,06 \times 2269,8 = 890,22 \text{ KN.m} \]

Le moment fléchissant dû à la première disposition est plus défavorable que celui de la deuxième disposition.

Calcul de l’effort tranchant :

\[T = q \omega = q (\omega_1 + \omega_2) \]

\[\omega_1 = \frac{1 + 0,84}{2} \times 6,1 = 5,61 \text{ m}^2 \]

\[\omega_2 = \frac{1}{2} \times 0,06 \times 2,15 = 0,065 \text{ m}^2 \]

\[\omega = 5,61 + 0,065 = 5,675 \text{ m}^2 \]

\[T = 180 \times 5,675 = 1021,5 \text{ KN} \]

\[T_{max} = \gamma_{Q1} \times \eta_{Mc120} \times \delta_{Mc120} \times T \]
\[
\eta_{\text{Mc120}} \times \delta_{\text{Mc120}} \times T = 0,37 \times 1,06 \times 1021,5 = 400,63 \text{ KN}
\]

Tableau : valeurs de l’effort tranchant maximal dû à la charge Mc120 sur la poutre de rive

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (kN)</th>
<th>ELU (kN)</th>
<th>ELS (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sur appui</td>
<td>400,63</td>
<td>540,8505</td>
<td>400,63</td>
</tr>
</tbody>
</table>

Poutre intermédiaire :

Sollicitations dues à la charge permanente :

Tableau : valeur de la charge permanente sur la poutre intermédiaire.

<table>
<thead>
<tr>
<th>Nature</th>
<th>charges sans majoration (KN/m)</th>
<th>coefficient de majoration</th>
<th>charges majorées (KN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>poutre</td>
<td>40,63</td>
<td>1,03</td>
<td>41,84</td>
</tr>
<tr>
<td>hourdis</td>
<td>25</td>
<td>1,03</td>
<td>25,75</td>
</tr>
<tr>
<td>couche de roulement en béton bitumineux</td>
<td>4,68</td>
<td>1,4</td>
<td>6,552</td>
</tr>
<tr>
<td>couche d’étanchéité</td>
<td>2,34</td>
<td>1,2</td>
<td>2,808</td>
</tr>
<tr>
<td>coffrage perdu en dalle BA</td>
<td>0,825</td>
<td>1,03</td>
<td>0,85</td>
</tr>
<tr>
<td>Total</td>
<td>73,48</td>
<td></td>
<td>77,8</td>
</tr>
</tbody>
</table>

- Moment fléchissant :
\[
M_g = \frac{g_p \times L_c^2}{8} = \frac{68,92 \times 38,75^2}{8} = 12935,96 \text{ KN.m}
\]
\[
M_{g_{\text{max}}} = \gamma_{Q1} \times M_g
\]

Tableau : valeur du moment fléchissant maximal dû à la charge permanente.

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN/m)</th>
<th>ELU (KN/m)</th>
<th>ELS (KN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp/2</td>
<td>12935,96</td>
<td>17463,55</td>
<td>12935,96</td>
</tr>
</tbody>
</table>

Calcul du poids des entretoises d’about sur la poutre :
\[
g_e = s_e \times \gamma_b \times L_{\text{inf}} = (0,25 \times 1,65) \times 25 \times 3,25 \approx 33,52 \text{ KN}
\]
Ce poids est aussi à pondérer par un coefficient $\gamma_p = 1,03$

$$g_e = 33,52 \times 1,03 = 34,53 \text{ KN}$$

Calcul de l’effort tranchant :

$$T_{\text{max}} = G_p \times \frac{L_p}{2} = 68,92 \times \frac{38,75}{2} = 1335,33 \text{ KN}$$

Tableau : valeur maximal de l’effort tranchant de la poutre intermédiaire.

<table>
<thead>
<tr>
<th>position</th>
<th>Effort tranchant maximal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L=0 et L=38,75 m</td>
<td>valeur sans pondération (KN)</td>
<td>ELU (KN)</td>
</tr>
<tr>
<td>1335,33</td>
<td>1802,70</td>
<td>1335,33</td>
</tr>
</tbody>
</table>

Sollicitations dues à la charge Al :

$$A_l \times l_{\text{inf}} = 8,054 \times 3,25 = 26,18 \text{ KN/m}$$

$l_{\text{inf}} = 3,25$ m largeur d’influence de la poutre intermédiaire

Coefficient de répartition transversale CRT=0,25

Calcul du moment fléchissant :

$$M_{L/2} = \frac{A_l \times L_p^2}{8} = \frac{26,18 \times 38,75^2}{8} = 4913,86 \text{ KN.m}$$

$$M_{L/2} \times \eta_{Al} \approx 1228,47 \text{ KN/m}$$

$$M_{\text{max}} = \eta_{Al} \times \gamma_{Q1} \times M_{L/2}$$

Tableau : valeur du moment fléchissant maximal dû à la charge Al sur la poutre intermédiaire.

<table>
<thead>
<tr>
<th>position</th>
<th>Moment fléchissant maximal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp/2</td>
<td>valeur sans pondération (KN/m)</td>
<td>ELU (KN/m)</td>
</tr>
<tr>
<td>1228,47</td>
<td>1965,55</td>
<td>1474,16</td>
</tr>
</tbody>
</table>

Calcul de l’effort tranchant :

$$T_{\text{app}} = A_l \times \frac{L_p}{2} = 26,18 \times \frac{38,75}{2} \approx 507,24 \text{ KN}$$

$$T_{\text{app}} \times \eta_{Al} \approx 126,81 \text{ KN}$$
\[T_{\text{max}} = \eta_{\text{Al}} \times \gamma_{Q1} \times T_{\text{app}} \]

Tableau : valeur de l’effort tranchant maximal dû à la charge Al sur la poutre intermédiaire.

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN)</th>
<th>ELU (KN)</th>
<th>ELS (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=0 et L=38,75 m</td>
<td>126,81</td>
<td>202,90</td>
<td>152,17</td>
</tr>
</tbody>
</table>

Sollicitations dues à la charge du trottoir :

La charge linéairement repartie sur la poutre est :

\[q_{\text{tr}} = \frac{1,5 \text{KN}}{m^2} \times L_{\text{tr}} = 1,5 \times 1,75 \approx 2,63 \text{KN/m} \]

Le coefficient de répartition transversale \(CRT = 0,41 \).

Calcul du moment fléchissant :

\[
M_{L/2} = \frac{q_{\text{tr}} \times L_{p}^2}{8} = \frac{2,63 \times 38,75^2}{8} = 493,64 \text{ KN/m} \\
M_{L/2} \times \eta_{\text{tr}} = 0,41 \times 493,64 = 202,39 \text{ KN/m} \\
M_{\text{max}} = \eta_{\text{tr}} \times \gamma_{Q1} \times M_{L/2}
\]

Tableau : valeur du moment fléchissant dû à la charge du trottoir sur la poutre intermédiaire

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN/m)</th>
<th>ELU (KN/m)</th>
<th>ELS (KN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp/2</td>
<td>202,39</td>
<td>323,82</td>
<td>202,39</td>
</tr>
</tbody>
</table>

Calcul de l’effort tranchant :

\[T_{\text{tr}} = q_{\text{tr}} \times \frac{L_{p}}{2} = 2,63 \times \frac{38,75}{2} = 50,96 \text{ KN} \]

\[T_{\text{tr}} \times \eta_{\text{Al}} \approx 20,89 \text{ KN} \]

\[T_{\text{max}} = \eta_{\text{Al}} \times \gamma_{Q1} \times T_{\text{tr}} \]
Tableau : valeur de l’effort tranchant maximal dû à la charge du trottoir sur la poutre intermédiaire.

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN)</th>
<th>ELU (KN)</th>
<th>ELS (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=0 et L=38,75 m</td>
<td>23,83</td>
<td>38,13</td>
<td>30,22</td>
</tr>
</tbody>
</table>

Sollicitations dues à la charge du convoi Bc :

Le calcul des sollicitations de la poutre intermédiaire dues au convoi normal (système B) et au convoi militaire Mc120 est analogue à celui de la poutre de rive. La seule différence réside au niveau du coefficient de répartition transversale.

Coefficient de répartition transversale CRT=0,52

Calcul du moment fléchissant :

$L_c = 38,75\ m > 18,38\ m$ (Méthode de Barré saint venant).

\[M = P \left(1,25L_c + \frac{14,878}{L_c} \times 13,125 \right) \]

\[M = 641,72\ t.\ m = 6417,2\ KN.m \]

\[M_{\text{max}} = \gamma_{Q1} \times \eta_{Bc} \times \delta_B \times \text{bc} \times M \]

\[\eta_{Bc} \times \delta_B \times \text{bc} \times M = 3890,88\ KN.m \]

Tableau : valeur du moment maximal dû à la charge Bc sur la poutre intermédiaire.

<table>
<thead>
<tr>
<th>position</th>
<th>valeur sans pondération (KN.m)</th>
<th>ELU(KN.m)</th>
<th>ELS(KN.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp/2</td>
<td>3890,88</td>
<td>6225,41</td>
<td>4669,6</td>
</tr>
</tbody>
</table>

Calcul de l’effort tranchant :

\[T = 49,08\ KN \]

\[\delta_{Bc} \times \eta_{Bc} \times \text{bc} \times T = 1,06 \times 0,52 \times 1,1 \times 49,08 = 29,76\ KN \]
Tableau : valeur de l’effort tranchant maximal de la poutre intermédiaire.

<table>
<thead>
<tr>
<th>position</th>
<th>Effort tranchant maximal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valeur sans pondération (KN)</td>
</tr>
<tr>
<td>sur appui</td>
<td>29,76</td>
</tr>
</tbody>
</table>

Sollicitations dues à la charge Mc120 :

Calcul du moment fléchissant :

\[M = q \times \omega = 180 \frac{\text{KN}}{m} \times 54,44 \text{ m}^2 = 9799,2 \text{ KN.m} \]

\[M_{\text{max}} = \gamma_{Q1} \times \eta_{\text{Mc120}} \times \delta_{\text{Mc120}} \times M \]

\[\eta_{\text{Mc120}} \times \delta_{\text{Mc120}} \times M = 0,29 \times 1,06 \times 9799,2 = 3012,27 \text{ KN.m} \]

Tableau : valeur du moment fléchissant maximal de la poutre intermédiaire dû à la charge Mc120.

<table>
<thead>
<tr>
<th>Moment fléchissant maximal</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
</tr>
<tr>
<td>Lp/2</td>
</tr>
</tbody>
</table>

Calcul de l’effort tranchant :

\[T = 180 \times 5,675 = 1021,5 \text{ KN} \]

\[T_{\text{max}} = \gamma_{Q1} \times \eta_{\text{Mc120}} \times \delta_{\text{Mc120}} \times T \]

\[\eta_{\text{Mc120}} \times \delta_{\text{Mc120}} \times T = 0,29 \times 1,06 \times 1021,5 \approx 314,01 \text{ KN} \]

Tableau : valeur d’effort tranchant maximal de la poutre intermédiaire dû à la charge Mc120.

<table>
<thead>
<tr>
<th>Effort tranchant maximal</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
</tr>
<tr>
<td>sur appui</td>
</tr>
</tbody>
</table>

En résumé, nous présentons sous forme de tableau ci-dessous les résultats de toutes les sollicitations dues aux différentes charges appliquées sur les poutres.
ANNEXE 7 : CALCUL DE LA PRECONTRAINTE

Le BPEL défini deux valeurs de précontrainte pour la détermination de la précontrainte minimale de calcul et de son excentricité : maximum P_1 et minimum P_2. Les deux précontraintes représentent respectivement la précontrainte obtenue en section sous critique (le fuseau de passage des câbles est au-dessus de la zone d’enrobage) et la précontrainte obtenue en section sur critique (l’extrémité inférieure du fuseau de passage des câbles dépasse la zone d’enrobage).

Calcul de la précontrainte minimale :

Tableau 1 : valeur des moments dus au poids propre des éléments du tablier.

<table>
<thead>
<tr>
<th>sollicitations de calcul (ELS)</th>
<th>symbole</th>
<th>valeur(MN.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>moment dû au poids propre de la poutre</td>
<td>M_{gp}</td>
<td>6,23</td>
</tr>
<tr>
<td>moment dû au poids propre du hourdis sur la poutre</td>
<td>M_{gh}</td>
<td>3,12</td>
</tr>
<tr>
<td>Moment dû au poids de la superstructure</td>
<td>M_{gs}</td>
<td>3,97</td>
</tr>
<tr>
<td>Moment maximum dû au charge d'exploitation</td>
<td>M_Q</td>
<td>6,27</td>
</tr>
<tr>
<td>Moment totale (ELS)</td>
<td>M_{max}</td>
<td>19,59</td>
</tr>
</tbody>
</table>

❖ Calcul en section sous-critique P_1 :

La valeur de la force de précontrainte P_1 est donnée par la relation suivante :

$$P_1 = \frac{\Delta M}{\rho h} + \frac{S}{h} (\sigma'_{ti}.v + \sigma'_{ts}v')$$

Avec :

$\Delta M = M_{max} - M_{min} = M_Q = 6,27$ MN.m

h : hauteur de la section

$\overline{\sigma_{ti}} = -f_{t28} = -2,7$ MPa (Contrainte admissible en traction sur la fibre inférieure)

$\overline{\sigma_{ts}} = -1,5f_{t28} = -4,05$ MPa (Contrainte admissible en traction sur la fibre supérieure).

$$P_1 = \frac{6,27}{0,49 \times 2,35} + \frac{1,93}{2,35} (-2,7 \times 0,81 - 4,05 \times 1,54) = -1,48$$ MN
Calcul en section sur-critique P2:

La valeur de la force de précontrainte P2 est donnée par la relation suivante :

\[P_2 = \frac{M_{\text{max}} + \rho \times S \times V \times \bar{\sigma}_t}{\rho \times V + V' - d'} \]

d': position extrême possible du centre de gravité du câble moyen par rapport au parement.

\[d' = 1,5 \times \phi \text{gaine} = 1,5 \times 80 \text{mm} = 12 \text{ cm} \]

\[P_2 = \frac{19,59 + 0,49 \times 1,93 \times 0,81 \times (-2,7)}{0,49 \times 0,81 + 1,54 - 0,12} \cong 9,6 \text{ MN} \]

\[P_{\text{min}} = \max (P_1, P_2) = \max (9,6; -1,48) = 9,6 \text{MN} \], la section est alors sur critique.

L’excentricité est alors imposée à sa valeur maximale admissible, compatible avec les conditions d’enrobage.

Excentricité des câbles :

Câble de première famille :
\[e_0 = -(V' - d'_1) = -(1,165 - 0,12) = -1,05 \text{ m} \]

\[d'_1 = 1,5 \times \phi \text{gaine} = 1,5 \times 80 \text{mm} = 12 \text{ cm} \]

Câble de deuxième famille :
\[e_0 = -(V' - d'_2) = -(1,54 - 0,16) = -1,38 \text{ m} \]

\[d'_1 = 2 \times \phi \text{gaine} = 2 \times 80 \text{mm} = 16 \text{ cm} \]

Calcul du nombre de câbles de précontrainte :

Nous allons établir un calendrier d’exécution des travaux pour tenir compte des temps respectifs de mise en tension des câbles et des contraintes limites du béton liées aux différentes dates.
Tableau : calendrier d’exécution des travaux du tablier.

<table>
<thead>
<tr>
<th>Phase</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>T=j</td>
<td>T=7 jours</td>
<td>T=15 jours</td>
<td>T= 28 jours</td>
<td>T=∞</td>
</tr>
<tr>
<td>Poutre préfabriquée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coulage du béton de la</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poutre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mise en tension des câbles de la 1ère famille</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Précontrainte</td>
<td>P₀ = 1,1P₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₁ = 1,2Pₐ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fₑₗ</td>
<td>23,18 MPa</td>
<td></td>
<td>35 MPa</td>
<td>35 MPa</td>
<td></td>
</tr>
<tr>
<td>Béton coulé sur place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coulage du béton du</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tourdis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mise en tension des câbles de la 2ème famille</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>précontrainte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₀ = 1,1P₁</td>
<td></td>
<td>P₁ = 1,1Pₐ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P₁ = 1,15Pₐ</td>
<td></td>
<td>Pₐ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fₑₗ</td>
<td></td>
<td></td>
<td>30 MPa</td>
<td>35 MPa</td>
<td></td>
</tr>
</tbody>
</table>

P₀ : Précontrainte à l’ancrage avant mise en tension ;

P₁ : Précontrainte initiale après pertes instantanées et avant pertes différées ;

Pₐ : Précontrainte finale des câbles de première famille ;

Pₐ : Précontrainte finale des câbles de deuxième famille ;

✓ **Nombre de câble de la première famille** :

Pour la première famille de câble, deux phases sont défavorables :

- **Phase 1 : lors de la mise en tension**

Les contraintes engendrées dans le béton par les charges permanentes et la précontrainte doivent satisfaire les contraintes limites du béton.
Résistance caractéristique du béton à 7 jours :

\[f_{c7} = \frac{j}{4,76+0,83j} \times f_{cj} = \frac{7}{4,76+0,83\times7} \times 35 = 23,18 \text{ MPa} \]

\[f_{t7} = 0,6 + 0,06f_{c7} = 1,99 \text{ MPa} \]

Les contraintes admissibles dans le béton :

\[\sigma_{ci} = 0,6 \times 23,18 = 13,91 \text{ MPa} \]

\[\sigma_{ts} = -1,5f_{t7} = -1,5 \times 1,99 \approx -3 \text{ MPa} \]

Les pertes de précontrainte instantanées et différées sont estimées en fraction de \(P_A \) et de \(P_B \) :

\(P_0 = 1,1P_i \) et \(P_i = 1,2P_A \).

\[
\begin{align*}
1,2P_A + \frac{1,2PA \times e_0}{I/V} + \frac{M_{gp}}{I/V} & \leq \sigma_{ci} = 13,91 \text{ MPa} \\
1,28 + \frac{1,2PA \times 1,05}{0,76/1,165} - \frac{6,23}{0,76/1,165} & \leq \sigma_{ci} = 13,91 \text{ MPa} \\
0,9375P_A + 1,931P_A - 9,54 & \leq 13,91 \rightarrow P_A \leq 8,17 \text{ MN} \\
1,2P_A + \frac{1,2PA \times e_0}{I/V} + \frac{M_{gp}}{I/V} & \geq \sigma_{ts} = -3 \text{ MPa} \\
1,28 + \frac{1,2PA \times 1,05}{0,76/0,985} - \frac{6,23}{0,76/0,985} & \geq \sigma_{ts} = -3 \text{ MPa} \\
0,9375P_A - 1,633P_A + 8,074 & \geq -3 \text{ MPa} \rightarrow P_A \leq 12,92 \text{ MN} \\
P_A \leq 8,17 \text{ MN} \text{ et } P_A \leq 12,92 \text{ MN}, donc on prend } P_A \leq 8,17 \text{ MN.}
\]
• Phase 2 : Avant la mise en tension de la deuxième famille et après bétonnage du houïdis.

À t = 15 jours après coulage du béton

\[f_{c15} = \frac{i}{4,76+0,83j} \times f_{cj} = \frac{15}{4,76+0,83\times15} \times 35 = 30,5 \text{ MPa} \]

\[f_{t15} = 0,6 + 0,06f_c = 2,43 \text{ MPa} \]

Les contraintes admissibles sont :

\[\sigma_{ci} = 0,6 \times 30,5 = 18,3 \text{ MPa} \]

\[\sigma_{ts} = -f_{t15} = -2,43\text{MPa} \]

A ce stade le moment vaut : \(M_g = M_{gp} + M_{gh} = 6,23 + 3,12 = 9,35 \text{ MN} \)

\[
\frac{1,1\times P_A}{S} - \frac{1,1\times P_{A}\times e_0}{I/V} + \frac{M_{gp}}{I/V} \leq \sigma_{ci} = 18,3 \text{ MPa}
\]

\[
\frac{1,1\times P_A}{1,28} - \frac{1,1\times P_{A}\times e_0}{0,76/0,985} + \frac{9,35}{0,76/0,985} \leq \sigma_{ci} = 18,3 \text{ MPa}
\]

\[0,86P_A - 1,5P_A + 12,12 \leq 18,3 \quad \rightarrow P_A \geq -9,66 \text{ MN} \]

\[
\frac{1,1\times P_A}{S} + \frac{1,1\times P_{A}\times e_0}{I/V} + \frac{M_{gp}}{I/V} \geq \sigma_{ts} = -2,43 \text{ MPa}
\]

\[
\frac{1,1\times P_A}{1,28} + \frac{1,1\times P_{A}\times e_0}{0,76/1,165} - \frac{9,35}{0,76/1,165} \geq \sigma_{ts} = -2,43 \text{ MPa}
\]

\[0,86P_A + 1,77P_A - 14,33 \geq -2,43\text{MPa} \quad \rightarrow P_A \geq 4,52\text{MN} \]

\[P_A \geq -9,66 \text{ MN et } P_A \geq 4,52\text{MN}, donc on prend } P_A \geq 4,52\text{MN}. \]
La valeur de P_A est comprise entre les deux valeurs choisies.

$4,52\,\text{MN} \leq P_A \leq 8,17\,\text{MN}$

La précontrainte à l’ancrage vaut : $P_0 = 1,1 \times 1,2 P_A \rightarrow P_A = \frac{P_0}{1,32}$

$4,52 \leq \frac{P_0}{1,32} \leq 8,17 \rightarrow 4,52 \times 1,32 \leq P_0 = A_p \times \sigma_0 \leq 8,17 \times 1,32$

Or, $\sigma_{P_0} = 1485\,\text{MPa} \rightarrow 4,52 \times 1,32 \leq A_p \times 1485 \leq 8,17 \times 1,32$

$\rightarrow 4017,78\,\text{mm}^2 \leq A_p \leq 7262,22\,\text{mm}^2$

$1T15S = 150\,\text{mm}^2 \rightarrow 12T15S = 12 \times 150 = 1800\,\text{mm}^2$

$\rightarrow \frac{4017,78}{1800} = 2,23 \leq n_1 \leq \frac{7262,22}{1800} = 4,03$

Prenons $n_1 = 4$ câbles $12T15$ pour la première famille.

$P_A = \frac{4 \times 12 \times 150 \times 10^{-6} \times 1485}{1,32} = 8,1\,\text{MN}$

Contrainte dans le béton après le coulage du béton du hourdis et avant mise en tension des câbles de $2^{\text{ème}}$ famille :

$P_1 = 1,1 \times P_A = 1,1 \times 8,1 = 8,91\,\text{MN}$

$\frac{8,91}{1,28} + \frac{1,1 \times 8,91 \times 1,05}{0,76/0,985} + \frac{9,35}{0,76/0,985} = 6,96 - 13,34 + 12,12 = 5,74\,\text{MPa}$

$\frac{8,91}{1,28} + \frac{1,1 \times 8,91 \times 1,05}{0,76/1,165} - \frac{9,35}{0,76/1,165} = 6,96 + 15,78 - 14,33 = 8,41\,\text{MPa}$
Précontrainte de la deuxième famille :

Les câbles de 2ème famille sont mis en tension lorsque le béton du h\textsuperscript{ourdis a acquis une certaine résistance. Dans ce cas les vérifications des contraintes se feront sur la base de la section complète (poutre + hourdis).

Les contraintes admissibles à satisfaire sont :

\(\sigma_{ci} = 0,6 \times 35 = 21 \text{ MPa} \)

\(\sigma_{ts} = -f_{t28} = -2,7 \text{ MPa} \)

En phase finale, on doit satisfaire aux contraintes admissibles du béton en combinaisons rares, en ajoutant au diagramme de contrainte de la phase du bétonnage du hourdis, les contraintes dues aux pertes de précontrainte (0,1 \(P_A \)) de la première famille de câble.

\[
10\% P_A = 0,81\text{MN}
\]

\[
5,74 + (-10\% P_A + P_B) \times \left(\frac{1}{S} - \frac{e_0}{I/V} \right) + \frac{M_s}{I/V} + \frac{M_q}{I/V} \leq 21\text{MPa}
\]

\[
5,74 + (-0,81 + P_B) \times \left(\frac{1}{1,93} - \frac{1,0}{1,18/0,81} \right) + \frac{3,97}{1,18/0,81} + \frac{6,27}{1,18/0,81} \leq 21\text{MPa}
\]

\[
5,74 + 0,136 - 0,168P_B + 2,725 + 4,3 \leq 21 \quad \rightarrow \quad P_B \geq -48,21 \text{ MN}
\]

\[
8,41 + (-10\% P_A + P_B) \times \left(\frac{1}{S} + \frac{e_0}{I/V'} \right) - \frac{M_s}{I/V'} - \frac{M_q}{I/V'} \geq -2,7\text{MPa}
\]
\[8,41 + (-0,81 + P_B) \times \left(\frac{1}{1,93} + \frac{1}{\frac{1,18}{1,54}} \right) - \frac{3,97}{1,18/1,54} - \frac{6,27}{1,18/1,54} \geq -2,7 \text{ MPa} \]

\[8,41 + (-0,81 + P_B) \times (1,82) - 5,18 - 8,18 \geq -2,7 \rightarrow P_B \geq 2,05 \text{ MN} \]

\[P_B \geq -48,21 \text{ MN} \text{ et } P_B \geq 2,05 \text{ MN}, \text{ nous prenons } P_B \geq 2,05 \text{ MN}. \]

La précontrainte initiale serait alors :

\[P_0 = 1,5 \times 1,1 \times P_B \geq 3,38 \text{ MN} \]

Le nombre de câbles de deuxième famille vaut :

\[A = \frac{P_0}{\sigma_{P_0}} \geq \frac{3,38}{1485} = 0,0023 \text{ m}^2 = 2276,09 \text{ mm}^2 \]

Pour un câble 12T15S \[A = 12 \times 150 = 1800 \text{ mm}^2 \]

\[n = \frac{2276,09}{1800} = 1,26, \text{ donc prenons } n = 2 \text{ câbles } 12T15S. \]

\[P_0 = A \times \sigma_{P_0} = 2 \times 1800 \times 1485 = 5,35 \text{ MN} \]

\[P_B = \frac{P_0}{1,1 \times 1,5} = 3,24 \text{ MN} \]

Les diagrammes de contrainte en combinaisons rares deviennent alors :

\[5,74 + (-10\%P_A + P_B) \times \left(\frac{1}{S} - \frac{e_0}{I/V} \right) + \frac{M_S}{I/V} + \frac{M_q}{I/V} \leq 21 \text{ MPa} \]

\[5,74 + (-0,81 + 3,24) \times \left(\frac{1}{1,93} - \frac{1}{\frac{1,18}{0,81}} \right) + \frac{3,97}{1,18/0,81} + \frac{6,27}{1,18/0,81} \leq 21 \text{ MPa} \]

\[5,74 + 2,43 \times (-0,168) + 2,725 + 4,3 = 12,36 \text{ MPa} \leq 21 \text{ MPa} \]

\[8,41 + (-10\%P_A + P_B) \times \left(\frac{1}{S} + \frac{e_0}{I/V'} \right) - \frac{M_S}{I/V'} + \frac{M_q}{I/V'} \geq -2,7 \text{ MPa} \]

\[8,41 + (-0,81 + 3,24) \times \left(\frac{1}{1,93} + \frac{1}{\frac{1,18}{1,54}} \right) - \frac{3,97}{1,18/1,54} - \frac{6,27}{1,18/1,54} \geq -2,7 \text{ MPa} \]
\[
8,41 + 4,05 \times 1,82 - 5,18 - 8,18 = 2,42 > -2,7 \text{ MPa}
\]

Conclusion : Nous allons disposer 6 câbles 12T15S dans la poutre.

