

AUDIT ENERGETIQUE D'UN BATIMENT ADMINISTRATIF DANS LA VILLE DE OUAGADOUGOU : CAS DU SIEGE D'ORABANK

MEMOIRE POUR L'OBTENTION DU MASTER D'INGENIERIE EN GENIE ELECTRIQUE ET ENERGETIQUE OPTION : ENERGETIQUE

Présenté et soutenu publiquement le 16 janvier 2018 par

Rosine Fadila Nonkwendé OUEDRAOGO

Directeur de mémoire : Prof. Yézouma COULIBALY, Maître de conférences CAMES

Encadreur: Dr. Y. Moussa SORO, Maître assistant CAMES

Maître de stage : M. Alfred AGODE

Jury d'évaluation du stage :

Président : Dr. Ahmed BAGRE

Membres et correcteurs : Prof. Yézouma COULIBALY

Dr. Y. Moussa SORO Dr. Sayon SIDIBE

Promotion [2016/2017]

Citation

Quand on vous demande si vous êtes capable de faire un travail répondez : « bien sûr, je peux ! » Puis débrouillez-vous pour y arriver.

Theodore Roosevelt

Homme d'Etat américain, Président des Etats-Unis (1858 - 1919)

Dédicaces

Nous dédions particulièrement ce présent document :

- au Seigneur pour ses multiples bienfaits;
- à nos parents pour leur amour, leur présence et leur soutien inconditionnels, nous vous témoignons notre profonde gratitude. Puisse le Seigneur vous combler au-delà de vos attentes!
- à notre frère et notre sœur pour toute l'affection dont ils nous ont toujours entourée, et pour tous les conseils reçus ;
- à nos amis, pour toute la complicité et les fous rires, veuillez retrouver en ces lignes l'expression de notre tendre affection;
- à toutes les personnes côtoyées et particulièrement les stagiaires rencontrés tout au long du déroulement du stage, pour tous les moments d'échange. Merci d'avoir rendu cette expérience enrichissante. Nous vous souhaitons du succès dans vos entreprises futures.

Remerciements

Les travaux présentés dans le présent mémoire ont été effectués au sein de l'entreprise dénommée SysAid Faso qui évolue dans les domaines des télécommunications, de l'électrification rurale, de l'efficacité énergétique et de l'énergie solaire.

Je tiens à adresser mes sincères remerciements à Monsieur François Sanvi SODJI, Directeur Général de SysAid Faso SARL, pour m'avoir ouvert les portes de sa structure. Je suis particulièrement reconnaissante envers Messieurs Alfred AGODE et Ghislain NIODOGO, respectivement conseiller technique et directeur technique de SysAid Faso, pour les efforts consentis dans la réalisation de ma mission. Merci à l'ensemble de l'équipe de SysAid Faso pour m'avoir acceptée et intégrée dans cette remarquable famille.

Mes vifs remerciements au Prof. Yézouma COULIBALY, Maître de conférences CAMES, qui a accepté de diriger les travaux de ce mémoire. Qu'il trouve ici ma reconnaissance pour ses conseils avisés sur les travaux d'audit dans les locaux d'Orabank.

Dr. Y. Moussa SORO, Maître assistant CAMES, a été avec moi sur le terrain et a assuré le suivi quotidien de mes travaux. Cher encadreur, je vous prie de trouver dans ces lignes ma gratitude pour votre disponibilité tout au long de mes travaux de stage.

Merci au Dr. Ahmed BAGRE, Directeur des Etudes de 2iE, d'avoir accepté de présider le jury de ma soutenance. Ses commentaires et critiques ont été d'un grand apport scientifique et technique pour la finalisation du présent mémoire.

Dr. Sayon SIDIBE a accepté de participer à l'évaluation de mon mémoire. Je lui exprime ici ma sincère gratitude pour ses remarques et conseils.

Messieurs Bely OUATTARA et Rémi OUEDRAOGO de la SONABEL, m'ont fourni toutes les informations nécessaires pour l'étude et l'analyse de la facturation. Merci pour votre disponibilité et votre gentillesse.

A tous ceux qui ont participé de près ou de loin à la réalisation de mes travaux de fin d'études, je vous adresse mes sincères remerciements.

Résumé

Les activités économiques tels la production industrielle, le transport, la climatisation des bâtiments ou l'utilisation d'appareils électriques, sont consommatrices d'énergie. Or, la production de cette énergie utile a un coût. Cela donne à l'énergie une valeur économique qui fait aujourd'hui de l'efficacité énergétique une préoccupation majeure. Le siège de la société bancaire Orabank-Burkina souhaite dans ce sens alléger sa facture d'électricité annuelle qui s'élève aujourd'hui à environ 35 269 859 FCFA. Située en plein cœur de la ville de Ouagadougou, elle a sollicité les services de l'entreprise SysAid pour la réalisation d'un audit énergétique en son sein. Cette mission nous a été assignée dans le cadre de notre stage sous la formulation du thème : « Audit énergétique d'un bâtiment administratif dans la ville de Ouagadougou : cas du siège d'Orabank ».

La mission a comporté l'analyse des factures d'électricité, la collecte et l'analyse de données de consommation, l'élaboration de mesures d'économie d'énergie ainsi que la production du rapport d'audit énergétique.

Il a ainsi révélé des potentialités avec et sans investissement. Celles-ci ont trait à la sensibilisation des usagers, au remplacement d'équipements énergivores, à l'installation de mécanismes de gestion de la consommation et à la mise en place d'une installation solaire photovoltaïque. Les mesures préconisées présentent un temps de retour sur investissement minimal de 12 mois et maximal de 7 ans. Les coûts d'investissement sont estimés à 38 138 400 FCFA pour une réduction annuelle de la facture d'électricité de plus de 9 000 000 FCFA.

Mots Clés:

- 1 Audit énergétique
- 2 Efficacité énergétique
- 3 Mesures d'économie d'énergie
- 4 Facture d'électricité
- 5 Installation solaire photovoltaïque

Abstract

Economic activities such as industrial production, transportation, building air-conditioning or the use of various electrical appliances consume energy. However, the production of this useful energy has a cost. This gives energy an economic value that today makes energy efficiency a major concern. The headquarters of the banking company Orabank-Burkina wishes in this way to lighten its annual electricity bill which now stands at nearly FCFA 35,269,859. This company, located in the center of the city of Ouagadougou, has therefore requested the services of the company SysAid for the realization of an energy audit within it. This mission was assigned to us as part of our internship in this company under the formulation of the theme: "Energy audit of an administrative building in the city of Ouagadougou: the case of the headquarters of Orabank".

This mission included the analysis of electricity bills, the collection and analysis of consumption data, the development of energy saving measures as well as the production of the energy audit report.

It has revealed the potential for saving energy with and without investment. These relate to user awareness, the replacement of energy-intensive equipment, the installation of consumption management mechanisms and the installation of a photovoltaic solar installation. The recommended measures have a minimum payback period of 12 months and a maximum of 7 years. The investment costs are estimated at FCFA 38,138,400 for an annual reduction of the electricity bill of more than FCFA 9,000,000.

Keywords:

- 1 Energy audit
- 2 Energy efficiency
- 3 Energy saving measures
- 4 Electricity bill
- 5 Photovoltaic solar installation

Liste des sigles et abréviations

Désignation Général

2iE Institut International d'Ingénierie de l'Eau et de

1'Environnement

AICVF Association des ingénieurs en climatique,

ventilation et froid

BAES Bloc autonome d'éclairage de sécurité

BT Basse tension

COP Coefficient de performance

DAB Distributeur automatique de billets

HPL Heures pleines

HPT Heures de pointe

HTA Haute tension catégorie A

Lumen. Unité de mesure du flux lumineux

PR Polyéthylène réticulée

PV Photovoltaïque

PVGIS Photovoltaic geographical information system

RDC Rez-de-chaussée

SONABEL Société nationale d'électricité du Burkina

TDE Taxe sur le développement de l'électricité

TSDAAE Taxe de soutien au développement des activités

audiovisuelles de l'Etat

UTE Union technique de l'électricité

Table des matières

Citation	i
Dédicaces	ii
Remerciements	iii
Résumé	iv
Abstract	v
Liste des sigles et abréviations	vi
Liste des tableaux	ix
Liste des figures	ix
Introduction	1
Chapitre I. Généralités	2
I.1. Présentation de la structure d'accueil : SysAid Faso SARL	2
I.2. Problématique	2
I.3. Objectifs de l'étude	3
I.4. Méthodologie	3
I.4.1. Etude des factures d'électricité	3
I.4.1.1. Composition d'une facture haute tension catégorie A	3
I.4.1.2. Progiciel de facturation d'électricité	6
I.4.2. Collecte des données de consommation énergétique	10
I.4.3. Analyse des données de consommation énergétique	10
I.4.4. Elaboration de mesures d'économies d'énergie et études de faisabilité	11
I.4.5. Rapport de l'audit	11
Chapitre II. Résultat de l'audit réalisé pour le compte du siège d'Orabank	12
II.1. Pré-diagnostic énergétique	12
II.1.1. Factures d'électricité	12
II.1.1.1. Analyse de la consommation active de juin 2016 à mai 2017	13
II.1.1.2. Analyse des pénalités de juin 2016 à mai 2017	14
II.1.2. Architecture et installation électrique du bâtiment	15
II.1.2.1. L'architecture du bâtiment	15
II.1.2.2. Installation électrique du bâtiment	17
II.2. Analyse détaillée des postes d'économie d'énergie	18
II.2.1. Diagnostic de la climatisation	18
II.2.2. Diagnostic des utilités alimentées par l'onduleur général	20
II.2.3. Diagnostic de l'éclairage	20
II.2.4. Diagnostic des biens de consommation et de la ventilation	21

Chapitre III. I	Mesures d'économies d'énergie proposées à Orabank	22
III.1. N	Mesures d'économies à investissement faible ou nul	22
III.1.1.	Suivi de la facturation	22
III.1.2.	La sensibilisation	22
III.2. N	Mesures à investissement moyen	23
III.2.1.	Remplacement de luminaires	23
III.2.2.	Remplacement du télérupteur par une minuterie	25
III.3. N	Mesures à investissement élevé	26
III.3.1.	Remplacement de climatiseurs mono-split muraux	26
III.3.2.	Installation d'un rideau d'air à l'entrée principale du RDC	28
III.3.3.	Installation solaire photovoltaïque	30
III.4. R	Lécapitulatif des mesures d'économies d'énergie	31
Chapitre IV.	Conception et dimensionnement d'un système photovoltaïque	32
IV.1. C	Option 1 : Système photovoltaïque hybride	32
IV.2.	Option 2 : Système photovoltaïque connecté au réseau	34
IV.2.1.	Détermination de la puissance crête	34
IV.2.2.	Choix de l'onduleur-réseau	34
IV.2.3.	Configuration du champ photovoltaïque	35
IV.2.4.	Support, orientation et inclinaison des panneaux	35
IV.2.5.	Dimensionnement des sections de câbles	36
IV.2.5	.1. Câbles partie courant continu (CC)	36
IV.2.5	.2. Câbles partie courant alternatif (CA)	37
IV.2.6.	Dimensionnement des dispositifs de sécurité	38
IV.2.6	.1. Coffret de protection CC	38
IV.2.6	.2. Coffret de protection CA	39
Conclusions et p	perspectives	40
Références bibli	ographiques	41
Sites internet		41
Annexes I		

Liste des tableaux

Tableau 1. Données de la facture d'électricité de juin 2016 à mai 2017	14
Tableau 2. Classification par ordre de performance des mono-splits installés	19
Tableau 3. Comparaison des caractéristiques des luminaires existant à ceux de substitution proposée	24
Tableau 4. Analyse financière du remplacement de luminaires	25
Tableau 5. Analyse financière du remplacement du télérupteur	25
Tableau 6. Comparaison des climatiseurs existant à ceux de substitution proposée	27
Tableau 7. Analyse financière du remplacement de climatiseurs	28
Tableau 8. Analyse financière du remplacement des 5 climatiseurs les moins performants	28
Tableau 9. Analyse financière de l'installation d'un rideau d'air	29
Tableau 10. Analyse financière de l'installation solaire à injection réseau	30
Tableau 11. Récapitulatif des mesures d'économie	31
Tableau 12. Caractéristiques du champ PV	35
Tableau 13. Récapitulatif du dimensionnement des sections de câbles CC	36
Tableau 14. Récapitulatif du dimensionnement des dispositifs de sécurité	39

Liste des figures

Figure 1. Simulation d'une étude de cas de la facturation sur la base du fichier de G. THIOMBIANO	8
Figure 2. Simulation d'une étude de cas de la facturation sur la base de notre fichier	9
Figure 3. Graphe montrant l'évolution de la facture d'électricité de juin 2014 à mai 2017	12
Figure 4. Graphe montrant la répartition de la facturation annuelle	13
Figure 5. Graphe montrant l'évolution de la consommation active de juin 2016 à mai 2017	13
Figure 6. Graphe montrant les dépassements de puissance souscrite enregistrés de juin 2016 à mai 2017	15
Figure 7. Aperçu de l'immeuble abritant le siège de ORABANK	15
Figure 8. Configuration du TGBT de l'installation électrique de l'immeuble	17
Figure 9. Configuration du tableau divisionnaire de chaque étage	17
Figure 10. Répartition de la demande énergétique par poste de consommation	18
Figure 11. Tube LED de marque PHILIPS [7]	23
Figure 12. Minuterie LEGRAND-412401 [8]	25
Figure 13. Climatiseur mono-split mural de marque AIRWELL [9]	26
Figure 14. Exemple d'un rideau d'air placé à une d'entrée [10]	29
Figure 15. Synoptique du système PV hybride	32
Figure 16. Configuration du circuit d'éclairage pour le raccordement à une installation photovoltaïque hybri	ide33
Figure 17 Synontique du système PV à injection réseau	34

Introduction

Les transformations d'énergie, notamment la production d'électricité ont été identifiées comme les causes principales du réchauffement planétaire et du changement climatique [1]. Face à cela, deux possibilités : favoriser l'utilisation d'énergie provenant de sources renouvelables ou tout simplement réduire la consommation d'énergie. Le défi majeur est d'améliorer l'efficacité énergétique dans les bâtiments et dans le transport sans dégrader le service rendu au quotidien. Il convient toutefois de reconnaitre que pour lutter plus efficacement contre le réchauffement planétaire et le changement climatique, les habitudes de consommation d'énergie doivent nécessairement être revues. En utilisant mieux l'énergie lors des activités quotidiennes, la consommation pourrait être réduite tout en conservant la même qualité de vie.

Au Burkina Faso, les pratiques des concepts d'efficacité énergétique demeurent mal connues et leurs adoptions encore très lentes. Aussi, l'utilisation de l'énergie de façon générale et de l'électricité en particulier dans les ménages, les bâtiments administratifs et même dans l'industrie n'est pas efficiente. On relève d'énormes postes de gaspillage d'énergie dans les édifices publics et privés aussi bien au niveau de la production de l'énergie électrique, du transport que de la consommation (éclairage, ventilation, climatisation, etc.). Par ailleurs, le coût de plus en plus élevé de la facture énergétique pousse les consommateurs à une prise de conscience. La question de la maîtrise de la consommation de l'énergie devient capitale. Elle représente en particulier pour les entreprises un avantage concurrentiel qu'il est aujourd'hui essentiel de ne pas négliger.

L'établissement bancaire Orabank, conscient de cela, ne désire pas rester en marge de l'évolution technologique. C'est dans ce cadre que la société SysAid Faso a été retenue pour l'élaboration et la conduite d'un programme d'efficacité énergétique dans le bâtiment abritant le siège de cette banque. A partir d'un audit énergétique détaillé, ce programme doit permettre de dresser une proposition chiffrée et argumentée de mesures d'économies d'énergie, pour donner la possibilité à Orabank de décider des investissements appropriés. C'est dans ce cadre que notre stage de fin d'études pour l'obtention du diplôme d'ingénieur en génie électrique et énergétique s'est déroulé au sein de ladite entreprise.

Le rapport de stage sera organisé comme suit. Tout d'abord, nous aborderons les généralités sur le déroulement de l'audit énergétique. Par la suite, nous exposerons les résultats de l'audit qui se composeront du pré-diagnostic et du diagnostic approfondi des factures d'électricité et des équipements électriques. Puis, nous présenterons les mesures d'économies d'énergie. Enfin, la conception et le dimensionnement d'un champ photovoltaïque seront développés.

Chapitre I. Généralités

I.1. Présentation de la structure d'accueil : SysAid Faso SARL

SysAid Faso SARL est une société d'ingénierie burkinabè située sur l'avenue de l'hôtel de ville de Ouagadougou. Elle occupe le 2e et le 3e étage de l'immeuble NOURIA HOLDING de la rue du travail sis à 100 m de la place des cinéastes.

