

CARACTERISATION DE LA LATERITE DE LA CARRIERE DE KAMBOINSE EN VUE D'UNE UTILISATION DURABLE DANS LES STRUCTURES DE CHAUSSEE

MEMOIRE POUR L'OBTENTION DU MASTER EN GENIE CIVIL OPTION : Routes et Ouvrages d'Art (ROA)

Présenté et soutenu publiquement le [25 juin 2018] par

ZOUNGRANA Salomon

Travaux dirigés par : Adamah MESSAN, Maitre de conférence

Co - encadreur : Abdou Lawane GANA, Maitre-Assistant

Maitre de stage : Marie Thérèse Marame MBENGUE

(Laboratoire Eco Matériaux de Construction, LEMC)

Jury d'évaluation du stage :

Président : Dr. Yohan RICHARDSON Membres et correcteurs :

M. Philbert NSHIMYMANA

M. Cesaire HEMA

Promotion [2016/2017]

CITATIONS

« VOLONTE, ORDRE, TEMPS : Tels sont les éléments de l'Art d'apprendre »

L'Abbé Prévost, *L'art d'apprendre*

DEDICACE

MEMOIRE DE FIN D'ETUDES

ZOUNGRANA Salomon

REMERCIEMENTS

Gustave Flaubert affirme ceci : « *Je ne pardonne pas aux hommes d'action de ne pas réussir, puisque le succès est la seule mesure de leur mérite* ». Un secret de la réussite est donné par l'illustre homme politique américain **John Fitzgerald Kennedy :** « *l'art de la réussite consiste à savoir s'entourer des meilleurs »*.

C'est ainsi qu'à l'issu de ce travail abattu, nous voulons traduire notre reconnaissance aux personnes orfèvres en la matière de la recherche d'éco-matériaux de constructions. Nous exprimons nos vifs remerciements au :

➢ Pr Adamah MESSAN de nous avoir accueilli dans le laboratoire LEMC et surtout d'avoir su communiquer ses connaissances dans une grande hardiesse. Sans avoir l'intention de flatter votre égo, vous êtes un modèle, un repère pour ma modeste personne et je crois pour plusieurs qui ont appris à aimer la science à vos côtés.

> **Dr Abdou LAWANE GANA** pour vos interventions éclaircissantes tout au long de nos travaux. Vous vous êtes acharnés pour qu'on trouve le goût de la recherche. Permettez-moi de vous retourner cette citation : « La goutte d'eau que vous m'avez donnée me nourrira toute la vie ».

> A Mme Marie Thérèse Marame MBENGUE ; Merci grandement pour le suivi de bout en bout de ce mémoire. Vous avez su transmettre la sève nourritrice pour alimenter ce mémoire. Nous avons beaucoup appris à vos côtés et nous ne doutons point que vous serez d'un grand apport pour la recherche africaine.

Les doctorants du laboratoire LEMC. Nous remercions particulièrement Dr Decroly DJUBISSE pour votre soutien avec la programmation sur Matlab. Votre soutien nous a été d'un aide précieux

➤ A Mr Daouda Ben Rachid KEITA, Ingénieur géologue du LNBTP pour le recyclage de nos connaissances géologiques. Votre contribution a été d'une grande aide dans la compréhension de nos travaux.

> A Mr Salifou KABORE pour votre partage d'expérience sur les essais géotechniques qui étaient d'une importance indéniable dans le cadre de ces travaux.

A nos Co-stagiaires du labo LEMC, vous m'avez apporté vos soutiens indéfectibles tout au long de notre période de stage. Je crains que ce surnom que vous m'avez attribué « PROCTOR MAN » me manquerait chaleureusement. A tous je vous souhaite beaucoup de courage et de belles opportunités pour la suite.

> Tout le corps professoral de 2IE pour le savoir qu'ils nous ont transmis ; A travers vos projets, nous avons appris à supporter le stress. Après cinq ans à vos côtés ; j'ose croire que je m'inscris également dans la liste des solutions d'émergence de l'Afrique.

➢ Nos amis et camarades de classe pour leur franche collaboration. Avec vous, les semestres s'écoulaient rapide. Au lieu de promotionnaires, je crois que j'ai plutôt obtenu une nouvelle famille issue de la mère Afrique.

L'administration de 2IE pour leur disponibilité ;

A tous ceux et toutes celles dont les noms n'ont pas pu être cités, qu'ils trouvent en ces mots, l'expression de notre profonde gratitude.

RESUME

Compte tenu des nombreuses dégradations routières constatées avant terme au BURKINA FASO, des études de recherches ont été préconisé afin de déceler les différentes causes de ces anomalies routières. C'est dans ce dynamisme que des études de caractérisation de la carrière latéritique de Kamboinsé ont été faites. L'étude a été menée en considération des couches rencontrées à travers la profondeur du profil latéritique. Sur ce profil étudié, quatre couches latéritiques d'usage routier ont été identifiées. La caractérisation de ces couches latéritiques a été menée en deux volets à savoir une première concernant les paramètres de nature et la seconde concernant les paramètres mécaniques. Suite à la caractérisation des paramètres de nature, il en ressort que toutes les couches sont reconnues comme des sols sableux et graveleux avec fines ; elles sont toutes de classe B4 selon la classification GTR. Quant à la classification HRB, les couches K1C1 et K1C2 sont toutes les deux classifiées A2-7 et les couches K1C3 et K1C4 classifiées respectivement A2-4 et A2-5.

Pour ce qui est des paramètres mécaniques, seules les couches K1C3 et K1C4 semblent avoir les propriétés requises pour une utilisation en structure routière (couches de base et de fondation) avec des CBR environnant la valeur de soixante (60). Une corrélation du module d'élasticité de Young (E) en fonction du CBR nous permet de rechercher les références bibliographiques donnant la corrélation adaptée à notre profil. En général nous retenons que les caractéristiques mécaniques pour la carrière latéritique de Saam-tanga de Kamboinsé ; sont meilleures sur les couches superficielles (K1C4 et K1C3) et de moindres qualité pour les plus profondes (K1C1 et K1C2).

Par ailleurs dans l'objectif de mieux comprendre le comportement mécanique des différentes couches, des corrélations ont été proposées. Cela consiste à constater l'évolution des paramètres mécaniques en fonction de leurs paramètres de nature. En conclusion on retient que la quasi-totalité de ces paramètres mécaniques sont influencés par la granulométrie des couches latéritiques.

Mots Clés :

- **1 LATERITE**
- 2 ROUTES
- **3 DEGRADATIONS**
- **4 GEOTECHNIQUES**
- **5 MECANIQUES**

ABSTRACT

Given the large number of roads' deteriorations noted beforehand at BURKINA FASO, researches studies have been recommended in order to detect the different causes of these roads' anomalies. It is for this reason that studies of characterization of the lateritic from the career of Kamboinsé were made. The study was made on the different layers encountered across the depth of the lateritic profile. On this profile, four lateritic roadside layers have been identified. These layers are named K1C1 to K1C4 from down to up of our profile. The characterization of these lateritic layers was carried out in two parts, namely a first concerning the geotechnics' parameters and the second concerning the mechanical parameters. Following the parameters characterization of the nature, it emerges that all layers are recognized as sandy soils and gravelly with fine; they are all class B4 according to the GTR classification. According the HRB classification, the layers K1C1 and K1C2 are both classified A2-7 and the layers K1C3 and K1C4 respectively classified A2-4 and A2-5.

Concerning the mechanical parameters, only the layers K1C3 and K1C4 seem to have the properties required for use in road structure (base and foundation layers) with CBRs surrounding the value of sixty (60). A correlation of the Young's modulus of elasticity (E) as a function of the CBR allows us to search the bibliographical references giving the correlation adapted to our profile. In a global point of view, we retain only the mechanical characteristics for the lateritic from the career of Kamboinsé; are better on the surface layers (K1C4 and K1C3) and of lower quality for the deeper ones (K1C1 and K1C2).

Moreover, in order to better understand the mechanical caracteristics of the different layers, correlations have been proposed. This consists on observing the evolution of the mechanical parameters according to their nature parameters. In conclusion, it is retained that almost all of these mechanical parameters are influenced by the particle size of the lateritic layers.

Key words:

- **1 LATERITE**
- 2 ROAD
- **3 DETERIORATIONS**
- 4 GEOTECHNICS
- 5 MECHANICS

LISTE DES ABREVIATIONS

2iE	Institut International de l'Eau et de l'environnement
AASHTO	American Association State Highway and Transportation Official
ACP	Analyse en Composantes Principales
AFES	Association Française de l'Etude des Sols
Al2O3	Oxyde d'aluminium
BF	Burkina Faso
BRGM	Bureau de Recherche Géologique et Minière
СВ	Couche de Base
CBR	California Bearing Ratio
CEBTP	Centre Expérimental de Recherches et d'Etudes du Bâtiment et des Travaux Publics
CF	Couche de Fondation
CL	Couche de Liaison
Fe2O3	Oxyde de fer III
GAL	Grave Argileuse Latéritique
GB	Grave Bitume
GLN	Grave Latéritique Naturelle
GNT	Grave Non Traité
GPS	Global Positionning System
GTR	Guide des Terrassements Routiers
HRB	Highway Research Board
K1Ci	Kamboinsé profil 1 et couche (strate) i
K1Cm	le mélange des couches du profil 1
LVDT	Linear Variable Differential Transformer
LCPC	Laboratoire Central des Ponts et Chaussées (France)
LEMC	Laboratoire d'Eco-Matériaux de Construction (2iE)
LNBTP	Laboratoire Nationale des Bâtiments et des Travaux Publics (BF)
LPC	Laboratoire des Ponts et Chaussées (Cameroun)
OPM	Optimum Proctor Modifié
ORSTOM	Office de la recherche scientifique et technique outre-mer
RN	Route Nationale
SETRA	Service des Études Techniques des Routes et Autoroutes
USCS	Unified Soil Classification System

LISTE DES SYMBOLES

Acb	Activité argileuse d'un sol
C (0/5)	Coefficient pondérale fraction des grains de 0 à 5mm
Cc	Coefficient de courbure de l'Analyse granulométrique
Cc	Indice de Compression de l'essai Œdométrique
Cr	Indice de ré-compression
Cs	Indice de gonflement Œdométrique
Cu	Coefficient d'uniformité granulométrique
Di	Diamètre intérieur
Dmax	Diamètre maximal des grains
Dn	Diamètre correspondant à n% de passant
e	Indice des vides
Ε	Module de Young
E oed	Module de Young Œdométrique
e0	Indice des vides initial
F max	Force maximale de la résistance à la compression
g	gonflement linéaire par immersion du moule CBR
Gs	Densité des grains solides
h0	Hauteur initiale de l'éprouvette
Hr	Profondeur effective (essai par sédimentométrie)
hs	hauteur des grains solides d'un sol
hv0	hauteur des vides d'un sol
IP	Indice de Plasticité
Ki	Coefficient d'ionisation de la latérite
ks	Coefficient de Perméabilité d'un sol
\mathbf{L}	Hauteur entre les orifices d'entrée et de sortie du perméamètre
$\mathbf{L}\mathbf{L}$	<i>Limite de Liquidité</i>
LP	Limite de Plasticité
μf	Produit de finesse
Mdg	Module des grains
Rc	Résistance à la compression
Si	Portance du sol de classe i ($i = 1 a 5$)
t	Temps
T°	Température
tc	Temps cumulé de lecture
Ti	Traffic de classe i ($i = 1 a 5$)
Vbs	Valeur Bleue d'un Sol
Vs	Volume du sol
Vv0	Volume des vides
Δe	Variation de l'indice des vides
Δh	Déformation réelle Ædométrique
Δh1	Déformation de l'éprouvette ædométrique sous charge
Δh2	Déformation du système

MEMOIRE DE FIN D'ETUDES

ZOUNGRANA Salomon

$\Delta \sigma'$	Variation de la contrainte
ρh	Masse volumique humide d'un sol
ρs	Masse volumique sèche d'un sol
σ	La contrainte normale
τ	La contrainte tangentielle
Yd	La densité sèche d'un sol
Yd opt	La densité sèche optimale d'un sol
Υh	La densité humide
Ύs	la densité sèche d'un sol
φ	le diamètre des grains
ω	Teneur en eau
ωi	Teneur en eau initial
ωopt	Teneur en eau optimal

MEMOIRE DE FIN D'ETUDES

ZOUNGRANA Salomon

TABLE DES MATIERES

C	ITATIONS	ii
D	EDICACE	. iii
R	EMERCIEMENTS	. iv
R	ESUME	v
А	BSTRACT	. vi
L	ISTE DES ABREVIATIONS	vii
L	ISTE DES SYMBOLES	viii
Т	ABLE DES MATIERES	1
L	ISTES DES TABLEAUX	3
L	ISTES DES FIGURES	5
I	NTRODUCTION GENERALE	. 8
C	CHAPITRE 1 : REVUE BIBLIOGRAPHIQUE	11
I. D	LA LATERITE EN CONSTRUCTION ROUTIERE ET OBJET D'ETUDE AU BURKINA FASO ET ANS LA SOUS REGION	12
П	DEFINITIONS	12
IJ	I. PROCESSUS DE LATERISATION	15
Г	V. DIFFERENTS TYPES DE SOLS RENCONTRES DANS LES CARRIERES LATERITIQUES	16
	1. Les sols fersialitiques ou ferrisols	16
	2 Les sols ferrugineux	.16
	3 Les sols ferralitiques	17
V	DATATION DES CARRIERES LATERITIQUES	17
V	I REPARTITIONS DES LATERITES DANS LE MONDE ET AU BURKINA FASO	19
V	II DEGRADATIONS ROUTIERES	20
	1. Dégradations sur les routes revêtues	.21
	2. Dégradations sur les routes en terres	22
	 Dégradations des dépendances de tous types de route 	.23
С	HAPITRE 2 : ETUDE EXPERIMENTALE	24
I.	LOCALISATION ET DESCRIPTION DE LA CARRIERE LATERITIQUE EXPLOITEE	25
I	. DESCRIPTION DES COUCHES LATERITIQUES DU PROFIL	25
MEM	OIRE DE FIN D'ETUDES ZOUNGRANA Salomon	

Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

1.	Description du profil	25
2.	Description sommaire des sols des différentes couches latéritiques	27
ш	DESCRIPTION DES ESSAIS	29
111. 1	Escais d'identification des paramètres d'état du sol	20 20
1. 2	Essais d'identification des paramètres mécaniques des sols	20
۷.	Essais à lucifilitation des parametres metaniques des sols	
CHA	PITRE 3 RESULTATS, ANALYSES ET DISCUSSION	
I.	Caractéristiques des paramètres d'état et de nature	
1.	Analyse granulométrique	
2.	Les limites	
3.	La valeur bleue d'un sol	
4.	La teneur en eau initiale des couches du profil	
5.	L'essai Proctor	40
II.	Caractéristiques des paramètres mécaniques	
1.	Gonflement	
2.	La valeur CBR	
3.	L'essai de perméabilité	
4.	L'essai Œdométrique	
5.	La compression uniaxiale	
6.	Le cisaillement direct	51
CON	NCLUSIONS ET RECOMMANDATIONS	55
BIBLI	OGRAPHIE	
ANN	NEXES 1 : TABLEAUX DES RESULTATS	
ANN	NEXES 2 : GRAPHIQUES ET DIAGRAMMES	
ANN	NEXES 3 : IMAGES D'ILLUSTRATION	

LISTES DES TABLEAUX

Tableau 1: Bibliographie sur les relations du module en fonction du CBR	13
Tableau 2: Description sommaire du profil de Saam-tanga, Kamboinsé	26
Tableau 3: Suivi de la montée d'eau en fonction du temps	45
Tableau 4: Calcul de la perméabilité	45
Tableau 5: Tableau récapitulatif de la comparaison du module de Young à la littérature	49
Tableau 6 : Différence des relations retenues par rapport aux valeurs expérimentales	50
Tableau 7: Angle de frottement interne de différents types de sols ((ROBITAILLE & TREMBLAY, 1997)	52
Tableau 8: Résultats du tamisage par voie humide de la couche K1C1	62
Tableau 9: Résultats du tamisage par voie humide de la couche K1C2	62
Tableau 10: Résultats du tamisage par voie humide de la couche K1C3	63
Tableau 11 : Résultats du tamisage par voie humide de la couche K1C4	63
Tableau 12: Résultats du tamisage par voie sèche de la couche K1C1	64
Tableau 13: Résultats du tamisage par voie sèche de la couche K1C2	64
Tableau 14: Résultats du tamisage par voie sèche de la couche K1C3	65
Tableau 15: Résultats du tamisage par voie sèche de la couche K1C4	65
Tableau 16: Résultats de la sédimentométrie de la couche K1C1	66
Tableau 17: Résultats de la sédimentométrie de la couche K1C2	66
Tableau 18: Résultats de la sédimentométrie de la couche K1C3	67
Tableau 19: Résultats de la sédimentométrie de la couche K1C4	68
Tableau 20: Récapitulatif des résultats du tamisage par voie humide	69
Tableau 21: Récapitulatif des résultats du tamisage par voie sèche	69
Tableau 22: Comparaison de la couche K1C1 et fuseaux de base et de fondation du CEBTP	69
Tableau 23: Comparaison de la couche K1C2 et fuseaux de base et de fondation du CEBTP	69
Tableau 24: Comparaison de la couche K1C3 et fuseaux de base et de fondation du CEBTP	69
Tableau 25: Comparaison de la couche K1C4 et fuseaux de base et de fondation du CEBTP	69
Tableau 26: Proportion granulaire des couches étudiées par le tamisage par voie humide	70
Tableau 27: Proportion granulaire des couches étudiées par le tamisage par voie sèche	70
Tableau 28: Résultats du poids spécifique des différentes couches	70
Tableau 29 : Variation granulaire après compactage de la couche K1C3	70
Tableau 30: Variation granulaire après compactage de la couche K1C4	73
Tableau 31: Feuille de calcul des résultats des limites de la couche K1C1	74
Tableau 32: Feuille de calcul des résultats des limites de la couche K1C2	74
Tableau 33: Feuille de calcul des résultats des limites de la couche K1C3	75
Tableau 34: Feuille de calcul des résultats des limites de la couche K1C4	75
Tableau 35: Résultats du test au Bleu de Méthylène	75
Tableau 36: Récapitulation des limites des couches étudiées	76
Tableau 37: Résultats de l'essai Proctor de la couche K1C1	76
Tableau 38: Résultats de l'essai Proctor de la couche K1C2	76
Tableau 39: Résultats de l'essai Proctor de la couche K1C3	77
Tableau 40: Résultats de l'essai Proctor de la couche K1C4	77

MEMOIRE DE FIN D'ETUDES

ZOUNGRANA Salomon

Tableau 41: Résultats de l'essai Proctor de la couche K1Cm	78
Tableau 42: Récapitulatif des résultats de l'essai Proctor	78
Tableau 43: Résistance au poinçonnement de la couche K1C1	78
Tableau 44: Résistance au poinçonnement de la couche K1C2	78
Tableau 45: Résultat CBR de la couche K1C1	78
Tableau 46: Résultat CBR de la couche K1C2	78
Tableau 47: Résistance au poinçonnement de la couche K1C3	79
Tableau 48: Résistance au poinçonnement de la couche K1C4	79
Tableau 49: Résistance au poinçonnement de la couche K1Cm	79
Tableau 50: Résultat CBR de la couche K1C3	79
Tableau 51: Résultat CBR de la couche K1C4	79
Tableau 52: Résultat CBR de la couche K1Cm	79
Tableau 53: Résultats de l'essai de gonflement par immersion de la couche K1C1	80
Tableau 54: Résultats de l'essai de gonflement par immersion de la couche K1C2	80
Tableau 55: Résultats de l'essai de gonflement par immersion de la couche K1C3	80
Tableau 56: Résultats de l'essai de gonflement par immersion de la couche K1C4	80
Tableau 57: Résultats de l'essai de gonflement par immersion de la couche K1Cm	81
Tableau 58: Principe de chargement de l'essai Œdométrique	81
Tableau 59: Suivi de la déformation œdométrique de la couche K1C1	81
Tableau 60: Analyse des résultats observés sur la couche K1C1	81
Tableau 61: Suivi de la déformation œdométrique de la couche K1C4	82
Tableau 62: Analyse des résultats observés sur la couche K1C4	82
Tableau 63: Récapitulatif des résultats de l'essai Oedométrique des couches étudiées	82
Tableau 64: L'influence des caractéristiques de l'éprouvette sur la résistance mécanique	82
Tableau 65: Récapitulatif des valeurs de Modules de Young des couches étudiées	82
Tableau 66: Résultats de l'essai de cisaillement de la couche K1C1	83
Tableau 67: Résultats de l'essai de cisaillement de la couche K1C2	83
Tableau 68: Résultats de l'essai de cisaillement de la couche K1C3	83
Tableau 69: Résultats de l'essai de cisaillement de la couche K1C4	83
Tableau 70: Résultats de l'essai de cisaillement de la couche K1Cm	83
Tableau 71: Résultats de l'essai de cisaillement de la couche K1C3 non saturé	83
Tableau 72: Résultats de l'essai de cisaillement de la couche K1C3 consolidé	83
Tableau 73: Récapitulatif des résultats de cisaillement des couches étudiées	83
Tableau 74: Corrélation de l'angle et calcul du Mdg	83