Equation des câbles de précontrainte :

Pour les câbles de première famille (câble sortant d’about) :

Premier câble :
\[
\begin{align*}
&\text{pour } x = 0 \rightarrow y = b = 0,12 \text{ m} \\
&\text{pour } x = \frac{L}{2} = 19,38 \rightarrow y = 0,24 \text{ m} \rightarrow a \times (19,38)^2 + 0,12 = 0,24 \rightarrow a = 3,2 \times 10^{-4}
\end{align*}
\]

Donc l’équation du premier câble devient : \(y = 3,2 \times 10^{-4}x^2 + 0,12 \)

L’angle d’inclinaison \(\alpha \) vaut : \(\tan \alpha = \frac{dy}{dx} \rightarrow \tan \alpha = 2 \times 3,2 \times 10^{-4}x = 6,4 \times 10^{-4}(19,38) \)

\[\Rightarrow \alpha = 0,71^\circ \]

Deuxième câble :
\[
\begin{align*}
&\text{pour } x = 0 \rightarrow y = b = 0,12 \text{ m} \\
&\text{pour } x = \frac{L}{2} = 19,38 \rightarrow y = 0,74 \text{ m} \rightarrow a \times (19,38)^2 + 0,12 = 0,74 \rightarrow a = 1,65 \times 10^{-3}
\end{align*}
\]

L’équation du deuxième câble devient : \(y = 1,65 \times 10^{-3}x^2 + 0,12 \)

\[\tan \alpha = \frac{dy}{dx} \rightarrow \tan \alpha = 3,3 \times 10^{-3}x = 3,3 \times 10^{-3}(19,38) \Rightarrow \alpha = 3,7^\circ \]

De même l’équation des autres câbles devient :

Pour le 3ème câble : \(y = 2,98 \times 10^{-3}x^2 + 0,12 \Rightarrow \alpha = 6,6^\circ \)

Pour le quatrième câble : \(y = 4,31 \times 10^{-3}x^2 + 0,12 \Rightarrow \alpha = 9,5^\circ \)

Pour les câbles de la deuxième famille (câble relevé en travée) :

Cinquième câble : \(y = 7,42 \times 10^{-3}x^2 + 0,16 \Rightarrow \alpha = 13,66^\circ \)

Sixième câble : \(y = 1,11 \times 10^{-2}x^2 + 0,16 \Rightarrow \alpha = 16,54^\circ \)
Tableau : récapitulatif des coordonnées des câbles dans la demi-longueur de la poutre

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Coordonnées</th>
<th>Angle d'inclinaison α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x=0</td>
<td>x=L/4</td>
</tr>
<tr>
<td>1er câble</td>
<td>0,12</td>
<td>0,15</td>
</tr>
<tr>
<td>2ème câble</td>
<td>0,12</td>
<td>0,27</td>
</tr>
<tr>
<td>3ème câble</td>
<td>0,12</td>
<td>0,40</td>
</tr>
<tr>
<td>4ème câble</td>
<td>0,12</td>
<td>0,52</td>
</tr>
<tr>
<td>5ème câble</td>
<td>0,16</td>
<td>0,84</td>
</tr>
<tr>
<td>6ème câble</td>
<td>0,16</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Calcul des pertes de précontrainte :

La tension en un point du câble dans la structure diffère de la force du vérin avec lequel le câble a été tendu, du fait d’un certain nombre de pertes qui font baisser significativement la tension du câble. Ces pertes se répartissent en deux catégories : les pertes instantanées et les pertes différées.

Pertes instantanées :

- Pertes dues au frottement :

Ces pertes résultent du frottement des câbles de précontrainte sur les parois des gaines lors de la mise en tension.

\[\Delta \sigma_f(x) = \sigma_{p0}(1 - e^{-(f\alpha + \varphi x)}) \]

\(x \): est la distance de la section considérée à celle de sortie des organes de mise en œuvre (m) ;

\(e \): la base des logarithmes népériens ;

\(\alpha \): Somme des déviations angulaires arithmétiques du câble sur la distance L (rd) ;

\(\sigma_{p0} \): Contrainte de tension à l’origine \(\sigma_{p0} = 1485 \) MPa ;

\(f \): coefficient de frottement fils sur gaine \(f = 0,18 \)

\(\varphi \): Coefficient de frottement en ligne droite \(\varphi = 0,002 \) m\(^{-1}\)

Perte de frottement à mi-travée : \(x = \frac{L_{p1}}{2} = \frac{38,75}{2} = 19,375 \) m
Tableau : pertes dues aux frottements à mi-travée

<table>
<thead>
<tr>
<th>Câbles</th>
<th>α (°)</th>
<th>α (rad)</th>
<th>Distance du câble à la mi-travée</th>
<th>fα+ϕx</th>
<th>Δσf (Mpa)</th>
<th>valeur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>première famille</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,71</td>
<td>0,0124</td>
<td>19,38</td>
<td>0,0410</td>
<td>59,64</td>
<td>79,17</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>0,064</td>
<td>19,38</td>
<td>0,0503</td>
<td>72,82</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6,6</td>
<td>0,115</td>
<td>19,38</td>
<td>0,0595</td>
<td>85,72</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9,5</td>
<td>0,166</td>
<td>19,38</td>
<td>0,0686</td>
<td>98,51</td>
<td></td>
</tr>
<tr>
<td>deuxième famille</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13,7</td>
<td>0,239</td>
<td>16,38</td>
<td>0,0757</td>
<td>108,38</td>
<td>110,31</td>
</tr>
<tr>
<td>6</td>
<td>16,5</td>
<td>0,288</td>
<td>13,38</td>
<td>0,0786</td>
<td>112,25</td>
<td></td>
</tr>
</tbody>
</table>

Pertes dues au recul d’ancrage :

Elles résultent du glissement de l’armature par rapport à son ancrage ou de la déformation de l’ancrage.

\[
d = \sqrt{g \times \frac{E_p \times X}{\Delta \sigma_{frot}}}
\]

- **g** : intensité de recule d’ancrage 6 mm
- **E_p** : module d’élasticité de l’acier de précontrainte, **E_p = 190 000 MPa**

Tableau : pertes dues au recul d’ancrage à mi-travée.

<table>
<thead>
<tr>
<th>câble</th>
<th>Distance du câble à la mi-travée (x)</th>
<th>Δσf (Mpa)</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>première famille</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19,38</td>
<td>59,64</td>
<td>19,25</td>
</tr>
<tr>
<td>2</td>
<td>19,38</td>
<td>72,82</td>
<td>17,42</td>
</tr>
<tr>
<td>3</td>
<td>19,38</td>
<td>85,72</td>
<td>16,05</td>
</tr>
<tr>
<td>4</td>
<td>19,38</td>
<td>98,51</td>
<td>14,98</td>
</tr>
<tr>
<td>deuxième famille</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16,38</td>
<td>108,38</td>
<td>13,13</td>
</tr>
<tr>
<td>6</td>
<td>13,38</td>
<td>112,25</td>
<td>11,66</td>
</tr>
</tbody>
</table>

Si \(d < L/2\) les câbles seront tirés des deux extrémités, donc \(\Delta \sigma_{rec} = 0\)

Si \(d > L/2\) : les câbles seront tirés d’une extrémité, \(\Delta \sigma_{rec} \neq 0\).

Dans les deux cas (1ère famille et 2ème famille) à \(L/2\) les pertes de précontrainte dues au recul d’ancrage sont nulles \(\Delta \sigma_{rec} = 0\) car \(d < L/2\).
- **Pertes dues à la déformation instantanée du béton** :

Elles résultent des déformations instantanées du béton dues à l’action des armatures de précontrainte et aux autres actions permanentes.

\[
\Delta \sigma_{racc} = \frac{(n-1)}{2n} \times \frac{E_p \times \sigma_{b0}}{E_{bi}}
\]

\(n \): le nombre de câble de précontrainte ;

\(\sigma_{b0} \): Contrainte moyenne du béton au niveau du câble à la mise en tension ;

\(E_p \): module d’élasticité de l’acier de précontrainte, \(E_p = 190 \, 000 \) MPa ;

\(E_{bi} = 11000 \sqrt{23,18} = 31363,93 \) MPa : Module de déformation longitudinale instantanée du béton à j jours ;

Pour les quatre (4) câbles de première famille, la contrainte du béton moyenne au niveau des câbles s’écrit :

\[
\sigma_b(y) = \frac{P}{B_n} + \left(\frac{M_g + P \times e_0}{I_n} \right) y
\]

\(y \): Ordonnée du câble à partir du centre de gravité de la section ;

\(y = V’ - d’ = 1,165 - 0,12 = 1,05 \) m Pour les câbles de 1ère famille ;

\(M_g \): Moment dû aux charges lors de la mise en tension des câbles ;

\(B_n \): Section nette de la poutre ;

\(e_0 \): Excentricité des câbles au point considéré ;

\(I_n \): Inertie de la section nette ;

\(P = n \times A_p \times (\sigma_{p0} - \sigma_f - \sigma_{rec}) = 4 \times 150 \times (1485 - 98,51) = 0,83 \) MN à L/2

\[
\sigma_{b0} = \frac{0,83}{1,28} + \left(\frac{6,23 - 0,83 \times 1,05}{0,76} \right) \times 1,05 = 8,05 \) MPa

Le BPEL préconise de prendre un coefficient 2 pour les variations de contraintes dues à la contrainte relative à la phase de mise en tension et aux charges permanentes appliquées simultanément à cette mise en tension :\((\sigma_{b0})_1 \), et la valeur 1 pour les variations de contraintes dues aux actions permanentes postérieures à cette phase de précontrainte, y compris celles dues aux armatures de précontraintes mises en tension ultérieurement : \((\sigma_{b0})_2 \)

\[
\sigma_{b0} = (\sigma_{b0})_1 + (\sigma_{b0})_2
\]

Donc pour les câbles de première famille la perte de précontrainte due au raccourcissement du béton est :
\[\Delta \sigma_{racc} = \frac{E_p}{E_{bl}} \left[\frac{1}{2} (\sigma_{b0})_1 + (\sigma_{b0})_2 \right] = \frac{190000}{31363.93} \times \left[\frac{1}{2} \times 8.05 + 8.05 \right] = 73,15 \text{ MPa} \]

Pour les câbles de 2ème famille :

\[y = V' - d' = 1,54 - 0,16 = 1,38 \text{ m} \]

\[P = n \times A_p \times (\sigma_p - \sigma_f - \sigma_{rec}) = 2 \times 150 \times (1485 - 112,25) = 0,41 \text{ MN à } L/2 \]

\[\sigma_{b0} = \frac{0,41}{1,93} + \left(\frac{13,32 - 0,41 \times 1,38}{1,18} \right) \times 1,38 = 15,13 \text{ MPa à } L/2 \]

\[\Delta \sigma_{racc} = \frac{(n-1)}{2n} \times \frac{E_p \times \sigma_{b0}}{E_{bl}} = \frac{2-1}{4} \times \frac{190000 \times 15,13}{35981,73} = 19,97 \text{ MPa} \]

Enfin les pertes instantanées totales sont :

\[\Delta \sigma_i = \Delta \sigma_{racc} + \Delta \sigma_{rec} + \Delta \sigma_f \]

Pour les câbles de 1ère famille :

\[\Delta \sigma_i = 73,15 + 98,51 + 0 = 171,66 \text{ MPa à } L/2 \text{ Soit } 12\% \Delta \sigma_{p0} \]

Pour les câbles de 2ème famille :

\[\Delta \sigma_i = 19,97 + 112,25 + 0 = 132,22 \text{ MPa à } L/2 \text{ 9 soit } 9\% \Delta \sigma_{p0} \]

Pertes différées :

Les pertes dues au retrait du béton :

Le retrait est un phénomène de raccourcissement du béton qui se produit dès la mise en œuvre du béton pendant sa prise et son durcissement et se développe au cours du temps.

Les câbles, liés au béton à leurs extrémités par leurs ancrages et tout au long de leur tracé par le coulis d’injection, sont contraint de subir les mêmes variations de déformations que le béton adjacent.

\[\Delta \sigma_r = E_p \times \varepsilon_r \]

\[\varepsilon_r = 3 \times 10^{-4} \text{ (region sèche)} \]

\[E_p = 190000 \text{ MPa} \]

\[\Delta \sigma_r = 3 \times 10^{-4} \times 190000 = 57 \text{ MPa} \]

Pertes par relaxation des aciers :

La relaxation des aciers est un phénomène par lequel, l’acier fortement tendu sous longueur constante voit sa tension décroître progressivement.

\[\Delta \sigma_{rel} = \frac{6}{100} p_{1000} (\sigma_{pi} - \mu_0) \sigma_{pi} \]
σ_{pi} : Contrainte dans les armatures de précontrainte, après les pertes instantanées ;

ρ₁₀₀₀ : Coefficient de relaxation à 1000 h, ρ₁₀₀₀ = 2,5% pour les torons à basse relaxation.

f_{prg} : Contrainte limite garantie à la rupture, f_{prg} = 1860 MPa ⇒ T15S

μ₀ : Coefficient, pris égal à 0,43 pour les armatures à très basse relaxation.

σ_{pi} = σ_{p0} − ∆σ_{inst}

Pour les câbles de 1^{ère} famille :

σ_{pi} = 1485 − 171,66 = 1313,34 MPa à x = \(\frac{L}{2} \)

⇒ ∆σ_{rel} = \(\frac{6}{100} \times 0,025 \times \left(\frac{1313,34}{1860} - 0,43 \right) \times 1313,34 = 0,54 \) MPa

Pour les câbles de 2^{ème} famille :

σ_{pi} = 1485 − 132,22 = 1352,78 MPa à x = \(\frac{L}{2} \)

⇒ ∆σ_{rel} = \(\frac{6}{100} \times 0,025 \times \left(\frac{1352,78}{1860} - 0,43 \right) \times 1352,78 = 0,60 \) MPa

Pertes dues au fluage du béton :

Le fluage est caractérisé par une augmentation de la déformation du béton dans le temps à effort constant.

\[\Delta \sigma_{fl} = (\sigma_b^M + \sigma_b^F) \frac{E_p}{E_{ij}} \]

Avec :

σ_b^M : Contrainte maximale dans le béton après les pertes instantanées,

\[\sigma_b^M = \frac{P_m}{S} + \frac{P_m \times e_b^b}{l} + \frac{M_g \times e_b}{l} \]

Pour les câbles de 1^{ère} famille :

P_m = A_p (σ_{p0} − ∆σ_{pi}) = 150 × 4 × (1485 − 171,66) = 0,79 MN à x = \(\frac{L}{2} \)

⇒ σ_b^M = 0,79 \(\frac{1}{1,93} \) + \(\frac{13,32−0,79\times1,05}{1,18} \) × 1,05 = 11,52 MPa

Pour les câbles de 2^{ème} famille :

P_m = A_p (σ_{p0} − ∆σ_{pi}) = 150 × 2 × (1485 − 132,22) = 0,41 MN à x = \(\frac{L}{2} \)

⇒ σ_b^M = 0,41 \(\frac{1}{1,93} \) + \(\frac{13,32−0,41\times1,38}{1,18} \) × 1,38 = 15,13 MPa

σ_b^F : Contrainte finale dans le béton après les pertes différées.

\[\sigma_b^F = \frac{P_f}{S} + \frac{P_f \times e_b^b}{l} + \frac{M_g \times e_b}{l} \]

Pour les câbles de 1^{ère} famille :

P_f = A_p (σ_{p0} − ∆σ_{inst} − ∆σ_{rel} − ∆σ_r) = 150 × 4 × (1485 − 132,22 − 0,60 − 57)

P_f = 0,78 MN à L/2
\[\sigma_b^f = \frac{0.78}{1.93} + \left(\frac{13.32-0.78 \times 1.05}{1.18} \right) \times 1.05 = 11.52 \text{ MPa à L/2} \]

Pour les câbles de 2ème famille :

\[P_l = A_p \left(\sigma_{p0} - \Delta \sigma_{\text{inst}} - \Delta \sigma_{\text{rel}} - \Delta \sigma_r \right) = 150 \times 2 \times \left(1485 - 132.22 - 0.60 - 57 \right) \]

\[P_l = 0.39 \text{ MN à L/2} \]

\[\sigma_b^f = \frac{0.39}{1.93} + \left(\frac{13.32-0.39 \times 1.38}{1.18} \right) \times 1.38 = 15.15 \text{ MPa à L/2} \]

Les pertes totales dues au fluage du béton :

Pour les câbles de 1ère famille :

\[\Delta \sigma_{\text{fl}} = \left(11.52 + 11.52 \right) \frac{190000}{35981.73} = 121.66 \text{ MPa à L/2} \]

Pour les câbles de 2ème famille :

\[\Delta \sigma_{\text{fl}} = \left(15.13 + 15.15 \right) \frac{190000}{35981.73} = 159.89 \text{ MPa à L/2} \]

Les pertes différées totales sont données par relation suivante :

\[\Delta \sigma_{\text{d}} = \Delta \sigma_{\text{ret}} + \frac{5}{6} \Delta \sigma_{\text{rel}} + \Delta \sigma_{\text{fl}} \]

Pour les câbles de 1ère famille :

\[\Delta \sigma_{\text{d}} = 57 + \frac{5}{6} 0.54 + 121.66 = 179.11 \text{ MPa à L/2 Soit 12} % \Delta \sigma_{p0} \]

Pour les câbles de 2ème famille :

\[\Delta \sigma_{\text{d}} = 57 + \frac{5}{6} 0.6 + 159.89 = 217.39 \text{ MPa à L/2 Soit 15} % \Delta \sigma_{p0} \]

Pertes de précontrainte totales de tous les câbles :

\[\Delta \sigma_{\text{totale}} = \frac{2(\Delta \sigma_{1}+\Delta \sigma_{d})_{\text{première famille}}+(\Delta \sigma_{1}+\Delta \sigma_{d})_{\text{deuxième famille}}}{3} \]

\[\Delta \sigma_{\text{totale}} = \frac{2(171.66+179.11)+(132.22+217.39)}{3} = 350.38 \text{ MPa Soit 24} % \Delta \sigma_{p0} \]

Vérification à l’état limite ultime :

Calcul du moment ultime :

\[M_{\text{qu}} = 409.93 + 8021.2 = 8431.13 \text{ kN.m (ELU) = 8.43 MN.m} \]

\[M_{\text{gu}} = 1.35(M_{gp} + M_{gh} + M_{gs}) = 1.35(6.23 + 3.12 + 3.97) = 17.98 \text{ MN.m} \]

\[M_u = 17.98 + 8.43 = 26.41 \text{ MN.m} \]

Moment résistant de la table :

\[\sigma_{\text{bu}} = \frac{0.85 \times f_{c28}}{\gamma_b} = \frac{0.85 \times 35}{1.5} = 19.83 \text{ MPa} \]
\[F_{tc} = (b - b_0) \times h_0 \times \sigma_{bu} = (3.25 - 0.3) \times 0.2 \times 19.83 = 11.70 \text{ MN} \]

\[Z = h - \left(d' + \frac{h_0}{2} \right) = 2.15 - \left(0.16 + \frac{0.2}{2} \right) = 1.89 \text{ m} \]

\[M_{tc} = F_{tc} \times Z = 11.70 \times 1.89 = 22.11 \text{ MN.m} < M_u = 26.41 \text{ MN.m} \text{, donc l’axe neutre est dans la nervure.} \]

Moment repris par la nervure :

\[M_n = M_u - M_{tc} = 26.41 - 22.11 = 4.3 \text{ MN.m} \]

D’où : \(\mu = \frac{M_n}{b_0 \times d^2 \times \sigma_{bu}} = \frac{4.3}{0.3 \times 1.99 \times 19.83} = 0.183 \)

\[\xi = \frac{x}{d} = 1.25 \left(1 - \sqrt{1 - 2\mu} \right) = 1.25 \left(1 - \sqrt{1 - 2 \times 0.183} \right) = 0.255 > \frac{h_0}{d} = \frac{0.2}{1.99} = 0.1 \]

\[\Delta \varepsilon_3 = 3.5 \times \frac{1 - \xi}{\xi} = 3.5 \times \frac{1 - 0.255}{0.255} = 10.23^\circ/\infty > 10^\circ/\infty \rightarrow \Delta \varepsilon_3 = 10^\circ/\infty \]

Allongement \(\varepsilon_1 \):

\[\sigma_1 = \frac{P_A + P_B}{A_1 + A_2} = \frac{(8.1 + 3.24) \times 10^6}{6 \times 1860} = 1050 \text{ MPa} \]

\[\sigma_1 < \frac{0.9 \times f_{prg}}{\gamma_p} = \frac{0.9 \times 1860}{1.15} = 1455.65 \text{ MPa} \]

Donc, \(\varepsilon_1 = \frac{\sigma_1}{E_p} = \frac{1050}{190000} = 5.53^\circ/\infty \)

Allongement \(\varepsilon_2 \):

Contrainte du béton au niveau du câble sous précontrainte et charges permanentes :

\[\sigma_x (y) = \frac{P}{B} + \left(\frac{M_{gu} + P \cdot e_0}{I_{GZ}} \right) \cdot y = \frac{11.24}{1.28} + \frac{17.98 - 11.24 \times 1.05}{0.76} \times 0.12 = 9.74 \text{ MPa} \]

Avec : \(P = P_A + P_B = 11.24 \text{ MN précontrainte totale (première et deuxième famille).} \)

\(M_{gu} \): Moment dû à la charge permanente ;

\(B \): section de la poutre à mi-portée ;

\(I_{GZ} \): Inertie de la poutre à mi-portée ;

\(y \): ordonnée du câble moyen à partir du parement inférieure à mi-portée ;
Excentricité du câble moyen.

\[\Delta \sigma_2 = 5 \sigma_b = 48,7 \text{ MPa} \]

\[
\sigma_2 = \sigma_1 + \Delta \sigma_2 = 1050 + 48,7 = 1098,7 \text{ MPa} < \frac{0,9 \times f_{prg}}{\gamma_p} = 1455,65 \text{ MPa}
\]

Donc \[\varepsilon_2 = \frac{\sigma_2}{E_p} = \frac{1098,7}{190000} = 5,78°/\infty \]

Allongement \[\varepsilon_3 : \]

\[\varepsilon_3 = \varepsilon_2 + \Delta \varepsilon_3 = 5,78°/\infty + 10°/\infty = 15,78°/\infty \]

Contrainte \[\sigma_3 : \]

\[\varepsilon_3 = \frac{\sigma_3}{E_p} + 100(\frac{\gamma_p \times \sigma_3}{f_{prg}} - 0,9)^5 \]

\[0,01578 = \frac{\sigma_3}{190000} + 100(\frac{1,15 \times \sigma_3}{1860} - 0,9)^5 \]

\[\rightarrow \sigma_3 = 1630,74 \text{ MPa} \]

\[P_3 = A_t \times \sigma_3 = 6 \times 1800 \times 10^{-6} \times 1630,74 = 17,61 \text{ MN} \]

Avec \[A_t : \] section de tous les câbles de précontrainte.

Résultante de compression du béton :

\[F_n = 0,8 \times \xi \times b \times d \times \sigma_{bu} = 0,8 \times 0,255 \times 0,3 \times 1,99 \times 19,83 = 2,41 \text{ MN} \]

\[F_b = F_{tc} + F_n = 11,70 + 2,41 = 14,11 \text{ MN} \]

\[P_3 = 17,61 \text{ MN} > F_b = 14,11 \text{ MN}, \text{ La section d’acier de précontrainte est suffisante sans que l’on prenne en compte les aciers passifs.} \]

Vérification du cisaillement :

L’évaluation de la sécurité vis-à-vis du cisaillement résultant du chargement de la poutre se fera par le biais des contraintes suivantes :

- \[\sigma_x : \] la contrainte normale suivant l’axe longitudinal de l’élément ;
- \[\tau : \] la contrainte tangentielle.
Cependant, pour les poutres précontraintes, le relevage des câbles au voisinage des appuis tend à diminuer l’effort tranchant. Il n’est donc pas certain que ce soit au droit d’un appui que la contrainte de cisaillement soit maximale.