La Société SysAid Faso appartient au groupe SODJI HOLDING GmbH qui, créé en août 2002 à Berlin, s'est rapidement imposé comme un leader mondial dans le développement de l'énergie, des télécommunications, de la transmission de données, du traitement des données numériques (cartes à puce), des logiciels bancaires et des solutions de e-gouvernement. Le groupe est fort de 5 filiales que sont IMET TOGO, SysAid Sénégal, SysAid Faso, SysAid France et SysAid Côte d'Ivoire. Il a également su nouer des partenariats forts avec d'importantes sociétés internationales que sont WAPCOS (Asie), TELEMENIA Ltd (Israël), AGREETECH (Chine), RISEN, AASTRA (Suisse), SIEMENS (Allemagne), KRONE (Allemagne), HITEC POWER (Hollande), 3M (France), Denso (Allemagne), AF Electrification (France); Samex (France), RADWIN (Israël), WAVEIP (Israël), etc.

Aujourd'hui, la filiale SysAid Faso offre de nombreux services dans le domaine de l'énergie tels l'étude en optimisation énergétique de bâtiments industriels et commerciaux, la fourniture et l'installation de groupes électrogènes, la construction de centrales thermiques, la conduite de projets d'électrification rurale, l'installation de systèmes solaires photovoltaïques, la vente de panneaux solaires, de groupes solaires, de convertisseurs, de régulateurs, de batteries, etc.

Afin d'œuvrer de façon synchrone dans l'atteinte de ses objectifs, la société s'organise autour de différentes directions et départements. Il s'agit de la Direction Générale, du Département des Finances et de la Comptabilité, de la Direction Commerciale, du Département des Marchés et Affaires juridiques, du Département des Télécommunications et du Département de l'Energie.

I.2. Problématique

Orabank souhaite réduire la facture d'électricité du bâtiment abritant son siège. Pour ce faire, elle a pris des mesures tels l'installation de batteries de compensation de 23 kVAr et le remplacement de plafonniers existant par des plafonniers à LED. Malgré la mise en œuvre de ces mesures, la facture énergétique semble toujours élevée. Qu'est ce qui pourrait en être la cause ? Des pénalités sur la facture d'électricité ? L'utilisation d'appareils électriques énergivores ?

Les installations électriques de la banque sont principalement alimentées par le réseau SONABEL. Ce n'est qu'en cas de délestage, qu'un groupe électrogène secours prend le relai. La banque dispose au cœur de ses activités d'un circuit ondulé. Ce circuit alimente un onduleur de 40 kVA qui dessert les serveurs du siège. Ces serveurs communiquent avec les serveurs des autres agences de la ville de Ouagadougou. Il est donc indispensable au siège de maintenir cette alimentation permanente de jour comme de nuit. Les responsables de la banque souhaitent recourir à une installation solaire photovoltaïque pour accroître le niveau d'autonomie de ce circuit. Une telle installation permettra à Orabank d'amorcer l'ensemble des mesures à entreprendre pour s'afficher comme une banque verte.

I.3. Objectifs de l'étude

L'objectif général de l'audit énergétique du bâtiment abritant le siège d'Orabank est d'élaborer des mesures d'efficacité énergétique afin de réduire la facture d'électricité. Plus spécifiquement, il s'agit :

- de mesures de réduction d'éventuelles pénalités sur la facture d'électricité ;
- de mesures de réduction de la consommation énergétique des appareils ;
- de mesures d'orientation vers les énergies renouvelables.

L'élaboration de ces mesures requiert avant tout une connaissance de la situation énergétique actuelle. En effet, c'est à travers l'analyse d'éventuels manquements que des propositions viables sont adoptées. L'analyse des données actuelles de consommation énergétique du bâtiment sera donc au cœur de la conduite de cet audit.

I.4. Méthodologie

I.4.1. Etude des factures d'électricité

Les factures d'électricité sont adressées à un abonné par la société nationale d'électricité du Burkina (SONABEL). L'étude des factures d'électricité a pour but de situer la consommation de la banque et de mettre en évidence les éventuelles pénalités sur les factures d'électricité des dernières années.

I.4.1.1. Composition d'une facture haute tension catégorie A

Le coût de l'énergie consommée pour un abonnement en haute tension catégorie A (HTA) se compose :

- du coût de la consommation active en heures pleines ;
- du coût de la consommation active en heures de pointe ;
- de la prime fixe ;
- de la pénalité de dépassement de la puissance souscrite ;
- de taxes diverses.

I.4.1.1.1. Coût de la consommation active en heures pleines (en FCFA)

Il correspond au montant de l'énergie active consommée par l'abonné en heures pleines (HPL) sur la période considérée. En HTA, sont considérées comme heures pleines les tranches horaires suivantes : 00h à10h, 14h à 16h et 19h à 00h [2]. Ce coût est évalué à l'aide la relation (1).

Coût consommation active
$$HPL = Energie$$
 active $HPL \times Tarif_{HPL}$ (1)

Avec:

 $Energie\ active\ HPL: l'\'energie\ active\ consomm\'ee\ en\ heure\ pleine\ (en\ kWh)\ ;$

 $Tarif_{HPL}$: le tarif en heure pleine (en FCFA·kWh⁻¹).

I.4.1.1.2. Coût de la consommation active en heures de pointe (en FCFA)

Il correspond au montant de l'énergie active consommée par l'abonné en heures de pointe (HPT) sur la période considérée. En HTA, sont considérées comme heures de pointe les tranches horaires suivantes : 10h à 14h, 16h à 19h [2]. Ce coût est évalué à l'aide la relation (2).

Coût consommation active
$$HPT = Energie \ active \ HPT \times Tarif_{HPT}$$
 (2)

Avec:

Energie active HPT : l'énergie active consommée en heure de pointe (en kWh) ;

 $Tarif_{HPT}$: le tarif en heure de pointe (en FCFA kWh⁻¹).

I.4.1.1.3. Prime fixe (en FCFA)

Elle est considérée comme la contrepartie demandée à l'abonné pour que la SONABEL lui garantisse, en permanence, le niveau de puissance demandé. Elle est proportionnelle à la puissance souscrite [3, p. 21]. La valeur de cette prime est donnée par la relation (3) :

$$Prime \ fixe = \frac{P_S \times Tarif_{prime \ fixe}}{12}$$
 (3)

Avec:

 P_S : la puissance souscrite (en kW);

 $Tarif_{prime\ fixe}$: le tarif de la prime fixe (en FCFA·kW-l·an-l).

Lorsque le facteur de puissance des installations de l'abonné est inférieur à 0,8, les coûts de la consommation sont affectés d'un coefficient de majoration. On parle de pénalités pour mauvais facteur de puissance. Ils sont à l'opposé affectés d'une minoration lorsque le facteur de puissance est supérieur à 0,9. On parle de bonification pour bon facteur de puissance.

Les différents tarifs cités peuvent être consultés sur la grille tarifaire de la SONABEL en annexe 1.

I.4.1.1.4. Pénalité de dépassement de la puissance souscrite (en FCFA)

En HTA, il n'est pas concevable d'interrompre la fourniture d'électricité pour dépassement de la puissance souscrite tel qu'en abonnement basse tension (BT). En contrepartie, l'abonné doit payer des pénalités en cas de dépassement. Cette pénalité est déterminée de la manière suivante : pour chaque kW de dépassement, la pénalité correspond à une utilisation de la puissance atteinte pendant 30 h au tarif en heure de pointe.

I.4.1.1.5. Taxes diverses

Les taxes diverses se composent de :

- la redevance ou taxe sur la location et l'entretien du système de comptage qui concerne les frais de location du compteur d'électricité ainsi que la contribution de l'abonné à l'entretien du système de comptage. Cette taxe est fonction du type d'abonnement [3, p. 21];
- la taxe de soutien au développement des activités audiovisuelles de l'Etat (TSDAAE) qui est un prélèvement que la SONABEL fait mensuellement sur chaque abonné au profit du trésor public pour les besoins de l'Etat en matière de développement des activités audiovisuelles;
- la taxe de développement de l'électricité (TDE) qui correspond à un prélèvement effectué sur chaque abonné de la SONABEL pour le financement de l'électrification rurale;
- la taxe sur la valeur ajoutée (TVA) qui est prélevée à hauteur de 18% des différents coûts.

I.4.1.1.6. Facture complémentaire

En dehors de la facturation normale, il existe d'autres types de factures qui sont établis de façon exceptionnelle comme la facture complémentaire pour dépassement de la puissance souscrite.

Un avenant est émis sur la base de la 4^{ème} facture mensuelle lorsque 3 dépassements consécutifs sont constatés à l'exception des mois chauds de mars, avril et mai.

En effet,

« L'une des clauses du contrat avec la SONABEL stipule que l'usager a droit à trois (3) dépassements/an au maximum de la puissance souscrite. Dans le cas contraire elle est en droit d'appliquer dès le $4^{\grave{e}me}$ dépassement constaté, la puissance maximale atteinte par l'abonné. » [4]

L'étude des factures d'électricité se fait à l'aide d'une collecte préalable de factures sur une période donnée. Elle revient à étudier de façon minutieuse chacune de ces factures afin de recalculer la facture émise par la SONABEL, d'y déceler les éventuelles pénalités et de simuler des mesures permettant d'atténuer ou d'annuler ces pénalités. Pour y arriver, nous avons conçu un progiciel sur Microsoft Office Excel.

I.4.1.2. Progiciel de facturation d'électricité

Un classeur Excel réalisé par Godefroy THIOMBIANO est habituellement utilisé pour le calcul de la facture d'électricité en basse tension double tarif et en haute tension catégorie A. Ce classeur permet de recalculer la facture d'électricité à partir de données sur la consommation mensuelle. Toutefois, des écarts sont constatés entre la valeur de la facture émise par la SONABEL et celle recalculée par ce classeur. Cela nous a incité à une analyse poussée du fichier. Quelques failles ont ainsi pu être relevées.

- La non prise en compte de la taxe sur le développement de l'électrification

Pour le calcul des taxes, le fichier de G. THIOMBIANO ne prend en compte que la taxe TSDAAE, la redevance et la TVA. Il ne prend donc pas en compte la taxe TDE. Or « La TDE a été autorisée par la loi n°33-2007/AN du 6 décembre 2007 portant loi de finances pour l'exécution du budget de l'Etat -Gestion 2008 et les modalités d'application définies par arrêté conjoint n° 2008-012/MCE/MEF/MCPEA du 16 octobre 2008 ... L'application de la taxe est intervenue sur la facture SONABEL de septembre 2009. C'est un prélèvement de 2 FCFA sur chaque kilowattheure vendu par la SONABEL et reversé au Fonds de développement de l'électrification (FDE) pour financer des investissements liés à l'électricité en milieu rural.»[5].

- Le calcul d'une franchise sur la consommation d'énergie réactive

Le fichier proposé par G. THIOMBIANO applique une franchise qui n'est pas prise en compte dans la facturation de la SONABEL. En effet, la SONABEL n'alloue pas une franchise à partir d'une consommation donnée d'énergie réactive. La consommation d'énergie réactive n'affecte pas la facture d'électricité lorsqu'elle entraine un facteur de puissance compris entre 0,8 et 0,9. En dessous, la facture est pénalisée et au-dessus, elle est bonifiée.

- Le calcul de l'avenant pour dépassement de puissance souscrite

Dès qu'un dépassement est constaté sur les 12 mois étudiés, le fichier de G. THIOMBIANO calcule systématiquement un avenant pour dépassement de la puissance souscrite. Or, l'avenant pour dépassement de puissance souscrite n'est pas systématique à tout dépassement de puissance souscrite. Il est plutôt soumis aux conditions énoncées au I.4.1.1.6.

- La base de comparaison pour l'optimisation

Pour l'optimisation de la facture d'électricité, le fichier de G. THIOMBIANO propose comme facture de référence la facture calculée après ajustement de la puissance souscrite à la puissance maximale atteinte. Or, ce montant se révèle très souvent excessif par rapport à quelques dépassements. Il serait plus opportun d'utiliser la facture réellement émise par la SONABEL. Cette approche permettrait au client de mesurer de façon plus significative l'éventuel gain par rapport à ce qui lui est actuellement facturé.

Le progiciel que nous avons conçu permet de combler ces failles. Il permet en effet de recalculer avec justesse le montant facturé par la SONABEL. Il donne également des précisions sur :

- Le montant de la consommation active en heures de pointe et en heures pleines ;
- Le montant de la prime fixe ;
- La consommation réactive ;
- La production réactive ;
- Les éventuelles majorations ou minorations sur la facture ;
- Les montants respectifs de la taxe TSDAAE, de la taxe TDE et de la TVA.

Il permet aussi de déterminer :

- La puissance minimale de batteries de condensateurs à installer pour annuler la pénalité de facteur de puissance ;
- La puissance minimale de batteries de condensateurs à installer pour obtenir la bonification minimale sur le facteur de puissance ;
- La puissance maximale de batteries de condensateurs à installer pour obtenir la bonification maximale sur la pénalité de facteur de puissance.

Toutes ces précisions facilitent davantage les simulations pour l'obtention d'une consommation optimale.

Une étude de cas de la facturation sur la base du fichier de G. THIOMBIANO et sur la base de notre fichier est présentée respectivement sur la figure 1 et la figure 2. Sur la première figure, on observe bien une différence sur l'année entre la facture calculée et celle émise par la SONABEL. Cet écart correspond aux frais supplémentaires liés à la taxe TDE. Par contre sur la deuxième figure, ces 2 valeurs sont identiques car cette taxe est bien prise en compte.

		BS		MONE D		******		AB + B 4	ATT								
	NOM DE L'ABONNE: ORABANK NATURE DE L'ABONNEMENT MT																
	PUISSANCE DES TRANSFORMATEURS PUISSANCE SOUSCRITE							•			80 k						
			PUISSAN(vv «VAr					
			TARIFICA		DENSA	ILCKS	•				25 F	V AI					
	TARIFICATION TARIF HEURES PLEINES : 64 FCFA/kWh																
	TARIF HEURES PLEINES : 04 FCFA/kWii TARIF HEURES DE POINTE : 139 FCFA/kWh																
	PRIME FIXE ANNUELLE : 139 FCFA/kW/AN																
	LOCATION ET ENTRETIEN COMPTEUR: 8 538 FCFA																
ENER. ACTIVE ENER HEURES PUIS. PROD. CONDO CONDO PENAL. PENAL. PRIME MONTANT ELEC											TAXES	FACT.	FACT.	Taxes&			
PERIODE	HPL	HPT	REAC.	Α	TTEINTE	REAC.	MINI	MAX	COS phi	PUIS.S	FIXE	HPL	HPT	TV&TVA	Calculée	SONABEL	TV
	kWh	kWh	kVArh	Н	kW	kVAr	kVAr	kVAr	FCFA	FCFA	FCFA	FCFA	FCFA	FCFA	FCFA	FCFA	
juin-16	12 762	10 047	5 702	422	100	9 706	0	0 _	0	83 400	434 399	770 209	1 317 036	534 160	3 139 204	3 194 380	55 298
juil-16	13 262	9 896	6 898	581	89	13 363	0	0 _	0	37 530	434 399	803 771	1 302 586	530 422	3 108 708	3 164 963	56 212
août-16	11 492	8 627	6 348	733	76	16 859	0	0 _	0	0 _	434 399	701 496	1 143 631	469 612	2 749 138	2 798 361	50 252
sept-16	11 092	8 253	6 085	736	80	16 928	0	0 _	0	0 _	434 399	677 768	1 095 164	454 771	2 662 102	2 709 479	48 688
oct-16	11 119	8 480	6 251	747	76	17 181	0	0 _	0	0	434 399	679 416	1 125 344	461 124	2 700 283	2 748 283	49 216
nov-16	13 507	10 576	6 744	712	85	16 376	0	0 _	0		434 399	820 905	1 396 066	549 742	3 221 962	3 280 629	58 256
déc-16	12 529	9 635	6 702	710	85	16 330	0	0	0	20 850	434 399	762 673	1 273 813	512 664	3 004 399	3 058 476	54 366
janv-17	10 873	7 729	5 850	944	79	21 712	0	0	0	0	434 399	669 642	1 033 782	440 802	2 578 625	2 624 543	47 452
févr-17	9 863	6 454	5 427	518		11 914	0	0	0	0	434 399	600 282	853 087	389 677	2 277 445	2 317 249	42 270
mars-17	11 015	7 892	4 367	682		15 686	0	0	0	4 170	434 399	672 174	1 046 058	444 546	2 601 347	2 647 593	47 730
avr-17	14 175	11 066	4 907	1 075		24 725	0	0	0	70 890	434 399	868 598	1 472 666	584 447	3 431 000	3 492 992	61 074
mai-17	13 545	9 838	4 412	678	99	15 594	0	0	0	79 230	434 399		1 298 110	541 264	3 175 969	3 232 911	56 794
TOTAL	145 234	108 493	69 693	8 538					0	316 920	5 212 788	8 849 900	14 357 343	5 913 231	34 650 182	35 269 859	627 608
MOY.	12 103	9 041	5 808	712	84	16 365	0	0	0	26 410	434 399	737 492	1 196 445	492 769	2 887 515	2 939 155	
	TION MON		CTURE:					-	0%	1%	15%	26%	41%	17%			
	ES DIVERS						=	-	316 920	FCFA	SOIT	0,9% D	E LA FAC	TURE			
	OYEN DU K		VENI					L	134	FCFA							
FACTEUR DE PUISSANCE MOYEN COS PHI= 0,958 CONSOMMATION TOTALE APPARENTE S= 274 088 kVAh																	
	MATION 1			L		Q			-78 759	kVARh							
	REACTIVE			phi=.750	kVARh/	•		Г	196 932	kVARh							
	REACTIVE		_			Fac		L	0	kVARh							
	CE DE BAT						=	Γ	0								
	VCE DE FA				\ · • •	,			619 677	FCFA							
								_	322 0.7								