LISTES DES FIGURES

Figure 2: La carte géologique simplifiée du Burkina FASO (BUMIGEB)	Figure 1:La répartition des sols dans le Monde ; (AFES, 1998) in (LEGROS, 2013)	. 19
Figure 3: Localisation géographique du profil étudié 25 Figure 4 : Etats de consistance (ROBITAILLE & TREMBLAY, 1997). 30 Figure 5: Courbes granulométriques par voie sèche des couches étudiées 36 Figure 7: Récapitulatif des limites des couches étudiées 37 Figure 8: La valeur bleue des sols étudiés. 39 Figure 9: Graphe donnant la teneur en eau initiale des couches du profil. 40 Figure 11: Récapitulatif des résultats de l'essai Proctor 41 Figure 11: Récapitulatif des valeurs CBR des différentes couches étudiées 43 Figure 12: Récapitulatif des valeurs CBR des différentes couches étudiées 48 Figure 13: Récapitulatif des valeurs CBR des différentes couches étudiées 48 Figure 14: Corrélation des E max en fonction de la portion fine 50 Figure 15: Corrélation des E max en fonction de la portion fine 51 Figure 16: Récapitulatif des valeurs du visaillement 51 Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols 53 Figure 19: Courbe granulométrique par voie humide de la couche K1C1 85 Figure 21: Courbe granulométrique par voie humide de la couche K1C2 86 Figure 22: Courbe granulométrique par voie sèche de la couche K1C3 88 Figure 23: Courbe	Figure 2: La carte géologique simplifiée du Burkina FASO (BUMIGEB)	. 20
Figure 4 : Etats de consistance (ROBITAILLE & TREMBLAY, 1997). 30 Figure 5 : Courbes granulométriques par voie sèche des couches étudiées 36 Figure 7 : Récapitulatif des limites des couches étudiées 37 Figure 7 : Récapitulatif des values couches étudiées 38 Figure 9 : Graphe donnant la teneur en eau initiale des couches du profil. 40 Figure 10: Récapitulatif des résultats de l'essai Proctor 41 Figure 11: Récapitulatif des valueurs CBR des différentes couches étudiées 43 Figure 12: Récapitulatif des valueurs CBR des différentes couches étudiées 48 Figure 13: Récapitulatif des valueurs CBR des différentes couches étudiées 48 Figure 15: Corrélation des E max en fonction de la portion fine 50 Figure 15: Corrélation de l'angle de frottement interne par rapport aux grains des sols 53 Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols 53 Figure 20: Courbe granulométrique par voie humide de la couche K1C1 85 Figure 21: Courbe granulométrique par voie humide de la couche K1C2 86 Figure 22: Courbe granulométrique par voie humide de la couche K1C4 86 Figure 23: Courbe granulométrique par voie humide de la couche K1C4 86 Figure 24: Courbe granulométrique par voie sèche de la couche K1C4<	Figure 3: Localisation géographique du profil étudié	. 25
Figure 5: Courbes granulométriques par voie sèche des couches étudiées 36 Figure 6: Production de fines après compactage 37 Figure 7: Récapitulatif des limites des couches étudiées 38 Figure 8: La valeur bleue des sols étudiés 39 Figure 10: Récapitulatif des résultats de l'essai Proctor 40 Figure 11: Récapitulatif des valeurs CBR des différentes couches étudiées 43 Figure 12: Récapitulatif des valeurs CBR des différentes couches étudiées 48 Figure 13: Récapitulatif des valeurs CBR des différentes couches étudiées 48 Figure 14: Corrélation des E max en fonction de la portion fine 50 Figure 15: Corrélation des E may en fonction de la portion fine 50 Figure 16: Récapitulatif des paramètres du cisaillement 51 Figure 17: Corrélation de langle de frottement interne par rapport aux grains des sols 53 Figure 20: Courbe granulométrique par voie humide de la couche K1C1 85 Figure 21: Courbe granulométrique par voie humide de la couche K1C2 86 Figure 22: Courbe granulométrique par voie sèche de la couche K1C4 86 Figure 23: Courbe granulométrique par voie sèche de la couche K1C4 86 Figure 24: Courbe granulométrique par voie sèche de la couche K1C4 87 Figure 25: Courbe granulo	Figure 4 : Etats de consistance (ROBITAILLE & TREMBLAY, 1997).	. 30
Figure 6: Production de fines après compactage. 37 Figure 7: Récapitulatif des limites des couches étudiées. 38 Figure 8: La valeur bleue des sols étudiés. 39 Figure 9: Graphe donnant la teneur en eau initiale des couches du profil. 40 Figure 10: Récapitulatif des résultats de l'essai Proctor 41 Figure 11: Récapitulatif des valeurs CBR des différentes couches étudiées. 43 Figure 12: Récapitulatif des valeurs CBR des différentes couches étudiées. 45 Figure 13: Récapitulatif des valeurs de Module de Young des couches étudiées. 48 Figure 14: Corrélation des E max en fonction de la portion fine 50 Figure 15: Corrélation des E may en fonction de la portion fine 50 Figure 16: Récapitulatif des valeurs de Module de Young des couches étudiées 53 Figure 17: Corrélation de l'angle de frotterment interne par rapport aux grains des sols 53 Figure 18: Courbe granulométrique par voie humide de la couche K1C1 85 Figure 21: Courbe granulométrique par voie humide de la couche K1C2 86 Figure 22: Courbe granulométrique par voie sèche de la couche K1C4 86 Figure 23: Courbe granulométrique par voie sèche de la couche K1C1 87 Figure 24: Courbe granulométrique par voie sèche de la couche K1C1 87	Figure 5: Courbes granulométriques par voie sèche des couches étudiées	. 36
Figure 7: Récapitulatif des limites des couches étudiées. 38 Figure 8: La valeur bleue des sols étudiés. 39 Figure 9: Graphe donnant la teneur en eau initiale des couches du profil. 40 Figure 10: Récapitulatif du gonflement des couches étudiées. 41 Figure 11: Récapitulatif des valeurs CBR des différentes couches étudiées. 43 Figure 12: Récapitulatif des valeurs CBR des différentes couches étudiées. 48 Figure 13: Récapitulatif des valeurs de Module de Young des couches étudiées. 48 Figure 14: Corrélation des E max en fonction de la portion fine 50 Figure 15: Corrélation de l'angle de frottement interne par rapport aux grains des sols. 53 Figure 17: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf) 53 Figure 20: Courbe granulométrique par voie humide de la couche K1C1 85 Figure 22: Courbe granulométrique par voie humide de la couche K1C3 86 Figure 23: Courbe granulométrique par voie sèche de la couche K1C4 87 Figure 24: Courbe granulométrique par voie sèche de la couche K1C4 88 Figure 27: Courbe granulométrique par voie sèche de la couche K1C4 88 Figure 28: Courbe granulométrique par voie sèche de la couche K1C4 88 Figure 29: Répartition granulaire des couches étudiées par voie humide<	Figure 6: Production de fines après compactage	. 37
Figure 8: La valeur bleue des sols étudiés. 39 Figure 9: Graphe donnant la teneur en eau initiale des couches du profil. 40 Figure 10: Récapitulatif des résultats de l'essai Proctor 41 Figure 11: Récapitulatif des valeurs CBR des différentes couches étudiées. 43 Figure 13: Récapitulatif des valeurs CBR des différentes couches étudiées. 48 Figure 13: Récapitulatif des valeurs de Module de Young des couches étudiées. 48 Figure 14: Corrélation des E max en fonction de la portion fine 50 Figure 15: Corrélation des E may en fonction de la portion fine 50 Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols 53 Figure 19: Courbe granulométrique par voie humide de la couche K1C1 85 Figure 21: Courbe granulométrique par voie humide de la couche K1C2 85 Figure 22: Courbe granulométrique par voie sèche de la couche K1C1 87 Figure 23: Courbe granulométrique par voie sèche de la couche K1C1 87 Figure 24: Courbe granulométrique par voie sèche de la couche K1C2 87 Figure 23: Courbe granulométrique par voie sèche de la couche K1C1 88 Figure 24: Courbe granulométrique par voie sèche de la couche K1C2 87 Figure 23: Courbe granulométrique par voie sèche de la couche K1C1 89	Figure 7: Récapitulatif des limites des couches étudiées	. 38
Figure 9: Graphe donnant la teneur en eau initiale des couches du profil. 40 Figure 10: Récapitulatif des résultats de l'essai Proctor 41 Figure 11: Récapitulatif du gonflement des couches étudiées 43 Figure 11: Récapitulatif des valeurs CBR des différentes couches étudiées 45 Figure 11: Récapitulatif des valeurs de Module de Young des couches étudiées 48 Figure 11: Corrélation des E max en fonction de la portion fine 50 Figure 15: Corrélation des E may en fonction de la portion fine 50 Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols 53 Figure 18: Corrélation de la codésion des sols (C) en fonction du module de finesse (Mdf) 53 Figure 20: Courbe granulométrique par voie humide de la couche K1C1 85 Figure 21: Courbe granulométrique par voie humide de la couche K1C1 86 Figure 22: Courbe granulométrique par voie sèche de la couche K1C1 87 Figure 24: Courbe granulométrique par voie sèche de la couche K1C2 87 Figure 25: Courbe granulométrique par voie sèche de la couche K1C1 88 Figure 29: Répartition granulamétriques des couches étudiées par voie sèche 89 Figure 29: Répartition granulaire des couches étudiées par voie sèche 90 Figure 29: Répartition granulaire des couches étudi	Figure 8: La valeur bleue des sols étudiés	. 39
Figure 10: Récapitulatif des résultats de l'essai Proctor 41 Figure 11: Récapitulatif du gonflement des couches étudiées 43 Figure 12: Récapitulatif des valeurs CBR des différentes couches étudiées 45 Figure 13: Récapitulatif des valeurs CBR des différentes couches étudiées 48 Figure 13: Corrélation des E max en fonction de la portion fine 50 Figure 15: Corrélation des E may en fonction de la portion fine 51 Figure 17: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf) 53 Figure 19: Courbe granulométrique par voie humide de la couche K1C1 85 Figure 20: Courbe granulométrique par voie humide de la couche K1C2 86 Figure 21: Courbe granulométrique par voie humide de la couche K1C3 86 Figure 22: Courbe granulométrique par voie sèche de la couche K1C4 86 Figure 23: Courbe granulométrique par voie sèche de la couche K1C1 87 Figure 24: Courbe granulométrique par voie sèche de la couche K1C2 87 Figure 25: Courbe granulométrique par voie sèche de la couche K1C3 88 Figure 26: Courbe granulométrique par voie sèche de la couche K1C4 88 Figure 27: Courbes granulométrique par voie sèche de la couche K1C4 89 Figure 28: Répartition granulaire des couches étudiées par voie sèche 90	Figure 9: Graphe donnant la teneur en eau initiale des couches du profil	. 40
Figure 11: Récapitulatif du gonflement des couches étudiées43Figure 12: Récapitulatif des valeurs CBR des différentes couches étudiées45Figure 13: Récapitulatif des valeurs de Module de Young des couches étudiées48Figure 14: Corrélation des E max en fonction de la portion fine50Figure 15: Corrélation des E may en fonction de la portion fine51Figure 16: Récapitulatif des paramètres du cisaillement51Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols53Figure 18: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf)53Figure 20: Courbe granulométrique par voie humide de la couche K1C185Figure 21: Courbe granulométrique par voie humide de la couche K1C285Figure 22: Courbe granulométrique par voie humide de la couche K1C486Figure 22: Courbe granulométrique par voie sèche de la couche K1C187Figure 23: Courbe granulométrique par voie sèche de la couche K1C187Figure 24: Courbe granulométrique par voie sèche de la couche K1C187Figure 25: Courbe granulométrique par voie sèche de la couche K1C188Figure 28: Courbes granulométrique par voie sèche de la couche K1C189Figure 29: Répartition granulaire des couches étudiées par voie humide90Figure 30: Répartition granulaire des couches étudiées par voie humide90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP92Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C1	Figure 10: Récapitulatif des résultats de l'essai Proctor	. 41
Figure 12: Récapitulatif des valeurs CBR des différentes couches étudiées45Figure 13: Récapitulatif des valeurs de Module de Young des couches étudiées48Figure 14: Corrélation des E max en fonction de la portion fine50Figure 15: Corrélation des E moy en fonction de la portion fine50Figure 16: Récapitulatif des paramètres du cisaillement51Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols53Figure 19: Courbe granulométrique par voie humide de la couche K1C185Figure 20: Courbe granulométrique par voie humide de la couche K1C285Figure 21: Courbe granulométrique par voie humide de la couche K1C386Figure 22: Courbe granulométrique par voie humide de la couche K1C486Figure 23: Courbe granulométrique par voie sèche de la couche K1C486Figure 24: Courbe granulométrique par voie sèche de la couche K1C487Figure 25: Courbe granulométrique par voie sèche de la couche K1C488Figure 27: Courbe granulométrique par voie sèche de la couche K1C488Figure 28: Courbe granulométrique par voie sèche de la couche K1C489Figure 29: Répartition granulométriques des couches étudiées par voie humide90Figure 29: Répartition granulométriques des couches étudiées par voie humide90Figure 31: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 32: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection	Figure 11: Récapitulatif du gonflement des couches étudiées	. 43
Figure 13: Récapitulatif des valeurs de Module de Young des couches étudiées48Figure 14: Corrélation des E max en fonction de la portion fine50Figure 15: Corrélation des E moy en fonction de la portion fine50Figure 16: Récapitulatif des paramètres du cisaillement51Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols53Figure 18: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf)53Figure 20: Courbe granulométrique par voie humide de la couche K1C185Figure 21: Courbe granulométrique par voie humide de la couche K1C286Figure 22: Courbe granulométrique par voie humide de la couche K1C486Figure 23: Courbe granulométrique par voie sèche de la couche K1C487Figure 24: Courbe granulométrique par voie sèche de la couche K1C388Figure 25: Courbe granulométrique par voie sèche de la couche K1C488Figure 27: Courbes granulométrique par voie sèche de la couche K1C488Figure 28: Courbe granulométriques des couches étudiées par voie humide89Figure 29: Répartition granulaire des couches étudiées par voie sèche89Figure 30: Répartition granulaire des couches étudiées par voie humide90Figure 31: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP92Figure 31: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP92Figure 32: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 33: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP92<	Figure 12: Récapitulatif des valeurs CBR des différentes couches étudiées	. 45
Figure 14: Corrélation des E max en fonction de la portion fine50Figure 15: Corrélation des E moy en fonction de la portion fine50Figure 16: Récapitulatif des paramètres du cisaillement51Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols53Figure 18: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf)53Figure 19: Courbe granulométrique par voie humide de la couche K1C185Figure 20: Courbe granulométrique par voie humide de la couche K1C285Figure 21: Courbe granulométrique par voie humide de la couche K1C386Figure 22: Courbe granulométrique par voie sèche de la couche K1C486Figure 23: Courbe granulométrique par voie sèche de la couche K1C187Figure 25: Courbe granulométrique par voie sèche de la couche K1C287Figure 25: Courbe granulométrique par voie sèche de la couche K1C388Figure 25: Courbe granulométrique par voie sèche de la couche K1C488Figure 26: Courbe granulométrique par voie sèche de la couche K1C488Figure 27: Courbes granulométrique par voie sèche de la couche K1C489Figure 28: Courbes granulométriques des couches étudiées par voie sèche89Figure 30: Répartition granulaire des couches étudiées par voie humide90Figure 31: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée d	Figure 13: Récapitulatif des valeurs de Module de Young des couches étudiées	. 48
Figure 15: Corrélation des E moy en fonction de la portion fine50Figure 16: Récapitulatif des paramètres du cisaillement51Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols53Figure 18: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf)53Figure 19: Courbe granulométrique par voie humide de la couche K1C185Figure 20: Courbe granulométrique par voie humide de la couche K1C285Figure 21: Courbe granulométrique par voie humide de la couche K1C386Figure 23: Courbe granulométrique par voie sèche de la couche K1C486Figure 24: Courbe granulométrique par voie sèche de la couche K1C187Figure 25: Courbe granulométrique par voie sèche de la couche K1C287Figure 26: Courbe granulométrique par voie sèche de la couche K1C188Figure 27: Courbes granulométrique par voie sèche de la couche K1C1488Figure 28: Courbe granulométrique par voie sèche de la couche K1C1488Figure 29: Répartition granulaire des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie sèche90Figure 31: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 32: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 33: Résultats du l'essai de bleu de méthylène des couches étudiées95Figure 34: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP93Figure 34: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP94Figu	Figure 14: Corrélation des E max en fonction de la portion fine	. 50
Figure 16: Récapitulatif des paramètres du cisaillement51Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols53Figure 18: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf)53Figure 19: Courbe granulométrique par voie humide de la couche K1C185Figure 20: Courbe granulométrique par voie humide de la couche K1C285Figure 21: Courbe granulométrique par voie humide de la couche K1C386Figure 22: Courbe granulométrique par voie humide de la couche K1C486Figure 23: Courbe granulométrique par voie sèche de la couche K1C187Figure 24: Courbe granulométrique par voie sèche de la couche K1C287Figure 25: Courbe granulométrique par voie sèche de la couche K1C388Figure 26: Courbe granulométrique par voie sèche de la couche K1C187Figure 27: Courbes granulométrique par voie sèche de la couche K1C188Figure 28: Courbe granulométrique par voie sèche de la couche K1C189Figure 29: Répartition granulamétriques des couches étudiées par voie humide89Figure 29: Répartition granulaire des couches étudiées par voie sèche90Figure 31: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C39	Figure 15: Corrélation des E moy en fonction de la portion fine	. 50
Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols 53 Figure 18: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf) 53 Figure 19: Courbe granulométrique par voie humide de la couche K1C1 85 Figure 20: Courbe granulométrique par voie humide de la couche K1C2 85 Figure 21: Courbe granulométrique par voie humide de la couche K1C3 86 Figure 22: Courbe granulométrique par voie humide de la couche K1C4 86 Figure 23: Courbe granulométrique par voie sèche de la couche K1C1 87 Figure 24: Courbe granulométrique par voie sèche de la couche K1C2 87 Figure 25: Courbe granulométrique par voie sèche de la couche K1C3 88 Figure 26: Courbe granulométrique par voie sèche de la couche K1C4 88 Figure 27: Courbes granulométriques des couches étudiées par voie humide 89 Figure 28: Courbes granulométriques des couches étudiées par voie sèche 89 Figure 30: Répartition granulaire des couches étudiées par voie sèche 90 Figure 31: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP 91 Figure 32: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP 92 Figure 33: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP 92 <	Figure 16: Récapitulatif des paramètres du cisaillement	. 51
Figure 18: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf)53Figure 19: Courbe granulométrique par voie humide de la couche K1C185Figure 20: Courbe granulométrique par voie humide de la couche K1C285Figure 21: Courbe granulométrique par voie humide de la couche K1C386Figure 22: Courbe granulométrique par voie humide de la couche K1C486Figure 23: Courbe granulométrique par voie sèche de la couche K1C487Figure 24: Courbe granulométrique par voie sèche de la couche K1C287Figure 25: Courbe granulométrique par voie sèche de la couche K1C388Figure 26: Courbe granulométrique par voie sèche de la couche K1C488Figure 27: Courbes granulométrique par voie sèche de la couche K1C1488Figure 28: Courbes granulométriques des couches étudiées par voie sèche89Figure 29: Répartition granulaire des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie bumide90Figure 31: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 32: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C196Figure 40: Résu	Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols	. 53
Figure 19: Courbe granulométrique par voie humide de la couche K1C185Figure 20: Courbe granulométrique par voie humide de la couche K1C285Figure 21: Courbe granulométrique par voie humide de la couche K1C386Figure 22: Courbe granulométrique par voie sèche de la couche K1C486Figure 23: Courbe granulométrique par voie sèche de la couche K1C487Figure 24: Courbe granulométrique par voie sèche de la couche K1C287Figure 25: Courbe granulométrique par voie sèche de la couche K1C388Figure 26: Courbe granulométrique par voie sèche de la couche K1C188Figure 27: Courbes granulométriques des couches étudiées par voie sèche89Figure 28: Courbes granulométriques des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie sèche90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C196Figure 39: Résultats de l'essai des limites de la couche K1C296Figure 40: Résultats de	Figure 18: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf)	. 53
Figure 20: Courbe granulométrique par voie humide de la couche K1C285Figure 21: Courbe granulométrique par voie humide de la couche K1C386Figure 22: Courbe granulométrique par voie sèche de la couche K1C486Figure 23: Courbe granulométrique par voie sèche de la couche K1C187Figure 24: Courbe granulométrique par voie sèche de la couche K1C388Figure 25: Courbe granulométrique par voie sèche de la couche K1C388Figure 26: Courbe granulométrique par voie sèche de la couche K1C1488Figure 27: Courbes granulométriques des couches étudiées par voie humide89Figure 28: Courbes granulométriques des couches étudiées par voie sèche89Figure 29: Répartition granulaire des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie humide90Figure 31: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 32: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 36: Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C196Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 19: Courbe granulométrique par voie humide de la couche K1C1	. 85
Figure 21: Courbe granulométrique par voie humide de la couche K1C386Figure 22: Courbe granulométrique par voie humide de la couche K1C486Figure 23: Courbe granulométrique par voie sèche de la couche K1C187Figure 24: Courbe granulométrique par voie sèche de la couche K1C287Figure 25: Courbe granulométrique par voie sèche de la couche K1C388Figure 26: Courbe granulométrique par voie sèche de la couche K1C1488Figure 27: Courbes granulométriques des couches étudiées par voie humide89Figure 28: Courbes granulométriques des couches étudiées par voie sèche89Figure 30: Répartition granulaire des couches étudiées par voie sèche90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai de la granulométrie après compactage de la couche K1C496Figure 40: Résultats de l'essai de la couche K1C296Figure 41: Résultats de l'essai de la couche K1C296Figure 41: Résultats de l'essai de la couche K1C296	Figure 20: Courbe granulométrique par voie humide de la couche K1C2	. 85
Figure 22: Courbe granulométrique par voie humide de la couche K1C486Figure 23: Courbe granulométrique par voie sèche de la couche K1C187Figure 24: Courbe granulométrique par voie sèche de la couche K1C287Figure 25: Courbe granulométrique par voie sèche de la couche K1C388Figure 26: Courbe granulométrique par voie sèche de la couche K1C488Figure 27: Courbes granulométriques des couches étudiées par voie humide89Figure 28: Courbes granulométriques des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie sèche90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai de la couche K1C196Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 21: Courbe granulométrique par voie humide de la couche K1C3	. 86
Figure 23: Courbe granulométrique par voie sèche de la couche K1C187Figure 24: Courbe granulométrique par voie sèche de la couche K1C287Figure 25: Courbe granulométrique par voie sèche de la couche K1C388Figure 26: Courbe granulométrique par voie sèche de la couche K1C1488Figure 27: Courbes granulométriques des couches étudiées par voie humide89Figure 28: Courbes granulométriques des couches étudiées par voie sèche89Figure 29: Répartition granulaire des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie bhumide90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP94Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C296Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C396Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 22: Courbe granulométrique par voie humide de la couche K1C4	. 86
Figure 24: Courbe granulométrique par voie sèche de la couche K1C287Figure 25: Courbe granulométrique par voie sèche de la couche K1C388Figure 26: Courbe granulométrique par voie sèche de la couche K1C1488Figure 27: Courbes granulométriques des couches étudiées par voie humide89Figure 28: Courbes granulométriques des couches étudiées par voie sèche89Figure 29: Répartition granulaire des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie bumide90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 37: Résultats du poids spécifique des couches étudiées95Figure 39: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C296Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C396Figure 41: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 23: Courbe granulométrique par voie sèche de la couche K1C1	. 87
Figure 25: Courbe granulométrique par voie sèche de la couche K1C388Figure 26: Courbe granulométrique par voie sèche de la couche K1C1488Figure 27: Courbes granulométriques des couches étudiées par voie humide89Figure 28: Courbes granulométriques des couches étudiées par voie sèche89Figure 29: Répartition granulaire des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie humide90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C196Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 24: Courbe granulométrique par voie sèche de la couche K1C2	. 87
Figure 26: Courbe granulométrique par voie sèche de la couche K1C1488Figure 27: Courbes granulométriques des couches étudiées par voie humide89Figure 28: Courbes granulométriques des couches étudiées par voie sèche89Figure 29: Répartition granulaire des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie humide90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai de limites de la couche K1C196Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 25: Courbe granulométrique par voie sèche de la couche K1C3	. 88
Figure 27: Courbes granulométriques des couches étudiées par voie humide89Figure 28: Courbes granulométriques des couches étudiées par voie sèche89Figure 29: Répartition granulaire des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie humide90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C296Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 26: Courbe granulométrique par voie sèche de la couche K1C14	. 88
Figure 28: Courbes granulométriques des couches étudiées par voie sèche89Figure 29: Répartition granulaire des couches étudiées par voie sèche90Figure 30: Répartition granulaire des couches étudiées par voie humide90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 36: Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37: Résultats du poids spécifique des couches étudiées95Figure 39: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 27: Courbes granulométriques des couches étudiées par voie humide	. 89
Figure 29: Répartition granulaire des couches étudiées par voie sèche	Figure 28: Courbes granulométriques des couches étudiées par voie sèche	. 89
Figure 30: Répartition granulaire des couches étudiées par voie humide90Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 36: Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37: Résultats du poids spécifique des couches étudiées95Figure 39: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 29: Répartition granulaire des couches étudiées par voie sèche	. 90
Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP91Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 36: Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 30: Répartition granulaire des couches étudiées par voie humide	. 90
Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP92Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 36: Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C296Figure 40: Résultats de l'essai des limites de la couche K1C397	Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP	. 91
Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP92Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 36: Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C196Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP	. 92
Figure 34:Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP93Figure 35:Etude comparée de la granulométrie après compactage de la couche K1C394Figure 36:Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37:Résultats du poids spécifique des couches étudiées95Figure 38:Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39:Résultats de l'essai des limites de la couche K1C196Figure 40:Résultats de l'essai des limites de la couche K1C296Figure 41:Résultats de l'essai des limites de la couche K1C397	Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP	. 92
Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C394Figure 36: Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai de s limites de la couche K1C196Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP	. 93
Figure 36: Etude comparée de la granulométrie après compactage de la couche K1C494Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C196Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 35: Etude comparée de la granulométrie après compactage de la couche K1C3	. 94
Figure 37: Résultats du poids spécifique des couches étudiées95Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées95Figure 39: Résultats de l'essai des limites de la couche K1C196Figure 40: Résultats de l'essai des limites de la couche K1C296Figure 41: Résultats de l'essai des limites de la couche K1C397	Figure 36: Etude comparée de la granulométrie après compactage de la couche K1C4	. 94
Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées	Figure 37: Résultats du poids spécifique des couches étudiées	. 95
Figure 39: Résultats de l'essai des limites de la couche K1C1	Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées	. 95
Figure 40: Résultats de l'essai des limites de la couche K1C2	Figure 39: Résultats de l'essai des limites de la couche K1C1	. 96
Figure 41: Résultats de l'essai des limites de la couche K1C3	Figure 40: Résultats de l'essai des limites de la couche K1C2	. 96
	Figure 41: Résultats de l'essai des limites de la couche K1C3	. 97