Détermination de l’état de contrainte :

Vérifions l’état de contrainte à la distance x=1,5 m de l’appui de la poutre. On considère le 3ème câble de précontrainte (câble moyen), puis on détermine son ordonnée et son angle d’inclinaison à cette distance.

L’équation du troisième câble est : \(y = 2.45 \times 10^{-3}x^2 + 0.12 \)

Pour \(x = \frac{L}{2} - 1.5m = 19.38 - 1.5 = 17.88 \) m à partir du milieu de la poutre, nous avons :

\[
y = 2.45 \times 10^{-3}(17.88)^2 + 0.12 \cong 0.90 \text{ m} \Rightarrow \tan \alpha = \frac{dy}{dx} = 0.088 \Rightarrow \alpha = 5^\circ
\]

Contrainte normale longitudinale \(\sigma_x \) :

La contrainte normale dans le béton en un point d’ordonnée \(y \) a pour expression générale :

\[
\sigma_x (y) = \frac{P}{B} + \left(\frac{M_{ser} + P_{eq}}{I_{GZ}} \right) \cdot y
\]

A la distance \(x = 1.5 \) m de l’appui :

\[
\sigma_x = \frac{12.55}{2.61} + \left(\frac{19.58 + 12.55 \times (-0.65)}{1.57} \right) \times 0.90 = 11.35 \text{ MPa}
\]

Contrainte de compression du béton :

\[
\sigma_x = \frac{P}{B} = \frac{12.55}{2.61} = 4.8 \text{ MPa}
\]

Vérification de \(\sigma_x \):

\[
\sigma_x < 0.4f_{cj} \Rightarrow \sigma_x = 4.8 < 0.4 \times 35 = 14 \text{ MPa} \text{ Vérifiée}
\]

Contrainte de cisaillement à l’ELS à \(x = 1.5 \) m des appuis :

\[
\tau = \frac{T_r}{b_n \times Z}
\]

Avec : \(T_r = T_G + T_Q - P \sin \alpha \) : l’effort tranchant réduit ;

Effort tranchant sous charge permanente \(T_G \) à \(x=1.5 \) m des appuis:
\[T_G = g\left(\frac{L}{2} - x\right) = 79,61\left(\frac{38.75}{2} - 1.5\right) = 1423,03 \text{ kN} \]

Effort tranchant sous surcharge d’exploitation \(T_Q \) à \(x=1,5 \) m des appuis:

\[T_Q = T_{tr} + T_{Mc120} \]

\[T_{tr} = q\left(\frac{L}{2} - x\right) = 2,63\left(\frac{38.75}{2} - 1.5\right) = 47 \text{ kN} \] (Voir calcul des sollicitations de la poutre de rive sous charges du trottoir).

\[T_{Mc120} = 4,655 \times 180 = 837,9 \text{ kN} \]

\[\eta_{Mc120} \times \delta_{Mc120} \times T_{Mc120} = 0,37 \times 1,06 \times 837,9 = 328,62 \text{ kN} \]

\[\Rightarrow T_Q = T_{tr} + T_{Mc120} = 328,62 + 47 = 375,62 \text{ kN} \]

\[\Rightarrow T_r = T_G + T_Q - P\sin\alpha = 1423,03 + 375,62 - 15,48 \sin 5° = 1797,3 \text{ kN} \approx 1,8 \text{ MN} \]

\[b_n = 0,8 - \varnothing \text{gaine} = 0,8 - 0,08 = 0,72 \text{ m} : \text{Largeur nette de l’âme de la poutre.} \]

\[Z : \text{bras de levier du couple élastique, } Z = 0,8h = 0,8 \times 2,15=1,72 \text{ m pour les poutres en double tê.} \]

\[\Rightarrow \tau = \frac{1,8}{0,72 \times 1,72} = 1,45 \text{ MPa} \]

Domaine de sécurité :

\[\sigma_x = 11,35 \text{ MPa} > 0 \text{ (Compression)} \]

- \[\tau^2 \leq 0,4 \times f_{tj} \times \left[f_{tj} + \frac{2}{3} \times \sigma_x\right] \] (1)

\[0,4 \times f_{tj} \times \left[f_{tj} + \frac{2}{3} \times \sigma_x\right] = 0,4 \times 2,7 \times \left[2,7 + \frac{2}{3} \times 11,35\right] = 11,09 \text{MPa} \]

\[\tau^2 = 1,45^2 = 2,1 \text{ MPa} < 11,09 \text{ MPa} \text{ Condition (1) Vérifiée} \]

- \[\tau^2 \leq 2 \frac{f_{tj}}{f_{cj}} \times \left[0,6 \times f_{cj} - \sigma_x\right] \times \left[f_{tj} + \frac{2}{3} \times \sigma_x\right] \] (2)

\[2 \frac{f_{tj}}{f_{cj}} \times \left[0,6 \times f_{cj} - \sigma_x\right] \times \left[f_{tj} + \frac{2}{3} \times \sigma_x\right] = 2 \times 2,7 \times \frac{2}{35} \times \left[0,6 \times 35 - 11,35\right] \times \left[2,7 + \frac{2}{3} \times 11,35\right] \]

\[\Rightarrow 2 \frac{f_{tj}}{f_{cj}} \times \left[0,6 \times f_{cj} - \sigma_x\right] \times \left[f_{tj} + \frac{2}{3} \times \sigma_x\right] = 15,29 \text{ MPa} > \tau^2 = 2,1 \text{ MPa} \]

Condition (2) satisfaite.

Contrainte de cisaillement à l’ELU à \(x = 1,5 \) m des appuis:

\[\tau_u = \frac{T_{ru}}{b_n \times Z} \]
Effort tranchant ultime réduit :

Les charges appliquées sur une poutre au voisinage de ses appuis tendent à diffuser directement dans les appuis sans apporter leur pleine contribution à l’effort tranchant. C’est pourquoi le BPEL prévoit la possibilité de prendre en compte un effort tranchant réduit.

\[T_{ru} = 1,35T_G + 1,35T_{Mc120} + 1,6T_{tr} - P\sin\alpha \]

\[\Rightarrow T_{ru} = 1,35 \times 1423,03 + 1,35 \times 328,62 + 1,6 \times 47 - 15,48\sin5° = 2438,58\text{kN} \]

\[\Rightarrow T_{ru} \approx 2,43 \text{ MN} \]

\[\Rightarrow \tau_u = \frac{2,43}{0,72 \times 1,72} = 1,96 \text{ MPa} \]

Vérification de l’effort tranchant ultime réduit :

\[\tau_u \leq \frac{f_{cj}}{4 \times Y_b} \]

\[f_{cj} = 35 \text{MPa} : \text{Résistance caractéristique du béton à la compression} ; \]

\[Y_b = 1,5 : \text{Coefficient de sécurité du béton.} \]

\[\tau_u = 1,96 \text{MPa} \leq \frac{35}{4 \times 1,5} = 5,83 \text{ MPa Vérifiée}. \]

Angle d’inclinaison des bielles :

\[\tan 2\beta_u = \frac{2\tau_u}{\sigma_{xu}} \]

avec : \(\sigma_{xu} (y) = \frac{P}{B} + \left(\frac{M_u + Pe_u}{I_GZ} \right) \cdot y \) \(\Rightarrow \sigma_{xu} = \frac{11,3}{2,61} + \left(\frac{26,35 + 11,3 \times (-0,65)}{1,57} \right) \times 0,9 = 15,22 \text{ MPa} \)

\[\Rightarrow \tan 2\beta_u = \frac{2 \times 1,96}{15,22} = 0,258 \Rightarrow \beta_u = 14° < 30° \]

Justification des armatures transversales :

Densité de ferraillement transversale :

\[\frac{A_t}{S_t} \geq \left[\tau_u - \frac{f_t}{3} \right] \times b_n \times \frac{Y_s}{f_e} \times \tan\beta_u \]

Avec \(f_t = 0,6 + 0,06 \times 35 = 2,7 \text{ MPa} : \text{résistance à la traction du béton} ; \)

\[b_n = b - \varnothing \text{gaine} = 0,8 - 0,08 = 0,72 \text{ m} : \text{Largeur nette de l’âme de la poutre aux abouts.} \]

\[f_e = 500 \text{MPa} : \text{limite d’élasticité de l’acier} \]

\[Y_s : \text{Coefficient de sécurité de l’acier} \]

\[\Rightarrow \frac{A_t}{S_t} \geq \left[1,96 - \frac{2,7}{3} \right] \times 0,72 \times \frac{1,15}{500} \times \tan30° = 1,013 \times 10^{-3} \text{ m} = 0,10 \text{ cm} \]
Or: $S_t \leq \min\{0,8h;3b_0;1m\} \quad S_t \leq \min\{0,8 \times 2,15;3 \times 0,8;1m\} = \min\{1,72m;2,4m;1m\},$

Prenons $S_t = 0,25 \text{ m} = 25 \text{cm}$.

$A_t \geq 25 \times 0,1 = 2,5 \text{ cm}^2$ Prenons 3HA12

Minimum d’armatures transversales dans les âmes des poutres :

\[
\frac{A_t \times f_e}{b_n \times S_t \times \gamma_s} \geq 0,4 \text{ MPa}
\]

\[
\frac{A_t \times f_e}{b_n \times S_t \times \gamma_s} = \frac{3,39 \times 10^{-4} \times 500}{0,72 \times 0,25 \times 1,15} = 0,82 \text{ MPa} > 0,4 \text{ MPa} ;
\]

⇒ Le minimum d’armatures transversales est dépassé, condition satisfaite.

Contrainte de cisaillement ultime :

\[
\bar{\tau}_u = \frac{A_t}{b_n \times S_t} \times \frac{f_e}{\gamma_s} \times \frac{1}{\tan \beta_u}
\]

$A_t = 1HA8 = 0,5 \text{ cm}^2$: La section d’un cours d’armatures transversales ;

$S_t = 25 \text{ cm}$: Espacement entre deux (2) cours d’armatures successifs ;

$\gamma_s = 1,15$: Coefficient de sécurité de l’acier ;

$f_e = 500 \text{ MPA}$: Limite d’élasticité de l’acier

$b_n = 0,8 - \varnothing \text{gaine} = 0,8 - 0,08 = 0,72 \text{ m} = 72 \text{cm}$

$S_t = 0,25\text{m} = 25 \text{cm}$

\[
\bar{\tau}_u = \frac{0,5}{72 \times 25} \times \frac{500}{1,15} \times \frac{1}{\tan 14} = 0,48 \text{ MPa}
\]

$\bar{\tau}_u = 0,48 \text{ MPa} < \tau_u = 1,96\text{MPa}$, la section de la poutre est donc partiellement comprimée.

Justification des bielles de béton comprimé :

Pour $\beta_u < 30^\circ \Rightarrow \tau_u < \frac{f_{cl}}{6} \Rightarrow \tau_u = 1,96 \text{ MPa} < \frac{35}{6} = 5,83 \text{ MPa}$ donc les bielles de compression sont justifiée.
ANNEXE 8 : ETUDE DE L’ENTRETOISE D’ABOUT.

Calcul des sollicitations de l’entretoise :

Nous allons utiliser le logiciel RDM6 afin de déterminer les sollicitations engendrées (effort tranchant et moment fléchissant) par les charges appliquées sur les entretoises.

Les figures ci-dessous présentent les diagrammes des sollicitations obtenus :

Figure : diagramme du moment fléchissant à l’ELS

Figure : diagramme de l’effort tranchant à l’ELS
Figure : diagramme du moment fléchissant à l’ELU.

Figure : Diagramme de l’effort tranchant à l’ELU

Calcul des armatures :

Ferraillage sur appuis à l’ELS :

Caractéristiques des matériaux :

- La résistance caractéristique du béton à 28 jours d’âge est : $f_{c28} = 35$ Mpa ;
- La contrainte de compression du béton est : $\sigma_{bc} = 0,6 \times f_{c28} = 0,6 \times 35 = 21$ Mpa ;
- La limite de traction dans le béton est : $ft_{28} = 0,6 + 0,06 \times f_{c28} = 2,7$ Mpa
- L’acier sera de nuance F_eE500
 - Contrainte de traction de l’acier : $f_{su} = \frac{f_e}{\gamma_s} = \frac{500}{1,15} = 434,78$ Mpa
 - γ_s : coefficient de sécurité pour la résistance de l’acier = 1,15
 - Contrainte limite de traction de l’acier :
\[\sigma_s = \text{Min}\{\frac{2}{3} \times f_e; \max(0,5f_e, 110 \sqrt{\eta_{ij}})\} = \text{min}\{333,33; \max(250; 228,63)\} \]
\[\sigma_s = 250\text{Mpa} \]

Sollicitations : \(M_{ser} = -2611,83 \text{ kN.m} \equiv -2,61\text{MN.m} \)

Calcul du moment résistant du béton :

\[M_{rb} = \frac{1}{2} \overline{\alpha}_1 \times (1 - \frac{\overline{\alpha}_1}{3}) \times b_0 \times d^2 \times \overline{\sigma}_{bc} \]
\[\overline{\alpha}_1 = \frac{n\overline{\sigma}_{bc}}{n\overline{\sigma}_{bc} + \overline{\sigma}_{st}} \]

Avec :

\(n = 15 \)
\(\overline{\sigma}_{bc} = 21 \text{ Mpa} \)
\(\overline{\sigma}_{st} = 250\text{Mpa} \)
\(\overline{\alpha}_1 = \frac{15 \times 21}{15 \times 21 + 250} \approx 0,56 \)

\[M_{rb} = \frac{1}{2} \times 0,56 \times \left(1 - \frac{0,56}{3}\right) \times 0,45 \times 1,485^2 \times 21 \approx 4,75 \text{ MN.m} \]

\(M_{rb} = 4,75 \text{ MN.m} > M_{ser} = 2,61 \text{ MN.m} \) Pas d’aciers comprimés.

La section d’acier correspondant est :

\[A_{st} = \frac{M_{ser}}{d \times (1 - \frac{\overline{\alpha}_1}{3}) \times \overline{\sigma}_{st}} = \frac{2,61}{0,9 \times 1,65 \times (1 - \frac{0,56}{3}) \times 250} = 8,64 \times 10^{-3} \text{ m}^2 \]
\[A_{st} = 86,4 \text{ cm}^2 \Rightarrow 11HA32 = 88,46 \text{ cm}^2 \]

Ferraillage sur appuis à l’ELU : \(M_u = -3525,98 \text{ kN.m} \equiv -3,53\text{MN.m} \)

Calcul du moment réduit ultime :

\[\mu_u = \frac{M_u}{b_0 \times d^2 \times f_{bu}} \]

\[f_{bu} = \frac{0,85f_{c28}}{\theta\gamma_b} = \frac{0,85 \times 35}{1 \times 1,5} = 19,83 \text{ Mpa} \]

\(\theta = 1 \) et \(b_0 = 0,45 \text{ m} ; d = 0,9 \times h_d = 0,9 \times 1,65 = 1,485 \text{ m} \)

\[\mu_u = \frac{3,53}{0,45 \times 1,485^2 \times 19,83} = 0,179 \]

\(\mu_{AB} = 0,186 > \mu_u = 0,179 \)

\(\alpha = 1,25(1 - \sqrt{1 - 2\mu_u}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,179}) = 0,248 \)

\[\{ \mu_u = 0,179 < 0,187 \}
\[\{ \alpha = 0,248 < 0,259 \} \quad \text{PIVOT A} \]
Donc \(f_{su} = \frac{f_e}{Y_s} = \frac{500}{1.15} = 434.78 \text{ Mpa} \)

La section d’acier correspondant est :

\[
A_{st} = \frac{\text{Mu}}{Zu \times f_{su}}
\]

\(z = d(1 - 0,4\alpha) = 0.9 \times 1.65 \times (1 - 0.4 \times 0.248) = 1.34 \text{ m} \)

\[
A_{st} = \frac{3.53}{1.34 \times 334.70} = 6.061 \times 10^{-3} \text{ m}^2 = 60.6 \text{ cm}^2
\]

Soit 8HA32 = 64.34 cm²

Conclusion : les armatures les plus favorables sont données par l’ELS, 11HA32 à disposer sur les appuis des entretoises.

Condition de non-fragilité :

\[
\frac{A_{st}}{b_0 \times d} \geq \frac{0.23 \times f_{tj}}{f_e}
\]

- \(A_{st} \): Section d’acier tendus (calculée ci-dessus) ;
- \(f_{tj} \): Résistance à la traction du béton à j jours d’âge ;
- \(b_0 \): Largeur de la poutre ;
- \(d \): hauteur utile.

\[
\begin{align*}
\frac{A_{st}}{b_0 \times d} &= \frac{88.46}{45 \times 0.9 \times 165} = 0.013 \\
\frac{0.23 \times f_{tj}}{f_e} &= \frac{0.23 \times 2.7}{500} = 0.0012
\end{align*}
\]

\[
\frac{A_{st}}{b_0 \times d} = 0.013 \geq \frac{0.23 \times f_{tj}}{f_e} = 0.0012 \quad \text{Condition vérifiée.}
\]

Calcul des armatures en travée : ELS

Sollicitations : \(M_{ser} = -15.99 \text{ kN. m} \cong -0.016 \text{ MN. m} \)

Calcul du moment résistant du béton :

\[
M_{rb} = \frac{1}{2} \bar{\alpha}_1 \times (1 - \frac{\bar{\alpha}_1}{3}) \times b_0 \times d^2 \times \bar{\sigma}_{bc}
\]

\[
\bar{\alpha}_1 = \frac{n \bar{\sigma}_{bc}}{n \bar{\sigma}_{bc} + \bar{\sigma}_{st}}
\]

Avec :

\(n = 15 \)

\(\bar{\sigma}_{bc} = 21 \text{ Mpa} \)
\[\bar{\sigma}_{st} = 250 \text{MPa} \]
\[\bar{\alpha} = \frac{15 \times 21}{15 \times 21 + 250} \approx 0,56 \]
\[M_{rb} = \frac{1}{2} \times 0,56 \times (1 - \frac{0,56}{3}) \times 0,45 \times 1,485^2 \times 21 \approx 4,76 \text{MN.m} \]
\[M_{rb} = 4,76 \text{MN.m} > M_{ser} = 0,016 \text{MN.m} \] Pas d’acier comprimé.

La section d’acier correspondant est :
\[A_{st} = \frac{M_{ser}}{d \times (1 - \frac{\bar{\alpha}}{3}) \times \bar{\sigma}_{st}} = \frac{0,016}{0,9 \times 1,65 \times (1 - \frac{0,56}{3}) \times 250} = 5,30 \times 10^{-5} \text{m}^2 \]
\[A_{st} = 0,53 \text{cm}^2 \Rightarrow 2HA10 = 1,57 \text{cm}^2 \]

Calcul des armatures en travée à l’ELU : \(M_u = -21,58 \text{kN.m} \approx -0,022 \text{MN.m} \)

Calcul du moment réduit ultime :
\[\mu_u = \frac{M_u}{b_0 \times d^2 \times f_{bu}} \]
\[f_{bu} = \frac{0,85 \times f_{c28}}{\theta \gamma_b} = \frac{0,85 \times 35}{1 \times 1,5} = 19,83 \text{MPa} \]
\[\theta = 1 \text{ et } b_0 = 0,45 \text{ m} ; d = 0,9 \times h_d = 0,9 \times 1,65 = 1,485 \text{ m} \]
\[\mu_u = \frac{0,022}{0,45 \times 1,485^2 \times 19,83} = 0,0011 \]
\[\mu_{AB} = 0,186 > \mu_u = 0,0011 \]
\[\alpha = 1,25 \times (1 - \sqrt{1 - 2 \times \mu_u}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,0011}) = 0,0014 \text{ pivot A} \]

Donc \(f_{su} = \frac{f_e}{\gamma_s} = \frac{500}{1,15} = 434,78 \text{MPa} \)

La section d’acier correspondant est :
\[A_{st} = \frac{M_u}{Z_u \times f_{su}} \]
\[z = d(1 - 0,4 \alpha) = 0,9 \times 1,65 \times (1 - 0,4 \times 0,0014) = 1,48 \text{ m} \]
\[A_{st} = \frac{0,022}{1,48 \times 434,78} = 3,42 \times 10^{-5} \text{m}^2 = 0,34 \text{cm}^2 \]

Soit \(2HA10 = 1,57 \text{ cm}^2 \)

Condition de non fragilité :
\[\frac{A_{st}}{b_0 \times d} \geq \frac{0,23 \times t_{ij}}{f_e} \]

\[\bullet \quad \frac{A_{st}}{b_0 \times d} = \frac{1,57}{45 \times 0,9 \times 165} = 0,00023 \]
\[\bullet \quad \frac{0,23 \times t_{ij}}{f_e} = \frac{0,23 \times 2,7}{500} = 0,0012 \]
\[\frac{A_{st}}{b_0 \times d} = 0,00023 < \frac{0,23 \times f_{ij}}{f_e} = 0,0012 \text{ Condition non vérifiée, il faut donc calculer les armatures minimales.} \]

Détermination des armatures minimales :

\[\frac{A_{st}}{b_0 \times d} \geq \frac{0,23 \times f_{ij}}{f_e} \Rightarrow A_{st} \geq \frac{0,23 \times f_{ij} \times b_0 \times d}{f_e} = \frac{0,23 \times 2,7 \times 0,45 \times 1,485}{500} = 8,3 \times 10^{-4} \text{ m}^2 = 8,3 \text{ cm}^2 \]

\[\Rightarrow 8\text{HA12} = 9,05 \text{ cm}^2 \]

Justification des armatures transversales : \(T_{\text{max}} = 2190 \text{kN} = 2,19 \text{MN} \)

Calcul de la contrainte conventionnelle \(\tau_u \) :

\[\tau_u = \frac{V_u}{b_0 \times d} \Rightarrow \tau_u = \frac{2,19}{0,45 \times 0,9 \times 1,65} \approx 3,28 \text{ MPa} \]

Justification du béton :

\[\tau_u \leq \min \left(\frac{0,15 \times f_{c28}}{\gamma_b}; 4 \text{MPa} \right) \text{ En fissuration préjudiciable et très préjudiciable.} \]

\[\tau_u = 3,28 \text{ MPa} \leq \min \left(\frac{0,15 \times f_{c28}}{1,5} = 3,5 \text{ MPa}; 4 \text{MPa} \right) \text{ Condition vérifiée.} \]

Calcul des armatures d’âme des entretoises :

\[\frac{A_t}{b_0 \times S_t} \geq \frac{\gamma_s (\tau_u - 0,3k \times f_{c28})}{0,9f_e (\sin \alpha + \cos \alpha)} \]

Avec \(k = \begin{cases} 1 & \text{en flexion simple} \\ 0 & \text{s’il y a reprise de bétonnage} \end{cases} \)

\[\alpha = 90^\circ \]

\[\gamma_s = 1,15 \text{ Coefficient de sécurité de l’acier} \]

Nous fixons l’espaceement \(S_t = 25 \text{cm} \)

\[A_t \geq \frac{\gamma_s (\tau_u - 0,3k \times f_{c28}) \times b_0 \times S_t}{0,9f_e (\sin \alpha + \cos \alpha)} = \frac{1,15 \times 3,28 \times 0,45 \times 0,25}{0,9 \times 500 \times (\sin 90 + \cos 90)} = 9,43 \times 10^{-4} = 9,43 \text{ cm}^2 \]

\[A_t = 9,43 \text{ cm}^2 \text{ Prenons } 9\text{HA12}=10,18 \text{ cm}^2 \]

Condition de non fragilité :

\[\frac{A_t \times f_e}{b_0 \times d} \geq 0,4 \text{ MPa} \]

\[\frac{A_t \times f_e}{b_0 \times d} = \frac{10,18 \times 10^{-4} \times 500}{0,45 \times 0,9 \times 1,65} = 0,76 \text{MPa} > 0,4 \text{ MPa} \text{ Condition vérifiée.} \]
Espacement des armatures transversales :

\[S_t \leq \min(0,9d; 40 \text{ cm}) = \min(133,65 \text{ cm}; 40 \text{ cm}) \]

\[S_t \leq 40 \text{ cm} \]

Diamètre maximal des armatures transversales :

\[\emptyset_t \leq \min\left(\frac{h}{35}; \emptyset_L; \frac{b_0}{10}\right) \]

\[\frac{h}{35} = \frac{1,65}{35} = 0,047 \text{ m} = 47 \text{ mm} \]

\[\emptyset_L = 32 \text{ mm} \]

\[\frac{b_0}{10} = \frac{45}{10} = 4,5 \text{ cm} = 45 \text{ mm} \]

\[\emptyset_t \leq \min(47; 32; 45) \Rightarrow \emptyset_t \leq 32 \text{ mm} \]
ANNEXE 9 : ETUDE DU HOURDIS.

Coefficient de majoration dynamique :

$$\delta_h = 1 + \frac{0.4}{1+0.2L} + \frac{0.6}{1+4G/S}$$

L : longueur de l’élément considéré (en m) ;

G : poids propre de l’élément considéré (en t ou kN) ;

S : charge B maximale susceptible d’être placée sur l’élément considéré (en t ou kN).