Figure 1. Simulation d'une étude de cas de la facturation sur la base du fichier de G. THIOMBIANO

SOUSCRIPTEUR	ORABANK																	
NATURE DE L'ABONNEMENT	TARIF E1																	
PUISSANCE TRANSFORMATEUR		kVA																
PUISSANCE SOUSCRITE	80	kW																
PUISSANCE CONDENSATEURS	23	kVAr																
TARIFICATION																		
TARIF HEURES PLEINES	64	FCFA/kWh																
TARIF HEURES DE POINTE	139	FCFA/kWh																
TARIF PRIME FIXE	70826	FCFA/kW/an																
MONTANT DE BASE PRIME FIXE	472173	FCFA																
LOCATION COMPTAGE	8538	FCFA/mois																
PERIODE	de		juin-16	à	mai-17													
				FACTURE					RELE	VES DU CO	OMPTEUR			SOMMATION	D'ENE	FACTEUR I	E PUISSANCE	
																		PUISS.MAX
	CONSOM.	CONSOM.		PENALITES DE									PUISS.	PRODUCTION		PENALITES	BONIFICATION	BATT.
	ENERGIE	ENERGIE		DEPASSEMENT	TAXES	TOTAL A	DIFFERENCE	FACTURE				NBRE	MAX	REACTIVE EN	TAN	FACTEUR DE	FACTEUR DE	CONDENSATEUR_
PERIODE	ACTIVE HPL	ACTIVE HPT	PRIME FIXE	PUISSANCE	DIVERSES	PAYER	FACTURE	SONABEL	ACTIF HPL	ACTIF HPT	REACTIF	D'HEURE	ATTEINTE	AMONT	(PHI)	PUISSANCE	PUISSANCE	Bonification
	FCFA	FCFA	FCFA	FCFA	FCFA	FCFA	FCFA	FCFA	kWh	kWh	kVArh	h	kW	kVArh		FCFA	FCFA	kVAr
juin-16	770 209	1 317 036	434 399	83 400	589 336	3 194 380	-	3 194 380	12 762	10 047	5 702	422	100	9 706	0,00	-	219 274	20
juil16	803 771	1 302 586	434 399	37 530	586 677	3 164 963	-	3 164 963	13 262	9 896	6 898	581	89	13 363	0,00	-	220 935	18
août-16	701 496	1 143 631	434 399	-	518 835	2 798 361	-	2 798 361	11 492	8 627	6 348	733	76	16 859	0,00	-	198 220	15
sept16	677 768	1 095 164	434 399	-	502 148	2 709 479	-	2 709 479	11 092	8 253	6 085	736	80	16 928	0,00	-	191 942	14
oct16	679 416	1 125 344	434 399	-	509 124	2 748 283	-	2 748 283	11 119	8 480	6 251	747	76	17 181	0,00	-	194 710	14
nov16	820 905	1 396 066	434 399	20 850	608 409	3 280 629	-	3 280 629	13 507	10 576	6 744	712	85	16 376	0,00	-	230 554	16
déc16	762 673	1 273 813	434 399	20 850	566 741	3 058 476	-	3 058 476	12 529	9 635	6 702	710	85	16 330	0,00	-	214 859	16
janv17	669 642	1 033 782	434 399	-	486 720	2 624 543	-	2 624 543	10 873	7 729	5 850	944	79	21 712	0,00	-	185 898	12
févr17	600 282	853 087	434 399	-	429 481	2 317 249	-	2 317 249	9 863	6 454	5 427	518	62	11 914	0,00	-	164 154	17
mars-17	672 174	1 046 058	434 399	4 170	490 792	2 647 593	-	2 647 593	11 015	7 892	4 367	682	81	15 686	0,00	-	187 186	12
avr17	868 598	1 472 666	434 399	70 890	646 439	3 492 992	-	3 492 992	14 175	11 066	4 907	1 075	97	24 725	0,00	-	241 362	10
mai-17	822 966	1 298 110	434 399	79 230	598 206	3 232 911	-	3 232 911	13 545	9 838	4 412	678	99	15 594	0,00	-	222 215	13
TOTAL ANNUEL	8 849 900	14 357 343	5 212 788	316 920	6 532 908	35 269 859	-	35 269 859	145 234	108 493	69 693	8 538	1 009	196 374		-	2 471 309	
MOYENNE ANNUELLE	737 492	1 196 445	434 399	26 410	544 409	2 939 155	-	2 939 155	12 103	9 041	5 808	712	84	16 365	0,00	-	205 942	15
REPARTITION MONTANT DE LA FACTU	25%	41%	15%	1%	19%	100%												
COÛT MOYEN DU kWh	134,3	FCFA																
FACTEUR DE PUISSANCE MOYEN COS(1																	
CONSOMMATION APPARENTE TOTAL	262576	kVA																
CONSOMMATION REACTIVE TOTALE F		kVAr																
PUISSANCE MIN. REQUISE BATTERIES		kVAr																

Figure 2. Simulation d'une étude de cas de la facturation sur la base de notre fichier

I.4.2. Collecte des données de consommation énergétique

La collecte des données va concerner :

- les relevés des caractéristiques des différents appareils ;
- les relevés de la consommation énergétique ;
- les mesures de l'éclairement et de la température des différents locaux ;
- l'observation des habitudes des consommateurs.

Certains outils ont nécessité cette collecte de données comme l'analyseur de réseau, le luxmètre, le multimètre et le mètre ruban dont les aperçus sont joints en annexe 2.

- L'analyseur de réseau et d'énergie

Un analyseur de réseau et d'énergie permet de mesurer les paramètres de tension, de courant, de puissance et d'énergie utiles à un diagnostic complet d'une installation électrique. Ces valeurs aident ainsi à évaluer sur une période donnée la consommation sur un circuit électrique.

Le luxmètre

Un luxmètre permet de mesurer la quantité de lumière provenant d'un objet lumineux. Utilisé pour mesurer l'éclairement des différents bureaux, il permet donc de s'assurer du bon dimensionnement de l'éclairage afin de réduire la consommation de puissance tout en garantissant un éclairement suffisant.

Le multimètre

Un multimètre est un instrument regroupant en un seul boîtier un ensemble d'appareils de mesures électriques. Il est généralement constitué d'un voltmètre, d'un ampèremètre et d'un ohmmètre. Muni d'une sonde de température, il permet de mesurer les températures dans les différents locaux.

Le mètre ruban

Un mètre ruban est un outil de mesure de longueur. Il est utilisé pour la mesure des dimensions du toit.

I.4.3. Analyse des données de consommation énergétique

Il s'agit d'analyser de façon détaillée les données collectées au niveau des équipements pour en évaluer les performances et de déterminer les opérations nécessaires pour générer des économies d'énergie sur les équipements. Ces études se font en 02 étapes principales.

Analyse préalable ou pré-diagnostic énergétique

Cette étape essentielle a pour objectif d'avoir une vision globale de la situation de l'entreprise. Cela permettra de mettre en évidence les actions à coûts faibles, voire nuls et d'orienter l'entreprise vers des audits plus ciblés.

- Analyse détaillée des postes d'économie d'énergie

Sur la base des résultats du pré-diagnostic, l'audit est orienté sur tout ou une partie des postes d'économies identifiés. Une étude approfondie des principaux postes de consommation d'énergie permet alors de déterminer les actions et les investissements envisageables qui seront économiquement profitables.

I.4.4. Elaboration de mesures d'économies d'énergie et études de faisabilité

Après détermination des postes d'économie d'énergie, des mesures adéquates d'atténuation ou de correction sont proposées. Avant de mettre en œuvre ces mesures, il convient de se demander si elles pourront être réalisées d'un point de vue technique, financier et organisationnel, d'où la nécessité d'une étude de faisabilité. La réalisation de cette étude permet ainsi d'évaluer les objectifs visés, d'établir les conditions de réussite du projet en termes de finance, de ressources humaines, de compétences, de matériel, de temps, etc. Elle permet également d'examiner différents scénarios possibles des mesures et de planifier leur mise en œuvre. Le temps de retour sur investissement est un indicateur clé pour décider de la viabilité des projets qui seront présentés.

I.4.5. Rapport de l'audit

En fin d'étude, un rapport est remis à la structure auditée. Ce rapport rend compte de l'étude et des mesures d'économies proposées. Il sert de référence à la structure pour l'exécution et la mise en œuvre des mesures qu'elle décidera d'adopter.

Les outils présentés ont été sollicités tout au long du processus d'audit réalisé pour le compte du siège d'ORABANK. Le chapitre II en expose les résultats.

Chapitre II. Résultat de l'audit réalisé pour le compte du siège d'Orabank

II.1. Pré-diagnostic énergétique

II.1.1. Factures d'électricité

Le siège d'ORABANK dispose d'un poste privé de transformation de 250 kVA. Il bénéficie d'un abonnement HTA et a souscrit à une puissance de 80 kW. Ce bâtiment appartient à la catégorie tarifaire E1. Voir <u>annexe 1</u> pour les détails concernant cette grille tarifaire. L'installation comporte en amont une batterie de compensation de 23 kVAr. Les factures d'électricité du siège d'ORABANK ont été étudiées sur 3 années consécutives ; soit de juin 2014 à mai 2017. La figure 3 en présente l'évolution.

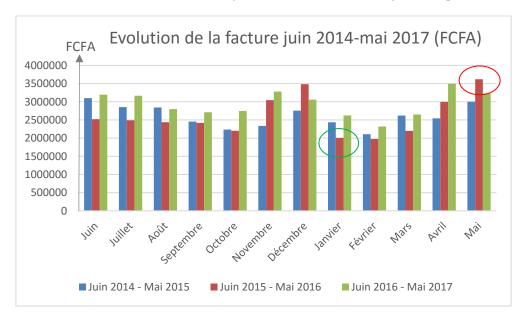


Figure 3. Graphe montrant l'évolution de la facture d'électricité de juin 2014 à mai 2017

La facture d'électricité la moins élevée a été enregistrée en janvier 2016 (2 005 816 FCFA) tandis que la plus élevée l'a été en mai 2016 (3 619 379 FCFA). Toutefois, cette figure fait ressortir une évolution similaire des différentes factures d'une année à l'autre. En effet, les plus fortes consommations sont relevées en période chaude (autour du mois de mai). A l'opposé, les plus faibles consommations sont observées en période froide au cours des mois de janvier et février. La facture d'électricité présente la même évolution que la consommation active comme le montre en <u>annexe 3</u> le graphe sur l'évolution des consommations actives. Cette évolution similaire fait présumer une quasi-absence de pénalités sur la facture d'électricité.

Sur les 3 années, l'année 3 (juin 2016-mai 2017) présente en moyenne les factures les plus élevées et les plus récentes. Elle se prête donc à une étude détaillée dont les résultats sont présentés dans le paragraphe suivant.

II.1.1.1. Analyse de la consommation active de juin 2016 à mai 2017

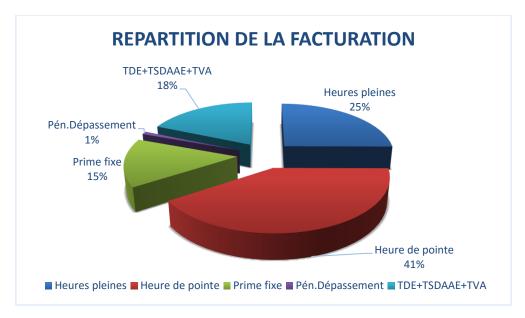


Figure 4. Graphe montrant la répartition de la facturation annuelle



Figure 5. Graphe montrant l'évolution de la consommation active de juin 2016 à mai 2017

La figure 4 ci-dessus indique que la facturation de la consommation active occupe près de 66% de la facture électrique. L'évolution de cette consommation active sur une année peut être observée sur la figure 5 ci-dessus. La courbe représentée montre que le bâtiment enregistre sa consommation maximale au mois d'avril. Cette courbe connait ensuite une déclinaison jusqu'au mois d'octobre avant de remonter vers un nouveau pic de consommation en novembre. Après le mois de novembre, elle décroît de nouveau, puis connait une nouvelle remontée allant du mois de février au pic d'avril.

Cette description se rapproche de celle de l'évolution annuelle de la température de la ville de Ouagadougou. La période de forte chaleur s'étend en effet de mars à mai tandis que les faibles températures sont relevées de décembre à février.

Ainsi, l'évolution de la température du milieu influe considérablement sur la consommation active du bâtiment. Il est donc jugé probable que les unités de climatisation et/ou de ventilation soient les principaux postes de forte consommation du bâtiment.

II.1.1.2. Analyse des pénalités de juin 2016 à mai 2017

Les calculs effectués sur notre progiciel révèlent que le coût moyen du kWh s'élève à 134 FCFA. L'ensemble des valeurs significatives est résumé dans le tableau suivant :

Facture d'électricité	35 269 859 FCFA				
Consommation active HPT	112 272 kWh				
Consommation active HPL	150 304 kWh				
Consommation réactive	117 306 kVArh				
Production réactive	196 374 kVArh				
Coût moyen du kWh	134 FCFA				
Cosinus phi moyen de l'installation	1				
Nombre de dépassement	7				

Tableau 1. Données de la facture d'électricité de juin 2016 à mai 2017

Le progiciel révèle que la batterie de compensation de 23 kVAr installée est surdimensionnée de 3 kVAr. En effet, le cosinus phi moyen de l'installation atteint 1 dès 20 kVAr. En l'absence de batterie de compensation, le cosinus phi serait de 0,911. Cette valeur supérieure à 0,9 permettait donc déjà à Orabank de bénéficier d'une bonification de 80 146 FCFA/an. Celle-ci passe à 2 471 309 FCFA/an lorsqu'on installe une batterie de compensation de 20 kVAr et reste telle même au-delà. Ce montant représente la bonification maximale dont la banque peut bénéficier à travers une installation de batterie de compensation. La banque aurait donc pu économiser sur 3 kVAr de batterie de condensateur achetée. Toutefois, ce léger surdimensionnement laisse une marge de précaution bien essentielle. En effet, au fil du temps, la batterie se détériore et perd en efficacité sans oublier que la dynamique évolutive de la banque s'accompagne nécessairement d'une consommation plus importante.

Sur les 12 mois étudiés, le compteur a enregistré des dépassements allant de 1 à 20 kW sur 7 mois dont 3 dépassements consécutifs de mars à mai 2017 comme le présente la figure 6.

Toutefois, cette période coïncide avec la période chaude qui est exemptée de la clause relative au dépassement de la puissance souscrite. Elle n'entrainera donc aucune interpellation de la SONABEL pour dépassement de puissance souscrite.

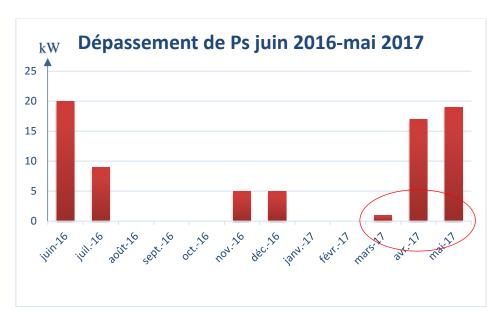


Figure 6. Graphe montrant les dépassements de puissance souscrite enregistrés de juin 2016 à mai 2017

En conclusion, il n'y a pas lieu de modifier le contrat d'abonnement à la SONABEL. La réduction de la facture d'électricité sera alors orientée sur la réduction de la consommation de la puissance active. Il s'agit de s'intéresser aux différentes utilités du bâtiment.

II.1.2. Architecture et installation électrique du bâtiment

II.1.2.1. L'architecture du bâtiment

Figure 7. Aperçu de l'immeuble abritant le siège de ORABANK

D'une architecture moderne comme le montre la figure 7, l'immeuble abritant le siège de ORABANK est constitué de 5 niveaux habitables. Il a été mis en location au compte d'ORABANK depuis 2014. Fidèle aux couleurs du groupe, l'immeuble est recouvert de carreaux par endroits et d'une peinture de couleur vert-blanc. Seules les façades Est et Ouest présentent des surfaces vitrées. La façade Ouest, d'une surface vitrée plus réduite que celle de la façade Est, est directement exposée au soleil. La façade d'entrée, qui correspond au côté Est du bâtiment, est recouverte à environ 40% de fenêtres vitrées. Les fenêtres sont dotées de stores à bandes verticales de couleur vert clair et donnent sur un balcon présentant un auvent. La porte d'entrée, également vitrée, est accessible à partir d'une terrasse couverte. Le rayonnement solaire ne frappe donc pas directement les vitres.

Les murs intérieurs de l'immeuble sont peints en blanc. Ils renferment entre autres :

- les caisses au rez-de-chaussée (RDC);
- le service des opérations bancaires au niveau R+1;
- le service informatique au niveau R+2;
- le service des ressources humaines au niveau R+3;
- la direction générale au niveau R+4.

Les différents bureaux d'un même pallier communiquent au travers de cloisons amovibles en aluminium semi vitrées et ouvertes par endroits sur le dessus.

Ainsi, l'architecture de l'immeuble minimise les infiltrations des rayons solaires.