Figure 42: Résultats de l'essai des limites de la couche K1C4	97
Figure 43: Courbe de l'essai Proctor de la couche K1C1	98
Figure 44: Courbe de l'essai Proctor de la couche K1C2	98
Figure 45: Courbe de l'essai Proctor de la couche K1C3	99
Figure 46: Courbe de l'essai Proctor de la couche K1C4	99
Figure 47: Courbe de l'essai Proctor de la couche K1Cm	100
Figure 48: Graphe donnant la densité sèche des couches du profil	100
Figure 49: Corrélation de la densité sèche en fonction du poids spécifique	101
Figure 50: Corrélation de la densité sèche en fonction de l'indice de plasticité	101
Figure 51: Corrélation de la densité sèche en fonction de la portion sable de la granularité	101
Figure 52: Résultats de l'essai de gonflement de la couche K1C1	102
Figure 53: Résultats de l'essai de gonflement de la couche K1C2	102
Figure 54: Résultats de l'essai de gonflement de la couche K1C3	103
Figure 55: Résultats de l'essai de gonflement de la couche K1C4	103
Figure 56: Résultats de l'essai de gonflement de la couche K1Cm	104
Figure 57: Graphique du poinçonnement CBR de la couche K1C1	105
Figure 58: Graphique du poinçonnement CBR de la couche K1C2	105
Figure 59: Graphique du poinçonnement CBR de la couche K1C3	106
Figure 60: Graphique du poinçonnement CBR de la couche K1C4	106
Figure 61: Graphique du poinçonnement CBR de la couche K1Cm	107
Figure 62: Détermination de la valeur CBR de la couche K1C1	107
Figure 63: Détermination de la valeur CBR de la couche K1C2	108
Figure 64: Détermination de la valeur CBR de la couche K1C3	108
Figure 65: Détermination de la valeur CBR de la couche K1C4	109
Figure 66:Détermination de la valeur CBR de la couche K1Cm	109
Figure 67: Courbe de l'essai Œdométrique de la couche K1C1 par la méthode de CASAGRANDE	111
Figure 68: : Courbe de l'essai Œdométrique de la couche K1C1 par la méthode des pentes	
concourantes	111
Figure 69: Courbe de l'essai Œdométrique de la couche K1C4 par la méthode de CASAGRANDE	112
Figure 70: Courbe de l'essai Œdométrique de la couche K1C4 par la méthode des pentes	
concourantes	113
Figure 71: Résistance à la compression de l'éprouvette 1 (40 coups * 4couches)	114
Figure 72: Résistance à la compression de l'éprouvette 1 (32 coups * 5 couches)	114
Figure 73: Influence du nombre de couches sur la contrainte maximal	114
Figure 74: Déplacements représentatifs des capteurs de la couche K1C1	115
Figure 75: Déplacements représentatifs des capteurs de la couche K1C2	115
Figure 76: Courbe pour déterminer le Module de Young de la couche K1C1	116
Figure 77: Courbe pour déterminer le Module de Young de la couche K1C2	116
Figure 78:Déplacements représentatifs des capteurs de la couche K1C3	117
Figure 79: Déplacements représentatifs des capteurs de la couche K1C4	117
Figure 80: Courbe pour déterminer le Module de Young de la couche K1C3	118
Figure 81: Courbe pour déterminer le Module de Young de la couche K1C4	118
Figure 82: Déplacements représentatifs des capteurs de la couche K1Cm	119

Figure 83: Courbe pour déterminer le Module de Young de la couche K1Cm	. 119
Figure 84: Cisaillement par la masse de 2kg de la couche K1C1	. 120
Figure 85: Cisaillement par la masse de 4kg de la couche K1C1	. 120
Figure 86: Cisaillement par la masse de 7,125kg de la couche K1C1	. 120
Figure 87: Cisaillement par la masse de 15kg de la couche K1C1	. 120
Figure 88: Contrainte tangentielle en fonction du déplacement horizontal de la couche K1C1	. 121
Figure 89: Paramètres du cisaillement de la couche K1C1	. 121
Figure 90: Cisaillement par la masse de 2kg de la couche K1C2	. 121
Figure 91: Cisaillement par la masse de 4kg de la couche K1C2	. 121
Figure 92: Cisaillement par la masse de 7,125kg de la couche K1C2	. 122
Figure 93: Cisaillement par la masse de 15kg de la couche K1C2	. 122
Figure 94:Contrainte tangentielle en fonction du déplacement horizontal de la couche K1C2	. 122
Figure 95: Paramètres du cisaillement de la couche K1C2	. 122
Figure 96: Cisaillement par la masse de 2kg de la couche K1C3	. 123
Figure 97: Cisaillement par la masse de 4kg de la couche K1C3	. 123
Figure 98: Cisaillement par la masse de 7,125kg de la couche K1C3	. 123
Figure 99: Contrainte tangentielle en fonction du déplacement horizontal de la couche K1C3	. 123
Figure 100: Paramètres du cisaillement de la couche K1C3	. 124
Figure 101: Cisaillement par la masse de 2kg de la couche K1C4	. 124
Figure 102: Cisaillement par la masse de 4kg de la couche K1C4	. 124
Figure 103: Cisaillement par la masse de 7,125kg de la couche K1C4	. 125
Figure 104: Cisaillement par la masse de 15kg de la couche K1C4	. 125
Figure 105: Contrainte tangentielle en fonction du déplacement horizontal de la couche K1C4	. 125
Figure 106: Paramètres du cisaillement de la couche K1C4	. 125
Figure 107: Cisaillement par la masse de 2kg de la couche K1Cm	. 126
Figure 108: Cisaillement par la masse de 4kg de la couche K1Cm	. 126
Figure 109: Cisaillement par la masse de 7,125kg de la couche K1Cm	. 126
Figure 110: Cisaillement par la masse de 15kg de la couche K1Cm	. 126
Figure 111: Contrainte tangentielle en fonction du déplacement horizontal de la couche K1Cm	. 127
Figure 112: Paramètres du cisaillement de la couche K1Cm	. 127
Figure 113: Cisaillement par la masse de 2kg de la couche K1C3 non saturé	. 127
Figure 114: Cisaillement par la masse de 4kg de la couche K1C3 non saturé	. 127
Figure 115: Cisaillement par la masse de 7,125kg de la couche K1C3 non saturé	. 128
Figure 116: Contrainte tangentielle en fonction du déplacement horizontal de la couche K1C3 not	n
saturé	. 128
Figure 117: Paramètres du cisaillement de la couche K1C3 non saturé	. 128
Figure 118: Cisaillement par la masse de 2kg de la couche K1C3 saturé consolidé	. 129
Figure 119: Cisaillement par la masse de 4kg de la couche K1C3 saturé consolidé	. 129
Figure 120: Cisaillement par la masse de 7,125kg de la couche K1C3 Consolidé saturé	. 129
Figure 121: Paramètres du cisaillement de la couche K1C3 consolidé saturé	. 129
Figure 122: Suivi de la montée d'eau dans le perméamètre	. 130
Figure 123: Carte géologique du BURKINA FASO (d'après HOTTIN et OUEDRAOGO, 1975)	. 130

INTRODUCTION GENERALE

INTRODUCTION GENERALE

L'histoire de la route est aussi vieille qu'est né le besoin de l'Homme de se déplacer dans son environnement. C'est ainsi donc que l'humanité a appris à développer une certaine ingéniosité à adapter l'environnement à satisfaire ces besoins. La grandeur de ces exploits s'agrandira également en fonction du degré d'ambition humaine. On peut donc tolérer toute forme de voie dans la catégorie des routes pourvu qu'elle réponde à ce besoin primitif de l'humanité. On distingue les différents types de routes suivants : sentiers, pistes, pistes améliorées, routes en terre non revêtues, routes bitumées, autoroutes, etc.