Calcul du poids propre des éléments considérés G :

Poids propre du hourdis :

$$g_h = S_h \times 40 \text{ m} \times 25 \text{ KN/m}^3 = 3,474 \times 40 \times 25 = 3474 \text{ KN}$$

Poids propre de la couche de roulement épaisseur 6 cm :

$$g_r = S_r \times L \times \rho_r = 0,42 \text{ m}^2 \times 40 \times \frac{24 \text{ KN}}{\text{m}^3} = 403,2 \text{ KN}$$

Poids propre de la couche d’étanchéité épaisseur 30 mm :

$$g_{et} = S_{et} \times L \times \rho_{et} = 0,33 \text{ m}^2 \times 40 \text{ m} \times \frac{24 \text{ KN}}{\text{m}^3} = 316,8 \text{ KN}$$

Poids propre des trottoirs :

$$g_{tr} = S_{tr} \times L \times \rho_{béton} = 0,373 \text{ m} \times 40 \text{ m} \times \frac{25 \text{ KN}}{\text{m}^3} \times 2 = 746 \text{ KN}$$

Poids propre des gardes corps :

$$g_{gc} = \text{poids linéaire} \times L = 0,65 \text{ KN/m} \times 40 \text{ m} \times 2 = 52 \text{ KN}$$

Poids propre des corniches :

$$g_{cor} = s_{cor} \times 40 \text{ m} \times 25 \text{ KN/m}^3 = 0,245 \times 40 \times 25 \times 2 = 490 \text{ KN}$$

Nous avons alors :

$$g_{per} = \sum g_i = 3474 + 403,2 + 316,8 + 746 + 52 + 490$$

$$g_{per} = 5482 \text{ KN}$$

Charge B maximale susceptible d’être placée sur l’élément considéré :

- \(S_{Bc} \):

$$S_{Bc} = b_c \times N_V \times P_{long}$$

\(P_{long} \) : \(\Sigma \) poids de tous les essieux des camions Bc disposés longitudinalement sur le tablier ;

\(N_V \) : Nombre de voies chargées.

$$S_{Bc} = 1,1 \times 2 \times 60t = 132t = 1320 \text{ KN}$$
• S_{Bt} :
 $S_{Bt} = bt \times N_f \times P_{long}$

 N_f: Nombre de files d’essieux tandems.
 $S_{Bt} = 1 \times 2 \times 32 = 64t = 640KN$

• $S_{Br} =$Roue unique de 100KN

 Ainsi on a :
 $S = sup(S_{Bc}; S_{Bt}; S_{Br}) = 1320KN$

 Calcul des sollicitations du houdis :

 Flexion locale :
 Hypothèse :

 • Les panneaux du houdis compris entre deux poutres principales et deux entretoises d’abouts sont articulés sur leur appuis ;

 • Le calcul des sollicitations pour les dalles rectangulaires simplement appuyées sera basé sur les abaques de J.P Mouglin (1985)

 • Le coefficient de poisson ν sera pris égal à 0 à ELU et à ELS conformément à l’article A.2.1.3 du BAEL 91

 • Les portées des dalles à prendre en compte sont comprises entre nus des poutres principales et entre nus des entretoises.

 Figure : Notation de calcul du houdis

b0 : distance entraxe des poutres principales ;

a : distance entraxe des entretoises ;
ly : distance entre nu des entretoises ;

lx : distance entre nu des poutres principales ;

bp : épaisseur de l’âme des poutres principales ;

bE : épaisseur de l’âme des entretoises.

Dans ce cas présent, nous avons :

\[l_x = b_0 - b_p = 3,25 - 0,3 = 2,95 \text{ m}; \]

\[l_y = a - b_E = 39 - 0,25 = 38,75 \text{ m} ; \]

\[\rho = \frac{l_x}{l_y} = \frac{2,95}{38,75} \approx 0,076 \]

Sollicitations dues au convoi BC :

Les sollicitations générées par les roues du convoi BC sur le hourdis seront déterminées par la méthode de superposition avec les abaques de Mougin.

Mécanisme de diffusion de charge des roues dans le hourdis :

Soit une roue d’un essieu quelconque placée sur le hourdis et qui transmet une charge P à ce hourdis. La surface de contact de cette roue avec le hourdis est de dimension \((U_0 \times V_0)\).

![Diagramme de diffusion de charge](image)

Figure : diffusion de charge concentrée P dans le hourdis.

Une charge concentrée localisée, placée sur le hourdis se repartit dans ce dernier jusqu’au plan moyen suivant un angle de 45° dans le béton et un angle de 37° dans la couche d’étanchéité et de roulement.
Sollicitations dues au convoi Bc :
Plusieurs dispositions de convois Bc sont à envisager suivant les caractéristiques du tablier pour obtenir le cas qui produira les sollicitations les plus défavorables.
Dans tous les cas de dispositions envisagées, ce sont les deux roues arrières (roue de 12t) qui sont à considérer puisque c'elles qui provoquent les effets défavorables.

1er cas : Effets de deux rectangles situés sur un axe et symétriques par rapport à un autre.

Figure : Etude de l'effet de deux rectangles symétriques.

\[(A_1, A_2, A_3, A_4) + (B_1, B_2, B_3, B_4) \cong (A_1, A_2, B_3, B_4) - (A_4, A_3, B_2, B_1)\]

Pour le rectangle \((A_1, A_2, B_3, B_4)\) :

Dimensions du rectangle d’impact correspondant:
\[h_d = 20 \text{ cm} ; \ h_r = 6 + 3 = 9 \text{ cm}\]
\[U_0 = 0,25 \text{ m} ; \ V_0 = 1,75\text{m}\]

dimensions du rectangle de répartition correspondant :
\[U = U_0 + 1.5h_r + h_d = 0,25 + 1,5 \times 0,09 + 0,2 = 0,585 \text{ m}\]
\[V = V_0 + 1.5h_r + h_d = 1,75 + 1,5 \times 0,09 + 0,2 = 2,085 \text{ m}\]

Nous aurons alors :
\[\alpha = \frac{U}{l_x} = \frac{0,585}{2,95} \approx 0,2 \quad \text{et} \quad \beta = \frac{V}{l_y} = \frac{2,085}{38,75} \approx 0,05\]

Les valeurs de \(\alpha\) et \(\beta\) déterminées ci-dessus nous permettrons d’obtenir les coefficients \(M_1\) et \(M_2\) à l’aide des abaques de Mougin.

\[\rho = \frac{l_x}{l_y} = \frac{2,95}{38,75} \approx 0,076\]
0,05 < \rho = 0,076 < 0,1 : les abaques de Mougin donnent les valeurs de M_1 et M_2 pour \rho = 0,05 et \rho = 0,1. Pour les valeurs de \rho intermédiaire, on effectue une interpolation linéaire pour déterminer les coefficients M_1 et M_2 correspondants.

M_1 et M_2 pour \rho = 0,05 :

\[\alpha = 0,2 \quad \text{et} \quad \beta = 0,05 \Rightarrow M_1=0,15 \quad \text{et} \quad M_2=0,034 \text{ (lus sur abaques de Mougin)} \]

M_1 et M_2 pour \rho = 0,1 :

M_1=0,19 et M_2=0,079

Interpolation linéaire sur \rho.

\[
M_{1\rho=0,076} = M_{1\rho=0,05} + (M_{1\rho=0,1} - M_{1\rho=0,05}) \frac{0,076 - 0,05}{0,1 - 0,05} \\
M_{1\rho=0,076} = 0,15 + (0,19 - 0,15) \times \frac{0,026}{0,05} \approx 0,17
\]

\[
M_{2\rho=0,076} = M_{2\rho=0,05} + (M_{2\rho=0,1} - M_{2\rho=0,05}) \frac{0,076 - 0,05}{0,1 - 0,05} \\
M_{2\rho=0,076} = 0,034 + (0,079 - 0,034) \times \frac{0,026}{0,05} \approx 0,057
\]

Calcul du moment fléchissant du rectangle (A_1, A_2, B_3, B_4) :

\[M_{OX} = (M_1 + \nu M_2).P \]
\[M_{OY} = (M_2 + \nu M_1).P \]

Avec :

\[\nu = 0 \text{ (Coefficient de poisson)} \]

\[P = S \frac{P_1}{s} \]

S : surface du rectangle de répartition ;

s : surface du rectangle d’impact.

P_1 = 6t (Charge sur roue de l’essieu arrière du convoi Bc)

\[P = 0,25 \times 1,75 \times \frac{6}{0,25 \times 0,25} \approx 42 \, t \]

\[M_{OX} = M_1P = 0,17 \times 12 \approx 7,14 \, t \cdot m \]

\[M_{OY} = M_2.P = 0,057 \times 12 \approx 2,39 \, t \cdot m \]
Effort tranchant du rectangle \((A_1, A_2, B_3, B_4)\):

Pour \(U < V\):

Au milieu de \(v\) (dans le sens de \(xx\)) :

\[
T_{ax} = \frac{p}{2v + u} = \frac{42}{2 \times 2085 + 0,585} \approx 8,83 \text{ t}
\]

Au milieu de \(u\) (dans le sens de \(yy\)) :

\[
T_{ay} = \frac{p}{3v} = \frac{42}{3 \times 2085} \approx 6,71 \text{ t}
\]

Pour le rectangle \((A_4, A_3, B_2, B_1)\):

\(U_0 = 0,25 \text{ m} ; V_0 = 1,25 \text{ m}\)

Calcul du rectangle de répartition correspondant :

\(U = 0,25 + 1,5 \times 0,09 + 0,2 = 0,585 \text{ m}\)

\(V = 1,25 + 1,5 \times 0,09 + 0,2 = 1,585 \text{ m}\)

Alors :

\(\alpha = \frac{0,585}{2,95} \approx 0,2 \quad \text{et} \quad \beta = \frac{1,585}{38,75} \approx 0,04 \)

Pour cette valeur de \(\beta\), nous allons procéder à une interpolation linéaire entre \(\beta = 0,01\) et \(\beta = 0,05\).

\(M_1\) pour \(\xi = 0,05\):

Pour \(\alpha = 0,2\) et \(\beta = 0,01 \Rightarrow M_1 = 0,22\)

Pour \(\alpha = 0,2\) et \(\beta = 0,05 \Rightarrow M_1 = 0,15\)

Pour \(\alpha = 0,2\) et \(\beta = 0,04 \Rightarrow M_1 = 0,15 + (0,22 - 0,15) \frac{0,04 - 0,01}{0,05 - 0,01} \approx 0,2\)

\(M_2\) pour \(\xi = 0,05\):

Pour \(\alpha = 0,2\) et \(\beta = 0,01 \Rightarrow M_2 = 0,14\)

Pour \(\alpha = 0,2\) et \(\beta = 0,05 \Rightarrow M_2 = 0,034\)

Pour \(\alpha = 0,2\) et \(\beta = 0,04 \Rightarrow M_2 = 0,034 + (0,14 - 0,034) \frac{0,04 - 0,01}{0,05 - 0,01} \approx 0,11\)

\(M_1\) pour \(\xi = 0,1\):

Pour \(\alpha = 0,2\) et \(\beta = 0,01 \Rightarrow M_1 = 0,23\)

Pour \(\alpha = 0,2\) et \(\beta = 0,05 \Rightarrow M_1 = 0,19\)
Pour $\alpha = 0,2$ et $\beta = 0,04 \Rightarrow M_1 = 0,19 + (0,23 - 0,19) \frac{0,04 - 0,01}{0,05 - 0,01} \approx 0,22$

M2 pour $\rho = 0,1$:

Pour $\alpha = 0,2$ et $\beta = 0,01 \Rightarrow M_2 = 0,18$

Pour $\alpha = 0,2$ et $\beta = 0,05 \Rightarrow M_2 = 0,078$

Pour $\alpha = 0,2$ et $\beta = 0,04 \Rightarrow M_2 = 0,078 + (0,18 - 0,078) \frac{0,04 - 0,01}{0,05 - 0,01} \approx 0,15$

Interpolation linéaire sur ρ.

$M_{1\rho} = 0,076 = 0,2 + (0,22 - 0,2) \times \frac{0,026}{0,05} \approx 0,21$

$M_{2\rho} = 0,11 + (0,15 - 0,11) \times \frac{0,026}{0,05} \approx 0,13$

Moment fléchissant du rectangle (A_4, A_3, B_2, B_1):

$P = 0,25 \times 1,25 \times \frac{6}{0,25 \times 0,25} \approx 30 \, t$

$M_{OX} = M_1 \times P = 0,21 \times 30 \approx 6,3 \, t.m$

$M_{OY} = M_2 \times P = 0,13 \times 30 \approx 3,9 \, t.m$

Effort tranchant du rectangle (A_4, A_3, B_2, B_1):

Pour $U < V$:

$T_{apx} = \frac{p}{2v + u} = \frac{30}{2 \times 1,585 + 0,585} \approx 7,99 \, t$

$T_{apy} = \frac{p}{3v} = \frac{30}{3 \times 1,585} \approx 6,31 \, t$

Les sollicitations résultant du 1er cas (effet de deux rectangles d’impact) sont :

Moment fléchissant :

$M_{OX} = M_{0X}(A_1, A_2, B_3, B_4) - M_{OX}(A_4, A_3, B_2, B_1)$

$M_{OX} = 7,14 - 6,3 = 0,84 \, t.m$

$M_{OY} = M_{0Y}(A_1, A_2, B_3, B_4) - M_{OY}(A_4, A_3, B_2, B_1)$

$M_{OY} = 2,39 - 3,9 = -1,51 \, t.m$

Effort tranchant :

$T_{apx} = T_{apx}(A_1, A_2, B_3, B_4) - T_{apx}(A_4, A_3, B_2, B_1)$

$T_{apx} = 8,83 - 7,99 = 0,84 \, t$

$T_{apy} = T_{apy}(A_1, A_2, B_3, B_4) - T_{apy}(A_4, A_3, B_2, B_1)$

$T_{apy} = 6,71 - 6,31 = 0,41 \, t$
Tableau : Récapitulatif des sollicitations du 1er cas

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Unité</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mox</td>
<td>t.m</td>
<td>0,84</td>
</tr>
<tr>
<td>Moy</td>
<td>t.m</td>
<td>-1,51</td>
</tr>
<tr>
<td>Tap,x</td>
<td>t</td>
<td>0,84</td>
</tr>
<tr>
<td>Tap,y</td>
<td>t</td>
<td>0,41</td>
</tr>
</tbody>
</table>

2ème cas : effet d’un rectangle centré et d’un rectangle placé sur un axe.

Figure : Etude de l'effet d'un rectangle centré et d'un rectangle placé sur un axe.

\[(A_1, A_2, A_3, A_4) + (B_1, B_2, B_3, B_4) \cong \frac{1}{2} [(A_1, A_2, C_3, C_4) - (A_4, A_3, C_2, C_1)] + (B_1, B_2, B_3, B_4)\]

RECTANGLE \((A_1, A_2, C_3, C_4)\) :

\[U_0 = 0,25 \text{ m} \Rightarrow U = 0,585 \text{ m}\]
\[V_0 = 3,25 \text{ m} \Rightarrow V = 3,585 \text{ m}\]
\[\alpha = \frac{0,585}{2,95} = 0,2 \text{ et } \beta = \frac{3,585}{38,75} \cong 0,09\]

Pour \(\rho = 0,05\) :
\[M_1 = 0,14 \text{ et } M_2 = 0,029\]

Pour \(\rho = 0,01\) :
\[M_1 = 0,18 \text{ et } M_2 = 0,07\]

Interpolation sur \(\rho\) :
\[M_1 = 0,14 + (0,18 - 0,14) \frac{0,026}{0,05} = 0,16 \]

\[M_2 = 0,29 + (0,07 - 0,029) \times \frac{0,026}{0,05} \approx 0,05 \]

\[P = 0,25 \times 3,25 \frac{6}{25 \times 0,25} \approx 78 \text{ t} \]

Moments fléchissant :

\[M_{OX} = M_1 \cdot P = 0,16 \times 78 = 12,48 \text{ t} \cdot \text{m} \]

\[M_{OY} = M_2 \cdot P = 0,05 \times 78 = 3,9 \text{ t} \cdot \text{m} \]

Effort tranchant :

\[U < V : \]

\[T_{apx} = \frac{78}{2 \times 3,585 + 0,585} = 10,06 \text{ t} \]

\[T_{apy} = \frac{156}{3 \times 3,585} = 7,25 \text{ t} \]

RECTANGLE(A_4,A_3,C_2,C_1) :

La procédure est analogue à celle du rectangle précédant.

\[M_1 = 0,15 \text{et} M_2 = 0,036 \]

\[P = 0,25 \times 2,75 \frac{6}{25 \times 0,25} \approx 66 \text{ t} \]

Moments fléchissant :

\[M_{OX} = M_1 \cdot P = 0,15 \times 66 \approx 9,90 \text{ t} \cdot \text{m} \]

\[M_{OY} = M_2 \cdot P = 0,036 \times 66 \approx 2,38 \text{ t} \cdot \text{m} \]

Effort tranchant :

\[U < V : \]

\[T_{apx} = \frac{66}{2 \times 3,085 + 0,585} = 9,77 \text{ t} \]

\[T_{apy} = \frac{66}{3 \times 3,085} = 7,13 \text{ t} \]
RECTANGLE (B_1, B_2, B_3, B_4):

\[M_1 = 0,178 \text{et} M_2 = 0,072 \]

\[P = 0,25 \times 0,25 \frac{6}{0,25 	imes 0,25} \approx 6 \text{ t} \]

Moments fléchissant :

\[M_{OX} = M_1 \cdot P = 0,178 \times 6 \approx 1,07 \text{ t. m} \]

\[M_{OY} = M_2 \cdot P = 0,072 \times 6 \approx 0,43 \text{ t. m} \]

Effort tranchant :

\[U = V : \]

\[T_{ap,x} = \frac{6}{3 \times 0,585} = 3,42 \text{ t} \]

\[T_{ap,y} = \frac{6}{2 \times 0,585 + 0,585} = 3,42 \text{ t} \]

Les sollicitations résultant du 2ème cas (effet d’un rectangle centré et d’un rectangle placé sur un axe) sont :

Moment fléchissant :

\[M_{OX} = \frac{1}{2} [M_{OX}(A_1, A_2, C_3, C_4) - M_{OX}(A_4, A_3, C_2, C_1)] + M_{OX}(B_1, B_2, B_3, B_4) \]

\[M_{OX} = \frac{1}{2} (12,48 - 9,90) + 1,07 \approx 2,36 \text{ t. m} \]

\[M_{OY} = \frac{1}{2} [M_{OY}(A_1, A_2, C_3, C_4) - M_{OY}(A_4, A_3, C_2, C_1)] + M_{OY}(B_1, B_2, B_3, B_4) \]

\[M_{OY} = \frac{1}{2} (3,9 - 2,38) + 0,43 = 1,19 \text{ t. m} \]

Effort tranchant :

\[T_{ap,x} = \frac{1}{2} [T_{ap,x}(A_1, A_2, C_3, C_4) - T_{ap,x}(A_4, A_3, C_2, C_1)] + T_{ap,x}(B_1, B_2, B_3, B_4) \]

\[T_{ap,x} = \frac{1}{2} (10,06 - 9,77) + 3,42 = 3,56 \text{ t} \]

\[T_{ap,y} = \frac{1}{2} [T_{ap,y}(A_1, A_2, C_3, C_4) - T_{ap,y}(A_4, A_3, C_2, C_1)] + T_{ap,y}(B_1, B_2, B_3, B_4) \]

\[T_{ap,y} = \frac{1}{2} (7,25 - 7,13) + 3,42 = 3,48 \text{ t} \]
Tableau : sollicitations du 2ème cas.

<table>
<thead>
<tr>
<th>Désignation</th>
<th>unité</th>
<th>valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mox</td>
<td>t.m</td>
<td>2,36</td>
</tr>
<tr>
<td>Moy</td>
<td>t.m</td>
<td>1,19</td>
</tr>
<tr>
<td>Tap,x</td>
<td>t</td>
<td>3,56</td>
</tr>
<tr>
<td>Tap,y</td>
<td>t</td>
<td>3,48</td>
</tr>
</tbody>
</table>

3ème cas : Effet de 4 rectangles non centrés et symétrique deux à deux

Figure : Effet de quatre rectangles non centrés et symétrique deux à deux.

La méthode de superposition des rectangles de répartition nous donne l’équation suivante :

\[\begin{align*}
(A_1, A_2, A_3, A_4) + (B_1, B_2, B_3, B_4) + (C_1, C_2, C_3, C_4) + (D_1, D_2, D_3, D_4) & \equiv \\
(A_1 B_2 C_3 D_4) - (A_2, B_1, C_4, D_3) - (A_4, B_3, C_2, D_1) + (A_3, B_4, C_3, D_2)
\end{align*} \]

Les sollicitations résultant de ce cas de disposition sont indiquées dans le tableau ci-dessous.
Tableau : sollicitations du 3ème cas

Désignation	unité	valeur
Mox | t.m | 2.84
Moy | t.m | 0.12
Tap,x | t | 1.98
Tap,y | t | 0.81

4ème cas : Effet de 4 rectangles dont deux centrés sur l’axe transversal et symétrique par rapport à l’axe longitudinal.

Figure : Effet de 4 rectangles dont deux centrés sur l’axe transversal et symétrique par rapport à l’axe longitudinal.

\[
\begin{align*}
(A_1, A_2, A_3, A_4) + (B_1, B_2, B_3, B_4) + (C_1, C_2, C_3, C_4) + (D_1, D_2, D_3, D_4) & \equiv \\
\frac{1}{2} & [A_1 B_2 E_3 F_4] - (A_2, B_1, E_4, F_3) - (A_4, B_3, E_2, F_1) + (A_3, B_4, E_1, F_2)] + (D_1, C_2, C_3, D_4) \\
& - (D_2, C_1, C_4, D_3)
\end{align*}
\]

Les sollicitations obtenues après ce 4ème cas, sont présentées dans le tableau ci-dessous :
Après l’étude des 4 cas de disposition du convoi Bc, nous allons à présent comparer les résultats afin de retenir les valeurs maximales des sollicitations qui d’ailleurs sont les plus défavorable.

Ces valeurs maximales des sollicitations obtenues doivent être multipliées par les coefficients $bc = 1,1$ (pont de première classe et $Nv=2$), $\delta_B = 1,17$, γ_{Q1} (1,6 à l’ELU et 1,2 l’ELS).

Le tableau ci-dessous indique les valeurs maximales dues au convoi Bc après majoration et pondération des charges.

Tableau : sollicitations maximales dues au convoi Bc après majoration et pondération.

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Unité</th>
<th>Valeur ELU</th>
<th>Valeur ELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mox</td>
<td>t.m</td>
<td>8,59</td>
<td>6,44</td>
</tr>
<tr>
<td>Moy</td>
<td>t.m</td>
<td>2,57</td>
<td>1,93</td>
</tr>
<tr>
<td>Tap,x</td>
<td>t</td>
<td>7,33</td>
<td>5,50</td>
</tr>
<tr>
<td>Tap,y</td>
<td>t</td>
<td>8,38</td>
<td>6,29</td>
</tr>
</tbody>
</table>

Sollicitations dues au convoi Bt :

Le calcul des sollicitations du convoi Bt par la méthode de superposition des rectangles avec les abaques de Mougin est analogue à celui de Bc pour le cas 4 : effet de 4 rectangles centrés et symétriques deux à deux.

Les valeurs des sollicitations indiquées dans le tableau ci-dessous sont multipliées par le coefficient $bc=1$ (pont de première classe) et le coefficient de pondération γ_{Q1} (1,6 à l’ELU et 1,2 l’ELS) ainsi que le coefficient de majoration dynamique $\delta_B = 1,17$.
Tableau : valeurs des sollicitations dues au convoi Bt après majoration et pondération.

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Unité</th>
<th>Valeur ELU</th>
<th>Valeur ELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mox</td>
<td>t.m</td>
<td>6,17</td>
<td>4,63</td>
</tr>
<tr>
<td>Moy</td>
<td>t.m</td>
<td>1,44</td>
<td>1,08</td>
</tr>
<tr>
<td>Tap.x</td>
<td>t</td>
<td>8,97</td>
<td>6,73</td>
</tr>
<tr>
<td>Tap.y</td>
<td>t</td>
<td>11,77</td>
<td>8,83</td>
</tr>
</tbody>
</table>

Tableau : sollicitations dues au convoi Br :

Pour le convoi Br les sollicitations obtenues par la méthode de superposition des rectangles avec les abaques de Mougin sont multipliées par le coefficient de pondération γ_{Q1} (1,6 à l’ELU et 1,2 l’ELS) et le coefficient de majoration dynamique $\delta_B = 1,17$.

Tableau : sollicitations dues à la charge Br après pondération et majoration.

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Unité</th>
<th>Valeur ELU</th>
<th>Valeur ELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mox</td>
<td>t.m</td>
<td>3,67</td>
<td>2,75</td>
</tr>
<tr>
<td>Moy</td>
<td>t.m</td>
<td>2,21</td>
<td>1,66</td>
</tr>
<tr>
<td>Tap.x</td>
<td>t</td>
<td>7,47</td>
<td>5,60</td>
</tr>
<tr>
<td>Tap.y</td>
<td>t</td>
<td>6,67</td>
<td>5,01</td>
</tr>
</tbody>
</table>

Tableau : sollicitations dues au convoi Mc120 :

Les sollicitations du convoi militaire Mc120 obtenues sont multipliées par leur coefficient de majoration dynamique $\delta_{Mc120} = 1,2$ et le coefficient de pondération correspondant γ_{Q1} (1,35 à l’ELU et 1 à l’ELS).

Tableau : sollicitations dues au convoi Mc120 après majoration et pondération.

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Unité</th>
<th>Valeur ELU</th>
<th>Valeur ELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mox</td>
<td>t.m</td>
<td>6,86</td>
<td>5,08</td>
</tr>
<tr>
<td>Moy</td>
<td>t.m</td>
<td>0,50</td>
<td>0,37</td>
</tr>
<tr>
<td>Tap.x</td>
<td>t</td>
<td>6,27</td>
<td>4,65</td>
</tr>
<tr>
<td>Tap.y</td>
<td>t</td>
<td>4,62</td>
<td>3,42</td>
</tr>
</tbody>
</table>

NB : les sollicitations à retenir pour la flexion locale du hourdis sont les maximales entre le système B (Bc, Bt, Br) et le système Mc120.
Tableau: Récapitulatif des sollicitations dues au convoi du système B et Mc120.