II.1.2.2. Installation électrique du bâtiment

Les figures 8 et 9 présentent la configuration de l'installation électrique du bâtiment.

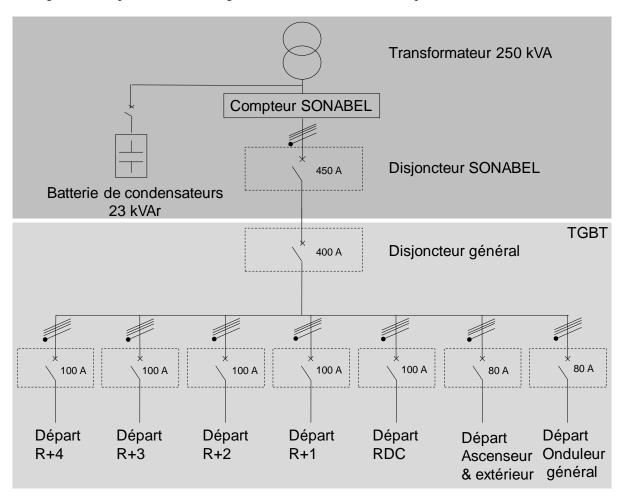


Figure 8. Configuration du TGBT de l'installation électrique de l'immeuble

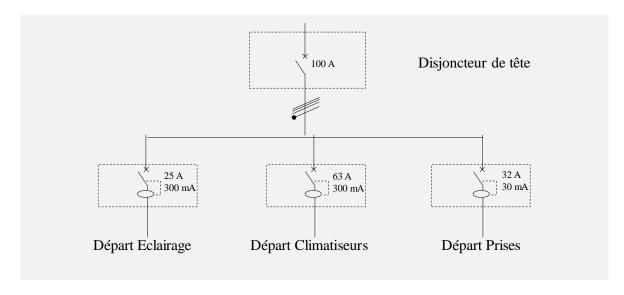


Figure 9. Configuration du tableau divisionnaire de chaque étage

Cette répartition offre la possibilité d'un raccordement du système solaire à concevoir soit :

- à l'ensemble du bâtiment ;
- à un étage donné;
- aux utilités d'un étage donné.

Par contre, il n'offre pas une possibilité de raccordement à un poste de consommation spécifique. Pour le faire sur l'éclairage par exemple, il faudrait mettre en place de nouveaux circuits électriques qui permettraient de regrouper les circuits d'éclairage des différents étages. La proposition solaire devra donc tenir compte de cet aspect.

La visite de site a permis d'identifier les principaux postes de consommation que sont la climatisation, l'informatique et l'éclairage. Sur l'ensemble du bâtiment, le 3^e et le 2^e étage présentent les effectifs les plus importants en termes de personnel et d'appareils électriques. Aussi, une prédominance des appareils de bureautique est perceptible. L'analyse détaillée permettra de déceler les éventuels éléments de gaspillage d'énergie des postes identifiés.

II.2. Analyse détaillée des postes d'économie d'énergie

II.2.1. Diagnostic de la climatisation

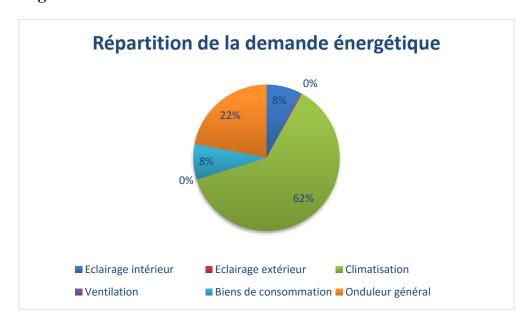


Figure 10. Répartition de la demande énergétique par poste de consommation

La répartition de la demande énergétique en sur la figure 10 indique que la climatisation, avec 62 % de couverture, constitue le plus grand poste de consommation. Cette consommation est d'autant plus accentuée au regard :

- du fonctionnement de climatiseurs de faible COP (aperçu joint en annexe 4);
- de l'entrée de faibles consignes de température comme 18°C relevée sur le climatiseur de la salle d'attente au R+4;
- du gain de chaleur à travers l'ouverture de la porte principale d'accès à la banque. De l'extérieur, cette porte donne directement sur un espace client climatisé. Tout au long de la

journée, son ouverture est constamment sollicitée, ce qui occasionne de fortes consommations des unités de climatisation installées.

Toutefois, il convient de relever que des gestes d'économie d'énergie ont également été observés. En effet, sur un même pallier et pour une température extérieure mesurée de 33°C, 5 climatiseurs sur 9 étaient éteints et les consignes d'ambiance des différentes unités étaient en majorité de 25°C. La communication entre les différentes cloisons offrait une ambiance générale jugée confortable par les agents de la banque d'où l'économie faite sur l'allumage des autres unités de climatisation.

La climatisation de l'immeuble est assurée par des systèmes décentralisés. Il a été dénombré au total 43 mono-splits type « mural », 1 mono-split type « console » et 1 mono-split type « cassette » comme le détaille le tableau 2.

Туре	Modèle	СОР	Puissance frigorifique (kW)	Puissance électrique (kW)	Nombre	Puissance électrique totale (kW)
Mural	Mural SHARP AH-A12MEV		3,50	1,11	5	5,53
Mural	assette SHARP AC048HC4TGD Mural SHARP AH-A18 LEV		3,52	1,16	1	1,16
Cassette			14,07	4,90	1	4,90
Mural			5,01	1,77	20	35,30
Mural			6,70	2,45	10	24,50
Console	SHARP GS-A24LCV	2,71	7,04	2,60	1	2,60
Mural	SAMSUNG AR18JCFSAWKN	2,61	5,28	2,02	2	4,04
Mural	Mural SAMSUNG AR24HCFQAWKN Mural SHARP AH-A189E		7,03	2,76	2	5,52
Mural			5,10	2,08	2	4,16
Mural	SHARP AH-249E	2,43	6,70	2,76	1	2,76

Tableau 2. Classification par ordre de performance des mono-splits installés

Les appareils utilisés ont des coefficients de performance (COP) compris entre 3,17 et 2,43. Or, suivant le rapport du projet PNUD/FEM RAF/93/G32 établi dans le cadre du projet de réglementation énergétique et thermique des bâtiments neufs en Côte d'Ivoire [6, p. 130], seuls les modèles AH-A12MEV et AS12UUQN respectent la recommandation minimale de COP de 2,8. Tous les autres modèles devraient avoir des COP minimaux de 3 car ils présentent des puissances frigorifiques de plus de 4 kW (Voir <u>annexe 5</u>). Un remplacement des climatiseurs dont le COP est inférieur à 2,9 peut donc être préconisé.

Dysfonctionnement constaté : Seul le mono split installé au rez-de-chaussée dans la salle abritant le distributeur automatique de billet (DAB) présentait un dysfonctionnement apparent lors de la visite. Les condensats se déversent à travers les ouvertures de l'unité intérieure, ce qui tend à inonder le sol sur lequel repose le distributeur.

Il est recommandé à la banque de recourir à une maintenance pour orienter le conduit des condensats vers l'extérieur pour le déversement dans les caniveaux situés à ses abords.

II.2.2. Diagnostic des utilités alimentées par l'onduleur général

Un onduleur de 40 kVA assure l'alimentation sans interruption des différents serveurs, des caméras de surveillance, du DAB, des grilles de protection d'entrée et des différentes prises ondulées.

Les appareils de bureautique de l'immeuble sont tous alimentés par les prises ondulées. Il s'agit essentiellement des appareils informatiques et téléinformatiques comme l'ordinateur, le téléphone, l'imprimante, le scanner, la photocopieuse, le téléviseur. A l'exception des bureaux des directeurs et des caissiers, les appareils d'impression, de photocopie et de scannage sont disposés de sorte à être partagés par le maximum d'usagers. On en dénombre ainsi 6 au R+4, 5 au R+3, 5 au R+2, 8 au R+1 et 9 au RDC. Cela représente déjà une bonne approche d'efficacité énergétique.

Toutefois il a été constaté que les ordinateurs, imprimantes, scanners et photocopieuses restaient bien souvent en mode veille la nuit et les weekends. Cela représente chaque mois une dépense énergétique de près de 16 kWh.

II.2.3. Diagnostic de l'éclairage

Le système d'éclairage est essentiellement constitué de :

- lampes fluorescentes T8 de 60 cm et de 120 cm pour l'éclairage des bureaux et de l'arrièrecour ;
- lampes LED T8 de 60 cm;
- lampes sanitaires tube S19 pour l'éclairage des toilettes ;
- lampes de bureaux ;
- plafonniers LED pour l'éclairage des toilettes, des halls, de la cage d'escaliers ;
- blocs autonomes d'éclairage de sécurité (BAES);
- lampes projecteurs LED pour l'éclairage des abords du bâtiment.

L'annexe 6 présente une répartition de ces lampes suivant la puissance totale installée. Avec respectivement 4,8 kW et 4,7 kW de puissance installée, les lampes fluorescentes de 60 cm et 120 cm occupent les parts les plus importantes. Un remplacement de celles-ci par des lampes LED adéquates réduirait considérablement la consommation.

Toutefois, une analyse de l'éclairement des différents locaux indique de façon générale un très faible éclairement de ceux-ci. Les mesures se situent entre 249 lux relevés au bureau de la direction des risques et 137 lux relevés au bureau du chargé du contentieux. 500 lux sont pourtant recommandés pour de tels bureaux (Cf. annexe 7). Le service courrier, situé au rez-de-chaussée, présente une valeur très critique de 40,3 lux. Il partage l'éclairage du bureau voisin constitué d'un pavé lumineux de 4 tubes LED T8. Toutefois, le flux lumineux fourni par le tube LED installé est bien plus faible que celui fourni par le tube fluorescent installé : 650 lm contre 1050 lm soit une différence de 400 lm. Les faibles éclairements constatés présentent un risque potentiel pour le confort visuel des agents de la banque. La résolution de cet inconfort réside soit :

- dans une exploitation de la lumière du jour ou
- dans une augmentation du nombre de luminaires adjointe d'une réorganisation de leur emplacement.

L'éclairage de la cage d'escalier est commandé aux différents étages du bâtiment par un télérupteur. Toutefois, ces luminaires restent allumés pratiquement toute la journée malgré l'abondance par moments de la lumière du jour. Des ouvertures présentent le long du mur des escaliers facilitent l'infiltration des rayons solaires. Il serait donc opportun d'associer au télérupteur un système automatique d'extinction des lampes.

En marge de l'étude, 7 plafonniers LED en panne ont été relevés au niveau des toilettes et halls. Il en était de même pour les lampes sanitaires tube S19. Pour un meilleur confort visuel des agents, il est recommandé à la banque de procéder à leurs remplacements.

II.2.4. Diagnostic des biens de consommation et de la ventilation

Sur l'ensemble du bâtiment, il a été recensé comme biens de consommation 7 distributeurs d'eau, 5 machines à café et 3 réfrigérateurs répartis dans les différents étages. Cette répartition offre une bonne optimisation de l'utilisation des biens de consommation. Ce poste n'est donc pas considéré comme étant énergivore sur l'ensemble des installations. Le détail sur la répartition des puissances installées peut être consulté en <u>annexe 8</u>.

Il n'y a pratiquement pas de système de ventilation dans le bâtiment. Il n'est équipé que de 2 brasseurs de faible puissance 50 W et 65 W situés respectivement au RDC côté ascenseur et à la guérite. Celui du RDC restait éteint lors de nos visites, l'ambiance intérieure était suffisante pour ne pas nécessiter sa mise en marche. La ventilation ne constitue pas non plus un poste énergivore sur l'ensemble des installations.

Le diagnostic ainsi établi donne lieu à des propositions de mesures d'économie d'énergie qui sont présentées dans le chapitre suivant.

Chapitre III. Mesures d'économies d'énergie proposées à Orabank

Les mesures d'économies d'énergie sont présentées et classées suivant le coût d'investissement qu'elles nécessitent à savoir :

- les mesures à investissement faible ou nul ;
- les mesures à investissement moyen ;
- les mesures à investissement élevé.

Pour chaque mesure envisagée, il sera réalisé une estimation :

- du coût d'investissement ;
- de l'économie d'énergie annuelle ;
- de l'économie financière annuelle ;
- du temps de retour sur investissement.

Le cas du remplacement des luminaires sera pris en exemple pour illustrer le détail des calculs effectués.

III.1. Mesures d'économies à investissement faible ou nul

Il s'agit du suivi de la facturation et de la sensibilisation du personnel.

III.1.1. Suivi de la facturation

La banque n'a reçu à ce jour aucun avenant pour dépassement de puissance souscrite. Néanmoins, la tendance observée sur les 3 dernières années invite à la vigilance. Il lui est fortement recommandé de désigner en interne un responsable pour le suivi de ses factures. Celui-ci aura pour rôle de tirer la sonnette d'alarme en cas de dépassement et d'anticiper les dépassements à venir de sorte à préserver la banque d'un éventuel avenant de plus de cent vingt-huit mille cent quarante-huit (128 148) FCFA.

La banque disposant déjà d'un service pour la gestion de la facturation, il lui sera aisé d'affecter une telle responsabilité à ce service. Toutefois, la mise en œuvre de cette mesure requiert une formation de l'agent désigné à ladite tâche. Cette formation pourra être assurée par un auditeur externe.

A défaut, la banque peut s'offrir les services d'un auditeur externe expérimenté qui assurera, de façon périodique, le contrôle de sa facturation dans son ensemble.

III.1.2. La sensibilisation

Il s'agit particulièrement d'inviter les agents de la banque à éteindre les ordinateurs et autres équipements de bureautique la nuit et le weekend. Cette mesure permettra à la banque de réaliser une économie d'énergie annuelle de 194 kWh soit une réduction de près de treize mille cinq cent dix-huit (13 518) FCFA.

Cette mesure est simplifiée dans sa mise en œuvre grâce aux blocs de multiprises déjà installés. Il faut toutefois garder à l'esprit que la mise en place d'une campagne de sensibilisation efficace demande du temps et de l'énergie. Elle portera essentiellement sur la vulgarisation d'étiquettes et d'affiches dans les différents locaux. La sensibilisation du personnel est une mesure généralement rentable car l'investissement financier est relativement faible et les résultats souvent très bons.

Pour garder les usagers toujours alertes sur les gestes quotidiens d'économie d'énergie, des affiches traitant de l'extinction de la lumière, de la fermeture des portes, etc. pourront être adjointes.

Quelques illustrations sont jointes en annexe 9.

III.2. Mesures à investissement moyen

Les mesures à investissement moyen sont celles se référant au poste d'éclairage. Il s'agit du remplacement de luminaires et du remplacement du télérupteur existant.

III.2.1. Remplacement de luminaires

Cette mesure consiste à remplacer les tubes fluorescents T8 de 120 cm et de 60 cm du bâtiment par des tubes LED de mêmes dimensions.

Les tubes LED PHILIPS - modèle MAS LEDtube 1200 mm UO 18 W 865 T8 RS et PHILIPS - modèle MAS LEDtube 600 mm 9W 865 T8 RS ont été retenus pour l'étude.

La figure 11 donne un aperçu de ces tubes et le tableau 3 permet de comparer leurs principales caractéristiques.

Figure 11. Tube LED de marque PHILIPS [7]

	Lampe fluorescente	Lampe LED-60	Lampe fluorescente	Lampe LED-
Caractéristiques	T8-60 cm avec	cm de	T8-120 cm avec	120 cm de
	ballast	remplacement	ballast	remplacement
Puissance électrique (W)	22,5	9	45	18
Puissance lumineuse (lm)	1050	1050	2500	2500
Durée de vie (h)	10 000	50 000	10 000	50 000
Nombre	213	213	105	105

Tableau 3. Comparaison des caractéristiques des luminaires existant à ceux de substitution proposée

Ainsi, tout en offrant la même puissance lumineuse, les luminaires proposés consomment 2 fois moins et ont une durée de vie 5 fois plus grande que les tubes actuellement utilisés. Ce remplacement occasionnerait une réduction de la consommation du poste d'éclairage de 49 %.

La réalisation de cette mesure pourra être confiée à un bureau d'exécution. Celui-ci se chargera de la fourniture et de l'installation des nouveaux luminaires.

Ici, l'économie à réaliser se joue sur la réduction de la puissance de l'équipement utilisé. Ainsi, on obtient :

• l'économie journalière d'énergie (en kWh) par la relation 4

$$EE = (P_1 - P_2) \times t \tag{4}$$

Avec:

 P_1 : la puissance totale actuelle des lampes (en kW) soit 9,5 kW;

 P_2 : la puissance totale des lampes plus efficaces à installer (en kW) soit 3,8 kW;

t: le temps de fonctionnement journalier des lampes (en h) soit 5 h en HPL et 6 h en HPT.

D'où une économie journalière d'énergie de 63 kWh.

• l'économie financière journalière (en FCFA) par la relation 5

$$EF = (P_1 - P_2) \times t \times Tarif \tag{5}$$

Avec:

Tarif: le tarif fixé par la SONABEL.

On obtient une économie journalière sur la consommation d'énergie de 6 590 FCFA.

Ces valeurs sont ramenées en mois puis en année en considérant un temps de fonctionnement de 26 jours/mois et 12 mois/an. Le temps de retour sur investissement est obtenu en rapportant le coût d'investissement à l'économie financière annuelle. Le coût d'investissement englobe l'investissement initial et les frais de maintenance.