Selon les propos de l'ingénieur généraliste Georges Reverdy dans son ouvrage A<u>tlas</u> <u>historique des routes de France, 2007</u>, les romains ont été les premiers innovateurs des infrastructures routières. En effet, suite aux besoins de déplacer aisément leurs véhicules de guerre, ils ont envisagé de faire des chemins plus larges dont ils ont couvert leur empire, en particulier la Gaule. Pour la prochaine révolution routière, on attendra la période du XVIIème au XIXème siècle, pendant laquelle on remarquera une évolution historique des routes avec les alpes de Napoléon.

Le réveil de la route, au tout début du XXème siècle a suivi directement le développement de l'automobile. C'est en 1902 avec le Dr médecin GUGLIELMINETTI (aussi connu sous le nom de Dr GOUDRON) qu'on a constaté les avantages du goudron comme une solution à l'épandage de la poussière sur le réseau routier.

C'est de cette histoire évolutive de la route que vont hériter en 1960 les nouvelles nations africaines qui dorénavant indépendantes de l'occident. Elles seront ainsi confrontées aux défis d'adapter ces connaissances acquises aux réalités géotechniques de leurs sols.

C'est dans cet objectif que la dernière version du guide pratique de dimensionnement des chaussées du CEBTP a vu le jour en 1984. Sous ses prescriptions, plusieurs infrastructures routières ont vu le jour dans les régions tropicales de l'Afrique. Cependant, certaines de ces infrastructures laissent parfois remarquer un constat d'imperfection. Pour ce qui est du cas du BURKINA FASO, force est de constater que le phénomène de la dégradation routière avant termes est devenu un phénomène criard. Ce phénomène alarmant s'explique par plusieurs raisons parmi lesquelles nous pouvons énumérées celles-ci comme les plus probables et reconnues :

- Le sous dimensionnement des couches de chaussées
- La surexploitation et le mauvais entretien des chaussées par les usagers
- La qualité des matériaux utilisés dans la réalisation des chaussées

Toutes ces causes méritent d'être scruter scrupuleusement. En effet la méthode de dimensionnement utilisée sur la plupart des projets est celle du CEBTP et celle du CBR qui sont des méthodes empiriques.

Pour ce qui est de la surexploitation et du mauvais entretien des chaussées, elle n'est pas non plus négligeable. Plusieurs comportements des usagers (la surcharge routière, déversement du gasoil sur le bitume) entrainent aussi des dommages sur le corps de chaussée. Le manque de suivi d'entretien des chaussées favorise également les dégradations précipitées des chaussées.

C'est dans l'objectif de scruter la dernière cause citée ci-dessus, que plusieurs thèmes de recherche sur la géotechnique ont été érigés dans la plupart des instituts de recherche concernés par ce domaine ; laissant ainsi le vocable « latérite », comme centre d'intérêt des ingénieurs, géologues et chercheurs routiers.

Pour ce qui nous concerne, l'objectif de cette étude serait d'analyser l'évolution des caractéristiques de la latérite en fonction de la profondeur du profil dans le but de contribuer à la construction de chaussées durables. Il s'agirait pour nous de vérifier le constat selon lequel il y'a une baisse de la qualité de la latérite en usage routier en fonction de la profondeur du profil. Mais quelles sont les différentes études antérieures à ce thème dans ce pays et dans la sous- région ? Quelles sont les acquis bibliographiques émanant du matériau latéritique ?

De prime abord, nous montrerons l'organisation de notre étude en décrivant aussi les différents essais qui ont été faits dans le cadre de notre étude, Ensuite nous nous attarderons sur l'objectif de notre étude qui consiste à vérifier l'hypothèse selon laquelle la latérite devient malpropre à l'usage routier en fonction de la profondeur. Pour ce faire nous déterminerons les caractéristiques géotechniques et mécaniques puis analyser l'influence des aspects géotechniques sur ceux des aspects mécaniques. Enfin des recommandations seront faites dans l'objectif de mieux élucider cette étude.

Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

Chapitre 1 : REVUE BIBLIOGRAPHIQUE

ZOUNGRANA Salomon

I. DEFINITIONS

En 1799, suite à la défaite du sultan de Mysore Tippoo-Saïb face aux britanniques, un médecin de la Compagnie des Indes orientales, Francis Buchanan, chargé en 1800 de faire l'inventaire des territoires nouvellement conquis, créait le mot Latérite (Bourgeon & Gunnel, 2005). Dans sa publication "A JOURNEY THROUGH THE COUNTRIES OF MYSORE, CANARA AND MALABAR" DE 1807, Il décrit la latérite en ces termes : « C'est un des meilleurs matériaux de construction, rempli de cavités et de pores, possédant de grandes quantités de fer, de coloration rouge et jaune. L'intérieur du matériau, s'il est à l'abri de l'air, est si tendre que tout instrument métallique le coupe. Aussitôt taillé la forme voulue, la masse devient aussi dure qu'une brique et résiste à l'eau et à l'air, bien mieux que toute brique que j'ai vue aux indes ». Le terme latérite donné par Buchanan trouve sa racine du latin, « later », qui signifie brique. En géologie, on distingue les sols latéritiques des roches latéritiques. Mais que faut-il entendre par les termes « sols » et « roches » ?

Les roches sont les constituants de notre sous-sol, ce sont des agrégats naturels massifs de matière minérale (Degoutte & Royet, 2009). Elles sont le plus souvent invisibles puisqu'elles sont recouvertes par les sols. Ce n'est que suite à des affleurements naturels ou au gré de travaux (excavations, tranchées, carrières, etc.) que l'on peut les observer. Bien qu'il existe des roches liquides (pétrole, goudrons), la plupart d'entre elles sont des agrégats, consolidés ou non, de minéraux ou de substances amorphes ou verres. Une roche est donc un matériau formé par un agrégat naturel de minéraux, de fossiles, et/ou d'éléments d'autre(s) roche(s).

Les sols sont issus des roches qui ont une diagenèse. En géologie, on appelle roche tout matériau constitutif de l'écorce terrestre. En ce sens, les sols sont aussi retenus comme des roches. On distingue roche et sol au niveau géotechnique par l'intensité des forces de cohésions importantes et permanents ou non dans un agrégat naturel. Les sols sont constitués par des mélanges en proportions variables d'éléments de différentes tailles des particules. On distingue : les graviers, les sables, les silts et les argiles. Quels sont les éléments qui influent sur la formation de la latérite ?

II. LA LATERITE EN CONSTRUCTION ROUTIERE ET OBJET D'ETUDE AU BURKINA FASO ET DANS LA SOUS REGION

La latérite qui se trouve en abondance dans le BURKINA FASO est incontestablement une ressource de haute importance dans la réalisation des travaux publics. Par contre compte tenu du coût routier, les réalisations routières dans le pays ne sont pas forcément d'un nombre pléthorique. Pour ce qui est des bibliographies de recherche sur les chaussées, elles sont quasi inexistantes.

✤ La plupart des études de réalisation des chaussées ont été faites selon les recommandations du (CEBTP, 1984) et suivi du calcul et de la vérification des contraintes et des déformations par le logiciel ALIZE.

Nous constatons que selon l'importance du projet et de ses paramètres d'entrées, le dimensionnement géotechnique peut retenir simplement de la grave latéritique naturelle pour les différentes couches. Pour un trafic de classe T2 et un sol de classe S4 (Projet de BASSINKO), (TIONO, juil 2016), retient 20 cm de GLN pour ses couches de base et de fondation. Pour le (projet des voies de dessertes de l'Aéroport de DONSIN), (GUIAO, juin 2011) retient 28 cm de GLN pour la CF et pour la CB 21 cm de GL amélioré au ciment. On constate également que le (vieux projet de la RN 1) a été réalisé à l'aide de la GLN. Dans ses travaux, (YAKAM TCHOUTA, juin 2011) rapporte que 20 cm de la GLN a été utilisée pour chacune des couches de base et de fondation sur ce dernier (ancien projet de la RN 1).

Par ailleurs, depuis 2004, une décision a été faite dans le but de renforcer les grands axes routiers du BURKINA FASO par des matériaux élaborés. En effet à la *conférence des jeunes géotechniciens Africains*, (TOE, Février 2007) présentait l'usage de la litho stabilisation dans les assises de chaussée telle une expérience judicieuse de chantier. Depuis lors les projets qui sont d'une grande importance sont renforcés. Les couches de chaussées sont réalisées avec des GL améliorées (voie chimique) ou stabilisés avec de la Grave. Par exemple pour (le projet de renforcement de la RN 1), (YAKAM TCHOUTA, juin 2011) propose 15 cm de GNT pour la CB et 12 cm de GB pour la CL. Pour le (projet de connexion de RN 1à RN 4), (OUEDRAOGO, juin 2011) préconise 15 cm de GB 0/31,5 pour la CB et 20 cm de Graveleux litho stabilisé 0/30.

• Pour les études de recherches sur la latérite en usage routière, elles sont quasi inexistantes au BURKINA FASO surtout concernant les thèses de recherche.

La plus populaire des recherche sur la latérite en application routière au BURKINA FASO semble être les études de (MILLOGO, janvier 2008). Celle-ci à l'aide des analyses chimiques, a pu montrer la composition de la latérite. A partir de ces essais, on retient la Kaolinite comme la partie argileuse la plus importante du matériau étudié. A partir de la courbe granulométrique ($\leq 80\mu m$ de 10,5%), de l'IP (10,5 avec LL = 22,5 et LP = 12) et de la valeur du CBR (43 avec $\gamma_s = 2,17$ et $\omega_{opt} = 6,6\%$); il a été conclu que la GLN étudiée est utilisable pour la CF et améliorée au ciment pour la CB. Pourtant en plus de ces paramètres de nature du sol, il faudrait tenir une analyse scrupuleuse des paramètres mécaniques du sol pour le retenir en construction routière.

Les travaux de recherche de (AHLOUMESSOU, juin 2010), nous renseigne de la réduction du gonflement de la latérite. Les latérites dont l'IP est élevé, demeuraient toujours sensibles à l'eau quand bien même elles sont améliorées. Par ailleurs il en ressort que les paramètres mécaniques (CBR, R_c et E) sont nettement améliorés. Pour les thèmes de recherche sur la Lithostabilisation, (KENFACK, Nov 2017) retient suite à ses travaux, un dosage de 20% de concassés de la classe granulaire 5/25 pour le type de latérite utilisée.

Pour les thèmes de recherche érigés hors des limites du BURKINA FASO, on rencontre une diversité de recherche menées dans les pays de la sous-région. Les études du (Ministère des Infrastures du Sénégal, Septembre 2013) nous renseigne dans son rapport sur la (latérite de SINDIA) que le moule le mieux indiqué pour l'essai de compression aboutissant au calcul du module de YOUNG est celui de dimensions (di = 10 cm et h = 20 cm). Les travaux de (ZOHOU, juillet 1991) et celui de (IMAM, 2003) nous renseigne sur différents essais de corrélation entre le module de YOUNG et la valeur du CBR.

Tableau 1: Bibliographie sur les relations du module en fonction du CBR

MEMOIRE DE FIN D'ETUDES	ZOUNGRANA Salomon

Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

	Etudes et équations du module de Young dans la bibliographie							
				Papa				
	Laboratoire			Diallo	CEBTP	CEBTP		LPC
	Shell		LCPC,	NDIAYE,	gros	fraction		Camerour
G Jeuffroy	d'Amsterdam	Regis 1985	2003	2001	grains	fine	Michel Zohou,1991	,
E=		E =	E =	E(bar) =	E =	E =	E=	E = 18 à
6,5*CBR^0,65	E=10CBR	0,85CBR^0,825	5CBR	32*CBR	50*CBR	30*CBR	9,5339CBR+127,985	20 CBR

L'étude de la latérite en application routière a nourrit plusieurs thèmes de thèses. Celles de la sous-région intertropicales qui ont retenu notre attention sont les suivantes :

Sur les latérites du SENEGAL (FALL, Oct 1993), à travers ses études nous offrait une certaine base de données des carrières latéritiques. Des études chimiques, minéralogiques, et des études de caractérisation des paramètres de nature et mécaniques ont été faites. Par la suite des corrélations sur les aspects mécaniques ont été menées dans le but de mieux comprendre le comportement de ces latérites.

C'est en se basant sur des études plus antérieures que s'est dynamisé les travaux de (SAMB, 2014). Ces études stipulent que le comportement mécanique des matériaux de chaussées ne reste pas linéaire mais devient réversible après plusieurs chargements cycliques. A l'aide du logiciel de programmation Cast3M ; une implémentation des calculs a été faite en considérant le comportement des matériaux réversible. A la conclusion de ces études, elle retient que les paramètres d'entrée selon l'hypothèse du comportement élastique linéaire sont plus contraignantes que ceux de l'hypothèse du comportement non linéaire.

Les latérites de la région de l'AGNEBY (COTE D'IVOIRE) soumis aux études de , (BOHI, Nov 2008), ont servi dans le terrassement d'environ 10 projets routiers. Ces études ont consisté à identifier les paramètres de nature et mécanique ; à faire des recherches de corrélation et une analyse factorielle ACP. Il finit par conclure que ces sols étudiés ont des propriétés assez voisines. Des études plus judicieuses ont été suggérées en distinguant les latérites de forêt (celui de l'AGNEBY), les latérites de savane et celles des cuirasses anciennes.

Plus récemment, (SOULEY ISSIAKOU, déc 2016) fait des études sur les latérites du Sud-Ouest de Niger. Ces études se sont basées sur les propriétés géotechniques, mécaniques, chimiques et minéralogiques. A l'issu de ces analyses, les sols sont répertoriés selon deux classes que sont : les sols de bonne portance et les sols de faible portance. Cette différence de portance des sols est justifiée par la teneur en oxyde de fer des différents sols étudiés. Une amélioration de ces sols au ciment et à la chaux rendent la plupart de ces sols aptes pour une construction routière.