<table>
<thead>
<tr>
<th>Convoy</th>
<th>Moment fléchissant</th>
<th>Effort tranchant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mox (t.m)</td>
<td>Moy (t.m)</td>
</tr>
<tr>
<td></td>
<td>Elu</td>
<td>ELS</td>
</tr>
<tr>
<td>Bc</td>
<td>8,59</td>
<td>6,44</td>
</tr>
<tr>
<td>Bt</td>
<td>6,17</td>
<td>4,63</td>
</tr>
<tr>
<td>Br</td>
<td>3,67</td>
<td>2,75</td>
</tr>
<tr>
<td>Mc120</td>
<td>6,86</td>
<td>5,08</td>
</tr>
</tbody>
</table>

Les valeurs surlignées (en couleur jaune) dans le tableau ci-dessus désignent les valeurs maximales des sollicitations pour la flexion locale du hourdis.

Sollicitations dues aux charges surfaciques:
\[
\rho = \frac{1}{l_x} = \frac{2,95}{38,75} = 0,076 \approx 0,076 \text{ Donc la dalle porte dans une seule direction.}
\]

Charge permanente:
La charge permanente du hourdis calculée est :
\[
G_{\text{per}} = 9,58 \text{ KN/m}^2
\]
Pour une largeur de 1 m du hourdis nous avons :
\[
G_{\text{per}} = 1 \text{ m} \times 9,58 \frac{\text{ KN}}{\text{ m}^2} = 9,58 \text{ KN/m}
\]
Moment due à la charge permanente :
\[
M_{0x} = \frac{G_{\text{per}} \times l_x^2}{8} = \frac{9,58 \times 2,95^2}{8} = 10 \text{ KN.m}
\]
Effort tranchant dû à la charge permanente :
\[
T_{apx} = \frac{G_{\text{per}} \times l_x}{2} = \frac{9,58 \times 2,95}{2} = 14,13 \text{ KN}
\]

Tableau : sollicitation de la charge permanente après pondération.

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Unité</th>
<th>Valeur ELU</th>
<th>Valeur ELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0x</td>
<td>t.m</td>
<td>1,35</td>
<td>1</td>
</tr>
<tr>
<td>Tap.x</td>
<td>t</td>
<td>1,908</td>
<td>1,413</td>
</tr>
</tbody>
</table>

Calcul des sollicitations maximales dues à la flexion locale :
\[
M_0 = \gamma_G M_0^{G_{\text{per}}} + \max[\gamma_{Q1}(M_0^{Bc}; M_0^{Bt}; M_0^{Br}) ; \gamma_{Q1} M_0^{Mc120}]
\]
\[
T_{ap} = T_{ap}^{G_{\text{per}}} + \max[\gamma_{Q1}(T_{ap}^{Bc}, T_{ap}^{Bt}, T_{ap}^{Br}) ; \gamma_{Q1} T_{ap}^{Mc120}]
\]
Tableau : sollicitations définitifs dues à la flexion locale.

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Unité</th>
<th>Valeur ELU</th>
<th>Valeur ELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0x</td>
<td>t.m</td>
<td>9,94</td>
<td>7,44</td>
</tr>
<tr>
<td>M0y</td>
<td>t.m</td>
<td>2,57</td>
<td>1,93</td>
</tr>
<tr>
<td>Tap,x</td>
<td>t</td>
<td>10,88</td>
<td>8,143</td>
</tr>
<tr>
<td>Tap,y</td>
<td>t</td>
<td>11,77</td>
<td>8,83</td>
</tr>
</tbody>
</table>

Calcul du moment d’encorbellement :

\[M_e = -\gamma_G \times g_{per} \times \frac{L_{cs}^2}{2} - \gamma_{Q1} \times \max \left\{ q_{tr} \times L_{tr} \left(L_{cs} - \frac{L_{tr}}{2} \right), \frac{P_{tr}}{L_c} \times L_{cs} \right\} \]

Avec :

- \(\gamma_G \): coefficient de pondération de la charge permanente;
- \(\gamma_{Q1} \): coefficient de pondération de la charge du trottoir;
- \(g_{per} \): charge permanente normative;
- \(L_{cs} \): longueur de la console; \(L_{cs} = 1,125 \) m
- \(L_{tr} \): largeur du trottoir; \(L_{tr} = 1,75 \) m
- \(q_{tr} \): charge surfacique du trottoir; \(q_{tr} = 4,5 \) KN/m²
- \(P_{tr} \): charge concentrée du trottoir; \(P_{tr} = 60 \) KN

- Calcul de la charge permanente \(g_{per} \):

 Poids propre du hourdis :
 \[g_{per} = 0,304 \text{ m}^2 \times \frac{25\text{ KN}}{\text{m}^3} = 7,6 \text{ KN/m} \]

 Poids propre de corniche :
 \[g_{cor} = 0,245 \times 25 = 6,125 \text{ KN/m} \]

 Poids propre du trottoir :
 \[g_{tr} = 0,167 \text{ m}^2 \times \frac{25\text{ KN}}{\text{m}^3} = 4,175 \text{ KN/m} \]

 Poids propre des gardes corps :
 \[g_{gc} = 0,65\text{KN/m} \]

 \[g_{per} = \sum g_i = 7,6 + 6,125 + 4,175 + 0,65 = 18,55 \text{ KN/m} \]

 A L’ELU :

 \[M_e = -1,35 \times \frac{18,55\text{KN/m}}{m} \times \frac{1,125^2}{2} \text{ m}^2 - 1,6 \times \max \left(7,875 \left(1,125 - \frac{1,75}{2} \right), \frac{60}{7,5} \times 1,125 \text{m} \right) \]

 \[M_e = -15,85 - 1,6 \max(1,97; 9) = - 30,25\text{KN/m} \]
A l’ELS:

\[M_e = -11,74 - \max(1,97; 9) = -20,74 \text{KN/m} \]

Calcul des moments réels à partir des moments \(M_0x \) et \(M_0y \) calculés dans l’hypothèse de la dalle sur appuis articulés :

Figure : Schéma de répartition des moments sur la dalle continue.

EN TRAVEE :
- Travée de rive suivant l’axe \(x \) :
 \[M_{xtr} = 0,80 \times M_{0x} = 0,80 \times 9,94 = 7,95 \text{t.m à l’ELU} \]
 \[M_{xtr} = 0,80 \times M_{0x} = 0,80 \times 7,44 = 5,95 \text{t.m à l’ELS} \]
- Travée intermédiaire suivant l’axe \(x \) :
 \[M_{xtr} = 0,75 \times M_{0x} = 0,75 \times 9,94 = 7,46 \text{t.m à l’ELU} \]
 \[M_{xtr} = 0,75 \times M_{0x} = 0,75 \times 7,44 = 5,58 \text{t.m à l’ELS} \]
- Travée de rive suivant l’axe \(y \) :
 \[M_{yr} = 0,80 \times M_{0x} = 0,80 \times 2,57 = 2,06 \text{t.m à l’ELU} \]
 \[M_{yr} = 0,80 \times M_{0x} = 0,80 \times 1,93 = 1,54 \text{t.m à l’ELS} \]

SUR APPUI :
- Appui intermédiaire suivant l’axe \(x \) :
 \[M_{xap} = -0,5 \times M_{0x} = -0,5 \times 9,94 = -4,97 \text{t.m à l’ELU} \]
 \[M_{xap} = -0,5 \times M_{0x} = -0,5 \times 7,44 = -3,72 \text{t.m à l’ELS} \]
- Appui de rive suivant l’axe \(x \) :
 \[M_{xap} = -\text{SUP}(0,50M_{0x}; |M_e|) = -\text{SUP}(4,97; 3,025) = -4,97 \text{t.m à l’ELU} \]
 \[M_{xap} = -\text{SUP}(0,50M_{0x}; |M_e|) = -\text{SUP}(3,72; 2,074) = -3,72 \text{t.m à l’ELS} \]
- Appui de rive suivant l’axe \(y \) :
 \[M_{yap} = -0,50M_{0x} = M_{xap} \]
Flexion globale :

$$M_y(x, y) = \frac{b}{8} \times \sum_{n=1}^{\infty} \mu_n \times q_n \times \sin \frac{n \cdot \pi \cdot x}{L_C}$$

Où :

b: demi largeur active, $b = \frac{L_T}{2} = \frac{12}{2} = 6$ m.

L_T: largeur totale du tablier ;

q_n: Charge appliquée en forme de lame de couteau ;

L_C: longueur de calcul dans le sens longitudinal.

μ_n: Coefficient de Guyon-Massonnet.

e: position de la charge.

Pour le calcul manuel, n est prise égale à n=1 et n= 3, pour ces valeurs de n nous devons tracer les courbes μ_1 et μ_3 correspondantes.

- **Courbe de μ_1 et de μ_3 en fonction de e :**

Rappel :

$b = 6$ m $\Rightarrow \frac{b}{4} = 1,5$ m

$\alpha = 0,92 \Rightarrow K = 0,72K_0 + 0,28K_1$ (D’après les calculs du CRT).

Le paramètre θ est calculé pour le 1er et le 3ème harmonique.

$$\theta_1 = \frac{b}{L_C} = \frac{6}{38,75} \approx 0,15$$

$$\theta_3 = \frac{3b}{L_C} = \frac{3 \times 6}{38,75} = 0,46$$

Les valeurs de θ_1 et θ_3 ne se trouvent pas dans les tables de Guyon-Massonnet, donc on doit procéder par interpolation linéaire pour obtenir les valeurs de μ_1 et μ_3.

$0,10 < \theta_1 = 0,15 < 0,20$

$$\mu_{\theta=0,15} = \mu_{\theta=0,10} + (\mu_{\theta=0,20} - \mu_{\theta=0,10}) \times \frac{0,15 - 0,1}{0,2 - 0,1}$$

$$\mu_{0,15} = 0,5\mu_{\theta=0,20} + 0,5\mu_{\theta=0,10}$$

$0,4 < \theta_3 = 0,46 < 0,5$

$$\mu_{\theta=0,46} = \mu_{\theta=0,4} + (\mu_{\theta=0,5} - \mu_{\theta=0,4}) \times \frac{0,46 - 0,4}{0,5 - 0,4}$$

$$\mu_{0,46} = 0,6\mu_{\theta=0,5} + 0,4\mu_{\theta=0,40}$$

Nous allons procéder au calcul du coefficient μ_1 pour $\theta_1 = 0,15$. les résultats sont indiqués dans le tableau ci-dessous :
Tableau : μ₁=f(e) après interpolation sur α, puis sur θ.

<table>
<thead>
<tr>
<th>θ</th>
<th>e</th>
<th>-b</th>
<th>-3b/4</th>
<th>-b/2</th>
<th>-b/4</th>
<th>0</th>
<th>b/4</th>
<th>b/2</th>
<th>3b/4</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0=0,10</td>
<td>μ(α=0).10^4</td>
<td>-2499</td>
<td>-1250</td>
<td>0</td>
<td>1250</td>
<td>2499</td>
<td>1250</td>
<td>0</td>
<td>-1250</td>
<td>-2499</td>
</tr>
<tr>
<td></td>
<td>μ(α=1).10^4</td>
<td>-2362</td>
<td>-1171</td>
<td>-19</td>
<td>1161</td>
<td>2385</td>
<td>1161</td>
<td>-19</td>
<td>-1171</td>
<td>-2362</td>
</tr>
<tr>
<td></td>
<td>μ1.10^4</td>
<td>-2461</td>
<td>-1228</td>
<td>-5</td>
<td>1225</td>
<td>2467</td>
<td>1225</td>
<td>-5</td>
<td>-1228</td>
<td>-2461</td>
</tr>
<tr>
<td>0=0,20</td>
<td>μ(α=0).10^4</td>
<td>-2486</td>
<td>-1244</td>
<td>-1</td>
<td>1244</td>
<td>2491</td>
<td>1244</td>
<td>-1</td>
<td>-1244</td>
<td>-2486</td>
</tr>
<tr>
<td></td>
<td>μ(α=1).10^4</td>
<td>-1868</td>
<td>-987</td>
<td>-61</td>
<td>956</td>
<td>2116</td>
<td>956</td>
<td>-61</td>
<td>-987</td>
<td>-1868</td>
</tr>
<tr>
<td></td>
<td>μ1.10^4</td>
<td>-2313</td>
<td>-1172</td>
<td>-18</td>
<td>1163</td>
<td>2386</td>
<td>1163</td>
<td>-18</td>
<td>-1172</td>
<td>-2313</td>
</tr>
<tr>
<td>μ1.10^4</td>
<td></td>
<td>-2387</td>
<td>-1200</td>
<td>-12</td>
<td>1194</td>
<td>2427</td>
<td>1194</td>
<td>-12</td>
<td>-1200</td>
<td>-2387</td>
</tr>
</tbody>
</table>

Ensuite on calcule μ₃ pour θ₃ = 0.46.

Tableau : μ₃=f(e) après interpolation sur α, puis sur θ.

<table>
<thead>
<tr>
<th>θ</th>
<th>e</th>
<th>-b</th>
<th>-3b/4</th>
<th>-b/2</th>
<th>-b/4</th>
<th>0</th>
<th>b/4</th>
<th>b/2</th>
<th>3b/4</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0=0,40</td>
<td>μ(α=0).10^4</td>
<td>-2292</td>
<td>-1161</td>
<td>-20</td>
<td>1151</td>
<td>2372</td>
<td>1151</td>
<td>-20</td>
<td>-1161</td>
<td>-2292</td>
</tr>
<tr>
<td></td>
<td>μ(α=1).10^4</td>
<td>-1016</td>
<td>-617</td>
<td>-131</td>
<td>546</td>
<td>1563</td>
<td>546</td>
<td>-131</td>
<td>-617</td>
<td>-1016</td>
</tr>
<tr>
<td></td>
<td>μ3.10^4</td>
<td>-1935</td>
<td>-1009</td>
<td>-51</td>
<td>982</td>
<td>2145</td>
<td>982</td>
<td>-51</td>
<td>-1009</td>
<td>-1935</td>
</tr>
<tr>
<td>0=0,50</td>
<td>μ(α=0).10^4</td>
<td>-2040</td>
<td>-1053</td>
<td>-44</td>
<td>1031</td>
<td>2216</td>
<td>1031</td>
<td>-44</td>
<td>-1053</td>
<td>-2040</td>
</tr>
<tr>
<td></td>
<td>μ(α=1).10^4</td>
<td>-730</td>
<td>-482</td>
<td>-147</td>
<td>401</td>
<td>1356</td>
<td>401</td>
<td>-147</td>
<td>-482</td>
<td>-730</td>
</tr>
<tr>
<td></td>
<td>μ3.10^4</td>
<td>-1673</td>
<td>-893</td>
<td>-73</td>
<td>855</td>
<td>1975</td>
<td>855</td>
<td>-73</td>
<td>-893</td>
<td>-1673</td>
</tr>
<tr>
<td>μ3.10^4</td>
<td></td>
<td>-1804</td>
<td>-951</td>
<td>-62</td>
<td>918</td>
<td>2060</td>
<td>918</td>
<td>-62</td>
<td>-951</td>
<td>-1804</td>
</tr>
</tbody>
</table>

Les valeurs de μ₁ et μ₃ de la dernière ligne de chacun des deux tableaux est prise pour tracer la courbe μ_i=f(e).

Tableau : μ₁=f(e) et μ₃=f(e) pour le tracage des courbes.

<table>
<thead>
<tr>
<th>e</th>
<th>-b</th>
<th>-3b/4</th>
<th>-b/2</th>
<th>-b/4</th>
<th>0</th>
<th>b/4</th>
<th>b/2</th>
<th>3b/4</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ1.10^4</td>
<td>-2387</td>
<td>-1200</td>
<td>-12</td>
<td>1194</td>
<td>2427</td>
<td>1194</td>
<td>-12</td>
<td>-1200</td>
<td>-2387</td>
</tr>
<tr>
<td>μ3.10^4</td>
<td>-1804</td>
<td>-951</td>
<td>-62</td>
<td>918</td>
<td>2060</td>
<td>918</td>
<td>-62</td>
<td>-951</td>
<td>-1804</td>
</tr>
</tbody>
</table>
- Moment dû à la charge permanente :

La charge permanente normatique calculée est: \(g_{\text{per}}^n = 11,42 \text{ KN/m}^2 \).

La charge permanente est une charge surfacique placée sur toute la surface du tablier. La figure ci-dessous illustre la disposition de la charge permanente pour la détermination de \(\mu_1 \) et \(\mu_3 \).

Les valeurs \(\mu_1 \) et \(\mu_3 \) s’obtiennent en faisant la somme des surfaces délimitées par chaque courbes et les ordonnées de la charges.
Figure : chargement de la courbe de μ_1 et de μ_3 par la charge permanente.

Détermination de μ_1 et de μ_3 :

$$
\mu_1 = 2 \left[\frac{1}{2} (-0,2387 - 2 \times 0,12 - 0,0012 + 2 \times 0,1194 + 0,2427) \right] \times 1,5
$$

$\mu_1 = 0,0024$ m

$$
\mu_3 = 2 \left[\frac{1}{2} (0,2060 + 2 \times 0,0918 - 0,0062 - 2 \times 0,0951 - 0,1804) \right] \times 1,5
$$

$\mu_3 = 0,0192$ m

Calcul de q_1 et q_2 :

$$
q_1 = \frac{4q}{\pi} = \frac{4 \times 11,42}{\pi} = 14,54$ KN/m2

$$
q_1 = \frac{4q}{3\pi} = \frac{4 \times 11,42}{3\pi} = 4,85$ KN/m2

Le moment de la flexion globale dû à la charge permanente est :

$$
M_y = \frac{b}{8} (\mu_1 q_1 - \mu_3 q_3) = \frac{6}{8} (0,0024 \times 14,54 - 0,0192 \times 4,85) = -0,044$ KN.m/ml
- **Moment dû à la charge du trottoir :**$
u_{tr}$

\[\mu_1 = 2\left[\frac{1}{2}(-0,06 - 0,12) \times 0,75 + \frac{1}{2}(-0,12 - 0,2387) \times 1,5 \right] \]

\[\mu_1 = -0,675 \text{ m} \]

\[\mu_2 = 2(-0,2066 - 0,0544) = -0,522 \text{ m} \]

\[q_1 = \frac{4 \times 4,5}{\pi} = 5,73 \text{ KN/m}^2 \]

\[q_1 = \frac{4 \times 4,5}{3 \times 3,14} \approx 1,91 \text{ KN/m}^2 \]

\[M_y = \frac{6}{8}(-0,675 \times 5,73 + 0,522 \times 1,91) = -2,15 \text{ KN.m/ml} \]

- **Moment dû à la charge du convoi Bc :**

Pour le calcul à la flexion globale du convoi Bc, plusieurs dispositions sont envisagées suivant les dimensions du hourdis en vue de produire l’effet le plus défavorable.

- **1er cas** : une file de camion Bc

 Position 1 : 1 convoi non symétrique par apport à l’axe de la chaussée.

\[\mu_1 = \frac{1}{2} \sum \mu_{1,i} = \frac{1}{2}(0,2427 + 0,08) = 0,161 \text{ m} \]

\[\mu_3 = \frac{1}{2} \sum \mu_{3,i} = \frac{1}{2}(0,2060 + 0,06) = 0,133 \text{ m} \]

Position 2 : 1 convoi symétrique par rapport à l’axe de la chaussée.

\[\mu_1 = \frac{1}{2} \sum \mu_{1,i} = \frac{1}{2}(2 \times 0,173) = 0,173 \text{ m} \]

\[\mu_3 = \frac{1}{2} \sum \mu_{3,i} = \frac{1}{2}(2 \times 0,16) = 0,16 \text{ m} \]

- **2ème cas** : deux files de camions Bc :

 Position 1 : deux convois symétriques par apport à l’axe de la chaussée.

\[\mu_1 = \frac{1}{2} \times 2(0,238 + 0,055) = 0,293 \text{ m} \]

\[\mu_3 = \frac{1}{2} \times 2(0,2 + 0,04) = 0,24 \text{ m} \]
Position 2 : deux convois non symétriques par apport à l’axe de la chaussée.

\[
\mu_1 = \frac{1}{2} \sum \mu_{1,i} = \frac{1}{2} (0,04 + 0,22 + 0,2427 + 0,08) = 0,291 \text{ m}
\]

\[
\mu_3 = \frac{1}{2} \sum \mu_{3,i} = \frac{1}{2} (0,02 + 0,184 + 0,2060 + 0,06) = 0,235 \text{ m}
\]

Equivalence des charges :

\[
q_1 = \frac{2P}{lc} \left[\sin \frac{\pi d_1}{lc} + \sin \frac{\pi d_2}{lc} + \sin \frac{\pi d_3}{lc} + \sin \frac{\pi d_4}{lc} + \sin \frac{\pi d_5}{lc} + \sin \frac{\pi d_6}{lc} \right]
\]

\[
q_3 = \frac{2P}{lc} \left[\sin \frac{3\pi d_1}{lc} + \sin \frac{3\pi d_2}{lc} + \sin \frac{3\pi d_3}{lc} + \sin \frac{3\pi d_4}{lc} + \sin \frac{3\pi d_5}{lc} + \sin \frac{3\pi d_6}{lc} \right]
\]

Avec \(d_i\): la position de l’essieu sur la poutre par rapport à l’appui gauche.

Pour ce projet, \(lc = 38,75 \text{ m} > 18,38 \text{ m}\) donc \(\delta = 1,725 \text{ m}\).

Figure : disposition longitudinale du convoi Bc sur le hourdis pour le calcul du moment maximal.

\[
d_3 = \frac{lc}{2} - \delta = \frac{38,75}{2} = 17,65 \text{ m}
\]

\[
d_2 = d_3 - 1,5 = 17,65 - 1,5 = 16,15 \text{ m}
\]

\[
d_1 = d_2 - 4,5 = 11,65 \text{ m}
\]

\[
d_4 = d_3 + 4,5 = 22,15 \text{ m}
\]

\[
d_5 = d_4 + 4,5 = 26,65 \text{ m}
\]

\[
d_6 = d_5 + 1,5 = 28,15 \text{ m}
\]
150

\[P_1 = \frac{P_2}{2} = \frac{12}{2} = 6 \text{t} \]

\[q_1 = \frac{2 \times 6}{38.75} (\sin \frac{\pi \times 11.65}{38.75} + \sin \frac{\pi \times 22.15}{38.75}) + \frac{2 \times 12}{38.75} (\sin \frac{\pi \times 16.15}{38.75} + \sin \frac{\pi \times 17.65}{38.75} + \sin \frac{\pi \times 26.65}{38.75}) \]

\[q_1 = 2.75 \text{ t/m} \]

\[q_3 = \frac{2 \times 6}{38.75} (\sin \frac{3 \pi \times 11.65}{38.75} + \sin \frac{3 \pi \times 22.15}{38.75}) + \frac{2 \times 12}{38.75} (\sin \frac{3 \pi \times 16.15}{38.75} + \sin \frac{3 \pi \times 17.65}{38.75} + \sin \frac{3 \pi \times 26.65}{38.75}) \]

\[q_3 = -0.70 \text{ t.m} \]

Pour une file de camions Bc non symétrique par rapport à l’axe de la chaussée:

\[M_y = b \left(\mu_1 q_1 - \mu_3 q_3 \right) = \frac{6}{8} \left(0.161 \times 2.75 - (-0.7 \times 0.133) \right) = 0.40 \text{ t.m/ml} \]

Pour une file de camions Bc symétrique par rapport à l’axe de la chaussée:

\[M_y = \frac{6}{8} (0.173 \times 2.75 + 0.16 \times 0.7) = 0.44 \text{ t.m/ml} \]

Pour deux files de camions Bc symétrique par rapport à l’axe de la chaussée:

\[M_y = \frac{6}{8} (0.293 \times 2.75 + 0.24 \times 0.7) = 0.73 \text{ t.m/ml} \]

Pour deux files de camions Bc non symétrique par rapport à l’axe de la chaussée:

\[M_y = \frac{6}{8} (0.291 \times 2.75 + 0.235 \times 0.7) = 0.72 \text{ t.m/ml} \]

Conclusion : Pour le convoi Bc, dans notre cas, l’effet défavorable est obtenu pour deux files de camions symétriques par rapport à l’axe de la chaussée : \(M_y = 0,73 \frac{\text{t.m}}{\text{ml}} \).

- **Moment dû à la charge du convoi Bt :**
 - 1er cas : un tandem sur la chaussée :

 Position 1 : une file de roues du tandem placée sur l’axe de la chaussée.

 \[\mu_1 = \frac{1}{2} (0.2427 + 0.08) = 0.161 \text{ m} \]

 \[\mu_3 = \frac{1}{2} (0.2060 + 0.055) = 0.131 \text{ m} \]
Position 2 : roues du tandem symétrique par rapport à l’axe de la chaussée.

\[\mu_1 = \frac{1}{2} \times 2(0,17) = 0,17 \text{ m} \]

\[\mu_2 = \frac{1}{2} \times 2(0,14) = 0,14 \text{ m} \]

- 2\text{ème} cas : deux tandems sur la chaussée :

Position 1 : deux tandems symétrique par à l’axe de la chaussée :

\[\mu_1 = \frac{1}{2} \times 2(0,04 + 0,22) = 0,26 \text{ m} \]

\[\mu_2 = \frac{1}{2} \times 2(0,185 + 0,035) = 0,22 \text{ m} \]

Position 2 : une file des deux tandems sur l’axe de la chaussée.

\[\mu_1 = \frac{1}{2} (-0,0012 + 0,17 + 0,2427 + 0,08) = 0,246 \text{ m} \]

\[\mu_2 = \frac{1}{2} (-0,0062 + 0,14 + 0,2060 + 0,075) = 0,21 \text{ m} \]

Pour le système de charge Bt, longitudinalement la position la plus défavorable d’une roue est obtenue lorsque les deux roues du tandem se trouvent symétrique par rapport au milieu de la poutre :

\[d_1 = \frac{l_{c}}{2} - \delta = \frac{38,75}{2} - 0,675 = 18,7 \text{ m} \]

\[d_2 = d_1 + 1,35 = 18,7 + 1,35 = 20,05 \text{ m} \]

\[q_1 = \frac{2P}{l_{c}} \left(\sin \frac{\pi d_1}{l_{c}} + \sin \frac{\pi d_2}{l_{c}} \right) \]

Figure : disposition longitudinale des tandems Bt sur le hourdis pour le calcul du moment maximal.
\[q_3 = \frac{2P}{lc} \left(\sin \frac{3\pi d_1}{lc} + \sin \frac{3\pi d_2}{lc} \right) \]

\(P = 16t \) Pour le convoi Bt.