Le tableau 4 présente l'analyse financière de cette mesure.

Economie anı	nuelle estimée	Investissement estimé	Temps de retour sur		
			investissement estimé		
Consommation	Coûts	2 840 000 ECEA	17 mais		
19 598 kWh	2 056 054 FCFA	2 849 000 FCFA	17 mois		

Tableau 4. Analyse financière du remplacement de luminaires

Les détails concernant le coût d'investissement sont fournis en annexe 10.

III.2.2. Remplacement du télérupteur par une minuterie

La cage d'escalier du siège d'ORABANK dispose d'un télérupteur qui permet la commande de son circuit d'éclairage à partir de plusieurs endroits distincts. Le plus de la minuterie réside dans le fait que l'extinction des lampes est automatique au bout d'un temps déterminé. Elle occasionne donc une meilleure gestion de l'éclairage de la cage d'escaliers. La minuterie retenue pour l'étude est celle de marque LEGRAND, référence 412401. Elle est présentée sur la figure 12.

Figure 12. Minuterie LEGRAND-412401 [8]

L'installation de cette minuterie peut être réalisée par un électricien. Elle peut également être confiée au même bureau chargé de la fourniture et de l'installation des luminaires.

Le tableau 5 présente l'analyse financière de cette mesure.

Tableau 5. Analyse financière du remplacement du télérupteur

Economie ani	nuelle estimée	Investissement estimé	Temps de retour sur investissement estimé		
Consommation	Coûts	41 000 ECEA	12 mois		
397 kWh	41 540 FCFA	41 000 FCFA			

Les détails concernant le coût d'investissement sont fournis en annexe 11.

III.3. Mesures à investissement élevé

Les mesures à fort investissement concernent le remplacement de climatiseurs, l'installation d'un rideau d'air et l'installation d'un système solaire photovoltaïque.

III.3.1. Remplacement de climatiseurs mono-split muraux

Il s'agit d'adopter et d'intégrer la technologie « inverter » notamment en remplaçant :

- les climatiseurs SHARP AH-249, SAMSUNG AR24HCFQAWKN et SHARP AH-A24 MEV5P par des climatiseurs de mêmes puissances frigorifiques dotés de la technologie « inverter ». La marque AIRWELL modèle AWSI-HND024-N11/AWAU-YND024-H11 a été retenue pour l'étude;
- les climatiseurs SHARP AH-A189E, SAMSUNG AR18JCFSAWKN par des climatiseurs de mêmes puissances frigorifiques dotés de la technologie « inverter ». La marque AIRWELL modèle AWSI-HND018-N11/AWAU-YND018-H11 a été retenue pour l'étude ;
- les climatiseurs SHARP AH-A18 LEV par des climatiseurs de même puissance frigorifique dotés de la technologie « inverter ». La marque AIRWELL - modèle AWSI-HKD018-N11/AWAU-YKD018-H11 a été retenue pour l'étude.

La figure 13 donne un aperçu de ces climatiseurs et le tableau 6 permet de comparer leurs principales caractéristiques.

Figure 13. Climatiseur mono-split mural de marque AIRWELL [9]

Tableau 6. Comparaison des climatiseurs existant à ceux de substitution proposée

	Caractéristiques	Puissance électrique (kW)	Puissance frigorifique (kW)	СОР	Nombre
1	SHARP AH-249 ^E	2,76	6,70	2,43	1
1	AIRWELL AWSI-HND024- N11/AWAU-YND024-N11	2,18	7,05	3,23	1
2	SHARP AH-A189E	2,08	5,10	2,45	2
2	AIRWELL AWSI-HND018- N11/AWAU-YND018-H11	1,64	5,3	3,23	2
3	SAMSUNG AR24HCFQAWKN	2,76	7,03	2,55	2
3	AIRWELL AWSI-HND024- N11/AWAU-YND024-H11	2,18	7,05	3,23	2
4	SAMSUNG AR18JCFSAWKN	2,02	5,28	2,61	2
4	AIRWELL AWSI-HND018- N11/AWAU-YND018-H11	1,64	5,3	3,23	2
5	SHARP AH-A24 MEV5P	2,45	6,70	2,73	10
3	AIRWELL AWSI-HND024- N11/AWAU-YND024-H11	2,18	7,05	3,23	10
6	SHARP AH-A18 LEV	1,77	5,01	2,84	20
U	AIRWELL AWSI-HKD018- N11/AWAU-YKD018-H11	1,54	5	3,24	20

Ainsi, tout en offrant la même gamme de puissance frigorifique, ces climatiseurs consomment bien moins que ceux installés, ce qui leur offre de très bons coefficients de performance (COP > 3). Ce remplacement occasionnerait une réduction de la consommation du poste de climatisation de 12%.

La réalisation de cette mesure peut être confiée à un bureau d'exécution spécialiste du froid. Celui-ci pourra se charger de la fourniture et de l'installation des différentes unités. Pour leur entretien, il est recommandé d'effectuer toutes les 3 semaines un dépoussiérage des filtres à air. Une maintenance annuelle pourra être contractée avec l'installateur. Celui-ci procèdera ainsi régulièrement au nettoyage des appareils, au contrôle de fuite et à la vérification du bon fonctionnement des équipements.

Le tableau 7 présente l'analyse financière de cette mesure. Les détails concernant le coût d'investissement sont fournis en annexe 12.

Economie annuelle estimée Investissement estimé Temps de retour sur investissement estimé

Consommation Coûts
41 585 kWh 4 166 058 FCFA

Temps de retour sur investissement estimé
65 953 000 FCFA
16 ans

Tableau 7. Analyse financière du remplacement de climatiseurs

Le temps de retour sur investissement qui est de 16 ans est bien trop élevé pour encourager cet investissement. Il convient donc de procéder à un remplacement échelonné des climatiseurs pour identifier le modèle qui offrira le temps de retour sur investissement le plus intéressant. Les 37 climatiseurs concernés sont alors classés par lots de 5 ou 6 en commençant par les moins performants. Ce sont les 5 premiers qui présentent le plus court délai de retour sur investissement, soit 7 ans. Le temps de retour sur investissement des autres lots reste bien élevé (autour de 18 ans).

Le remplacement optimal concerne alors les 5 premiers climatiseurs dont l'analyse financière est présentée dans le tableau 8. En ce qui concerne les autres climatiseurs il est simplement recommandé à la banque de procéder à leur remplacement uniquement lorsqu'ils se montreront défectueux.

Tableau 8. Analyse financière du remplacement des 5 climatiseurs les moins performants

Economie ani	nuelle estimée	Investissement estimé	Temps de retour sur investissement estimé
Consommation	Coûts	0.520.000 ECEA	7 6
13 678 kWh	1 269 941 FCFA	9 530 000 FCFA	7 ans 6 mois

III.3.2. Installation d'un rideau d'air à l'entrée principale du RDC

Le bâtiment dispose d'une entrée principale au rez-de-chaussée qui est sollicitée tout au long de la journée par les clients. Chaque ouverture de la porte entraine des infiltrations d'air chaud qui causent une augmentation de la consommation des unités de climatisation installées. Le rideau d'air est un dispositif permettant de créer une sorte de barrière murale. Cette barrière a pour rôle d'empêcher les échanges d'air entre la partie intérieure et la partie extérieure d'un local. À l'image de la figure 14, son installation permettra à la banque de rationnaliser la consommation des unités de climatisation du RDC tout en maintenant un confort maximal pour les agents et clients.

Figure 14. Exemple d'un rideau d'air placé à une d'entrée [10]

La porte d'entrée présente une hauteur de 3,1 m et une largeur de 1 m. Lors de la définition du modèle de rideau d'air, il faut s'assurer que l'appareil conviendra à la hauteur d'installation et à l'ouverture de la porte (largeur). Pour l'étude, le choix s'est posé sur le modèle HX 1500 E de marque TEDDINGTON.

La pose d'un rideau d'air est assez délicate, il convient donc de se référer à des professionnels pour la réalisation de cette mesure. Pour son entretien, il est recommandé d'effectuer, au moins deux fois par an, un dépoussiérage à sec de la caisse de l'appareil, des différentes fentes et des hélices.

Dans sa revue n°867, l'association professionnelle des ingénieurs en climatique, ventilation et froid (AICVF) estime à environ 30% les déperditions liées aux ouvertures de porte dans un bâtiment commercial [11].

L'analyse financière de cette mesure est présentée dans le tableau 9. Les détails concernant le coût d'investissement sont fournis en <u>annexe 13</u>.

Tableau 9. Analyse financière de l'installation d'un rideau d'air

Economie and	nuelle estimée	Investissement estimé	Temps de retour sur investissement estimé
Consommation	Coûts	2 901 000 ECEA	3 ans 7 mois
8 084 kWh	820 548 FCFA	2 891 900 FCFA	5 ans / mois

III.3.3. Installation solaire photovoltaïque

Il s'agit d'un système photovoltaïque (PV) sans stockage connecté au réseau pour autoconsommation. L'énergie fournie par cette installation de 23 kWc est directement injectée en journée dans le réseau de la banque comme l'illustre la figure 16. Cette installation comporte 72 modules de 320 Wc et 1 onduleur-réseau de marque SMA. Le chapitre IV donne les détails du dimensionnement de cette installation. Une telle installation permettra à la banque :

- de participer à l'effort collectif de développement des énergies renouvelables ;
- de participer à l'effort collectif de limitation des émissions de gaz à effet de serre avec une émission de CO₂ évitée de 21 313 kg/an;
- d'améliorer son image de marque ;
- de réduire sa dépendance énergétique avec une couverture des besoins d'environ 12%;
- d'anticiper de futures réglementations.

Cette installation se doit d'être réalisée par des professionnels. Son entretien réside essentiellement dans le nettoyage régulier des panneaux solaires.

Les estimations sur la production d'électricité ont été réalisées à l'aide de données annuelles sur l'irradiance solaire recueillies sur le logiciel en ligne de simulation Photovoltaic Geographical Information System (PVGIS).

L'analyse financière de cette mesure est présentée dans le tableau 10. Les détails concernant le coût d'investissement sont fournis en annexe 14.

Economie annuelle estimée Investissement estimé Temps de retour sur investissement estimé

Consommation Coûts

36 554 kWh 3 913 070 FCFA

Temps de retour sur investissement estimé

22 826 500 FCFA

5 ans 10 mois

Tableau 10. Analyse financière de l'installation solaire à injection réseau

III.4. Récapitulatif des mesures d'économies d'énergie

Le récapitulatif des mesures d'économies proposées à Orabank est présentée dans le tableau 11.

Tableau 11. Récapitulatif des mesures d'économie

Mesures d	'économie	Economie annuelle d'énergie (kWh)	Economies financières annuelles (FCFA)	Coût d'investissement (FCFA)	Temps de retour sur investissement
A investissement	Suivi de la facturation	-	-	-	-
faible/nul	Sensibilisation	194	13 518	-	-
A investissement	Remplacement de luminaires	19 598	2 056 054	2 849 000	17 mois
moyen	Remplacement du télérupteur	393	41 540	41 000	12 mois
	Remplacement de climatiseurs	13 678	1 269 941	9 530 000	7 ans 6 mois
A investissement élevé	Installation de rideau d'air	8 084	820 548	2 891 900	3 ans 7 mois
Cieve	Installation solaire PV	36 554	3 913 070	22 826 500	5 ans 10 mois
Tot	tal	78 502	8 114 670	38 138 400	-

En introduisant dans notre progiciel l'estimation de la réduction de consommation mensuelle, on obtient une réduction sur la facture d'électricité de près de sept cent quatre-vingt mille (780 000) FCFA chaque mois et une réduction annuelle de plus de neuf millions (9 000 000) FCFA.

Chapitre IV. Conception et dimensionnement d'un système photovoltaïque

Le toit du bâtiment dispose d'une zone exploitable de dimensions 17,62 x 9,45 m comme présenté en <u>annexe 15</u>. Cette surface limite la taille du système solaire PV pouvant y être installé. Le module choisi pour le dimensionnement présente une puissance crête de 320 W. Les données de sa plaque signalétique sont jointes en <u>annexe 16</u>. La simulation sur les dispositions possibles des modules sur la toiture est présentée en <u>annexe 17</u>. Cette simulation permet d'obtenir un maximum de 72 modules d'où une puissance crête maximale de 23 kW. Une telle installation fournirait quotidiennement une énergie d'environ 83,5 kWh. Or, les données de consommation relevées au niveau du départ du circuit ondulé, du départ du R+4 et du départ du RDC montrent que le besoin journalier requis par chacun de ces circuits est supérieur à 100 kWh. Voir <u>annexe 18</u> pour le détail sur les données de consommation enregistrées. L'installation n'est donc pas en mesure de couvrir les besoins d'un étage de l'immeuble. Deux autres options sont alors envisagées :

- l'installation d'un système photovoltaïque hybride raccordé au poste d'éclairage ;
- l'installation d'un système photovoltaïque connecté au réseau pour autoconsommation.

IV.1. Option 1 : Système photovoltaïque hybride

Dans ce scénario, l'installation solaire PV est dimensionnée pour couvrir le besoin du poste d'éclairage de tout le bâtiment comme l'illustre la figure 15. L'onduleur chargeur utilisé sera configuré en « offgrid » de sorte que le réseau ne sera sollicité qu'en cas d'intervention sur l'installation solaire.

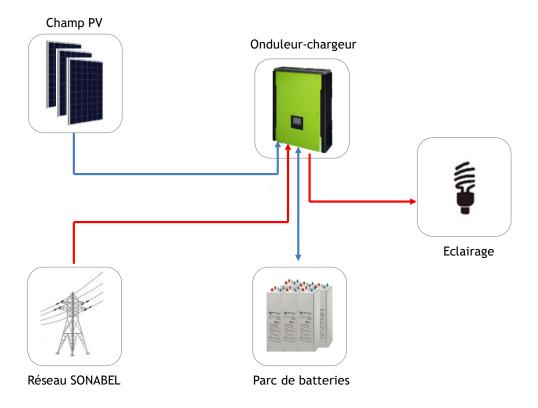


Figure 15. Synoptique du système PV hybride

Comme indiqué au II.1.2.2, l'installation électrique actuelle du bâtiment ne dispose pas d'un circuit dédié à l'éclairage de tout l'immeuble. Pour mettre en œuvre cette option solaire, il faudrait donc procéder à la mise en place d'un circuit d'éclairage de tout le bâtiment comme le présente la figure 16:

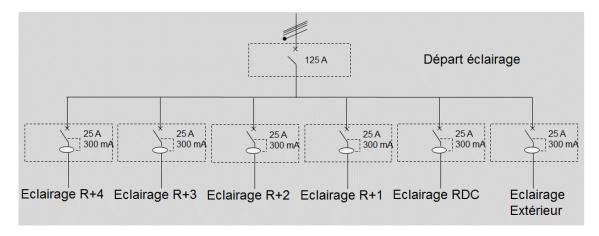


Figure 16. Configuration du circuit d'éclairage pour le raccordement à une installation photovoltaïque hybride

En considérant les luminaires actuels, le besoin journalier s'élève à environ 113 kWh. Par contre, il est ramené à 50,5 kWh lorsqu'on considère les luminaires de remplacement proposés. Ce dernier cas de figure est donc le plus approprié pour une éventuelle installation photovoltaïque hybride. Le dimensionnement tel que détaillé à l'annexe 19 préconise :

- 56 panneaux de 250 Wc;
- 24 batteries de 2000 Ah 2 V;
- 1 onduleur-chargeur hybride de 10 kW.

Les fiches caractéristiques respectives de ces équipements sont jointes en <u>annexes 20, 21</u> et <u>22</u>.

Ce système présente des avantages tels :

- L'autonomie du poste d'éclairage de la banque ;
- La réduction de la consommation journalière de près de 7%.

Cependant, des contraintes dans sa mise en œuvre ont été relevées. Il s'agit de :

- La modification de l'installation électrique existante ;
- L'encombrement lié à la construction d'un local pour entreposer les batteries.

En dehors de ces contraintes, ce scénario n'est pas fortement recommandé car il ne permet pas à la banque d'exploiter comme souhaité le maximum de la superficie de sa toiture.

IV.2. Option 2 : Système photovoltaïque connecté au réseau

Dans ce scénario, l'installation est dimensionnée sur la base du maximum de panneaux de 320 Wc que peut abriter le toit. L'énergie produite par le champ PV est directement injectée dans le réseau électrique existant pour alimenter les récepteurs. Cette configuration est illustrée par la figure 17 cidessous.

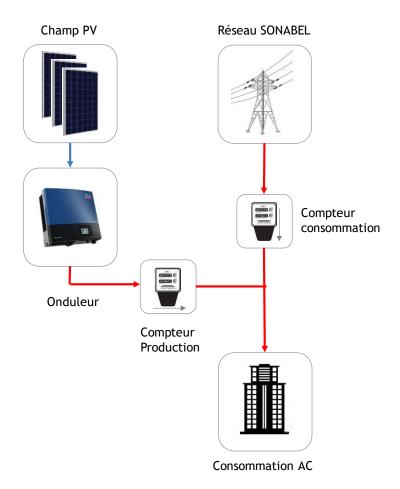


Figure 17. Synoptique du système PV à injection réseau

IV.2.1. Détermination de la puissance crête

La puissance crête du champ PV à installer est estimée par la relation (6) :

$$P_{PV} = n \times P_{module} \tag{6}$$

Avec:

n: le nombre de modules PV (estimé à partir de la superficie du toit soit 72 panneaux); P_{module} : la puissance crête d'un module photovoltaïque soit 320 Wc.