Au-delà de toutes ces réalisations et de toutes ces recherches, nous apportons notre pierre à l'évolution de la recherche sur la latérite en construction routière à travers cette étude. Notre innovation serait de s'atteler à étudier l'évolution des paramètres géotechniques et mécaniques de la latérite en fonction de sa géologie (roche mère et profondeur du profil).

Pour mener à bien ces études, nos travaux ont été menées suivant un programme en trois volets essentiels.

- Identification et Description du profil latéritique (Normes Géotechniques et revue bibliographique)
- Prélèvement du matériau et réalisations des essais (Normes géotechniques et Protocoles d'essai)
- Résultats, Analyses et discussions (Normes géotechnique, Revue bibliographique).

MEMOIRE DE FIN D'ETUDES

ZOUNGRANA Salomon

Avant de se focaliser sur le vif de nos travaux, il est le lieu pour nous de clarifier certains concepts et de mentionner quelques phénomènes sur la latérite et les routes, afin de mieux cerner les contours de notre sujet.

III. PROCESSUS DE LATERISATION

Le phénomène de latéritisation est un processus de formation des sols spécifiques aux régions tropicales chaudes et humides. Il s'agit d'une altération de la roche mère. La caractéristique essentielle de cette altération réside dans une mise en solution puis un départ de la silice ; On parle du phénomène de lessivage. Ce phénomène doit être accompagné d'un enrichissement en fer et en alumine sous forme de sesquioxydes Fe₂O₃ et Al₂O₃. (AUTRET, Etudes latérites et graveleux latéritiques, 1983).

Plusieurs facteurs sont à la cause de cette altération de la roche. Parmi celles-ci, nous pouvons citer le climat, la topographie, la végétation, la roche mère, le temps.

Pour ce qui est du climat, il agit sur le processus de latérisation essentiellement via la température et le bilan hydrique.

En effet la température a une action qui est prépondérante car participe énormément à la formation d'oxyde de fer (Fe₂O₃) et d'alumine (Al₂O₃). Le rapport Ki est un indicateur essentiel du phénomène de latérisation. Ce rapport augmente en fonction de la température. Pourtant cette dernière est incontestablement considérable dans les pays tropicaux (Autret, 1980). On en conclut que l'indicateur sera élevé dans les pays tropicaux d'où une latérisation considérable.

La pluviométrie n'est pas non plus le moindre des facteurs dans le phénomène aboutissant à formation latéritique. En effet, pour qu'il y ait de la latérite issue d'une oxydation, il faudrait d'abord une grande quantité d'eau assurant le lessivage de la roche mère. La pluviométrie dans la totalité des pays tropicaux est suffisamment capable d'assurer ce phénomène de lessivage ascendant ou descendant de la roche. Le phénomène d'alternation de la saison pluvieuse et de la saison sèche est reconnu comme un phénomène caractéristique du bilan hydrique. Selon que le bilan hydrique est excédentaire ou déficitaire, nous avons un lessivage continu ou avec pauses.

En plus du climat, nous reconnaissons l'influence de la topographie dans le phénomène de latérisation. En effet comme indiqué précédemment, le phénomène nécessite de l'eau pour le lessivage et de l'oxydation. C'est ainsi que la topographie du terrain (pente du terrain naturel) va permettre le transport de l'eau jusqu'à la roche qui subira le lessivage. Une zone plate permettra un meilleur stockage de l'eau qu'un terrain sur une forte pente. Il est donc logique qu'on remarque les carapaces latéritiques sur des terrains plats et rarement sur les pentes (Alexandre, 2002).

Le temps est également l'un des facteurs prépondérants qui influent sur le phénomène de lessivage. « Nombreux sont les observateurs qui ont remarqué, quelques années après l'ouverture d'une tranchée dans un massif argileux latéritique, un durcissement de surface du matériau, d'où l'idée que le phénomène de latérisation est un processus court portant sur quelques décennies » (AUTRET, Etudes latérites et graveleux latéritiques, 1983). En effet la présence d'eau dans les pores des roches sur une longue durée contribue à la latérisation.

Pour ne détailler que les aspects survolés ci-dessus, il est à retenir que la végétation influe sur le type de dépôt latéritique pendant qu'on est en forêt ou en savane. Egalement en fonction du type de roche mère qui a été lessivé, nous obtiendrons divers types de production argileuse.

IV. DIFFERENTS TYPES DE SOLS RENCONTRES DANS LES CARRIERES LATERITIQUES

La latérite, par son nom et sa définition donnée par Buchanan en 1807 est grandement controversée dans la littérature contemporaine. En effet, l'un des arguments serait que la latérite (de racine later ou brique) n'est pas le seul matériau utilisé dans la production des briques. Convenant avec ce point de vue (Aubert, Aout 1954) suggère d'utiliser l'expression « FERRALLITE » pour la sous classe latéritique ferralitique proposé par le regretté Professeur W G ROBINSON. Plutôt d'accord avec cette proposition du Professeur, J. V. BOTELHO DA COSTA l'a utilisé antérieurement lors de la conférence Interafricaine des sols.

Dans le même sens abonde Fall (1993) en précisant qu'il serait de bon usage de définir très précisément tous les sols résiduels tropicaux par des terminologies empruntées de la pédologie. Ces sols résiduels sont regroupés en trois grands ensembles définis par (Duchaufour, 1983).

1. Les sols fersialitiques ou ferrisols

Les sols fersialitiques sont formés principalement en climat subtropical ou à la rigueur sous certaines conditions méditerranéennes, avec une moyenne de température de 13 à 20 °C, avec une pluviométrie comprise entre 500 et 1000 mm de pluies par an et une saison sèche (Duchaufour, 1983). Ils se distinguent des autres groupes par le fait que l'érosion supérieur empêche le développement normal des profils. A cause de l'intense altération, ces sols contiennent beaucoup d'oxydes de fer. Le principal minéral d'argile formé est la smectite. La kaolinite apparaît plutôt sur des surfaces bien drainées et pauvres en silices, comme par exemple le basalte. Les différents sous-groupes du type de sols ferrisols sont: (Agence pour le développement international, 1964).

- ✓ Ferrisols humides
- ✓ Ferrisols sur des roches riches en minéraux ferromagnésiens
- ✓ Ferrisols non différenciés

2. - Les sols ferrugineux

Sur ces sols, on constate fréquemment une séparation manifestée d'oxyde de fer libres. Ces oxydes peuvent être formés dans le profil, soit hors du profil et précipités à l'intérieur du profil sous la forme de noyaux ou de concrétions. Les sols ferrugineux se forment en zones climatiques plus humides (pas de saison sèche) ; mais avec des zones légèrement plus chaudes que la zone méditerranéenne (prédominance des sols fersialitiques). Une observation comparée entre les sols ferrugineux et les sols fersialitiques nous renseigne que les sols ferrugineux ont tendance à être beaucoup plus altérés que les sols fersialitiques. Les minéraux argileux issus de la latérisation dans les zones humides (sols ferrugineux), sont en grande majorité de la kaolinite.

(Agence pour le développement international, 1964). Dans ce grand groupe des sols ferrugineux, on peut distinguer plusieurs sous-groupes que sont :

- ✓ Sols tropicaux ferrugineux sur matériaux de départ sableux
- ✓ Sols tropicaux ferrugineux sur roches riches en minéraux ferromagnésiens
- ✓ Sols tropicaux ferrugineux sur roches cristallines acides
- ✓ Sols tropicaux ferrugineux non différenciés

Certains groupes se caractérisent par une extrême facilité de circulation du fer à travers leur profil. Ce fer contribue à la formation d'horizons concrétionnés ou cuirassés d'origine illuviale.

3. - Les sols ferralitiques

Les sols ferralitiques sont rencontrés généralement en zones tropicales humides de pluviométrie supérieure à 1500 mm (avec peu ou pas de saison sèche même en climat chaud) et une température moyenne supérieure à 25 °C. Les profils de sols latéritiques sur ces zones montrent de sérieuses hauteurs. Il y a peu ou généralement pas de réserves de minéraux altérables (le quartz par exemple). La bonne partie de la silice restante se combine à l'aluminium pour former la kaolinite, mais généralement il y a un excès d'aluminium, qui forme de la gibbsite. Sur les horizons supérieurs des profils, il y a une acidification faible causée par la décomposition organique qui cause la dissolution et la mobilisation des oxydes de fer et d'aluminium. Ce processus décompose la kaolinite qui évolue vers la gibbsite. En fonction du pourcentage entre les oxydes de fer et d'aluminium, les sols ferralitiques peuvent être divisés en ferrites où les oxydes de fer dominent et qui se produit principalement sur les roches pauvres en aluminium, et en alites où l'oxyde d'aluminium (principalement la gibbsite) prédomine.

Les différents types de sous-groupes de sols rencontrés dans ce type de sols sont : (Agence pour le développement international, 1964)

- Les sols ferralitiques, de couleur essentiellement brune jaunâtre sur des sédiments sables meubles
- ✓ Les sols ferralitiques, de couleur essentiellement brune jaunâtre sur des sédiments plus ou moins argileux
- ✓ Les sols ferralitiques, de couleur essentiellement brune jaunâtre sur des sédiments non différenciés
- ✓ Les sols ferralitiques, de couleur rouge, sur des roches riches en minéraux ferromagnésiens
- ✓ Les sols ferralitiques, de couleur rouge non différenciés
- ✓ Les sols ferralitiques humides
- \checkmark Les sols ferralitiques avec des horizons sombres
- ✓ Les sols ferralitiques jaunes et rouges sur matériaux de départ divers.

V. -METHODES DE DATATION DES CARRIERES LATERITIQUES

Les latérites et les cuirasses latéritiques, caractérisant les formations latéritiques en contexte tropical, correspondent à des roches et des sols issus de l'altération chimiques de roches préexistantes appelées roches mères. (Prognon, Théveniaut, Maurizot, Lecomte, & Cabidoche, 23 janvier 2012).

Le temps étant un des facteurs qui influence l'altération de la roche mère, il nous est nécessaire de connaitre les moyens de datation géologique.

L'une des méthodes contemporaines dans la datation des roches, est le paléomagnétisme. Le paléomagnétisme est une étude du magnétisme terrestre aux périodes géologiques (le million d'années). Ce dernier qui est développé au BRGM à la fin des années 1990 a permis d'attribuer des âges relatifs au phénomène de latérisation. Ce phénomène est une altération de type climatique qui se démarque essentiellement par l'accumulation relative d'oxydes de fer et d'aluminium pouvant aller jusqu'à la formation de cuirasses. La plupart des minéraux primaires sont dissous ; et des oxydes secondaires précipitent pendant l'altération. La goethite et l'hématite sont les principaux oxydes de fer qui se forment dans les profils d'altération (MULLINS, 1977 ; MAHER, 1986 ; SCHWERTMANN, 1988).

Le signal magnétique, lorsqu'il est lancé, est réceptionné par la goethite ou l'hématite, et est comparé à des courbes de références continentales qui par la suite nous permet d'obtenir des âges relatifs aux formations latéritiques (Prognon, Théveniaut, Maurizot, Lecomte, & Cabidoche, 23 janvier 2012). C'est par ce principe que les travaux de (Freyssinet & Thévéniaut, 2002) ont permis d'élucider les différentes phases de latérisation. Ils ont pu montrer un lien fort entre les altitudes du profil et l'ancienneté du processus.

D'autres méthodes utilisés dans l'objectif de datation de carrières existent et l'une d'elle reconnue dans les carrières latéritiques est la radiométrie. Concernant la radiométrie, deux méthodes de datation sont connues et utilisées :

✓ Datation par U-Th/He : Les oxydes de fer doivent être identiques que ceux étudiés en Paléomagnétisme ou à défaut avoir des niveaux proches et facilement corrélables ;

✓ Datation Ar/Ar : Les oxydes et hydroxydes de manganèse doivent être en concrétions ou en phase cristallisées dans les latérites qui sont sous-jacentes aux cuirasses. (Bailly & coll, Avril 2014)

A défaut de la technologie utilisée pour la datation des carrières latéritiques, des approches et des considérations à partir des observations faites sont inspirantes. En effet plusieurs aspects des formations existantes permettent de donner une approximation de l'âge géologique de ces carrières latéritiques. C'est ainsi que (Alexandre, 2002) propose quelques critères qui puissent servir de repères pour la datation des roches et sols latéritiques.

 \checkmark L'altitude : les cuirasses s'inscrivent dans la topographie peu accentuée d'une surface d'érosion. Les surfaces dotées de cuirasses sont étagées et l'altitude a été utilisée pour une première identification. Dans un système où l'érosion verticale des rivières (à travers la montée et la baisse de la nappe) prédomine, les carrières latéritiques les plus élevées sont, en principe, les plus anciennes.

✓ La nature des enduits ferrugineux : Une grande partie des cuirasses ont été couvertes par un enduit superficiel, enduit qui se prolonge dans les diaclases et éventuellement, dans les galeries de termites. Seules les formations ferrugineuses les plus récentes, comme les cailloutis indurés de terrasse fluviale, en sont dépourvues.

✓ En plus de ces deux critères, d'autres du rang de secondaires existent bien que satisfaisant la datation avec moins de précision. Ce sont donc, la corrosion des grains de quartz, les crevasses, les faciès.

La distinction entre les carrières latéritiques selon l'âge géologique et selon chaque type de datation étant plus ou moins éclairée ; que devons-nous donc retenir de la répartition spatiale de la latérite dans le monde et particulièrement au BURKINA FASO ?

VI. - REPARTITIONS DES LATERITES DANS LE MONDE ET AU BURKINA FASO

Bien avant la découverte de l'usage de la latérite par Buchanan dans les indes en 1807 ; Ce matériau était certes utilisé mais demeurait pourtant l'inconnu dans les bibliographies. Cependant depuis cet exploit de Buchanan, les littératures concernant la latérite vont croissante d'une manière exponentielle. Cette expansion de la bibliographie sur la latérite a apporté un besoin réel de cartographies matérialisant la répartition spatiale du minerai.

Il faut de prime abord souligner que la latérite est une roche qui existe en grande quantité dans les climats intertropicaux. Dans la plupart des littératures, il est signalé que les latérites sont très répandues dans le monde ; elles représenteraient 33 % des continents (LAWANE GANA, 2014). La *Figure 1* nous renseigne sur la localisation de la ressource latérite en couleur rouge répartie dans le monde.