Équivalence des charges :

\[q_1 = \frac{2 \times 8}{38,75} \left(\sin \frac{\pi \times 18,7}{38,75} + \sin \frac{\pi \times 20,05}{38,75} \right) = 1,65 \text{ t/m} \]

\[q_3 = \frac{2 \times 8}{38,75} \left(\sin \frac{3\pi \times 18,7}{38,75} + \sin \frac{3\pi \times 20,05}{38,75} \right) = -1,63 \text{ t/m} \]

Pour un seul tandem dont une file des roues est placée sur l’axe de la chaussée :

\[M_y = \frac{6}{8} (0,161 \times 1,65 + 0,131 \times 1,63) = 0,36 \text{ t.m/ml} \]

Pour un seul tandem dont les roues sont symétriques par rapport à l’axe de chaussée :

\[M_y = \frac{6}{8} (0,17 \times 1,65 + 0,14 \times 1,63) = 0,38 \text{ t.m/ml} \]

Pour deux tandems dont une file des roues est placée sur l’axe de la chaussée :

\[M_y = \frac{6}{8} (0,246 \times 1,65 + 0,21 \times 1,63) = 0,56 \text{ t.m/ml} \]

Pour deux tandems symétriques par rapport à l’axe de la chaussée :

\[M_y = \frac{6}{8} (0,22 \times 1,65 + 0,26 \times 1,63) = 0,59 \text{ t.m/ml} \]

Conclusion : l’effet le plus défavorable est obtenu pour deux tandems placés symétriquement par rapport à l’axe de la chaussée : \(M_y = 0,59 \text{ t.m/ml} \)

- **Moment dû à la charge du convoi Br** :

Pour la charge du système Br, le cas le plus défavorable est obtenu lorsque la roue est placée sur l’axe de la chaussée.

\(\mu_1 = 0,2427 \text{ m et } \mu_3 = 0,2060 \text{ m} \)

\(P = 10t \)
Equivalence de charge :

\[q_1 = \frac{2P}{lc} \sin \frac{\pi \cdot d}{lc} = \frac{2 \times 10 \times \pi \times 19,375}{38,75} = 0,52 \text{ t/m} \]

\[q_3 = \frac{2P}{lc} \sin \frac{3\pi \cdot d}{lc} = \frac{2 \times 10 \times 3\pi \times 19,375}{38,75} = -0,52 \text{ t/m} \]

\[M_y = \frac{6}{8} (0,2427 \times 0,52 + 0,2060 \times 0,52) = 0,175 \text{ t.m/ml} \]

- **Moment dû à la charge du convoi Mc120 :**

Les chenilles du convoi sont disposées sur la chaussée suivant plusieurs positions pour produire l’effet défavorable.

Position 1 : une chenille dont l’extrémité est placée sur l’axe de la chaussée et l’autre à 2,3 m.

\[\mu_n = \frac{1}{4} \sum \mu_{n,i} \]

\[\mu_1 = \frac{1}{4} (0,165 + 0,2427 + 0,05 - 0,03) = 0,107 \text{ m} \]

\[\mu_3 = \frac{1}{4} (0,135 + 0,2060 + 0,04 - 0,03) \approx 0,088 \text{ m} \]

Position 2 : les deux chenilles symétriques par rapport à l’axe de la chaussée.

\[\mu_1 = \frac{1}{4} \times 2(0,06 + 0,15) = 0,105 \text{ m} \]

\[\mu_3 = \frac{1}{4} \times 2(0,04 + 0,12) = 0,08 \text{ m} \]
Longitudinalement, l’effet le plus défavorable est obtenu lorsque la chenille est centrée au milieu de la longueur de calcul.

Figure : disposition de la charge Mc120 sur le hourdis pour le calcul du moment maximal.

\[
d_1 = \frac{lc}{2} = \frac{38,75}{2} = 19,375 \text{ m}
\]

Equivalence de charge :

\[
q_1 = \frac{4q}{\pi} \frac{\pi.C}{lc} \frac{\pi.d}{lc}
\]

\[
q = \frac{q_{Mc120}}{S_c}
\]

Avec \(C = \frac{1\text{chenille}}{2} = \frac{6,10}{2} = 3,05 \text{ m} \);

\(q_{Mc120} \) : Charge sur chenilles du convoi Mc120 = 110t

\(S_c \) : Surface d’une chenille.

\[
q = \frac{110}{6,1 \times 1} = 18,03 \text{ t/m}^2
\]

\[
q_1 = \frac{4 \times 18,03}{\pi} \frac{\pi \times 3,05}{38,75} \frac{\pi \times 19,375}{38,75} = 5,62 \text{ t/m}^2
\]

\[
q_3 = \frac{4q}{3\pi} \frac{3\pi.C}{lc} \frac{3\pi.d}{lc}
\]

\[
q_3 = \frac{4 \times 18,03}{3\pi} \frac{3\pi \times 3,05}{38,75} \frac{3\pi \times 19,375}{38,75} = -50,98 \text{ t/m}^2
\]

Pour la position 1 :

\[
M_y = \frac{6}{8} (0,107 \times 5,62 + 0,088 \times 50,98) = 3,82 \text{ t.m/ml}
\]

Pour la position 2 :

\[
M_y = \frac{6}{8} (0,105 \times 5,62 + 0,08 \times 50,98) = 3,5 \text{ t.m/ml}
\]
Conclusion : l’effet défavorable est obtenu pour une chenille dont l’extrémité est placée sur l’axe de la chaussée et l’autre à 2,3 m : $M_y = 3,82 \text{ t.m/ml}$

Tableau : récapitulatif des moments globaux sans majoration.

<table>
<thead>
<tr>
<th>charge</th>
<th>g_{per}</th>
<th>q_tr</th>
<th>Bc</th>
<th>Bt</th>
<th>Br</th>
<th>Mc120</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_y (t.m/ml)</td>
<td>−0,044</td>
<td>−2,15</td>
<td>0,73</td>
<td>0,59</td>
<td>0,175</td>
<td>3,82</td>
</tr>
</tbody>
</table>

Moment de calcul :

$M_{oy} = y_G M_{oy}^{per} + \sup \{\delta_B \cdot Y_{Q1}^B (bc, M_{oy}^{Bc}, bt, M_{oy}^{Bt}, M_{oy}^{Br}), \delta_{Mc120} \cdot Y_{Q1}^{MC120, MC120} \}$

$M_{oy} = -0,067 + 6,19 = 6,12 \text{ t.m/ml à l’ELU}$

$M_{oy} = -0,044 + 4,58 \cong 4,54 \text{ t.m/ml à l’ELS}$

Solidictions totales dans le hourdis :

Flexion totale = flexion locale + flexion globale

- Travée de rive suivant l’axe x :

$M_{x_{tot}} = M_{x_{loc}} + M_{y_{glob}} = 7,95 + 6,12 = 14,07 \text{ t.m à l’ELU}$

$M_{x_{tot}} = 5,95 + 4,54 = 10,49 \text{ t.m à l’ELS}$

- Travée intermédiaire suivant l’axe x :

$M_{x_{tot}} = M_{x_{loc}} + M_{y_{glob}} = 7,46 + 6,12 = 13,58 \text{ t.m à l’ELU}$

$M_{x_{tot}} = 5,58 + 4,54 = 10,12 \text{ t.m à l’ELS}$

- Travée de rive suivant l’axe y :

$M_{y_{tot}} = M_{y_{loc}} = 2,06 \text{ t.m à l’ELU}$

$M_{y_{tot}} = 1,54 \text{ t.m à l’ELS}$

- Appui intermédiaire suivant l’axe x :

$M_{x_{tot}} = M_{x_{loc}} = -4,97 \text{ t.m à l’ELU}$

$M_{x_{tot}} = -3,72 \text{ t.m à l’ELS}$

- Appui de rive suivant l’axe x :

$M_{x_{tot}} = M_{x_{loc}} = -4,97 \text{ t.m à l’ELU}$

$M_{x_{tot}} = -3,72 \text{ t.m à l’ELS}$
Condition relative au poinçonnement sous charge localisée :
\[h_d \geq \frac{Q_u}{0.045 \times u_c \times f_{c28}/\gamma_b} \]

Avec :
\[Q_u = \gamma_{Q1} \times \delta \times P \] (Charge de calcul à l’ELU)

\(P \): charge sur roues du système B
\(= 6t \) pour Bc
\(= 8t \) pour Bt
\(= 10t \) pour Br

\(\gamma_{Q1} \): Coefficient de pondération du système B ;
\(u_c \): Périmètre du rectangle de répartition de charges des roues du système B ;
\(f_{c28} = 35\text{Mpa} \) : Résistance caractéristique du béton à 28 jours d’âge ;
\(\gamma_b = 1.5 \) coefficient de sécurité pour la résistance du béton.

\[h_d \geq \frac{Q_u}{0.045 \times u_c \times f_{c28}/\gamma_b} = \frac{100 \times 1.17 \times 1.6}{0.045 \times 1.8 \times 35 \times 1.5} \cong 0.01 \] Condition vérifiée.

Condition relative au Non emploi d'armatures d'effort tranchant :
\[\tau_u = \frac{T}{b_d \times d} \leq 0.07 \frac{f_{c28}}{\gamma_b} \]

\(T \): valeur de l’effort tranchant à l’ELU ;
\(d \): hauteur utile du hourdis ;
\(b_d \): Largeur de calcul du hourdis prise égale à 1 ml

Dans la direction de lx :\(T = 10,88 \text{t} = 108,8 \text{KN} \)
\[\tau_u = \frac{T}{b_d \times d} = \frac{108,8}{1 \times 0,9 \times 0,20} = 604,44 \text{KN/m}^2 \]

\[0.07 \frac{f_{c28}}{\gamma_b} = 0.07 \times \frac{35000}{1,5} = 1633,33 \text{KN/m}^2 \]

\[\tau_u = 604,44 \frac{\text{KN}}{\text{m}^2} \leq 0.07 \frac{f_{c28}}{\gamma_b} = 1633,33 \text{KN/m}^2 \] Condition vérifiée.

Dans la direction de ly :\(T = 11,77 \text{t} \)
\[\tau_u = \frac{T}{b_d \times d} = \frac{117,7}{1 \times 0,9 \times 0,20} = 653,89 \text{KN/m}^2 < 0.07 \frac{f_{c28}}{\gamma_b} = 1633,33 \text{KN/m}^2 \] Condition vérifiée

Calcul du ferraillage du hourdis :

Notre pont traverse un cours d’eau (le fleuve Niger), Pour des besoins d’études, nous allons considérer la fissuration préjudiciable.
Caractéristiques de base :
- La résistance caractéristique du béton à 28 jours d’âge est : $f_{c28} = 35 \text{ Mpa}$;
- La contrainte de compression du béton est : $\sigma_{bc} = 0,6 \times f_{c28} = 0,6 \times 35 = 21 \text{ Mpa}$;
- La limite de traction dans le béton est : $ft_{28} = 0,6 + 0,06 \times f_{c28} = 2,7 \text{ Mpa}$
- L’acier sera de nuance F_eE500
- Contrainte de traction de l’acier : $f_{su} = \frac{f_e \gamma_s}{1,15} = 434,78 \text{ Mpa}$
- γ_s : coefficient de sécurité pour la résistance de l’acier = 1,15
- Contrainte limite de traction de l’acier :

$$\sigma_s = \text{Min}\{\frac{2}{3} \times f_e, \max(0,5f_e, 110 \sqrt{\eta \theta})\} = \text{min}\{333,33; \max(250; 228,63)\}$$
- $\sigma_s = 250 \text{ Mpa}$
- $\eta = 1,6$ coefficient de fissuration, pour les aciers hautes adhérences.

Le hourdis se calcul comme une poutre rectangulaire en prenant une bande de largeur $b= 1\text{m}$, par conséquent le ferraillage est donnée par mètre linéaire.

Ferraillage en travée intermédiaire :

- Calcul de la section d’armature à l’ELU :

Sollicitations en travée intermédiaire suivant l’axe x :

$$M_x^{tot} = M_x^{Loc} + M_y^{glob} = 7,46 + 6,12 = 13,58 \text{ t.m à l’ELU}$$
$$M_x^{tot} = M_x^{Loc} + M_y^{glob} = 5,58 + 4,54 = 10,12 \text{ t.m à l’ELS}$$

Calcul du moment réduit ultime :

$$\mu_u = \frac{M_u}{b_o \times d^2 \times f_{bu}}$$
$$f_{bu} = \frac{0,85f_{c28}}{\theta \gamma_{fb}} = \frac{0,85 \times 35}{1 \times 1,5} = 19,83 \text{ Mpa}$$
$$\theta = 1 \text{ et } b_o = 1 \text{ m} ; d = 0,9 \times h_d = 0,9 \times 0,2 = 0,18 \text{ m}$$

$$\mu_u = \frac{0,1358}{1 \times 0,18^2 \times 19,83} = 0,211$$

$$\mu_{AB} = 0,186 < \mu_u = 0,211 \text{ pivot B}$$

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu_u}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,211}) = 0,299 \approx 0,3$$

Détermination de $\mu_{lu} = f(f_{c28}; f_e; \gamma)$:

Formule approchée (précis de structure, Nathan) :

$$\mu_{lu} = \frac{3}{2} \frac{\gamma^2}{\max(3 + \gamma)^2}$$
\[\gamma = \frac{M_u}{M_{ser}} = \frac{13,58}{10,12} = 1,34 \]
\[\Gamma = \frac{100}{f_{c_{28}}} = \frac{100}{35} \approx 2,86 \]
\[\mu_u = \sqrt{4} \times 1,34 \times \frac{2 + 2,86}{(3 + 2,86)^2} \approx 0,301 \]
\[\mu_u = 0,301 > \mu_u = 0,211 \text{ Pas d’aciers comprimés.} \]
\[0,187 < \mu_u = 0,211 < 0,274 \]
\[\Rightarrow \varepsilon_s > \varepsilon_{se} \]
\[\text{Donc } f_{su} = \frac{f_e}{\gamma_s} = \frac{500}{1,15} = 434,78 \text{ Mpa} \]

La section d’acier correspondant est :

\[A_{st} = \frac{M_u}{Z_u \times f_{su}} \]
\[z = d(1 - 0,4\alpha) = 0,9 \times 0,2 \times (1 - 0,4 \times 0,3) = 0,158 \]
\[A_{st} = \frac{0,1358}{0,158 \times 434,78} = 19,77 \times 10^{-4} \text{ m}^2 = 19,77 \text{ cm}^2 \]

Choix des armatures :

Diamètre maximal des armatures :
\[\phi < \frac{h_d}{10} = \frac{20}{10} = 2 \text{ cm} = 20 \text{ mm} \]

\textbf{Calcul de la section d’acier à l’ELS :}

\[M_{x_{tot}} = M_{x_{loc}} + M_{y_{glob}} = 5,58 + 4,54 = 10,12 \text{ t.m à l’ELS} \]

Calcul du moment résistant du béton :

\[M_{rb} = \frac{1}{2} \alpha_1 \times (1 - \frac{\alpha_1}{3}) \times b_0 \times d^2 \times \overline{\sigma_{bc}} \]
\[\overline{\alpha_1} = \frac{n\overline{\sigma_{bc}}}{n\overline{\sigma_{bc}} + \sigma_{st}} \]

Avec :
\[n = 15 \]
\[\overline{\sigma_{bc}} = 21 \text{ Mpa} \]
\[\sigma_{st} = 250 \text{ Mpa} \]
\[\overline{\alpha_1} = \frac{15 \times 21}{15 \times 21 + 250} \approx 0,56 \]
\[M_{rb} = \frac{1}{2} \times 0,56 \times (1 - \frac{0,56}{3}) \times 1 \times 0,18^2 \times 21 \approx 0,155 \text{ MN.m} = 15,5 \text{ t.m} \]
\[M_{rb} = 15,5 \text{ t.m} > M_{ser} = 10,12 \text{ t.m Pas d’aciers comprimés.} \]
La section d’acier correspondant est :

\[A_{st} = \frac{M_{ser}}{d \times (1 - \frac{a_1}{3}) \times \sigma_{st}} = \frac{0,1012}{0,9 \times 0,2 \times (1 - \frac{0,56}{3}) \times 250} = 27,65 \times 10^{-4} m^2 \]

\[A_{st} = 27,65 cm^2 \]

Conclusion : l’ELS est plus défavorable, donc la section d’armatures retenue est :

\[A_{st} = 27,65 cm^2 \]

Condition de non fragilité :

Dalle appuyée sur ses 4 côtés d’épaisseur \(12 \leq h_d \leq 30 \) cm .

\[A_X \geq \frac{1}{2} \rho_0 (3 - \rho) b \times h_d \]

Avec :

\[\rho = \frac{l_x}{l_y} = \frac{2,95}{38,75} = 0,076 \]

\[\rho_0 = \begin{cases} 0,8 \times 10^{-3} & \text{pour les barres HA400} \\ 0,6 \times 10^{-3} & \text{pour les barres HA500} \end{cases} \]

\[A_X \geq \frac{1}{2} \times 0,6 \times 10^{-3} (3 - 0,076) \times 1 \times 0,2 = 17,54 \times 10^{-5} m^2 = 1,7 cm^2 \]

\[A_X = 27,65 cm^2 \gg 1,7 cm^2 \text{ Condition vérifiée.} \]

Suivant la même démarche, nous avons calculé les armatures en travée de rive et sur appui.
ANNEXE 10 : Etude de la prédalle.

Calcul des sollicitations :

Les charges appliquées sur la prédalle sont :

- Les charges permanentes dues à son propre poids :

 D’après le prédimensionnement du tablier ci-dessus, la largeur définie est \(l = 1,10 \text{ m} \); Nous fixons ici la longueur à \(L = 2,8 \text{ m} \).

 D’après le « Guide de construction VIPP » du SETRA, l’épaisseur strictement minimale est : \(e_p \geq 6 \text{ cm} \) pour un parfait enrobage du ferraillage.

 Donc, \(g_{pp} = e_p \times \rho_b = 0,06 \text{ m} \times 25 \text{ kN/m}^3 = 1,5 \text{ kN/m}^2 \)

- Les charges permanentes dues aux poids du hourdis sur la prédalle :

 \(g_{ph} = e_h \times \rho_b = 0,2 \text{ m} \times 25 \text{ kN/m}^3 = 5 \text{ kN/m}^2 \)

- Une charge d’exploitation de 1kN/ml prévue par le BPEL

Moment fléchissant :

Le moment maximal en travée est : \(M_t = \frac{q \times l^2}{8} \)

\(g_p = (5 + 1,5) \times 1 \text{ m} = 6,5 \text{ kN/ml} \)

\(q_p = 1 \text{ kN/ml} \)

ELU : \(q = 1,35g_p + 1,5q_p = 1,35 \times 6,5 + 1,5 \times 1 \approx 10,28 \text{ kN/ml} \)

\(M_t = \frac{q \times l^2}{8} = \frac{10,28 \times 2,8^2}{8} \approx 10,05 \text{ kN.m} \)

ELS : \(q = g_p + q_p = 6,5 + 1 = 7,5 \text{ kN/ml} \)

\(M_t = \frac{q \times l^2}{8} = \frac{7,5 \times 2,8^2}{8} = 7,35 \text{ kN.m} \)

L’effort tranchant maximal :

ELU : \(T_{\text{max}} = \frac{q_1 l}{2} = \frac{10,28 \times 2,8}{2} = 14,39 \text{ kN} \)

ELS : \(T_{\text{max}} = 10,5 \text{kN} \)

Calcul du ferraillage ELU :

Calcul du moment réduit ultime :

\(\mu_u = \frac{M_u}{b_o \times d^2 \times f_{bu}} \)

\(f_{bu} = \frac{0,85f_{c28}}{\theta \gamma_b} = \frac{0,85 \times 35}{1 \times 1,5} = 19,83 \text{ Mpa} \)

\(\theta = 1 \) et \(b_o = 1 \text{ m} ; d = 0,9 \times h_d = 0,9 \times 0,06 = 0,054 \text{ m} \)
\[
\mu_u = \frac{10,05 \times 10^{-3}}{1 \times 0,054^2 \times 19,83} = 0,174
\]

\[
\mu_{AB} = 0,186 > \mu_u = 0,174
\]

\[
\alpha = 1,25 \left(1 - \sqrt{1 - 2 \mu_u}\right) = 1,25 \times \left(1 - \sqrt{1 - 2 \times 0,174}\right) \approx 0,241 \Rightarrow \text{pivot A}
\]

Donc \(f_{su} = \frac{f_r}{Y_s} = \frac{500}{1,15} = 434,78 \text{ Mpa} \)

La section d’acier correspondant est :

\[
A_{st} = \frac{M_u}{Z_u \times f_{su}}
\]

\[
z = d (1 - 0,4 \alpha) = 0,054 \times (1 - 0,4 \times 0,174) = 0,05 \text{ m}
\]

\[
A_{st} = \frac{10,05 \times 10^{-3}}{0,05 \times 434,78} = 4,62 \times 10^{-4} \text{ m}^2 = 4,62 \text{ cm}^2
\]

Soit 10HA8 = 5,03 cm² espacées de \(S_t = 10 \text{ cm} \)

Calcul du ferraillage ELS :

Calcul du moment résistant du béton :

\[
M_{rb} = \frac{1}{2} \bar{\alpha_1} \times (1 - \frac{\bar{\alpha_1}}{3}) \times b_0 \times d^2 \times \bar{\sigma}_{bc}
\]

\[
\bar{\alpha_1} = \frac{n \bar{\sigma}_{bc}}{n \bar{\sigma}_{bc} + \bar{\sigma}_{st}}
\]

Avec :

\[
n = 15
\]

\[
\bar{\sigma}_{bc} = 21 \text{ Mpa}
\]

\[
\bar{\sigma}_{st} = 250 \text{ Mpa}
\]

\[
\bar{\alpha_1} = \frac{15 \times 21}{15 \times 21 + 250} \approx 0,56
\]

\[
M_{rb} = \frac{1}{2} \times 0,56 \times (1 - \frac{0,56}{3}) \times 1 \times 0,054^2 \times 21 \approx 0,014 \text{ MN.m} = 13,9 \text{kN.m}
\]

\[
M_{rb} = 13,9 \text{kN.m} > M_{ser} = 7,35 \text{ kN.m} \text{ pas d’acier comprimé.}
\]

La section d’acier correspondant est :

\[
A_{st} = \frac{M_{ser}}{d \times (1 - \frac{\bar{\alpha_1}}{3}) \times \bar{\sigma}_{st}} = \frac{7,35 \times 10^{-3}}{0,054 \times (1 - \frac{0,56}{3}) \times 250} \approx 6,7 \times 10^{-4} \text{ m}^2
\]

\[
A_{st} = 6,7 \text{ cm}^2 \text{ ; soit 9HA10 = 7,07 cm}^2
\]

Conclusion : l’ELS est plus défavorable, donc la section d’armatures retenues est :

\[
A_{st} = 6,7 \text{ cm}^2
\]
ANNEXE 11 : Etude de l’appareil d’appui :

Les appareils d’appuis sont des éléments de ponts qui assurent la liaison entre la superstructure et l’infrastructure. Par cette liaison ils assurent plusieurs fonctions notamment :

- La transmission des charges du tablier sur les appuis ;
- Ils permettent les déplacements par translation, les rotations ;

Les appareils d’appuis sont de plusieurs sortes et se classent en fonction :

- Du mode de travail : appareil d’appui fixe, appareil d’appui mobile…
- Des matériaux qui les composent : les appareils d’appui en béton, en acier, en élastomère fretté, etc.

Le choix du type d'appareil d'appui dépend de nombreux facteurs : descente de charge, rotation maximale, déplacements horizontaux, durabilité, coût, le type d'ouvrage, son environnement et ses dispositions constructives.

Notre choix est porté sur l’appareil d’appui en élastomère fretté à cause de la nature de notre tablier (poutre préfabriquée VIPP) et de nombreux avantages qu’il offre :

- Simplicité de sa mise en place et du remplacement ;
- Très économique : moindre coût d’achat ;
- Une bonne durabilité ;

Les appareils d’appui en élastomère fretté sont à leur tour de plusieurs types dont entre autres :

- Les appareils d’appui en élastomère fretté de type A : constitués d’une seule frette.

![Type A : Appareil d’appui à une seule frette enrobée](image)

Figure : appareil d’appui de type A[9].

- Les appareils d’appui en élastomère fretté de type B.
Les appareils d’appui en élastomère fretté de type D :

Dimensionnement de l’appareil d’appui en élastomère fretté :

Le dimensionnement de l’appareil d’appui en élastomère fretté consiste à la vérification de sa résistance au cisaillement résultant des efforts qui lui sont appliqués. Ce cisaillement se produit au niveau du plan de frettage.