Une puissance crête totale de 23 kW est obtenue.

IV.2.2. Choix de l'onduleur-réseau

L'onduleur-réseau est choisi de sorte que la puissance du champ PV avoisine la puissance maximale admissible à l'entrée de l'onduleur. Cela est vérifié à travers le calcul du ratio de puissance soit :

$$Ratio\ de\ puissance = \frac{P_{onduleur}}{P_{PV}} \tag{7}$$

Avec $P_{onduleur}$: la puissance maximale admissible à l'entrée de l'onduleur (kW).

Le modèle SMA Tri Power STP 25000 TL qui entraîne un ratio de 1,1 est retenu. Sa fiche technique est jointe en annexe 23.

IV.2.3. Configuration du champ photovoltaïque

La configuration du champ PV doit garantir le bon fonctionnement de l'onduleur. Elle est donc définie de sorte que :

- la tension d'entrée minimale de l'onduleur soit inférieure à la tension du point de puissance maximale du champ PV;
- la tension d'entrée maximale de l'onduleur soit supérieure à la tension à vide du champ PV ;
- le courant d'entrée maximal de l'onduleur soit supérieur à l'intensité de court-circuit du champ PV.

Les résultats de la configuration du champ sont consignés dans le tableau 12.

Vmpp Vco Icc Configuration P_{PV} (champ PV) (champ PV) (par entrée) Entrée A Entrée B 23,04 kW 671,4 V 822,6 V 18,3 A 2 strings de 18 2 strings de 18 modules. modules.

Tableau 12. Caractéristiques du champ PV

IV.2.4. Support, orientation et inclinaison des panneaux

Afin de faciliter l'accès pour d'éventuelles maintenances, le champ PV sera reparti en 4 tables. Chaque table sera constituée de 2 rangées de 9 panneaux. Les tables seront faites chacune de profilés métalliques en acier galvanisé pouvant supporter une charge minimale de 405 kg. Elles seront orientées vers le sud avec une inclinaison de 15° comme illustré en annexe 24.

IV.2.5. Dimensionnement des sections de câbles

IV.2.5.1. Câbles partie courant continu (CC)

Il s'agit du réseau de câbles allant du champ PV au coffret CC, puis du coffret CC à l'entrée de l'onduleur. Il est supposé une température pouvant atteindre 70°C (zone située sous les modules) pour les câbles de la première partie et une température ambiante de 60°C pour les câbles de la deuxième partie.

Les conducteurs CC sont dimensionnés de sorte que la section S vérifie la relation (8) [12]:

$$S \ge \frac{\rho \times L \times I}{\varepsilon \times U} \tag{8}$$

Avec:

S: la section du conducteur (en mm^2);

 ρ : la résistivité de l'âme conductrice ici en cuivre (en Ω mm²·m⁻¹);

L : la longueur aller-retour du conducteur (en m) ;

I: l'intensité (en A);

ε: la limite de la chute de tension soit idéalement 1%;

U: la tension (V).

A partir de la section calculée, il convient ensuite de choisir la section commerciale supérieure et de calculer la chute de tension associée (en %) suivant la relation (9) :

$$\Delta U = \frac{100 \times \rho \times L \times I}{S \times U} \tag{9}$$

Les différents paramètres ainsi que les résultats du dimensionnement sont consignés dans le tableau 13.

Tableau 13. Récapitulatif du dimensionnement des sections de câbles CC

Paramètres	Champ PV-Coffret DC	Coffret DC-Onduleur	
ρ (Ωmm².m ⁻¹)	0,02063	0,01995	
L (m)	20	40	
I (A)	8,6	8,6	
U (V)	671,4	671,4	
Section calculée (mm²)	0,53	1,02	
Section commerciale (mm ²)	4	4	
Δ <i>U</i> (%)	0,13	0,26	
Δ <i>U</i> (%)	0,39		

On a bien sur toute la ligne CC une chute de tension inférieure à 3%.

Par ailleurs, il est important de vérifier que le courant admissible des câbles est bien supérieur au courant d'emploi maximal, à savoir $1,25 \times I_{CC}$. En supposant les températures indiquées plus haut et une pose adjacente des câbles sur la paroi, les sections de 4 mm² admettent bien des courants supérieurs aux courants d'emploi maximum calculés.

La section du conducteur de protection sera également de 4 mm2.

IV.2.5.2. Câbles partie courant alternatif (CA)

Il s'agit du réseau de câbles allant de la sortie de l'onduleur au coffret CA. Les conducteurs de courant CA sont dimensionnés en tenant compte de l'intensité admissible du câble et de la chute de tension. Cette intensité admissible est donnée par la relation :

$$I_Z \ge I'_Z = \frac{I_n \times k}{K} \tag{10}$$

Avec

 I'_Z : l'intensité fictive prenant en compte le coefficient de correction K (en A);

 I_n : la valeur normalisée du courant d'emploi soit $I_n=40~A~pour~un~courant~d'emploi maximum de <math>36,2~A$;

k: un coefficient fonction du dispositif de protection. k=1 pour une protection par disjoncteur; K: le coefficient de correction. $K=K_1\times K_2\times K_3$.

Le facteur de correction K_1 est déterminé en fonction du mode de pose et de la lettre de sélection à l'aide du tableau facteur de correction K_1 en <u>annexe 25</u>.

Le facteur de correction K_2 est déterminé en fonction de la lettre de sélection et du type de pose jointif ou non à l'aide du tableau facteur de correction K_2 en <u>annexe 25</u>.

Le facteur de correction K_3 est déterminé en fonction du type de l'isolant et de la température ambiante à l'aide du tableau facteur de correction K_3 en <u>annexe 25</u>.

Ici, il s'agira d'une couche d'un câble multiconducteur sous goulotte. Ce câble a une isolation polyéthylène réticulée (PR) et il est supposé une température ambiante maximale de 45°C.

$$K = 0.9 \times 1 \times 0.87 = 0.78 \text{ et } I_Z = 63 \text{ A}.$$

La section minimale du câble est alors déterminée à l'aide du tableau de l' $\underline{annexe\ 26}$ soit $S=10\ mm^2$. Lorsque le taux d'harmoniques en courant de rang 3 et multiples de 3 dans les conducteurs de phase n'est pas défini par l'utilisateur, un facteur de réduction de courant admissible de 0,84 doit être pris en compte pour l'ensemble des conducteurs. La section minimale de câble est donc ramenée à $12\ mm^2$.

La chute de tension (en %) est ensuite évaluée suivant la relation :

$$\Delta U = \frac{100 \times \sqrt{3} \times I_B \times L \times \left(\frac{\rho}{S} \times \cos\varphi + X\sin\varphi\right)}{U_n}$$
(11)

Avec :

 I_B : le courant d'emploi (en A);

L: la longueur du conducteur (en m) soit 5 m;

 ρ : la résistivité de l'âme conductrice (en Ω mm²·m¹), est fonction de la température (ρ =0,01893 Ω mm²·m¹ à 45°C pour le cuivre).

S: la section du conducteur (en mm²). Nous considérons 10 mm²;

 $Cos \varphi$: le facteur de puissance soit 0,8;

 $X: la \ r\'eactance \ lin\'eique \ du \ conducteur \ (X=0.08\times 10^{-3} \ \varOmega \cdot m^{-1} \ en \ l'absence \ d'indication) \ ;$

 U_n : la tension nominale entre phases (V).

La chute de tension est donc de 0,12%. Elle est bien inférieure à la limite de 3% fixée par l'union technique de l'électricité (UTE) [13]. La section de 10 mm² est donc retenue pour les conducteurs de phases et le conducteur neutre.

La section du conducteur de protection sera prise égale à la section du conducteur de phase soit $10~\mathrm{mm}^2$.

IV.2.6. Dimensionnement des dispositifs de sécurité

Il sera prévu dans le coffret de protection CC des fusibles pour la protection contre les surintensités de chaque string de modules conformément à l'UTE-C157-12-1 et un parafoudre CC pour la protection contre les surtensions. Dans le coffret CA, un disjoncteur CA protège la sortie de l'onduleur contre les surcharges et un parafoudre CA assure la protection contre les surtensions.

IV.2.6.1. Coffret de protection CC

Fusible

Le courant assigné I_N des fusibles devra respecter la condition suivante [14] :

$$1.1 \times 1.25 \times I_{cc} \le I_N \le 2 \times I_{cc} \tag{1}$$

Avec Icc le courant de court-circuit du string (en A).

Aussi, il convient que la tension assignée U_N des fusibles soit supérieure à la tension à vide du champ photovoltaïque. Cette tension est majorée par le coefficient multiplicateur k qui prend en compte l'effet de la température soit k=1,2 en l'absence d'information[15].

Soit 12,6 A
$$\leq$$
 I_{N} \leq 18,3 A et U_{N} \geq 987 V

Les fusibles seront logés dans des sectionneurs portes-fusibles de mêmes caractéristiques.

Parafoudre

Le choix du parafoudre se fait en fonction du niveau kéraunique du site et de la présence ou non d'un paratonnerre. La carte du niveau kéraunique dans le monde ainsi que les tableaux présentés en annexe 27 permettent de choisir un parafoudre de type II et de courant maximum de décharge 65 kA.

Le guide pratique pour les installations photovoltaïques raccordées au réseau public de distribution [13] fixe à 5 kA la valeur minimale de courant nominal de décharge . Aussi, la tension de service assignée doit être supérieure à 1,25 fois la tension à vide du champ PV soit $U \ge 1028 \, V$.

IV.2.6.2. Coffret de protection CA

- Disjoncteur

Le calibre du disjoncteur correspond au calibre normalisé directement supérieur au courant maximal fourni par l'onduleur soit 40 A.

Parafoudre

Pour le côté CA, il est également recommandé que courant nominal de décharge soit supérieur ou égal à 5 kA. La tension de service assignée correspond à celle de l'onduleur [13].

Le tableau 14 présente l'ensemble des dispositifs de sécurité.

Tableau 14. Récapitulatif du dimensionnement des dispositifs de sécurité

Dispositif de sécurité	Caractéristiques	Nombre		
Fusible	16 A - 1000 V	8		
Sectionneur porte-fusible	16 A - 1000 V	8		
Parafoudre DC	$In \ge 5 \text{ kA} - Imax = 65 \text{ kA}$ $U \ge 1028 \text{ V}$	1		
Disjoncteur AC	40 A - 3P+N	1		
Parafoudre AC	$In \ge 5 \text{ kA} - Imax = 65 \text{ kA}$ $3P+N$	1		

Une mise à la terre des structures métalliques (cadre des panneaux solaires, structures métalliques de fixation, carcasses métalliques de l'onduleur, etc.) doit également être réalisée.

Conclusions et perspectives

L'audit énergétique du bâtiment abritant le siège d'Orabank a révélé des éléments de gaspillage d'énergie. Ces éléments concernent tant l'utilisation d'équipements énergivores que les habitudes des agents et clients de la banque.

Ce diagnostic énergétique a dès lors conduit à l'élaboration de mesures d'efficacité énergétique et d'économie d'énergie. Il s'agit notamment du remplacement d'équipements énergivores, de l'installation de mécanismes de gestion de la consommation et de la sensibilisation des usagers. Ces mesures portent essentiellement sur les postes de climatisation, d'éclairage et de bureautique. Aussi, une installation photovoltaïque connectée au réseau d'environ 23 kWc permettra d'accroitre le niveau d'autonomie de la banque.

L'ensemble de ces mesures augure une réduction de la facture d'électricité de près de sept cent quatre-vingt mille (780 000) FCFA par mois, soit une économie annuelle de plus de neuf millions (9 000 000) FCFA. Les différentes mesures sont présentées dans l'ordre croissant du coût d'investissement qu'elles nécessitent. La banque pourra alors décider de l'exécution des actions préconisées suivant le calendrier qui lui convient le mieux. Il est recommandé à Orabank de débuter par les mesures les moins onéreuses. Les économies réalisées sur celles-ci pourront par la suite contribuer au financement des mesures les plus onéreuses.

Les différentes mesures proposées engendreront une réduction considérable de la consommation électrique. Il serait donc utile, dès leur application, de réaliser un suivi des factures d'électricité. Cela pourrait bien conduire à l'ajustement des modalités du contrat d'électricité actuel. En plus de ces mesures, il existe d'autres mesures potentielles d'économie d'énergie non encore explorées. C'est le cas du groupe électrogène de 275 kVA installé pour pallier les cas de délestage. Il serait judicieux pour la banque de diligenter un second audit dans ce sens afin d'optimiser sa consommation de carburant.

Références bibliographiques

- [2] SONABEL, « Grille tarifaire de la SONABEL-06102015 ».
- [3] SONABEL, Le guide du client. 2017.
- [4] THIOMBIANO Godefroy, « Communication sur l'optimisation de la facturation de l'énergie électrique ». 2016.
- [6] Institut de l'énergie et de l'environnement de la francophonie IEPF, *Efficacité énergétique de la climatisation en région tropicale*, vol. Tome II.
- [13] Union technique de l'électricité, « Guide pratique-Installations photovoltaïques raccordées au réseau public de distribution ». 2013.
- [15] ABB, « Document d'application technique n°10, installations photovoltaïques ». 2010.
- [17] Schneider Electric, « Guide BT/HTA ». 2012.
- [19] Schneider Electric, « Parafoudre, guide de la protection contre les surtensions ». 2014.

Sites internet

- [1] Intelligent Energy Europe, « Consommation et économies d'énergie ». [En ligne]. Disponible sur : http://ec.europa.eu/energy/energy/2020/roadmap/index_fr.htm. [Consulté le : 20-nov-2017].
- [5] BAYALA Gaspard, « Taxe de développement de l'électrification : La solidarité nationale au service de l'électricité dans les zones rurales », *Lefaso.net*, 14-févr-2017.
- [7] Philips, « La nouvelle génération d'éclairage à tubes peu énergivore ». [En ligne]. Disponible sur : http://www.lighting.philips.fr/prof/lampes-et-tubes-led/tubes-led/master-ledtube-em-mains. [Consulté le : 16-oct-2017].
- [8] Legrand, « Télérupteur CX³ silencieux temporisé ». [En ligne]. Disponible sur : https://www.legrand.fr/pro/catalogue/31893-unipolaire-16-a-250-v/telerupteur-cx3-silencieux-temporise-avec-bornes-a-vis-1p-16a-250v-contact-1f-tension-commande-230v-1-module. [Consulté le : 24-oct-2017].
- [9] ClimBoutique, « Climatisation airwell ». [En ligne]. Disponible sur : https://www.climboutique.com/642-climatisation-airwell-awsi-hdde009-n11.html. [Consulté le : 24-oct-2017].
- [10] Teddington France, « Rideau d'air ». [En ligne]. Disponible sur : http://www.teddington.com/fr/rideau-air.html. [Consulté le : 22-sept-2017].
- [11] AICVF, « La technologie des rideaux d'air se perfectionne ». [En ligne]. Disponible sur : https://www.biddle.fr/uploads/fr/publications/la-technologie-des-rideaux-dair-se-perfectionne-fr.pdf. [Consulté le : 12-nov-2017].
- [12] Guidenr photovoltaïque, « Calculer la section des câbles ». [En ligne]. Disponible sur : http://www.photovoltaique.guidenr.fr/cours-photovoltaique-autonome-1/calculer-section-cable.php. [Consulté le : 19-nov-2017].
- [14] Guidenr photovoltaïque, « Technologie et choix des parafoudres ». [En ligne]. Disponible sur : http://www.photovoltaique.guidenr.fr/V_2_parafoudre_dc_photovoltaique_technologie.php. [Consulté le : 17-nov-2017].
- [16] Union Wallone des entreprises, « Outils pratiques ». [En ligne]. Disponible sur : http://www.environnement-entreprise.be. [Consulté le : 20-nov-2017].
- [18] TORRES Manuel, « Mapa isoceraunico mundial ». [En ligne]. Disponible sur https://www.flickr.com/photos/aiditec/14841061114. [Consulté le : 17-nov-2017].