Figure 1:La répartition des sols dans le Monde ; (AFES, 1998) in (LEGROS, 2013)

La <u>ci-dessus</u> nous confirme effectivement l'existence d'une couverture latéritique sur le territoire du BURKINA FASO. Une première cartographie pédologique de l'ensemble du territoire a été réalisée entre 1967 et 1969 par l'ORSTOM, à l'échelle du 500.000ème. (HOTTIN & OUEDRAOGO, 1975).

Cette carte (Cf Annexes *Figure 123*) nous montre que la géologie du BURKINA FASO comporte entre autres du grès, de silts, de sédiments gréseux, du granite. Pour les feuilles géologiques couvrant le pays, c'est la classification morphogénétique des sols de AUBERT (1965) qui a été adoptée. La coupure ouest-sud, comprenant la zone de GAOUA a été levée par RIEFFEL ET MOREAU (1969). (BOEGLIN, Décembre 1990).

Par ailleurs, il est à noter qu'il existe de cartes plus récentes confectionnées par le BUMIGEB. Ces cartes nouvellement confectionnées répondent bien aux besoin du boom minier que connait le pays ces dernières années. (cf. la carte <u>ci-dessous</u>)

Figure 2: La carte géologique simplifiée du Burkina FASO (BUMIGEB)

La région de GAOUA est l'une des régions du pays qui possède une large couverture latéritique et a été sujet de plusieurs études dans le passé. En effet (BOEGLIN, Décembre 1990) répertorie les couches latéritiques de cette région selon 03 types de roches mères que sont :

Le socle acide comprenant les granito-gneiss (A) et les granites calco-alcalins(Aga) ;

✤ Les roches volcaniques, de nature basique ou intermédiaire (laves Bbe, brèches volcaniques Bb);

Les schistes, sédimentaires (Bs) ou métamorphiques (Bsi).

VII. - DEGRADATIONS ROUTIERES

Les premiers indicateurs de l'endommagement des chaussées sont les dégradations que ces chaussées vont présenter quelques années après la finition des travaux. Les littératures existantes départagent ces dégradations généralement en fonction du type de routes. Le (Ministère des infrastructures du BURKINA FASO, Mars 2017) ;dans le besoin de rédaction des normes de contrôle de chantier, a regroupé les dégradations routières en 03 grands points.

1. Dégradations sur les routes revêtues

a. Les déformations

✤ Affaissement : l'affaissement se caractérise par une dépression très prononcée et souvent assez étendue, se localisant soit en rive, soit en pleine largeur. Il provient d'un tassement des couches inférieures et d'une perte locale de portance de sol suite à une humidification excessive de la chaussée. Le dynamisme des poids lourds est un phénomène aggravant l'évolution des dommages. Il existe deux types d'affaissement à savoir :

- ✓ Les déformations longitudinales en rive de route, suivant l'axe de la route et
- ✓ Les déformations transversales qui traversent le profil en long de la route.

✤ Une flache : Une flache est une dépression localisée de forme généralement arrondie provenant d'un affaissement causé par un point faible de la chaussée (perte de cohésion localisée de la couche de base ou défaut de portance du sol). En l'absence de traitement, la flache évolue jusqu'au point du nid de poule.

✤ Un bourrelet est un renflement apparaissant à la surface de la chaussée, accompagnant généralement un orniérage ou une déformation de chaussée. Il existe des bourrelets longitudinaux apparaissant le long de la route et d'autres qui sont transversaux à la route.

✤ L'orniérage est une déformation permanente du profil en travers sur d'assez grandes longueurs. Cette dégradation peut apparaître quand les couches supérieures sont sous dimensionnés en regard du trafic et de la faible portance du sol. De même le Traffic joue un rôle par les charges à l'essieu et la canalisation des poids lourds dans une même en trace de la voie de circulation. Enfin les risques d'orniérage augmentent quand les couches de bases sont contaminées ou contiennent trop de fines. "On distingue :

 \checkmark Des orniérages à petit rayon apparaissant sous forme d'une double dénivellation dans les tracés des roues de véhicules et

 \checkmark Des orniérages à grand rayon, apparaissant sous le passage des roues et concernant tout l'ensemble du corps de la chaussée.

b. Les fissurations :

Les fissures sont des cassures du revêtement suivant une ligne, avec ou sans rupture du corps de chaussée. Elles se présentent sous forme de fentes longitudinales ou transversales.

✤ Les fissures longitudinales apparaissent suivant le long du tracé des véhicules, et proviennent des fatigues de la route.

✤ Quant aux fissures transversales, concernant le profil en travers de la chaussée, elles sont généralement causées suite à un retrait du matériau utilisé dans la construction du corps de chaussée.

L'évolution des fissures dans le temps conduit au phénomène appelé faïençage.

✤ Les faïençages : les fissures formant des mailles plus ou moins larges, produisent un faïençage de la surface de roulement. Ce phénomène s'accompagne parfois de déformations quand les couches de base sont déformables. Le vieillissent prématuré du liant de l'enduit superficiel peut être l'origine de ce désordre et peut atteindre le diapason des nids de poule. Epaufrures : Une épaufrure est une cassure du revêtement en bord de la chaussée. Les épaufrures sont généralement causées par une érosion régressive de l'accotement, du mauvais épaulement des rives, d'une chaussée étroite avec un trafic sur l'accotement.

c. Les arrachements :

✤ Les décollements : C'est une rupture d'adhésion entre la couche de surface et le corps de chaussée.

Le désenrobage : c'est la disparition du liant ou du mastic enveloppant les granulats dans la couche de roulement.

✤ Le plumage : c'est l'arrachement des gravillons à la partie supérieure d'une couche de roulement

Les nids de poule : Ce sont des cavités de forme arrondie à bords plus ou moins francs à la surface de la couche de roulement.

d. Remontées de matériaux

Remontée d'eau ou de *boue* : elles se caractérisent par l'apparition à la surface du revêtement de venues d'eau ou de fines ou de boue, qui percolent sous l'effet du trafic, à travers les défauts de la couche de roulement (fissures, faïençage, flaches)

Ressuage : le ressuage est une remontée du liant à la surface d'une couche de roulement (cas enduit superficiel) ou de mortier liant et fines (cas des enrobés).

✤ Boursouflure : Une boursouflure est un surhaussement du revêtement formant une aspérité sur la surface de roulement, avec souvent de fissures et un décollement de la couche de surface.

e. Usures de revêtement

✤ Glaçage du revêtement : c'est l'usure du revêtement par arasement progressif des gravillons sans arrachement de ceux-ci.

✤ Tête de chat : Les têtes de chat proviennent de la disparition partielle des matériaux de surface non par arrachement mais par usure, permettant la saillie au niveau de la couche de surface, des pierres ou cailloux de la couche de base.

2. Dégradations sur les routes en terres

(Ouédraogo, 2006)

a. Déformations :

- Orniérage
- Traverse : Écoulement transversal qui coupe la chaussée.
- Flaches
- Tôles ondulées
- Déformations dans les virages

b. Arrachement :

Arrachement avec frayées en W

Ravinement : Saignées ou ravines de plus ou moins grandes dimensions, longitudinales ou transversales.

Nids de poule : Cavité de forme arrondie à bords plus ou moins francs à la surface de la couche de roulement.

c. Usure de la couche de roulement et des accotements

- Usure de la couche de roulement
- Usure des accotements

3. Dégradations des dépendances de tous types de route

Ces dégradations ne font acception d'aucun de type de route, qu'elles soient d'une route en terre ou d'une route revêtue.

L'envahissement par la végétation : Ceci est un phénomène naturel de la végétation et diminue la visibilité, surtout dans les virages.

Les érosions des talus de remblai : Les eaux pluviales provenant de la plate-forme ne laisse pas les chaussées sans effet. Si celles-ci se concentrent sur la surface de talus entraine l'érosion des talus de remblai.

Les éboulements de talus de déblais : Elles saut généralement causées par une pente trop forte avec un sol peu cohésif, le mauvais drainage des terrains supérieurs, et l'existence des nappes suspendues ou intercalées. Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

Chapitre 2 : ETUDE EXPERIMENTALE

I. LOCALISATION ET DESCRIPTION DE LA CARRIERE LATERITIQUE EXPLOITEE

Le Burkina Faso est un pays à climat tropical chaud qui est situé au cœur de l'Afrique occidentale. Il est limité de l'Est à l'Ouest respectivement par la 3° Longitude Est et la 6° Longitude ouest. Du Nord au sud il est encadré par les latitudes 9° et 15° Nord.

Ce pays qui possède une superficie de 274000 km².est répartie en 13 régions qui sont eux-mêmes subdivisés en 45 provinces. C'est dans la province de KADIOGO plus précisément à OUAGADOUGOU (KAMBOINSIN) que nous avons identifié le profil latéritique qui fait l'objet de notre étude. Cet emprunt latéritique est reconnu par le nom de Saam-tanga et est localisé sur une altitude de 301m, à une latitude de 12° 29' 23,71'' N et d'une longitude de 1° 32'59,35'' Ouest.

Figure 3: Localisation géographique du profil étudié

II. DESCRIPTION DES COUCHES LATERITIQUES DU PROFIL

1. Description du profil

La description d'un sol dans le milieu géologique et géotechnique, est prépondérante et est d'une grande importance dans les travaux d'étude et de réalisation. C'est ainsi que dans le souci de mieux règlementer celles-ci plusieurs documents sont disponibles dans la bibliographie. Pour ce qui est de notre étude, la nome **XP P 94-011** et l'ouvrage de (MAIGNIEN, Manuel de prospection pédologique, 1969) était le fil conducteur de notre prospection. Mais que faut-il comprendre par les expressions description et identification ?

La norme utilisée définit la description d'un sol comme une opération consistant à traduire les caractéristiques qualitatives apparentes d'un sol à partir de son aspect visuel de son odeur, de l'impression ressentie au toucher. Elle la différencie de l'identification du sol qu'elle définit comme une opération qui consiste grâce à des mesures issues d'essais normalisés, à déterminer la nature de ce sol et à dégager ses caractéristiques physiques. Une observation comparative à la revue bibliographique nous permet de faire un certain nombre d'hypothèse sur notre profil. En effet la pluviométrie annuelle moyenne dans la zone soudano-sahélienne du BF est comprise entre 600 et 900mm. Cette pluviométrie est inférieure à la limite caractéristique de1000mm. Nous concluons que notre profil est certainement de la famille des latérites fersialitiques. L'observation du profil (Cf. *Image 2*) nous renseigne de la présence des plans de schistosité sur la couche K1C3. Cela nous permet d'émettre l'hypothèse selon laquelle la roche mère de notre profil correspondrait probablement à la roche du 3^{ème} type rencontré dans l'Ouest : Les schistes sédimentaires(Bs) ou métamorphique (Bsi).

Enfin il est à retenir que quatre strates latéritiques ont été identifiées afin d'observer les variations des paramètres géotechniques et mécaniques à travers ces couches. Nous avons pu effectuer des essais sommaire d'identification sur les lieux de l'emprunt latéritique. Les résultats des essais qui ont pu être faits sont consignés dans le *Tableau 2*.

COUCHES	Profondeur	Aspect d'ensemble de l'agglomération	Aspect des particules
K1C ₀ : Couche arable	0,27m	Friable Présence d'odeur Couleur noirâtre	Forme irrégulière Etat de surface rugueux Arrêtes arrondies
K1C4	1,90m	Non Friable Sans odeur Couleur rouge brun	Couleur noireForme irrégulièreEtat de surface rugueuxArrêtes arrondiesCouleur rouge brun
K1C3	2,70m	Non Friable Sans odeur Couleur brun avec présence de nodule blanc	Forme irrégulière Etat de surface rugueux Arrêtes anguleuses Couleur brun
K1C2	3,90m	Friable Sans odeur Couleur rouge violacée tachetée de blanc	Forme irrégulière Etat de surface lisse Arrêtes arrondies Couleur rouge ocre
K1C1	8,30m	Friable Sans odeur Couleur rouge violacée tachetée fortement de blanc	Forme irrégulière Etat de surface lisse Arrêtes arrondies Couleur roue ocre

Tableau 2: Description sommaire du profil de Saam-tanga, Kamboinsé

Image 1 : Identification de l'emprunt et ses couches stratigraphiques

2. Description sommaire des sols des différentes couches latéritiques

Après prélèvement de notre matériau sur les différentes couches identifiées, une description des sols latéritiques hors profil a été faite. (Cf. annexes *Image 13 à Image 17*)

K1C1 :

<u>Granularité</u>: La majorité des particules sont des fines. Celles qui sont supérieur à cette dimension sont des mottes de terres :(*Image 13*)

<u>Matières organiques</u>: Couleur vives et pas de présence de tourbes : Pas de matières organiques.

<u>*Plasticité*</u>: A l'écrasement d'un matériau séché, on remarque une résistance faible. Quant à l'agitation à la main, pour faire une boule, la surface devient brillante mais lentement : il s'agit d'un limon

<u>Résistance</u> : Le matériau peut être pétri par une légère pression des doigts : le matériau est plastique.

K1C2 :

<u>Granularité</u>: La majorité des particules sont des fines. Celles qui sont supérieur à cette dimension de 2mm sont des mottes de terres : (*Image 14*)

```
MEMOIRE DE FIN D'ETUDES
```
<u>Matières organiques</u>: Couleur vives et pas de présence de tourbes : Pas de matières organiques.

<u>*Plasticité*</u>: le matériau est onctueux. A l'écrasement d'un matériau séché, on remarque une résistance faible. Quant à l'agitation à la main, pour faire une boule, la surface devient brillante mais lentement : il s'agit d'un limon

<u>Résistance</u>: Le matériau peut être pétri par une légère pression des doigts : le matériau est plastique.

K1C3 :

<u>*Granularité*</u>: La majorité des particules semble être supérieure à 2mm. Il n'y a pas assez de fines et surtout pas de présence de mottes de terres. Plutôt on remarque la présence de nodules issus d'une altération des feldspaths dans le matériau.(Cf. *Image 15*)

Matières organiques : Couleur vives et pas de présence de tourbes : Pas de matières organiques.