Détermination des charges :

Les charges appliquées aux appareils d’appui proviennent souvent :

- D’un effort normal de compression dû aux charges et surcharges des poutres ;
- Des efforts horizontaux dus aux freinages ;
- Des variations linéaires du tablier : fluage, retrait, température ;

Effort normal maximal de compression :

Poutre principale :

\[M_{\text{max (ELU)}} = 26349.5 \, \text{kN.m} \]
Nous avons $M_{\max} = \frac{q l^2}{8} \Rightarrow q = \frac{8 \times M_{\max}}{l^2}$

Or, $N = \frac{q l}{2} \Rightarrow q = \frac{2N}{l}$

\[
\frac{2N}{l} = \frac{8 \times M_{\max}}{l^2} \Rightarrow N = \frac{4 \times M_{\max}}{l} = \frac{4 \times 26349.5}{38.75} = 2719.95 \text{ kN}
\]

Entretoise : $N = \frac{1}{4} (b \times h \times L \times \frac{25 \text{ kN}}{m^3}) = \frac{1}{4} \times 0.45 \times 1.65 \times 8.85 \times 25 \approx 41 \text{ kN}$

L’effort normal maximal est donc : $N_{\max} = 2719.95 + 41 = 2760.95 \text{ kN}$

L’effort normal minimal $N_{\min} = 1890.64 \text{ kN}$

Effort horizontaux :

- **Force de freinage** :

Pour la charge uniformément répartie A_l : $F_{Al} = \frac{A_l \times L_{ch} \times l_c}{20 + 0.0035(L_{ch} \times l_c)}$

Avec : $L_{ch} = 7.5 \text{ m}$: Largeur chargeable ;

$l_c = 38.75 \text{ m} :$ Portée de calcul ;

$A_l = 8.054 \text{ kN/m}^2$ Charge surfacique uniformément répartie.

$F_{Al} = \frac{8.054 \times 38.75 \times 7.5}{20 + 0.0035(38.75 \times 7.5)} = 116.09 \text{ kN}$

Pour le convoi BC : $F_{BC} = 30t = 300 \text{ kN}$

- **Dilatation linéaire thermique** :

$U_t = \varepsilon_t \times l_c$

Action de courte durée : $\varepsilon_t = 4.10^{-4}$

$U_t = 4.10^{-4} \times 38.75 = 1.55 \times 10^{-2} \text{ m}$

Action de longue durée : $\varepsilon_t = 3.10^{-4}$

$U_t = 3.10^{-4} \times 38.75 = 1.16 \times 10^{-2} \text{ m}$

- **Retrait et fluage** :

$U_r = \varepsilon_r \times l_c$

Pour les ponts en béton précontraint : $\varepsilon_r = 7.10^{-4}$

$U_t = 7.10^{-4} \times 38.75 = 2.71 \times 10^{-2} \text{ m}$

- **Rotation** :

Cas de charge repartie q sur la poutre :

$\theta = \frac{q \times l^3}{24 \times E l}$

Avec, l : longueur de l’élément ;
E : module d’élasticité est égale à :
\[
\begin{align*}
\text{pour les surcharges, module instantané } E_i &= 11000 \frac{2}{f_{C28}} = 35981,73 \\
\text{pour les charges permanente, module différé } E_v &= \frac{1}{3} E_i = 3700 \frac{3}{f_{C28}} = 12102,95
\end{align*}
\]

Pour la charge permanente G = 79,6kN/m :
\[
\theta = \frac{79,6 \times 38,75^3}{24 \times 12102,95 \times 1,18} = 13,51°
\]

Pour les surcharges Bc + trottoir :
Cherchons la charge uniformément repartie équivalente des forces concentrées du système Bc.
Le moment maximal développé par Bc sur la poutre est : \(M_{Bc} = 8021,2 \text{ kN.m} \)
\[
M_{Bc} = \frac{q \times l^2}{8} \Rightarrow q_{Bc} = \frac{8 \times M_{Bc}}{38,75^2} = 42,74 \text{ kN/m}
\]

Pour la charge de trottoir q = 2,63 kN/m
Donc : \(q_{surch} = 42,74 + 2,63 = 45,37 \text{ kN/m} \)
\[
\Rightarrow \theta = \frac{45,37 \times 38,75^3}{24 \times 35981,73 \times 1,18} = 2,6°
\]

Calcul de la surface de l’appareil d’appui :
Soit a et b, les dimensions en plan de l’appareil d’appui en élastomère fretté.
La contrainte moyenne de l’appareil d’appui EF est limitée à :
\[
\sigma_m = \frac{N_{\text{max}}}{a \times b} < 15 \text{MPa} \Rightarrow a \times b > \frac{N_{\text{max}}}{15} = \frac{2760,95 \times 10^{-3}}{15} = 0,184 \text{ m}^2 = 1840 \text{ cm}^2
\]

Hauteur nette de l’élastomère (T) :
\[
T \geq 2U_t
\]
Avec : \(U_t = U_r + U_t = 2,71 \times 10^{-2} + 1,55 \times 10^{-2} = 4,26 \times 10^{-2} \text{m} = 4,26 \text{ cm} \)
\[
T \geq 2 \times 4,26 \cong 8,5 \text{ cm} \text{ prenons } T = 9,6 \text{ cm} = 96 \text{ mm}
\]

Pour n feuillet d’épaisseur t, nous avons : \(T = n \times t \)
Fixons l’épaisseur des feuillets à t = 12 mm : \(n = \frac{T}{t} = \frac{96}{12} = 8 \text{ feuillets} \)

Dimension en plan :
Condition de non fragilité : \(\frac{a}{10} < t < \frac{a}{5} \text{ et } a \leq b \)
\[
5T < a < 10T \Rightarrow 480 \text{ mm} < a < 960 \text{ mm} \Rightarrow \text{ prenons } a = 500 \text{ mm et } b = 550 \text{ mm}
\]
Epaisseur des frettes :

\[ts \geq \left\{ \begin{array}{l}
\frac{a \sigma_m}{\beta \sigma_e} \\
2 \text{ mm}
\end{array} \right. \]

\[\sigma_m = \frac{N_{\text{max}}}{a \times b} = \frac{2760,95 \times 10^2}{500 \times 550} \approx 10 \text{ MPa} \]

\[\sigma_e = 215 \text{ MPa pour l'acier E24 si } ts < 3 \text{ mm} \]

\[\beta = \frac{a \times b}{2t(a+b)} = \frac{500 \times 550}{2 \times 12(500+550)} = 10,91 : \text{ Coefficient de forme.} \]

\[ts \geq \left\{ \begin{array}{l}
\frac{a \sigma_m}{\beta \sigma_e} \\
2 \text{ mm}
\end{array} \right. \]

Pourons \(ts = 2,5 \text{ mm} \)

Calcul des contraintes :

- **compression :** \(\tau_N \)

\[\tau_N = \frac{1,5 \times \sigma_m}{\beta} = \frac{1,5 \times 10}{10,91} = 1,37 \text{ MPa} \]

- **Distorsion :**

Figure : répartition des contraintes de cisaillement sous l’effet de la distorsion.
Sous l’effet des déformations lentes de l’appareil (dilatation thermique de longue durée, retrait et fluage).
L’angle de distorsion est : \(\tan \gamma_1 = \frac{u_1}{T} \)
\[\tan \gamma_1 = \frac{4.26}{9.6} \cong 0.44 \Rightarrow \gamma_1 \cong 23,93^\circ \]
Contrainte de cisaillement :

\[\tau_{H1} = G \tan \gamma_1 \]
Avec \(G = 0,9 \) MPa : module d’élasticité transversal pour les chargements statiques.
\[\tau_{H1} = G \tan \gamma_1 = 0,9 \times \tan 23,93 \cong 0,4 \text{ MPa} \]
L’effort horizontal correspondant à la distorsion :
\[H_1 = a \times b \times \tau_{H1} = 500 \times 550 \times 0,4 = 10000 \text{ N} \cong 110 \text{ kN} \]

- **Déformation due à effort dynamique (freinage) :** \(H_2 \)

Contrainte de cisaillement due à l’effort \(H_2 \) :
\[\tau_{H2} = \frac{H_2}{a \times b} \]
Avec \(H_2 = \frac{F_{bc}}{8} = 37,5kN \)
\[\tau_{H2} = \frac{37,5 \times 10^3}{500 \times 550} = 0,14 \text{ MPa} \]
Angle de distorsion \(\gamma_2 \) :
\[\tan \gamma_2 = \frac{\tau_{H2}}{2G} \]
\(G = 1,8 \text{ MPa} \) sous les actions dynamiques.
\[\tan \gamma_2 = \frac{0,27}{2 \times 1,8} = 0,075 \Rightarrow \gamma_2 = 4,3^\circ \]
Pour les vérifications de la résistance au cisaillement, on introduit une contrainte de cisaillement conventionnelle de calcul, qui sous effort statique seul, nous donne la même déformation totale que celle du retrait-fluage et freinage combinés.

Cette contrainte conventionnelle est :

\[U = U_1 + U_2 \]

\[\tau_H = G \times \tan \gamma = \tau_{H_1} + \frac{1}{2} \tau_{H_2} = 0,4 + \frac{1}{2} \times 0,14 \cong 0,47 \text{ MPa} \]

- Rotation :

La contrainte maximale apparaît généralement sur les bords parallèles à l’axe de rotation et a pour valeur :

\[\tau_\alpha = \frac{G}{2} \left(\frac{a}{t} \right)^2 \times \alpha_t \]

On tient compte des défauts de pose en ajoutant à la rotation due aux charges une rotation \(\alpha_0 \), telle que :

\[\alpha_0 = 10 \times 10^{-3} \text{ rad} = 0,57^\circ \text{ pour les tabliers en béton préfabriqués} \]
\[\alpha_t = \frac{\alpha_T + \alpha_0}{n} : \text{angle de rotation d'un feuillet élémentaire ;} \]
\[\alpha_T = \frac{N \times n \times t^3}{G \times a^5 \times b} = \frac{2760,95 \times 10^3 \times 8 \times 12^3}{0,9 \times 500^5 \times 550} = 2,47 \times 10^{-6} \text{ rad} \]
\[\Rightarrow \alpha_t = \frac{2,47 \times 10^{-6} + 10 \times 10^{-3}}{8} = 0,00125 \text{ rad} \]
\[\tau_\alpha = \frac{G}{2} \left(\frac{a}{t} \right)^2 \times \alpha_t = \frac{0,9}{2} \times \left(\frac{500}{12} \right)^2 \times 0,00125 = 0,97 \text{ MPa} \]

Vérification des contraintes :

Limitation des contraintes de cisaillement :
\[\tau = \tau_N + \tau_H + \tau_\alpha \leq 5G \]
\[\tau = 1,37 + 0,47 + 0,97 = 2,81 \text{ MPa} < 5G = 4,5 \text{ MPa} \text{ Condition vérifiée} \]
\[\tau_H \leq 0,5G \]
\[\tau_H = 0,4 \text{ MPa} < 0,5G = 0,45 \text{ MPa} \text{ Condition vérifiée} \]
\[\tau_H \leq 0,7G \]
\[\tau_H = 0,47 \text{ MPa} < 0,7G = 0,63 \text{ MPa} \text{ Condition vérifiée} \]

Condition de non-cheminement et de non-glissement :
\[\sigma_{m,\text{min}} = \frac{N}{a \times b} \geq 2 \text{ MPa} \]
\[\sigma_{m,\text{min}} = \frac{N}{a \times b} = \frac{1990,64 \times 10^3}{500 \times 550} = 6,9 \text{ MPa} > 2 \text{ MPa} \text{ Condition vérifiée} \]

N : effort normal minimal

Condition de non soulèvement :
\[\alpha_t \leq \frac{3}{\beta} \left(\frac{1}{a} \right)^2 \times \frac{\sigma_m}{G} \]
\[\alpha_t = 0,00125 \text{ rad} \leq \frac{3}{10,91} \times \left(\frac{12}{500} \right)^2 \times \frac{10}{0,9} = 0,00175 \text{ Condition vérifiée} \]

Tableau : Résultat du dimensionnement :

<table>
<thead>
<tr>
<th>a (mm)</th>
<th>b (mm)</th>
<th>t (mm)</th>
<th>ts (mm)</th>
<th>T</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>550</td>
<td>12</td>
<td>2,5</td>
<td>96</td>
<td>8</td>
</tr>
</tbody>
</table>
Dimensionnement du bossage d’appui :

Longueur : \(L \geq a_{app} + 10 \text{ cm} \)

Largeur : \(l \geq b_{app} + 10 \text{ cm} \)

Hauteur : \(h \geq 5 \text{ cm} \)

Les bossages d’appui sont soumis à la compression simple sous la charge verticale du tablier.

Calcul du ferraillement :

Contrainte de compression du bossage :

\[N = 2760,95 \text{ kN} \]

\[S = 600 \times 650 \text{ mm}^2 \]

\[\sigma = \frac{N}{S} = \frac{2760.95 \times 10^3}{600 \times 650} = 7,08 \text{ MPa} \]

\[\sigma_{bêton} = 35 \text{ MPa} \]

le bossage sera ferrailé avec les armatures minimales.

\[A_{\text{min}} = \max \left[\frac{0.2B}{100}; 4\% \text{ du périmètre} \right] = \max[7.8; 10] \]

\[A_s = 10 \text{ cm}^2 \]

Soit 7HA14.
ANNEXE 12 : Dimensionnement du joint de chaussée.

Détermination du souffle :
Le souffle d’un joint est le déplacement relatif maximal prévisible des deux éléments en regard, mesuré entre les positions extrêmes.

![Diagram of joint and souffle](image)

Sollicitations :

- **Dilatation linéaire thermique :**

 Action de courte durée \(U_t = 1,55 \times 10^{-2} \text{ m} \)

 Action de longue durée \(U_t = 1,16 \times 10^{-2} \text{ m} \)

- **Retrait et fluage :**

 \(U_t = 2,71 \times 10^{-2} \text{ m} \)

- **Rotation :**

 \[\Delta l_{\text{rotation}} = \frac{4 \times f}{L} \times H_P \]

 Avec \(H_P \): hauteur de la poutre

 \(f \): flèche maximale sous charges

 \(L \): portée de la travée

 \(a \): la distance de l’about à l’appareil d’appui

 Calcul de la flèche :

 \[f = \frac{5 \times g \times L^4}{384E_I} \]

 Pour les charges linéaires uniformément réparties

 \(g = 79,6 \text{ kN/ml (ELU)} \)

 \[f = \frac{5 \times 79,6 \times 10^{-3} \times 38,75^4}{384 \times 12102,95 \times 1,18} = 0,16 \text{ m} \]

 \(g = 70,96 \text{ kN/ml (ELS)} \)

 \[f = \frac{5 \times 70,96 \times 10^{-3} \times 38,75^4}{384 \times 12102,95 \times 1,18} = 0,15 \text{ m} \]
\(q = 45.35 \text{ kN/m (ELU)} \)
\[f = \frac{5 \times 45.35 \times 10^{-3} \times 38.75^4}{384 \times 35981.73 \times 1.18} = 0.03 \text{ m} \]

\(q = 33.42 \text{ kN/m (ELS)} \)
\[f = \frac{5 \times 33.42 \times 10^{-3} \times 38.75^4}{384 \times 35981.73 \times 1.18} = 0.023 \text{ m} \]

Flèche admissible \(f = \frac{L}{250} = \frac{38.75}{250} \approx 0.16 \text{ m} \)

\[\Delta l_{\text{rotation}} = \frac{4 \times 0.16}{38.75} \times 2.35 = 0.04 \text{ m} = 4 \text{ cm Sous charge permanente (ELU)} \]

\[\Delta l_{\text{rotation}} = \frac{4 \times 0.15}{38.75} \times 2.35 = 0.036 \text{ m} = 3.6 \text{ cm Sous charge permanente (ELS)} \]

\[\Delta l_{\text{rotation}} = \frac{4 \times 0.03}{38.75} \times 2.35 = 0.0073 \text{ m} = 0.73 \text{ cm Sous charge d’exploitation (ELU)} \]

\[\Delta l_{\text{rotation}} = \frac{4 \times 0.023}{38.75} \times 2.35 = 0.0056 \text{ m} = 0.55 \text{ cm Sous charge d’exploitation (ELS)} \]

- **FREINAGE**

La valeur maximale de force de freinage est celle du convoi Bc : \(F_{\text{Bc}} = 30t = 300 \text{kN} \)

Le tablier repose sur 8 appareils d’appui en élastomère fretté de 500 × 550 × 8(12 + 2.5).

Le déplacement longitudinal dû à l’effort de freinage est :

\[v_x = \frac{f_x \times T_q}{(G \times a \times b)} \]

\[v_x = \frac{(300 \times 10^3) \times 8 \times 12}{1.8 \times 500 \times 550} = 7.27 \text{ mm} = 0.73 \text{ cm} \]

Combinaison d’actions pour la détermination du type de joint :

- \(T_k \): Effet de la température avec sa valeur caractéristique,
- \(Q_{k-fq} \): effet des charges du trafic (rotation) avec leur valeur fréquentes sans charge de trottoir ;
- \(Q_{k-c} \): Effet des charges de trafic (rotation) avec leur valeur caractéristique, y compris les charges du trottoir cumulables ;
- \(Q_{tk} \): Effet des forces centrifuges ou transversales, avec leur valeur caractéristique.

A l’état limite de services :

- **ELS 1**: \(G + Q_{k-c} + 0.6 T_k = 3.6 + 0.55 + 0.6 \times 1.6 = 5.11 \text{ cm} \)
- **ELS 2**: \(G + Q_{k-fq} + Q_{lk} + Q_{tk} + 0.6 T_k = 3.6 + 0.55 + 2.71 + 0.73 + 0.6 \times 1.6 = 8.55 \text{ cm} \)
- **ELS 3**: \(G + Q_{k-fq} - \text{trot} + T_k = 3.6 + 0.55 + 1.6 = 5.75 \text{ cm} \)
A l’état limite ultime :

ELU 1 : $1,35G + 1,35Q_{k-c} + 1,5 \times 0,6T_k = 4 + 0,73 + 1,5 \times 0,6 \times 1,6 = 6,17 \text{ cm}$

ELU 2 : $1,35G + 1,35(Q_{k-fq} + Q_{lk} + Q_{tk}) + 1,5 \times 0,6T_k = 4 + 0,73 + 1,35 \times 2,71 + 1,5 \times 0,6 \times 1,6 = 9,83 \text{ cm}$

ELU 3 : $1,35G + 1,35(Q_{k-fq-trot} + 1,5T_k = 4 + 0,73 + 1,5 \times 1,6 = 7,13 \text{ cm}$

Dans notre cas, les coefficients de pondération ont été déjà intégrés dans le calcul des sollicitations (voir calcul des sollicitations de la poutre). Donc pour les déplacements provoqués par la rotation due aux charges d’exploitation et permanente pas besoin de pondérer les valeurs.

Choix du type de joint :

Le choix du souffle se fait suivant la combinaison la plus défavorable à l’ELS tout en s’assurant que le vide entre maçonnerie permette de reprendre l’allongement ELU sans mise en contact.

le souffle obtenu dans notre cas à l’ELS est : $S = 8,55 \text{ cm} = 85,5 \text{ mm}$.

Dans le catalogue de Freyssinet nous avons le modèle CIPEC Wd110 présentant les caractéristiques suivant :

Souffle nominale : 110 mm, l’intervalle entre deux éléments métalliques en vis-à-vis peut varier de 10 mm à 120 mm.

Figure : illustration du joint de type CIPEC Wd110

Les appuis sont les éléments de la structure permettant de transmettre les charges de la structure au sol. Dans le cas des ponts à poutres à multiples travées, les appuis sont répartis en deux catégories : les appuis intermédiaires et les appuis de rive.

Appuis intermédiaires :
Les appuis intermédiaires ou encore piles de pont, sont des éléments verticaux du pont disposés en travée permettant de transmettre le poids du tablier au sol. Les piles sont constituées d’une superstructure qui est la partie visible et d’une fondation enterrée dans le sol. Les éléments le constituant sont :

- Le chevêtre
- Le fût : colonne ou voile
- La semelle

Dimensionnement du chevêtre :
Le chevêtre est soumis sous l’action de son poids propre et des charges du tablier. Il sera dimensionné comme une poutre dont les appuis sont les colonnes d’appui.

Poids propre :
\[g_{ch} = 2,10 \times 1,5 \times 25 \times 1,03 = 81,11 \text{ kN/m} \]

Charge ponctuelle provenant d’un appareil d’appui :

\[R = 2017,55 \text{ kN (ELS)} \]
\[R = 2760,95 \text{ kN (ELU)} \]

Les réactions horizontales ne sont considérées que pour le calcul de la résistance des appareils d’appuis et la stabilité des appuis.

![Diagramme du moment fléchissant du chevêtre à l'ELS.](image-url)
Figure : diagramme d’effort tranchant du chevêtre à l’ELS.

Figure : diagramme du moment fléchissant du chevêtre ELU.

Figure : diagramme du moment fléchissant du chevêtre ELU.
Tableau : Récapitulatif des sollicitations sur chevêtre :

<table>
<thead>
<tr>
<th></th>
<th>ELS</th>
<th></th>
<th></th>
<th>ELU</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_{travée}</td>
<td>M_{appui}</td>
<td>T_{max}</td>
<td>M_{travée}</td>
<td>M_{appui}</td>
<td>T_{max}</td>
</tr>
<tr>
<td></td>
<td>(kN.m)</td>
<td>(kN.m)</td>
<td>(kN)</td>
<td>(kN.m)</td>
<td>(kN.m)</td>
<td>(kN)</td>
</tr>
<tr>
<td></td>
<td>2002,67</td>
<td>-3078,18</td>
<td>3190</td>
<td>2739,6</td>
<td>-4209,42</td>
<td>4361</td>
</tr>
</tbody>
</table>

DETERMINATION DES ARMATURES :

Calcul du ferraillement sur appui (ELU) :

Calcul du moment réduit ultime :

\[\mu_u = \frac{M_u}{b_o \times d^2 \times f_{bu}} \]

\[f_{bu} = 19,83 \text{ Mpa} \]

\[\theta = 1 \text{ et } b_o = 2,1 \text{ m} ; d = 0,9 \times h_d = 0,9 \times 1,5 = 1,35 \text{ m} \]

\[\mu_u = \frac{4209,42 \times 10^{-3}}{2,10 \times 1,35^2 \times 19,83} = 0,055 \]

\[\mu_{AB} = 0,186 > \mu_u = 0,055 \]

\[\alpha = 1,25 \left(1 - \sqrt{1 - 2 \mu_u} \right) = 1,25 \times \left(1 - \sqrt{1 - 2 \times 0,055} \right) \approx 0,071 \Rightarrow \text{pivot A} \]

Donc \[f_{su} = \frac{f_e}{y_s} = \frac{500}{1,15} = 434,78 \text{ Mpa} \]

La section d’acier correspondant est :

\[A_{st} = \frac{M_u}{Z_u \times f_{su}} \]

\[z = d(1 - 0,4\alpha) = 1,35 \times (1 - 0,4 \times 0,071) = 1,31 \text{ m} \]

\[A_{st} = \frac{4209,42 \times 10^{-3}}{1,31 \times 434,78} = 74 \times 10^{-4} \text{ m}^2 = 72 \text{ cm}^2 \]

Soit 9HA 32 + 1HA16 = 74,39 cm²

Ferraillement sur appui (ELS) :

\[M_{rb} = 18,24 \text{ MN.m} > M_{ser} = 3,025 \text{ MN.m} \]

\[\rightarrow A_{st} = 112,02 \text{ cm}^2 \text{ soit 14HA32} = 112,59 \text{ cm}^2 \]

Nous remarquons que les armatures à l’ELS sont supérieures à celles obtenues à l’ELU. Donc la poutre sera ferraillée sur appui avec 14HA 32.

Ferraillage en travée (ELU) :

\[A_{st} = 47,56 \text{ cm}^2 \text{ soit 10HA25} = 49,09 \text{ cm}^2 \]
Ferraillage en travée (ELS) :

\[A_{st} = 72,09 \text{ cm}^2 \text{ soit } 15HA25 = 73,63 \text{ cm}^2 \]

L’ELS est prépondérant, donc la poutre sera ferraillée avec 15HA25 en travée.

Condition de non fragilité :

\[
\frac{A_{st}}{b_0 \times d} \geq \frac{0,23 \times f_{tj}}{f_{e}}
\]

- \[\frac{A_{st}}{b_0 \times d} = \frac{72,38}{210 \times 0,9 \times 150} = 0,0026 \]
- \[\frac{0,23 \times f_{tj}}{f_{e}} = \frac{0,23 \times 2,7}{500} = 0,0012 \]

\[
\frac{A_{st}}{b_0 \times d} = 0,0026 > \frac{0,23 \times f_{tj}}{f_{e}} = 0,0012 \quad \text{Condition vérifiée.}
\]

Justification des armatures transversales :

\[T_{\text{max}} = 4361 \text{kN} = 4,36 \text{MN} \]

Calcul de la contrainte conventionnelle \(\tau_u \) :

\[\tau_u = \frac{V_u}{b_0 \times d} \Rightarrow \tau_u = \frac{4,36}{2,1 \times 0,9 \times 1,5} \approx 1,54 \text{ MPa} \]

Justification du béton :

\[\tau_u \leq \min \left(\frac{0,15 \times f_{c28}}{\gamma_b} ; 4 \text{MPa} \right) \]

En fissuration préjudiciable et très préjudiciable

\[\tau_u = 1,54 \text{ MPa} \leq \min \left(\frac{0,15 \times f_{c28}}{\gamma_b} = \frac{0,15 \times 35}{1,5} = 3,5 \text{ MPa} ; 4 \text{MPa} \right) \quad \text{Condition vérifiée.} \]

Condition de non fragilité :

\[
\frac{A_{t} \times f_{e}}{b_0 \times d} \geq 0,4 \text{ MPa}
\]

\[
\frac{A_{t} \times f_{e}}{b_0 \times d} = \frac{29,24 \times 10^{-4} \times 500}{2,1 \times 0,9 \times 1,5} = 0,52 \text{MPa} > 0,4 \text{ MPa} \quad \text{Condition vérifiée.}
\]

Diamètre maximal des armatures transversales :

\[\phi_t \leq \min \left(\frac{h}{35} ; \phi_L ; \frac{b_0}{10} \right) \]

\[\frac{h}{35} = \frac{1,5}{35} = 0,043 \text{ m} = 43 \text{mm} \]

\[\phi_L = 32 \text{ mm} \]

\[\frac{b_0}{10} = \frac{210}{10} = 21 \text{ cm} = 210 \text{ mm} \]

\[\phi_t \leq \min (43; 32 ; 210) \Rightarrow \phi_t \leq 32 \text{ mm} \]
Armature de peau du chevêtre : $A_p \geq 3 \, \text{cm}^2/\text{m}$ soit $4 \text{HA10} = 3,14 \, \text{cm}^2$.