Annexes

Annexe 1. Grille tarifaire de la SONABEL [2]	II
Annexe 2. Aperçus des outils de collecte de données	///
Annexe 3. Graphe sur l'évolution de la consommation active de Juin 2014 à mai 2017	<i>IV</i>
Annexe 4. Aperçu d'un climatiseur de faible COP installé	<i>IV</i>
Annexe 5. Coefficients de performance minimaux recommandés pour différents équipements frigorifiques [[6] IV
Annexe 6. Part de consommation des différentes lampes	V
Annexe 7. Niveau d'éclairement moyen en service [6]	VI
Annexe 8. Répartition de la puissance installée des biens de consommation	VI
Annexe 9. Exemples d'affiches de sensibilisation sur l'économie d'énergie [16]	VII
Annexe 10. Coût d'investissement pour le remplacement des luminaires	VIII
Annexe 11. Coût d'investissement pour le remplacement du télérupteur	IX
Annexe 12. Coût d'investissement pour le remplacement de climatiseurs	IX
Annexe 13. Coût d'investissement pour l'installation d'un rideau d'air	<i>IX</i>
Annexe 14. Devis estimatif pour une installation solaire à injection réseau de 23 kW	X
Annexe 15. Représentation du toit du bâtiment	X
Annexe 16. Données de la plaque signalétique du panneau photovoltaïque de 320 Wc	XI
Annexe 17. Différentes dispositions possibles du champ PV sur la zone exploitable du toit de ORABANK	XII
Annexe 18. Données de consommation relevées au niveau du départ général onduleur, du départ R+4 et du	ı
départ RDC	_ XIII
Annexe 19. Récapitulatif du dimensionnement de l'installation photovoltaïque pour le système hybride	_ XIV
Annexe 20. Plaque signalétique panneau de 250 Wc	_ XVI
Annexe 21. Fiche caractéristique batterie OPzV de Victron Energy 2000 Ah-2 V	_XVII
Annexe 22. Fiche caractéristique onduleur-chargeur hybride MPP Solar de 10 kW	XVIII
Annexe 23. Fiche caractéristique de l'onduleur réseau SMA Tri Power STP 25 000 TL	_ XIX
Annexe 24. Aperçu de l'orientation des panneaux	_ XIX
Annexe 25. Facteurs de correction K1, K2 et K3 [17]	XX
Annexe 26. Tableau pour le choix de la section de câble du conducteur [17]	_XXII
Annexe 27. Conditions de choix du type de parafoudre	XXIII

Annexe 1. Grille tarifaire de la SONABEL [2]

SOCIÉTÉ NATIONALE D'ÉLECTRICITÉ DU BURKINA

DEPANNAGE OUAGA / BOBO 80 00 11 30 (N° GRATUIT)

Société d'Etat au capital de 63, 308,270,000 Francs CFA Siège social : 55, Avenue de la Nation 01 B.P. 54 Ousgadougou 01 Tél. : (228) 25 50 61 00 / 02 / 03 / 04 / Fax : (228) 25 31 03 40 Site web : www.scnabel bf DEPANNAGE OUAGA 25 31 37 20

GRILLE TARIFAIRE

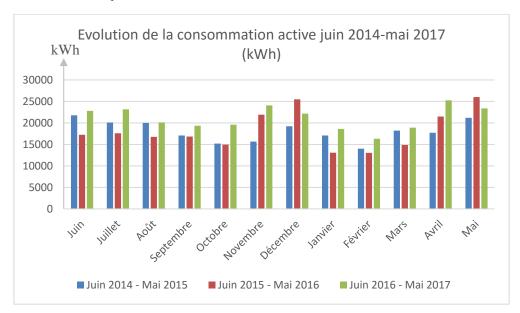
Arrêté n°2015-00-014/MME/MEF/MICA du 06 octobre 2015 et Arrêté n°06-089/MCPEA/MMCE/MFB du 23 août 2006 et son modificatif n°08-013/MMCE/MEF/MCPEA du 16 octobre 2008

TENSION		Catégories et tranches tarifaires		FACTURA	ATION DES CONSOM	MATIO	TIONS (en FCFA)		FRAI	S D'ABONN	EMENT	(en F	CFA)
	TENSION	Categories et tranches taniaires		Tarifs	du kWh	Red	devance	PRIME FIXE	Avance sur Consommation	Frais ETS police et de pose	Timbres	Liasses	TOTAL Abonnement
		I) USAGE DOMESTIQUE PARTICULIERS ET ADMINISTRATION											
		Tarif type A (monophasé)	Tranche 1	Tranche 2	Tranche 3								
		rain type / (monophase)	0 à 75 kWh	76 à 100 kWh	plus de 100 kWh								
	[1 à 3A	75	128		38	1 132	0	3 375	691	400	108	4 574
В	***********	Tarif type B (monophasé)	Tranche 1	Tranche 2	Tranche 3								
Α	MONOPHASE 2 FILS	rain type b (monophase)	0 à 50 kWh	51 à 200 kWh	plus de 200 kWh								
S	2 FILS	5A	96	102			457	1 774	8 175	691	400	108	9 374
S		10A	98	102			457	3 548	16 350	691	400	108	17 549
E		15A	96	102			457	5 322	24 525	691	400	108	25 724
		20A	96	102		09	764	7 096	32 700	691	400	108	33 899
Т		25A 30A	96 96	102 102		09	764 764	8 870 10 644	40 875 49 050	691 691	400 400	108	42 074 50 249
E		30A	96	102	1	09	/64	10 644	49 050	691	400	108	50 249
S I		II) USAGE DOMESTIQUE ET FORCE MOTRICE PARTICULIERS ET ADMINISTRATION	Tranche 1	Tranche 2	Tranche 3								
N		Tarif type C (triphasé)	0 à 50 kWh	51 à 200 kWh	plus de 200 kWh								
	TRIPHASE 4FILS	10A	96	108			1 226	10 613	51 300	1 380	400	108	53 188
		15A	96	108			1 226	15 918	76 950	1 380	400	108	78 838
В		20A	98	108			1 373	21 224	102 600	1 380	400	108	104 488
T		25A 30A	96 96	108 108			1 373	26 531 31 837	128 250 153 900	1 380 1 380	400 400	108 108	130 138 155 788
	DOUBLE TARIF	III) B.T. / TARIFS HORAIRES PARTICULIERS ET ADMINISTRATION	Heures o (10h à 14 h e	le pointe	Heures pleines (0h à 10h, 14h à 16h et 19h à 0		13/3	31 637	133 900	1300	400	100	130 766
	DOODLE ITALII	Tarif type D1 Non industriel		165		88	8 538	34 582 FCFA par kW par an	PS X 100 X 165	1 380	4 000	108	
		Tarif type D2 Industriel		140		75	7 115	28 818 FCFA par kW par an	PS X 100 X 140	1 380	4 000	108	
мо	YENNE TENSION	IV) M.T. / TARIFS HORAIRES PARTICULIERS ET ADMINISTRATION	Heures o (10h à 14 h e		Heures pleines (0h à 10h, 14h à 16h et 19h à 0	Oh)							
	(MT)	Tarif type E1 Non industriel		139		64	8 538	70 826 FCFA par kW par an	PS X 100 X 139	1 380	4 000	108	
		Tarif type E2 Industriel		118		54	7 115	64 387 FCFA par kW par an	PS X 100 X 118	1 380	4 000	108	
E	INDUSTRIES CTRACTIVES ET	V) H.T. / TARIFS HORAIRES PARTICULIERS	Heures o (10h à	24 h)	Heures pleines (0h à 10h)								
HAU	TE TENSION (HT)	Tarif type G	·	140		70	7 115	64 387 FCFA par kW par an	PS X 100 X 118	1 380	4 000	108	
		5A - 15A mono		12			381	- PS = Pulssance Souscrite					
ECI	AIRAGE PUBLIC	20A et plus mono		12			637	- Pour la BT double tarif, la MT et la HT : Pénalisation si Cos phi < 0,8 et Bonification si Cos phi > 0,9					
	Tarif type F	10A - 15A triphasé 20A et plus triphasé		12			1 144	 L'administration est dispensée du versement de l'avance sur consommation Pour la BT double tarif, la MT et la HT : les frais de timbres sont de 400 FCFA par jeu de page en double du contrat soit au total 4000 FCFA 				ntrat solt au total	

ENSEMBLE, AU SERVICE D'UNE GRANDE AMBITION!

Annexe 2. Aperçus des outils de collecte de données

Analyseur de réseau Chauvin-Arnoux 8336


Luxmètre Velleman DVM 1300

Multimètre Fluke 179

Mètre ruban

Annexe 3. Graphe sur l'évolution de la consommation active de Juin 2014 à mai 2017

Annexe 4. Aperçu d'un climatiseur de faible COP installé

Annexe 5. Coefficients de performance minimaux recommandés pour différents équipements frigorifiques [6]

Type d'équipement	COP minimum recommandé [kWr/kWe]
Climatiseurs de fenêtre	2,8
Split systèmes : - Jusqu'à 4 kWr - Supérieur à 4 kWr	2,8 3,0

Annexe 6. Part de consommation des différentes lampes

Туре	Nombre	Puissance unitaire	Puissance totale
Lampe fluorescente T8-60 cm avec ballast	213	22,5 W	4792,5 W
Lampe fluorescente T8-120 cm avec ballast	105	45 W	4725 W
Lampe sanitaire tube S19	17	60 W	1020 W
Plafonnier LED	16	30 W	480 W
Lampe projecteur LED	7	50 W	350 W
Plafonnier LED	17	6 W	102 W
BAES	14	6,9 W	96,6 W
Réglette LED	8	11 W	88 W
Plafonnier LED	4	20 W	80 W
Plafonnier LED	5	12 W	60 W
Lampe de bureau	2	25 W	50 W
Réglette LED	4	9 W	36 W
Lampe économique de bureau	1	11 W	11 W
Total	-	-	11,77 kW

Annexe 7. Niveau d'éclairement moyen en service [6]

Bureaux et locaux administratifs	lux
Bureau de travaux généraux	500
Dactylographie	500
Salle d'informatique	500
Salle de dessin (tables)	750 - 1000
Etablissements d'enseignement	
Salle de classe	300
Tableau	500
Amphithéâtre	300
Laboratoire	500
Salle de dessin d'art	500
Bibliothèque, salle de lecture	500
Magasins	
Boutique	300
Libre service, grande surface	500
Salon de coiffure	750
Circulations (galeries marchandes)	150
Commerces spécialisés	300- 750
Circulations	
Couloir, escalier	100 - 300
Ascenseur	200
Locaux non occupés	20 - 50
Aéroports, gares, postes	
Salle des pas perdus	150
Guichet	500
Banques	
Hall public	300
Guichet	500

Annexe 8. Répartition de la puissance installée des biens de consommation

Туре	Nombre	Puissance totale
Machines à café	5	6900 W
Distributeur d'eau	7	4220 W
Réfrigérateur	3	222 W
Total	-	11,3 kW

Annexe 9. Exemples d'affiches de sensibilisation sur l'économie d'énergie [16]

Annexe 10. Coût d'investissement pour le remplacement des luminaires

Désignation	Unité	Quantité	Prix total (FCFA)		
Tubes LED PHILIPS-MAS LEDtube 60 cm 9W	U	213	1 704 000		
Tubes LED PHILIPS-MAS LEDtube 120 cm 18W	1 1 1 105 1 9 000 1 945 000				
То	2 649 000				
Presta	200 000				
M	0				
Tota	2 849 000				

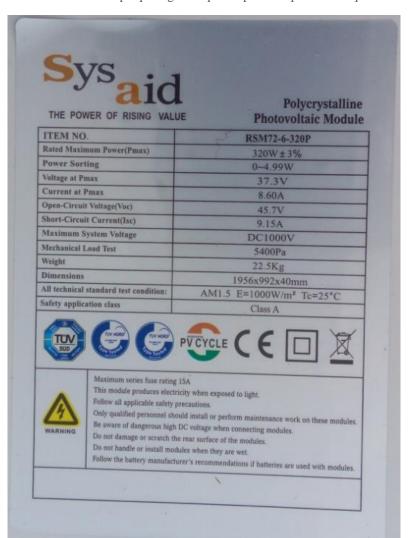
Annexe 11. Coût d'investissement pour le remplacement du télérupteur

Désignation	Désignation Unité Quantité Prix unitaire (FCFA)						
Télérupteur LEGRAND - 412401	U	1	38 000	38 000			
Тс	38 000						
Presta	3 000						
M	0						
Tota	41 000						

Annexe 12. Coût d'investissement pour le remplacement de climatiseurs

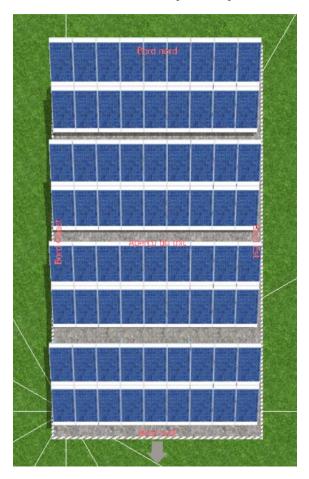
Désignation	Désignation Unité Quantité Prix unitaire (FCFA)					
Climatiseurs AIRWELL – modèle AWSI-HND024- N11/AWAU-YND024-H11	U	U 13 1 720 000		22 360 000		
Climatiseurs AIRWELL - modèle AWSI-HND018- N11/AWAU-YND018-H11	U	4 1 523 000		4 1 523 000 6 092		6 092 000
Climatiseurs AIRWELL AWSI- HKD018-N11/AWAU- YKD018-H11		20	1 400 000	28 000 000		
To	56 452 000					
Presta	3 951 000					
M	5 550 000					
Tota	l général '	ГТС		65 953 000		

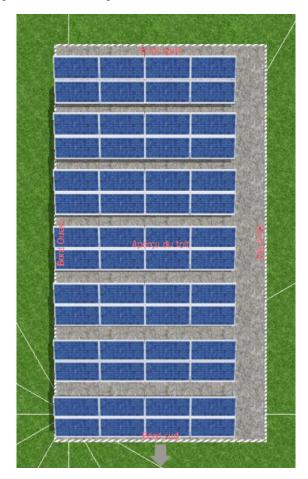

Annexe 13. Coût d'investissement pour l'installation d'un rideau d'air


Désignation	Unité	Quantité	Prix total (FCFA)		
Rideau d'air TEDDINGTON	U	2 686 900	2 686 900		
То	2 686 900				
Presta	190 000				
M	15 000				
Total	2 891 900				

Annexe 14. Devis estimatif pour une installation solaire à injection réseau de 23 kW

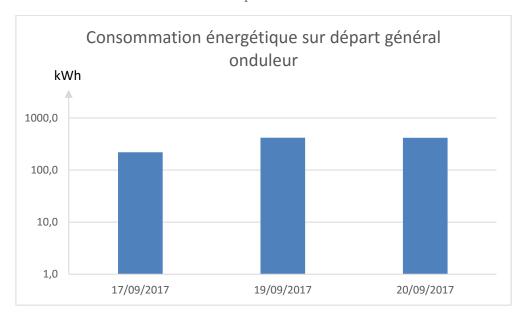
Désignation	Unité	Quantité	Prix total (FCFA)	
Module PV 320W / 24V	U	72	175 000	12 600 000
Onduleur SMA Tri Power STP 25000 TL	U	1	2 230 000	2 230 000
Support pour modules	Ens	1	1 534 000	1 534 000
Coffrets et appareils de protection	Ens 1		527 500	527 500
Câbles électriques et accessoires de pose	Ens	1	250 000	250 000
To	tal matéri	iel		17 141 500
Presta	1 200 000			
M	4 485 000			
Tota	l général '	ГТС		22 826 500


Annexe 15. Représentation du toit du bâtiment

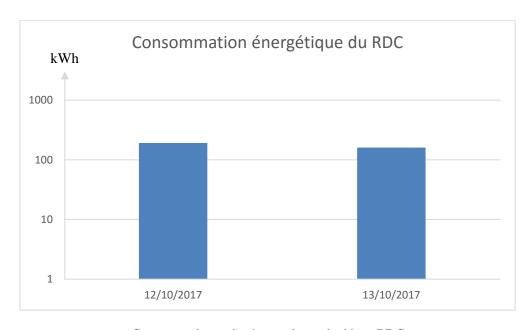


Annexe 16. Données de la plaque signalétique du panneau photovoltaïque de 320 Wc

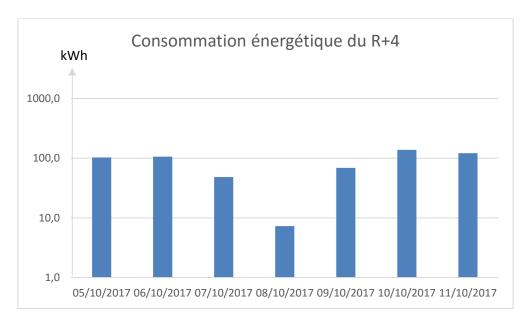
Annexe 17. Différentes dispositions possibles du champ PV sur la zone exploitable du toit de ORABANK



Disposition 1: maximum de 72 modules (Disposition retenue)



Disposition 2 : maximum de 56 modules


Annexe 18. Données de consommation relevées au niveau du départ général onduleur, du départ R+4 et du départ RDC

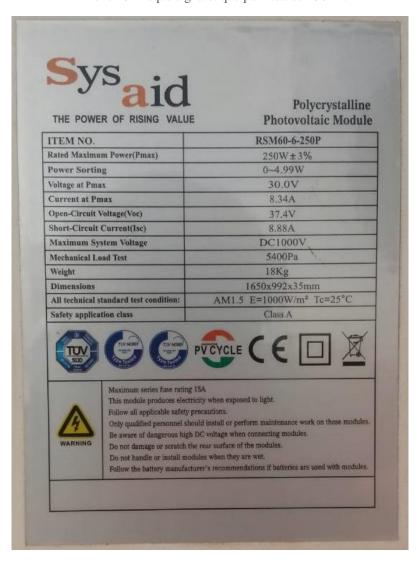
Consommations relevées au niveau du départ général onduleur

Consommations relevées au niveau du départ RDC

Consommations relevées au niveau du départ R+4

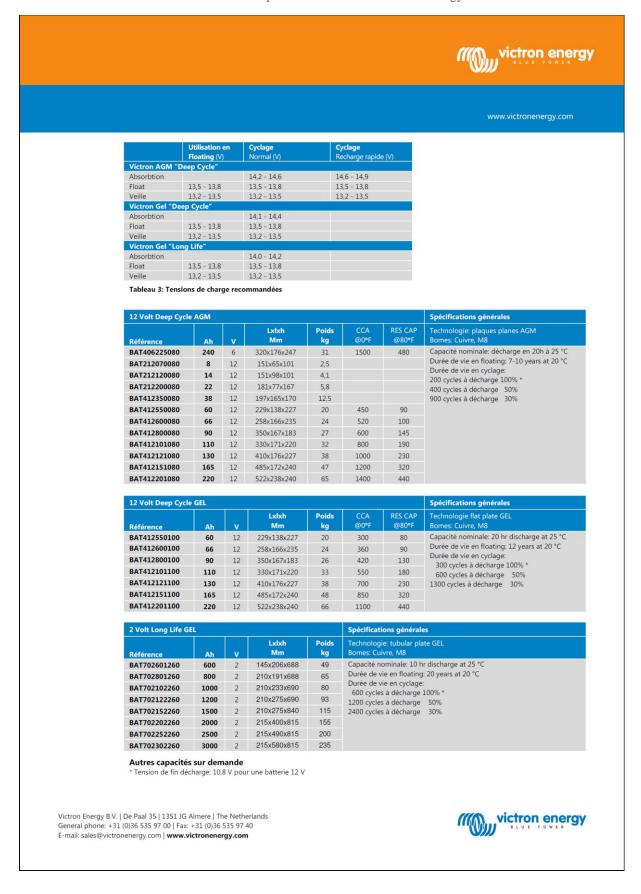
Annexe 19. Récapitulatif du dimensionnement de l'installation photovoltaïque pour le système hybride

PANNEAU PV


Besoin journalier (Wh)	50540
Ensoleillement (kWh·m ⁻² ·j ⁻¹)	5,18
Rendement du système	0,7
Puissance Crête minimale (W)	13938
Puissance module (W)	250
Icc module (A)	8,88
Impp module (A)	8,34
Voc module (V)	37,4
Vmpp module (V)	30
Nombre de modules en série	14
Nombre de strings	4
Nombre total de modules	56
Puissance crête installée (kW)	14

ONDULEUR-CHARGEUR

Puissance (kW)	10
Rendement	96%
Puissance PV max (kW)	14,85
Ratio de puissance	1,06
Tension MPPT min (V)	350
Tension MPPT max (V)	850
Tension max (V)	900
Courant Icc max (A)	18
Nombre d'entrées	2
Tension d'entrée batterie (V)	48
Courant max de charge (A)	200
Tension de sortie AC (V)	400

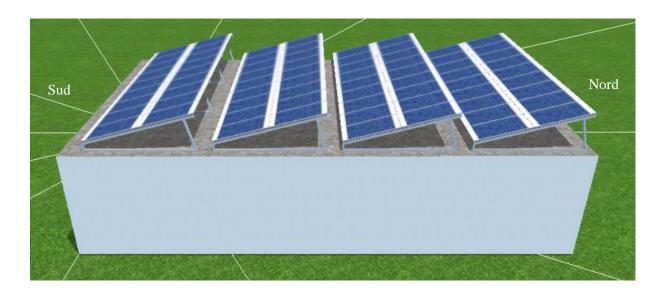

BATTERIE

Capacité minimale (Ah)	1755
Capacité batterie (Ah)	2000
Tension batterie (V)	2
Nombre de batteries en série	24
Nombre de branches	1
Nombre total de batteries	24
Capacité totale (Ah)	2000

Annexe 20. Plaque signalétique panneau de 250 Wc

Annexe 21. Fiche caractéristique batterie OPzV de Victron Energy 2000 Ah-2 V

Annexe 22. Fiche caractéristique onduleur-chargeur hybride MPP Solar de 10 kW


MPI HYBRID SERIES	2V	AV	NEW	NEW	10K				
	3K	4K	- SK	5.5K	10K				
Rated Power	2.00011	4.00014	5.00014	5.50014	40.00044				
Continuous Output	3,000W	4,000W	5,000W	5,500W	10,000W				
Parallel-Ready	No	Yes	Yes	No	Yes				
PV Input Rating (GRID-TIE)			I						
Max PV Input Power	4,500W	5,000W	10,000W	6,500W	14,850W				
Max PV Input Voltage	500Vdc	580Vdc	900Vdc	500Vdc	900Vdc				
Start-up / Initial Feeding Voltage	116 / 150Vdc	116 / 150Vdc	220 / 250 Vdc	116 / 150Vdc	320 / 350 Vdc				
PV MPPT Range	250 - 450Vdc	120 - 500Vdc	250 - 850 Vdc	120 - 450Vdc	350 - 850 Vdc				
Max PV Input Current	18A	18A	10A x 2	13A x 2	18A x 2				
MPPT Tracker	1	1	2	2	2				
Max DC/AC Conversion Efficiency			>96%						
AC Input									
Start-up / Auto Restart Voltage		120 - 140Vac / 180Vac							
nput Voltage Range			170 - 280Vac						
Nominal Frequency			50 / 60 Hz						
Max AC Input Current	30A	40A	40A	40A	40A				
AC Output									
Nominal AC Output Voltage		208/220/230/240	400Vac, 3-Phase						
Output Voltage Range		184 - 2		184 - 265Vac (P-N) / 318 - 460Vac (P-P)					
Output Frequency (GRID-TIE)		47	.5 - 51.5Hz / 59.3 - 60).5 Hz					
Output Frequency (OFF-GRID)			50 / 60Hz, auto-sens	ing					
Output Waveform			Pure Sine Wave						
Max Output Power (via grid relay)	5,100W	6,000W	7,000W	6,500W	16,000W				
Max Output Power (battery mode)	3,000W	4,000W	5,000W	5,500W	10,000W				
Max Efficiency		>9	3%	•	>91%				
Battery Charger									
Nominal DC Voltage			48Vdc						
Max Charging Current	25A	80A	100A	60A	200A				
ENVIRONMENTAL / MECHANICAL SI	PECIFICATIONS								
Communication Port			RS232 / USB						
		EN6210	9-1, EN62109-2, EN6	2040-1 / CE					
Certifications			VDE4105, VDE0126-	l-1					
		AS47	77/3100 (3K, 5.5K, 1						
Operating Temp.	0 - 4		-10 - 50°C	0 - 40°C	-10 - 50°C				
Operating Humidity		0	- 90% RH (No conden	sing)					
Dimension	480*438*107mm	535*438*117mm	600*460*200mm	450*445*110mm	622*500*167mm				

Annexe 23. Fiche caractéristique de l'onduleur réseau SMA Tri Power STP 25 000 TL

Puissance de sortie / Puissance assignée	Version : janvier 2016				
Caractéristiques techniques	Sunny Tripower	Sunny Tripower			
	20000TL	25000TL			
Entrée (DC)	2011034/2011034	25550 \\\/25550 \\\/			
Puissance DC max. (quand cos φ = 1)/puissance assignée DC	20440 W/20440 W 1000 V	25550 W/25550 W 1000 V			
Tension d'entrée max.					
Plage de tension MPP/tension d'entrée assignée	320 V à 800 V/600 V	390 V à 800 V/600 V			
Tension d'entrée min./tension d'entrée de démarrage	150 V/188 V	150 V/188 V			
Courant d'entrée max. entrée A/entrée B	33 A/33 A	33 A/33 A			
Nombre d'entrées MPP indépendantes/strings par entrée MPP Sortie (AC)	2/A:3; B:3	2/A:3; B:3			
Puissance assignée (à 230 V, 50 Hz)	20000 W	25000 W			
Puissance apparente AC max.	20000 VA	25000 VA			
Tension nominale AC	3/N/PE ; :	220 V/380 V 230 V/400 V 240 V/415 V			
Plage de tension AC	180 V	à 280 V			
E. (50 Hz/44	Hz à 55 Hz			
Fréquence du réseau AC/plage	60 Hz/54	Hz à 65 Hz			
Fréquence de réseau assignée/tension de réseau assignée		z/230 V			
Courant de sortie max./courant de sortie assigné	29 A/29 A	36,2 A/36,2 A			
Facteur de puissance pour la puissance assignée/Facteur de déphasage réglable	1/0 inducti	if à 0 capacitif			
THD	≤	3 %			
Phases d'injection/phases de raccordement	3	3/3			
Rendement					
Rendement max./européen	98,4 %/98,0 %	98,3 %/98,1 %			
Dispositifs de protection					
Dispositif de déconnexion côté DC		•			
Surveillance du défaut à la terre/Surveillance du réseau		/•			
Parafoudre DC: type II	0				
Protection inversion de polarité DC/résistance aux courts-circuits AC/séparation galvanique	• / • / –				
Unité de surveillance du courant différentiel, sensible tous les courants	•				
Classe de protection (selon IEC 62109-1) / catégorie de surtension (selon IEC 62109-1)	I / AC: III; DC: II				
Données générales	1,7,10.	, 2 3. 11			
Dimensions (L / H / P)	661/682/264 mm (2	26,0/26,9/10,4 pouces)			
Poids		134,48 lb)			
Plage de température de fonctionnement		(-13°Fà+140°F)			
Émission sonore (typique)		dB(A)			
Autoconsommation (nuit)		I W			
Topologie/système de refroidissement Indice de protection (selon CEI 60529)		nateur/OptiCool P65			
Classe climatique (selon IEC 60721-3-4)		K4H			
Valeur maximale admissible d'humidité relative de l'air (sans condensation)		00%			
	19	00%			
Équipement / fonction / accessoires	CUNICUS A				
Raccordement DC/raccordement AC Écran		oorne à ressort			
Interface : RS485, Speedwire/Webconnect		/•			
Interface de données : SMA Modbus / SunSpec Modbus		/•			
Relais multifonction/Power Control Module	0	/0			
OptiTrack Global Peak / Integrated Plant Control / Q on Demand 24/7	•/	•/•			
Compatible off-grid / compatible SMA Fuel Save Controller	•	/•			
Garantie: 5 / 10 / 15 / 20 / 25 ans	•/0/	0/0/0			
Certificats et homologations (autres sur demande) * N'est pas valable pour toutes les annexes nationales de la norme EN 50438	G59/3, IEC 60068-2-x, IEC 61727, IEC 62	1:2012, CE, CEI 0.16, CEI 0.21, EN 50438 109-1/2, IEC 62116, MEA 2013, NBR 16 013, PPC, RD 1699/413, RD 661/2007,			
		, VDE 0126-1-1, VDE-AR-N 4105, VFR 2014			
Désignation de type	STP 20000TL-30	STP 25000TL-30			

SMA Solar Technology

www.SMA-France.com

Annexe 25. Facteurs de correction K1, K2 et K3 [17]

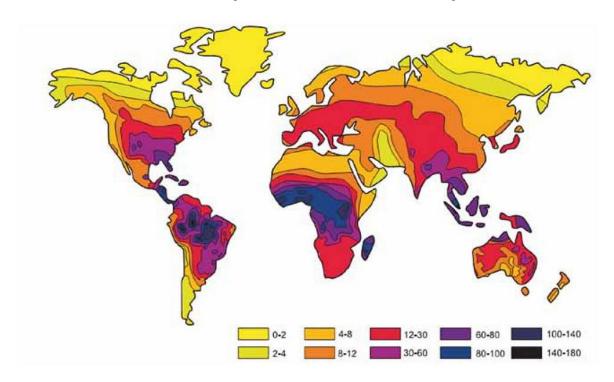
Facteur de correction K1

lettre de sélection	cas d'installation	K1		
 câbles dans des produits encastrés directement dans des matériaux thermiquement isolants 				
	 conduits encastrés dans des matériaux thermiquement isolants 	0,77		
	câbles multiconducteurs	0,90		
	 vides de construction et caniveaux 	0,95		
С	pose sous plafond	0,95		
B, C, E, F	autres cas	1		

Facteur de correction K2

lettre de sélection	disposition des câbles jointifs	facteur de correction K2 nombre de circuits ou de câbles multiconducteurs											
		1	2	3	4	5	6	7	8	9	12	16	20
B, C, F	encastrés ou noyés dans les parois	,	,	,	,	,	0,55	,	,	,		,	
С	simple couche sur les murs ou les planchers ou tablettes non perforées		0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	Pas de facteur de réduction supplémentaire		on
	simple couche au plafond	1,00	0,85	0,76	0,72	0,69	0,67	0,66	0,65	0,64	pour	plus	de
E, F	simple couche sur des tablettes horizontales perforées ou sur tablettes verticales	,	,				0,73					oles.	
	simple couche sur des échelles à câbles, corbeaux, etc.	1,00	0,88	0,82	0,80	0,80	0,79	0,79	0,78	0,78			

Facteur de correction K3


températures	isolation					
ambiantes (°C)	élastomère (caoutchouc)	polychlorure de vinyle (PVC)	polyéthylène réticulé (PR) butyle, éthylène, propylène (EPR)			
10	1,29	1,22	1,15			
15	1,22	1,17	1,12			
20	1,15	1,12	1,08			
25	1,07	1,06	1,04			
30	1,00	1,00	1,00			
30 35	0,93	0,94	0,96			
40	0,82	0,87	0,91			
45	0,71	0,79	0,87			
50	0,58	0,71	0,82			
55	-	0,61	0,76			
60	-	0,50	0,71			

Annexe 26. Tableau pour le choix de la section de câble du conducteur [17]

		isolant	et nom	bre de c	onducte	urs cha	rgés (3 o	u 2)		
		caouto ou PV			butyle	ou PR o	u éthylèi	ne PR		
lettre de	В	PVC3	PVC2		PR3		PR2			
sélection	С		PVC3		PVC2	PR3		PR2		
	E			PVC3		PVC2	PR3		PR2	
	F				PVC3		PVC2	PR3		PR2
section	1,5	15,5	17,5	18,5	19,5	22	23	24	26	
cuivre	2,5	21	24	25	27	30	31	33	36	
(mm²)	4	28	32	34	36	40	42	45	49	
,	6	36	41	43	48	51	54	58	63	
	10	50	57	60	63	70	75	80	86	
	16	68	76	80	85	94	100	107	115	
	25	89	96	101	112	119	127	138	149	161
	35	110	119	126	138	147	158	169	185	200
	50	134	144	153	168	179	192	207	225	242
	70	171	184	196	213	229	246	268	289	310
	95	207	223	238	258	278	298	328	352	377
	120	239	259	276	299	322	346	382	410	437
	150		299	319	344	371	395	441	473	504
	185		341	364	392	424	450	506	542	575
	240		403	430	461	500	538	599	641	679
	300		464	497	530	576	621	693	741	783
	400					656	754	825		940
	500					749	868	946		1 083
	630					855	1 005	1 088		1 254
section	2,5	16,5	18,5	19,5	21	23	25	26	28	
aluminium	4	22	25	26	28	31	33	35	38	
(mm²)	6	28	32	33	36	39	43	45	49	
	10	39	44	46	49	54	58	62	67	
	16	53	59	61	66	73	77	84	91	
	25	70	73	78	83	90	97	101	108	121
	35	86	90	96	103	112	120	126	135	150
	50	104	110	117	125	136	146	154	164	184
	70	133	140	150	160	174	187	198	211	237
	95	161	170	183	195	211	227	241	257	289
	120	186	197	212	226	245	263	280	300	337
	150		227	245	261	283	304	324	346	389
	185		259	280	298	323	347	371	397	447
	240		305	330	352	382	409	439	470	530
	300		351	381	406	440	471	508	543	613
	400					526	600	663		740
	500					610	694	770		856
	630					711	808	899		996

Annexe 27. Conditions de choix du type de parafoudre

Niveau kéraunique en fonction de la localisation en Afrique [18]

Choix du type de parafoudre [14]

	Nk	≤ 25	Nk > 25		
Caractéristique de l'installation	Côté DC	Côté AC	Côté DC	Côté AC	
Bâtiment ou structure équipé	Obligatoire	Obligatoire	Obligatoire	Obligatoire	
d'un paratonnerre	Type 2	Type 1 ⁽¹⁾	Type 2	Type 1 ⁽¹⁾	
Alimentation BT par une ligne entièrement ou partiellement aérienne	Peu utile	Recommandé	Recommandé	Obligatoire	
	Type 2	Type 2	Type 2	Type 2 ⁽²⁾	
Alimentation BT par une ligne entièrement souterraine	Peu utile	Peu utile	Recommandé	Recommandé	
	Type 2	Type 2	Type 2	Type 2	

Imax, courant de décharge maximum en fonction du niveau d'exposition [19]

	Niveau d'exposition					
	Faible	Moyen	Elevé			
Environnement des bâtiments	Bâtiment situé dans une zone urbaine ou suburbaine d'habitations groupées	Bâtiment situés en plaine	Bâtiment où il existe un risque spécifique : pylône, arbre, région montagneuse, zone humide ou étang,			
Valeur conseillée Imax (kÂ)	20	40	65			