DIMENSIONNEMENT DES FUTS DES APPUIS :

- **Calcul des charges et surcharges :**
 - Poids propre de la pile :
 - Pour le chevêtre : $g_{ch} = 2,10 \times 12 \times 1,5 \times 25 \times 1,03 = 973,35 \, \text{kN}$
 - Pour le fût : $g_{fut} = \frac{\pi \times \varnothing^2}{4} \times h_f \times 25 \times 1,03 = \frac{\pi \times 1^2}{4} \times 8,18 \times 25 \times 1,03 = 165,43 \, \text{kN}$
 - Pour les trois fût : $g_{fut} = 165,43 \times 3 = 496,29 \, \text{kN}$
 - Les charges horizontales :
 - Forces de freinage : $F_{Bc} = 300 \, \text{kN}$
 - Variation linéaire du tablier :
 L’effort horizontal correspondant à la variation linéaire du tablier sur les appuis est donné par la relation suivante :
 \[H = \frac{n \times G \times A_{elast} \times \Delta L}{T} \]
 Avec n : nombre d’appareil d’appui sur une ligne d’appui ;
 \[G = 0,9 \, \text{MPa} \] : Module d’élasticité transversal de l’élastomère ;
 \[A_{elast} \] : Surface de l’élastomère ;
 \[\Delta L \] : Variations linéaires du tablier (retrait, fluage, température) ;
 \[T \] : épaisseur de l’appareil d’appui.
 - Pour le retrait + fluage :
 \[H = \frac{4 \times 0,9 \times 500 \times 550 \times 27,1}{116} = 2,31 \times 10^5 \, \text{N} = 231 \, \text{kN} \]
 - Pour la température :
 \[H = \frac{4 \times 0,9 \times 500 \times 550 \times 11,6}{116} = 99000 \, \text{N} = 99 \, \text{kN} \] Courte durée ;
 \[H = \frac{4 \times 0,9 \times 500 \times 550 \times 15,5}{116} = 13,23 \times 10^4 \, \text{N} = 132,3 \, \text{kN} \] Longue durée ;
 - **Combinaison de calcul des piles :**
 - **ELS:**
 \[C_1 = G_{max} + \text{Retrait} \]
 \[C_2 = C_1 + 1,2(A_L + F_{AL}) + 0,6T_{LD} \]
 \[C_3 = C_1 + 1,2(Bc + F_{Bc}) + 0,6T_{LD} \]
 \[C_4 = C_1 + M_{C120} + 0,6T_{LD} \]
 \[C_5 = G_{min} + \text{Ret} + T_{CD} \]
 - **ELU :**
\[C_6 = 1,35C_1 + 1,6(A_L + F_{AL}) + 0,78T_{LD} \]
\[C_7 = 1,35C_1 + 1,6(B_c + F_{BC}) + 0,78T_{LD} \]
\[C_8 = C_1 + 1,35M_{C120} + 0,78T_{LD} \]
\[C_9 = G_{min} + \text{Ret} + 1,35T_{CD} \]
<table>
<thead>
<tr>
<th>CHARGE</th>
<th>ELS (kN)</th>
<th>ELU (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VALEURS</td>
<td>C1</td>
</tr>
<tr>
<td>Gt (réaction du tablier)</td>
<td>12759,09</td>
<td>12759,09</td>
</tr>
<tr>
<td>Gp (poids propre pile)</td>
<td>1469,64</td>
<td>1469,64</td>
</tr>
<tr>
<td>BC</td>
<td>660</td>
<td>792</td>
</tr>
<tr>
<td>FBc</td>
<td>150</td>
<td>180</td>
</tr>
<tr>
<td>Al</td>
<td>1170,35</td>
<td></td>
</tr>
<tr>
<td>Fal</td>
<td>58,045</td>
<td>69,654</td>
</tr>
<tr>
<td>Mc120</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>TLD</td>
<td>49,5</td>
<td>29,7</td>
</tr>
<tr>
<td>TCD</td>
<td>66,15</td>
<td></td>
</tr>
<tr>
<td>Ret</td>
<td>115,5</td>
<td>115,5</td>
</tr>
<tr>
<td>somme des efforts verticaux (V)</td>
<td>14228,73</td>
<td>15020,73</td>
</tr>
<tr>
<td>somme des efforts horizontaux (H)</td>
<td>115,5</td>
<td>325,2</td>
</tr>
</tbody>
</table>
Les combinaisons C_3 (ELS) et C_4 (ELU) sont les plus défavorables. Donc la vérification de la stabilité de l’appui se fera suivant ces deux combinaisons.

Vérification au flambement :

\[\lambda = \frac{l_f}{i} \]

l_f: Longueur de flambement ;

i: Rayon de giration ;

Pour les piles de pont: $l_f = l_0 = 8,18 \text{ m}$

\[i = \frac{0}{4} = \frac{1}{4} = 0,25 \text{ m} \rightarrow \lambda = \frac{8,18}{0,25} = 32,72 < 50 \text{ Pas de risque de flambement.} \]

Calcul du ferraillage des colonnes :

Charge verticale :

\[V_s = \frac{C_6}{3} = 7027,17 \text{ kN} \] (Charge verticale que reçoit chaque colonne parmi les 3 que compte l’appui).

Charge horizontale :

Les charges horizontales déterminées dans le tableau ci-dessus sont prises en compte pour la vérification de la stabilité de l’appui.

Choc des bateaux sur les piles :

Le choc éventuel d’un bateau sur un appui en rivière est assimilé à l’action d’une force horizontale appliquée au niveau des plus hautes eaux navigables.

On admet que cette force est parallèle au sens du courant « choc frontal » ou bien perpendiculaire au sens du courant « choc latéral »[10].

Tableau : force horizontale due au choc de bateau sur les piles.

<table>
<thead>
<tr>
<th>Type de voies navigables</th>
<th>Choc frontal</th>
<th>Choc latéral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voie à grand gabarit catégorie A</td>
<td>8000 kN</td>
<td>1600 kN</td>
</tr>
<tr>
<td>Voie à petit gabarit Catégorie B</td>
<td>1000 kN</td>
<td>200 kN</td>
</tr>
</tbody>
</table>

Nous avons la voie navigable de classe IV, donc nous penons : $H=1000 \text{ kN}$ appliquée à la hauteur de 4,8m (PHE) de l’appui.
Le moment provoqué par le choc des bateaux est :

\[M_b = 1000 \times 4,8 = 4800 \text{N.m} = 4,8 \text{kN.m à l’ELS} \]

\[M_b = 1,2 \times 4,8 = 5,76 \text{ kN.m à l’ELU} \]

Calcul de l’excentricité de charge :

\[e = \frac{M}{N} = \frac{5,76 \times 10^{-3}}{7,03} = 8,19 \times 10^{-4} \text{ m} \]

Calcul de l’effort de compression centré maximal supportable par le béton :

\[N_{b_{\text{max}}} = \frac{\pi \times \phi^2}{4} \times f_{bu} = \frac{\pi \times 1^2}{4} \times 19,83 = 15,57 \text{MN} \]

Calcul du coefficient de remplissage du diagramme de contrainte \(\psi_1 \) :

\[\psi_1 = \frac{N_u}{N_{b_{\text{max}}}} = \frac{7027,17 \times 10^{-3}}{15,57} = 0,45 < 0,81 \]

\[\psi_1 = 0,45 < \frac{2}{3} = 0,66 \rightarrow \xi = \frac{1+\sqrt{9-12\psi_1}}{4(3+\sqrt{9-12\psi_1})} \]

\[\xi = \frac{1+\sqrt{9-12\times0,45}}{4(3+\sqrt{9-12\times0,45})} = 3,55 \]

\(e_{NC} = \xi \times \phi = 3,55 \times 1 = 3,55 \text{ m} > e \) la section est entièrement comprimée et l’état limite n’est pas atteint. La section sera ferraillée avec la section d’armatures minimales :

\[A_{\text{min}} = \max \left[\frac{0,2B}{100}; \ 4\% \ du \ périmètre \right] = \max[0,0314; \ 0,1256] \]

\[A_{\text{min}} = 0,1256 \text{m}^2 \]

\[A_{\text{max}} = 5\%B = \frac{5}{100} \times \frac{\pi \times \phi^2}{4} = 0,03926 \text{m}^2 = 392,7 \text{cm}^2 \text{ Soit 50HA32} \]

Semelle de liaison :

Plusieurs méthodes peuvent être utilisées pour le dimensionnement des semelles de liaison des pieux parmi lesquelles nous avons : la méthode de bielle, la méthode de calcul de la semelle sous forme de poutre renversé, etc. dans ce cas présent, nous allons utiliser la seconde méthode pour déterminer les armatures de la semelle.
Figure : vue en plan de la semelle de liaison

Charges sur la semelle :

Poids propre de la semelle : \(g_s = 2 \times 25 \times 1,03 = 51,5 \text{ kN/m}^2 \)

Poids des enrochements de protection contre affouillement :

\(\rho_s = 26 \text{ KN/m}^3 \) Masse volumique de l’enrochement (Kg/m³)

\[P_{\text{enr}} = \rho \times h_{\text{enr}} \times S_{\text{semelle}} = 1,5 \times 26 \times \left(2,4 \times 12 - 3 \times \frac{\pi \times 12^2}{4} \right) = 1031,3 \text{ kN} \]

\[g_{\text{enr}} = \frac{1031,3}{2,4 \times 12} = 35,81 \text{ kN/m}^2 \text{ sur toute la semelle}. \]

Avec \(h_{\text{enr}} \) : épaisseur de l’enrochement de protection contre affouillement.

Charge verticale :

La charge verticale transmise par chaque colonne à la semelle :

\(V= 7027,17 \text{ kN (ELU)} \)

\(V= 5211,05 \text{ kN (ELS)} \)

Poids de l’eau sur la semelle :

\[P_{\text{eau}} = \rho \times h \times S_{\text{semelle}} = 10 \times 4,8 \times (2,4 \times 12 - 3 \times \frac{\pi \times 12^2}{4}) = \]

\[g_{\text{eau}} = \frac{1269,3}{2,4 \times 12} = 44 \text{ kN/m}^2 \text{ sur toute la semelle}. \]

Avec \(h \) : hauteur d’eau (PHE) ;
\(\rho \): Masse volumique de l’eau ;

La charge permanente totale sur la semelle est :

\[g_{\text{semelle}} = 51,5 + 35,81 + 44 = 131,31 \text{ kN/m}^2 \]

Nous allons considérer 1ml de la semelle comme une poutre appuyée sur les pieux.

Pour déterminer les sollicitations de calcul, nous allons modéliser le schéma de calcul de la semelle dans le logiciel RDM6.

![Figure : schéma de calcul de la semelle de liaison.](image)

Les sollicitations obtenues sont présentées dans le tableau ci-dessous :

Tableau : récapitulatif des sollicitations calculées.

<table>
<thead>
<tr>
<th></th>
<th>ELS</th>
<th></th>
<th></th>
<th>ELU</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{\text{travée}}) (kN.m)</td>
<td>2137,42</td>
<td>(M_{\text{appui}}) (kN.m)</td>
<td>-2581,25</td>
<td>(M_{\text{travée}}) (kN.m)</td>
<td>2883</td>
<td>(M_{\text{appui}}) (kN.m)</td>
</tr>
<tr>
<td>(T_{\max}) (kN)</td>
<td>4653,96</td>
<td>(T_{\max}) (kN)</td>
<td>6278,97</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Les armatures obtenues après les calculs aux deux états limites sont les suivants :

En travée :

\(A_{st} = 97,35 \text{ cm}^2 \) soit 13HA 32 à l’ELS

\(A_{st} = 63,01 \text{ cm}^2 \) soit 14HA25 à l’ELU

Sur appuis (pieux) :

\(A_{st} = 118,28 \text{ cm}^2 \) soit 15HA32 à l’ELS

195
\text{A}_{st} = 76,59 \text{ cm}^2 \text{ soit } 10 \text{HA32 à l'ELU}

Dans tous les deux cas l'ELS est prépondérant, donc la semelle sera ferraillée avec les armatures obtenues à l'ELS.

Condition de non fragilité :

\[
\frac{A_t \times f_{e}}{b_0 \times d} \geq 0,4 \text{ MPa}
\]

\[
\frac{A_t \times f_{e}}{b_0 \times d} = \frac{104,55 \times 10^{-4} \times 500}{1 \times 0,9 \times 2} = 2,9 \text{ MPa} > 0,4 \text{ MPa} \text{ Condition vérifiée.}
\]

Justification des armatures transversales :

\[T_{\text{max}} = 6278,97 \text{ kN} = 6,28 \text{ MN}\]

Calcul de la contrainte conventionnelle \(\tau_u\) :

\[
\tau_u = \frac{V_u}{b_0 \times d} \Rightarrow \tau_u = \frac{6,28}{1 \times 0,9 \times 2} \cong 3,48 \text{ MPa}
\]

Justification du béton :

\[
\tau_u \leq \min \left(\frac{0,15 \times f_{c28}}{\gamma_b}; 4 \text{ MPa} \right) \text{ En fissuration préjudiciable et très préjudiciable}
\]

\[
\tau_u = 3,48 \text{ MPa} \leq \min \left(\frac{0,15 \times f_{c28}}{\gamma_b} = \frac{0,15 \times 35}{1,5} = 3,5 \text{ MPa}; 4 \text{ MPa} \right) \text{ Condition vérifiée.}
\]

Diamètre maximal des armatures transversales :

\[
\varnothing_t \leq \min \left(\frac{h}{35}; \varnothing_L; \frac{b_0}{10} \right)
\]

\[
\frac{h}{35} = \frac{2}{35} = 0,057 \text{ m} = 57 \text{ mm}
\]

\[
\varnothing_L = 32 \text{ mm}
\]

\[
\frac{b_0}{10} = \frac{100}{10} = 10 \text{ cm} = 100 \text{ mm}
\]

\[
\varnothing_t \leq \min (43; 32; 210) \Rightarrow \varnothing_t \leq 32 \text{ mm}
\]
ANNEXE 14 : DEVIS QUANTITATIF ET ESTIMATIF DEFINITIF

<table>
<thead>
<tr>
<th>N°</th>
<th>Désignation</th>
<th>Unité</th>
<th>Quantité</th>
<th>Prix unitaire FCFA HTT</th>
<th>Montant travaux FCFA HTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Tablier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Coffrage plan soigné pour parement du tablier</td>
<td>m²</td>
<td>18535</td>
<td>17 500</td>
<td>324362500</td>
</tr>
<tr>
<td>102</td>
<td>Coffrage perdu du tablier</td>
<td>m²</td>
<td>2 120</td>
<td>18 500</td>
<td>39220000</td>
</tr>
<tr>
<td>103</td>
<td>Béton B30 pour tablier</td>
<td>m³</td>
<td>2 070</td>
<td>200 000</td>
<td>414000000</td>
</tr>
<tr>
<td>104</td>
<td>Béton B35 pour poutres</td>
<td>m³</td>
<td>2 974</td>
<td>225 000</td>
<td>669150000</td>
</tr>
<tr>
<td>105</td>
<td>Aciers HA</td>
<td>kg</td>
<td>770 880</td>
<td>2 000</td>
<td>1541760000</td>
</tr>
<tr>
<td>106</td>
<td>Acier de précontrainte</td>
<td>kg</td>
<td>118 960</td>
<td>4 500</td>
<td>535320000</td>
</tr>
<tr>
<td>109</td>
<td>Lancement des poutres</td>
<td>U</td>
<td>64</td>
<td>1 000 000</td>
<td>64000000</td>
</tr>
<tr>
<td>110</td>
<td>appareils appuis en élastomère frettés</td>
<td>dm³</td>
<td>4083,2</td>
<td>100 000</td>
<td>408320000</td>
</tr>
<tr>
<td>111</td>
<td>Barrière de sécurité BN4</td>
<td>m</td>
<td>1 280</td>
<td>150 000</td>
<td>192000000</td>
</tr>
<tr>
<td>112</td>
<td>Béton B20 pour trottoirs</td>
<td>m³</td>
<td>410</td>
<td>175 000</td>
<td>71750000</td>
</tr>
<tr>
<td>113</td>
<td>corniche en béton armé</td>
<td>m</td>
<td>1 280</td>
<td>75 000</td>
<td>96000000</td>
</tr>
<tr>
<td>114</td>
<td>gargouille</td>
<td>U</td>
<td>128</td>
<td>150 000</td>
<td>19200000</td>
</tr>
<tr>
<td>115</td>
<td>Bordure de trottoir</td>
<td>m</td>
<td>1 280</td>
<td>15 000</td>
<td>19200000</td>
</tr>
<tr>
<td>116</td>
<td>joint de trottoir</td>
<td>m</td>
<td>63</td>
<td>350 000</td>
<td>22050000</td>
</tr>
<tr>
<td>117</td>
<td>joint de chaussée</td>
<td>m</td>
<td>126</td>
<td>450 000</td>
<td>56700000</td>
</tr>
<tr>
<td>118</td>
<td>chape d'étanchéité</td>
<td>m²</td>
<td>7040</td>
<td>20 000</td>
<td>140800000</td>
</tr>
<tr>
<td>119</td>
<td>Chape en mortier pour trottoirs</td>
<td>m²</td>
<td>2240</td>
<td>50 000</td>
<td>112000000</td>
</tr>
<tr>
<td>120</td>
<td>Béton B35 pour poutres pour chevêtre</td>
<td>m³</td>
<td>567</td>
<td>225000</td>
<td>127575000</td>
</tr>
<tr>
<td>121</td>
<td>Béton B35 pour fût</td>
<td>m³</td>
<td>289,1</td>
<td>225000</td>
<td>65047500</td>
</tr>
<tr>
<td>122</td>
<td>Béton B35 pour semelles de liaison</td>
<td>m³</td>
<td>1512</td>
<td>225000</td>
<td>340200000</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>5 258 655 000</td>
</tr>
</tbody>
</table>
Tableau : Devis estimatif sommaire du tablier en béton précontraint pour l’analyse multicritère

<table>
<thead>
<tr>
<th>N°</th>
<th>Désignation</th>
<th>Unité</th>
<th>Quantité</th>
<th>Prix unitaire FCFA HTT</th>
<th>Montant travaux FCFA HTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Tablier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Coffrage plan soigné pour parement du tablier</td>
<td>m²</td>
<td>18535</td>
<td>17 500</td>
<td>324362500</td>
</tr>
<tr>
<td>102</td>
<td>Coffrage perdu du tablier</td>
<td>m²</td>
<td>2 120</td>
<td>18 500</td>
<td>39220000</td>
</tr>
<tr>
<td>103</td>
<td>Béton B30 pour tablier</td>
<td>m³</td>
<td>2 070</td>
<td>200 000</td>
<td>414000000</td>
</tr>
<tr>
<td>104</td>
<td>Béton B35 pour poutres</td>
<td>m³</td>
<td>2 974</td>
<td>225 000</td>
<td>669150000</td>
</tr>
<tr>
<td>105</td>
<td>Aciers HA</td>
<td>kg</td>
<td>770 880</td>
<td>2 000</td>
<td>1541760000</td>
</tr>
<tr>
<td>106</td>
<td>Acier de précontraint</td>
<td>kg</td>
<td>118 960</td>
<td>4 500</td>
<td>535320000</td>
</tr>
<tr>
<td>109</td>
<td>Lancement des poutres</td>
<td>U</td>
<td>64</td>
<td>1 000 000</td>
<td>640000000</td>
</tr>
<tr>
<td>110</td>
<td>appareils appuis en élastomère frettés</td>
<td>dm³</td>
<td>128</td>
<td>100 000</td>
<td>128000000</td>
</tr>
<tr>
<td>111</td>
<td>Barrière de sécurité BN4</td>
<td>m</td>
<td>1 280</td>
<td>150000</td>
<td>192000000</td>
</tr>
<tr>
<td>112</td>
<td>Béton B20 pour trottoirs</td>
<td>m³</td>
<td>410</td>
<td>175 000</td>
<td>71750000</td>
</tr>
<tr>
<td>113</td>
<td>corniche en béton armé</td>
<td>m</td>
<td>1 280</td>
<td>75 000</td>
<td>96000000</td>
</tr>
<tr>
<td>114</td>
<td>gargouille</td>
<td>U</td>
<td>128</td>
<td>150 000</td>
<td>19200000</td>
</tr>
<tr>
<td>115</td>
<td>Bordure de trottoir</td>
<td>m</td>
<td>1 280</td>
<td>15 000</td>
<td>19200000</td>
</tr>
<tr>
<td>116</td>
<td>joint de trottoir</td>
<td>m</td>
<td>63</td>
<td>350 000</td>
<td>22050000</td>
</tr>
<tr>
<td>117</td>
<td>joint de chaussée</td>
<td>m</td>
<td>126</td>
<td>450 000</td>
<td>56700000</td>
</tr>
<tr>
<td>118</td>
<td>chape d'étanchéité</td>
<td>m²</td>
<td>7040</td>
<td>20 000</td>
<td>140800000</td>
</tr>
<tr>
<td>119</td>
<td>Chape en mortier pour trottoirs</td>
<td>m²</td>
<td>2240</td>
<td>50 000</td>
<td>112000000</td>
</tr>
<tr>
<td>120</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>4330312500</td>
</tr>
</tbody>
</table>
Tableau 27: Devis estimatif sommaire tablier mixte acier-béton pour l’analyse multicritère

<table>
<thead>
<tr>
<th>N°</th>
<th>Désignation</th>
<th>Unité</th>
<th>Quantité</th>
<th>Prix unitaire FCFA HTT</th>
<th>Montant travaux FCFA HTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Tablier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Coffrage plan soigné pour parement du tablier</td>
<td>m²</td>
<td>6785</td>
<td>17 500</td>
<td>118737500</td>
</tr>
<tr>
<td>102</td>
<td>Béton B30 pour tablier</td>
<td>m³</td>
<td>2 415</td>
<td>200 000</td>
<td>483000000</td>
</tr>
<tr>
<td>103</td>
<td>Aciers HA</td>
<td>kg</td>
<td>603 750</td>
<td>2 000</td>
<td>1207500000</td>
</tr>
<tr>
<td>104</td>
<td>Aciers pour charpente métallique</td>
<td>kg</td>
<td>524 055</td>
<td>3 000</td>
<td>1572165000</td>
</tr>
<tr>
<td>105</td>
<td>Fourniture Aciers goujons</td>
<td>kg</td>
<td></td>
<td>1 500</td>
<td>1500</td>
</tr>
<tr>
<td>106</td>
<td>Peinture de protection contre la corrosion</td>
<td>m²</td>
<td>11 215</td>
<td>40 000</td>
<td>448600000</td>
</tr>
<tr>
<td>107</td>
<td>Mise sur appui définitif</td>
<td>f</td>
<td>1</td>
<td>250 000 000</td>
<td>250000000</td>
</tr>
<tr>
<td>108</td>
<td>Appareil d'appui en élastomère fretté</td>
<td>dm³</td>
<td></td>
<td>100000</td>
<td>100000</td>
</tr>
<tr>
<td>109</td>
<td>chape d'étanchéité</td>
<td>m²</td>
<td>7040</td>
<td>20 000</td>
<td>140800000</td>
</tr>
<tr>
<td>110</td>
<td>joint de chaussée</td>
<td>m</td>
<td>70</td>
<td>450 000</td>
<td>315000000</td>
</tr>
<tr>
<td>111</td>
<td>joint de trottoir</td>
<td>m</td>
<td>35</td>
<td>350 000</td>
<td>122500000</td>
</tr>
<tr>
<td>112</td>
<td>Barrière de sécurité BN4</td>
<td>m</td>
<td>1280</td>
<td>15 000</td>
<td>192000000</td>
</tr>
<tr>
<td>113</td>
<td>Gargouilles</td>
<td>U</td>
<td>128</td>
<td>150 000</td>
<td>192000000</td>
</tr>
<tr>
<td>114</td>
<td>corniche en béton armé</td>
<td>m</td>
<td>1280</td>
<td>75 000</td>
<td>960000000</td>
</tr>
<tr>
<td>115</td>
<td>Bordure de trottoir</td>
<td>m</td>
<td>1280</td>
<td>15 000</td>
<td>192000000</td>
</tr>
<tr>
<td>116</td>
<td>chape de trottoir</td>
<td>m²</td>
<td>2240</td>
<td>50 000</td>
<td>112000000</td>
</tr>
<tr>
<td>117</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>4 703 054 000</td>
</tr>
</tbody>
</table>
Figure 1 : ferraillage de la poutre précontrainte en section médiane
Figure 2 : ferraillage poutre précontrainte en section d’about.
Figure 3 : plan ferraillage de l’entretoise en travée.
Figure 4 : ferraillage de l’entretoise sur appui.
Figure 5 : plan de ferrailage du coffrage perdu.

Figure 6 : coupe transversale du chevêtre
Figure 7 : ferraillages du fût
Figure 8 : ferraillage chevêtre + fût
Figure 9 : ferraillage transversal de la semelle de liaison.
Figure 10 : plan de ferraillage poutre + hourdis en section d’about
Figure 11 : ferraillage longitudinal de la semelle de liaison
Figure 12 : coupe transversale du tablier
Figure 13 : coupe transversale de l’appui
Figure 14 : vue en plan du chevêtre

Figure 15 : ferraillage du bossage d’appui.
Figure 16 : profil en long du pont