<u>*Plasticité*</u> : La résistance est nulle car même pas de composition de terre en concrétion de terre : du sable

Résistance : Les grains du matériau sont difficilement rayés à l'ongle : Le sol est dur

K1C4 :

<u>*Granularité*</u>: La majorité des particules semble être supérieure à 2mm. La granulométrie est assez étalée, toutes les tailles de grains sont représentées. (Cf. *Image 16*)

<u>Matières organiques</u>: Couleur un peu sombre avec la présence de quelques racines de plantes : matières organiques existante ne serait-ce qu'en petite quantité.

<u>Plasticité</u> : La résistance est nulle car même pas de composition de terre en concrétion de terre : du sable

<u>Résistance</u> : Les grains du matériau sont difficilement rayés à l'ongle : le sol est dur.

III. DESCRIPTION DES ESSAIS

1. Essais d'identification des paramètres d'état du sol

a. L'Analyse granulométrique

L'analyse granulométrique est un essai de laboratoire visant l'identification de la proportion granulaire d'un matériau. Pour mieux apprécier cette proportion granulaire, l'analyse granulométrique préconise deux essais distincts complémentaires à savoir le tamisage et la sédimentation.

i. L'analyse granulométrique par tamisage

Le tamisage consiste à faire passer le matériau étudié à travers une colonne de tamis de mailles disposées par ordre de grandeur successives. Pour ce qui est du cadre de nos études, cet essai a été fait suivant les prescriptions des normes **NF P 18-560** et **NF P 18-540.** Ces normes préconisent de faire le tamisage par voie humide (matériau lavé et étuvé avant de le faire passer sur la colonne de tamis) afin d'éviter des erreurs grossières qui peuvent être engendrées suite

MEMOIRE DE FIN D'ETUDES

au tamisage par voie sèche. Un agrégat (« ped" en anglais) selon les thermes de (MAIGNIEN, Manuel de prospection pédologique, 1969) ;est un solide géométrique naturel qui conserve une forme individuelle, spécifique, déterminé, lorsqu'on le manipule doucement. Il est constitué par des éléments de terre fine et éventuellement par des inclusions d'éléments grossiers. Dans le souci de ne pas désagréger les agrégats naturels par le lavage, il nous a semblé utile de faire une étude comparée d'un tamisage fait par voie sèche de celle humide.

Calcul des ratios d'analyse de la courbe

- ✤ Le coefficient d'uniformité se calcule par la relation suivante : Cu = $\frac{D_{60}}{D_{10}}$
- ★ Le coefficient de courbure se calcule par la relation suivante : $Cc = \frac{D_{30}^2}{D_{10}xD_{60}}$
- ★ Le produit de finesse se calcule par la relation suivante : $\mu f = \% (80 \ \mu m) * IP$

ii. L'analyse granulométrique par sédimentométrie :

La finesse du matériau peut sembler être un handicap dans l'objectif de faire ressortir la proportion granulaire d'un matériau. Ce n'est pourtant pas le cas car une méthode existe pour vaincre cette contrainte. En effet la méthode de sédimentation est utilisée pour la fraction du matériau passant au tamis de 80µm. La sédimentométrie fonde ses principes sur les travaux de GC STOCKS qui donnent une relation entre la vitesse de chute des particules dans un liquide et la grosseur ou la taille de ces particules. Les tailles des particules sont donc retrouvées en mesurant la vitesse de chute d'un matériau fin dans un liquide.

b. Les limites d'Atterberg

Les teneurs en eau qui délimitent les quatre états de la consistance sont appelés limites de consistance ou limites d'Atterberg. Ces limites sont :

✤ La limite de retrait est la teneur en eau maximale que peut tolérer un sol sans changer de volume. Cette limite sépare l'état solide d'un sol de son état semi solide. Cette limite n'a pas été déterminée dans le cadre de nos travaux.

✤ La limite de plasticité est la teneur en eau à laquelle le matériau quitte l'état semi solide à l'état plastique. Elle est obtenue en recherchant la teneur en eu à laquelle les rouleaux de 3mm de diamètre faits suite à un malaxage du sol se brise sur une longueur de 10 à 15cm.

✤ La limite de liquidité est la teneur en eau à laquelle un sol quitte de l'état plastique a l'état liquide. Cette limite est obtenue suite à l'essai de la limite de liquidité. Elle correspond à la teneur en eau à laquelle 25 coups secs sur l'appareil de CASAGRANDE qui amène la fermeture de la rainure faite sur une longueur de 3mm.

Figure 4 : Etats de consistance (ROBITAILLE & TREMBLAY, 1997).

Toutes ces deux dernières limites ont été déterminées selon les prescriptions de la norme **NF P** 94-051. L'essai est effectué sur la portion du matériau passant au tamis de 400µm.

c. La teneur en eau initiale

La teneur en eau initiale est la teneur en eau du matériau à l'état initial, état auquel se trouve le sol ou le matériau en place à l'emprunt. L'essai est fait Selon les prescriptions que suggère la norme **NF P 94-050**. Le matériau est prélevé sur une quantité représentative et pesée. Après étuvage et pesée, on détermine la teneur en eau du matériau.

d. Le poids spécifique

Une quantité de matériau connue d'un volume V obtenue dans une éprouvette graduée nous permet d'obtenir une masse volumique de ce matériau si sa masse m est connue. Cependant cette masse volumique ne tient pas compte du volume des vides que contient cette portion de matériau.

L'essai du poids spécifique nous permet de soustraire le volume des vides du volume total du matériau. Cela nous permet d'obtenir le poids spécifique des grains du matériau. Cet essai est fait à l'aide du pycnomètre à air. Le matériau étant saturé nous permet de chasser le vide qui s'y trouve et nous estimons le volume des grains du matériau uniquement.

e. La valeur bleue d'un sol

La valeur bleue d'un sol est la quantité maximale de bleu en suspension dans une solution qu'un sol peut adsorber. Cette adsorption montre l'activité argileuse de ce sol. En effet cette valeur bleu est directement liée à la surface des grains du sol. Cet essai a été exécuté suivant les recommandations des normes **NF P94-068 et NF P 11-300 et GTR**. L'essai a été fait sur la fraction de 0 à 5mm de nos différents matériaux.

f. L'essai Proctor

L'essai Proctor a pour but de déterminer les conditions de compactage fixées pour une meilleure compacité d'un sol. En effet, il nous renseigne d'une part sur la teneur en eau optimale pour un sol de remblai donné et d'autre part, sa densité maximale. La teneur en eau optimale correspond à la teneur en eau qui amène le matériau après malaxage et compactage à la densité maximale que peut atteindre ce sol. Cette densité sèche est inconnue d'emblée. C'est pourquoi comme par une méthode de tâtonnement, la teneur en eau optimale est recherchée en faisant varier le dosage en eau avant chaque compactage tout en surveillant la variation de la densité.

L'essai Proctor qui a été fait est le Proctor modifié qui est appliqué aux cas des constructions routières. L'essai a été fait suivant les recommandations de la norme **NF P 94-093**.

2. Essais d'identification des paramètres mécaniques des sols

a. CBR par immersion

Les deux essais ci-dessus sont complémentaires et sont faits respectivement sur le même matériau (l'enfoncement après l'immersion). Ces essais ont été effectué selon les prescriptions de la norme **NF P 94-078** et du protocole d'essai.

i. Principe du gonflement

L'essai de gonflement que nous avons exécuté lors de nos travaux est celui qui est fait juste avant le poinçonnement pour l'essai CBR. Le but de cette opération est de placer le sol dans les plus mauvaises conditions hygrométriques qu'il est susceptible de rencontrer dans la pratique. Le matériau est compacté avec une énergie de compactage variant de 10 coups, 25 coups et 55 coups par couches pour 5 couches

La valeur du gonflement est restée sous observation pendant les quatre jours d'imbibition dans le but d'étudier l'évolution du gonflement en fonction du temps et de la compacité du matériau. (Cf. *Image 6*)

ii. Principe du poinçonnement

La valeur du CBR est obtenue suite à un poinçonnement du matériau précédent qui a été compacté et laissé en imbibition pendant 96 heures. Une presse munie d'un piston de poinçonnement de diamètre 4,96 cm (section 19,3 cm²) est utilisée. Cette presse est pourvue d'un comparateur permettant de suivre les enfoncements au 1/100ième de mm près et d'un autre identique qui nous permet d'obtenir la force suite à une conversion à l'aide d'un catalogue. (Cf. *Image 11*)

b. La perméabilité d'un sol

L'essai a pour but de déterminer au laboratoire le coefficient de perméabilité à l'eau, des sols saturés. Ce coefficient aussi appelé coefficient de Darcy, sera déterminé dans notre cas par la méthode de la charge permanente (méthode adéquate aux sols faiblement perméables).

Cela consiste à soumettre des éprouvettes de sol saturés à un écoulement d'eau. On mesure ainsi par la suite la différence de hauteur d'eau qui traverse l'échantillon pendant un temps donné. C'est avec les résultats obtenus que l'on mesure le coefficient de Darcy. Les éprouvettes qui sont soumises à notre essai sont des éprouvettes de matériau compactés à la teneur en eau optimale. La portion du matériau utilisé est de 0/5mm. L'essai est réalisé selon les prescriptions de la norme **XP P 94-090-1**.

c. L'essai ædométrique

Cet essai est réalisé selon les prescriptions de la norme **XP P 94-090-1**. Le tassement des sols cohérent est un tassement à long terme. C'est pour mieux appréhender les tassements effectifs de ces sols que l'essai de consolidation œdométrique est effectué dans le cadre de nos travaux. L'essai s'effectue sur une éprouvette de matériau placée dans une ceinture cylindrique rigide qui est placé dans une enceinte appelée œdomètre. Un dispositif permet d'appliquer sur l'éprouvette un effort axial vertical. L'essai réalisé dans le cadre de nos travaux a été sur une éprouvette saturée en imbibition non drainé. Nous avons effectué notre essai sur un sol remanié. Nous avons analysé le comportement du sol entre les deux couches extrêmes de notre profil.

L'essai sur le sol remanié consiste à apporter un changement sur le matériau étudié. Dans notre cas le matériau a été compacté sur une énergie de compactage PROCTOR modifié. Par la suite, un anneau cylindrique (diamètre 70 mm et épaisseur 20 mm) a été enfoncé sur ce sol compacté et taillé selon les mesures de l'anneau.

d. La compression uniaxiale

L'essai s'effectue sur une éprouvette placée entre les deux plateaux parallèles d'une presse. L'essai consiste à imposer une vitesse constante de déformation longitudinale et à mesurer la force axiale appliquée à l'éprouvette. A travers cet essai nous pourrons estimer la valeur du module de Young.

Pour ce faire, des capteurs de déplacements ont été placés tout autour de l'éprouvette via des anneaux cylindriques adaptés au diamètre de notre éprouvette. Bien que la presse utilisée nous donne la force en fonction du déplacement, des capteurs de type LVDT ont été placés autour de l'éprouvette pour écarter les déplacements parasites issus des vibrations de la presse afin de considérer uniquement que les déplacements du tiers central de l'échantillon.

Pour ce qui est de la préparation de l'éprouvette, le rapport d'Etude de la latérite traitée au ciment de la carrière de SINDIA publié par le (Ministère des Infrastures du Sénégal, Septembre 2013) nous a conduit dans le choix optimal. Une analyse sur 03 types d'éprouvettes a été faite sur ces travaux. Les trois éprouvettes distinctes sont : l'éprouvette cylindrique de (diamètre 10 cm et de hauteur 20 cm) ; l'éprouvette de (diamètre 16 cm et de hauteur 32 cm) et celle du moule CBR. Le rapport a renseigné que les éprouvettes de (diamètre 10 cm et de hauteur 20cm) donnent de meilleures caractéristiques par rapport aux autres types d'éprouvettes.

Cependant par l'indisponibilité d'anneaux adaptés aux éprouvettes (diamètre 10 cm et de hauteur 20cm), nous avons préparé nos éprouvettes sur les moules de (diamètre 16 cm et de hauteur 32 cm). L'énergie de compactage a été observée de sorte à ce que la compacité du matériau équivaut à celle de la densité optimale du PROCTOR modifié. L'essai est réalisé avec une vitesse constante de pression de 0,1mm/s.

e. Le cisaillement rectiligne direct

L'essai s'effectue sur une éprouvette de sol placée dans une boite de cisaillement constituée deux demi boites indépendantes et pourtant solidaires par deux vis diagonaux qui permettent d'assurer la manutention de la boîte pour le Montage sur le bâti de l'appareil. L'essai a été fait selon les prescriptions de la norme **NF P 94-071-1**.

L'essai consiste à appliquer sur la face supérieure de l'éprouvette un effort vertical (N), maintenu constant en produisant un cisaillement dans l'éprouvette selon le plan horizontal de glissement des deux demi boîtes l'une par rapport à l'autre avec un déplacement relatif δ_1 à vitesse constante.

Par ailleurs, l'éprouvette destinée pour l'essai est portée à une énergie de compactage identique à celle du PROCTOR modifié. Les caractéristiques géométriques de l'éprouvette sont respectivement d'une section de $(60 \times 60) \text{ mm}^2$ avec une épaisseur de 25 millimètre (mm).

Quant à la vitesse à laquelle le cisaillement a été fait, Les études de cisaillement faites par (Kamtchueng & al, 2015) sur la latérite de MFOU (CAMEROON) ont été réglées sur une vitesse de 2mm/mn.

Les travaux de (Messan, 2003) sur les matériaux pierreux ont montré que les paramètres de la droite de Coulomb (à savoir angle de frottement interne et le coefficient de Cohésion) sont fonction de la vitesse de cisaillement. L'angle de frottement interne augmente lorsque la vitesse de cisaillement diminue.

A la lumière de ces deux études antérieures, nous avons décidé d'effectuer notre cisaillement à une vitesse constante de 1,5mm/mn. A travers cet essai nous obtiendrons la valeur de l'angle interne de frottement et un second coefficient qui nous renseigne sur la cohésion du sol.

Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

MEMOIRE DE FIN D'ETUDES

Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

Chapitre 3 RESULTATS, ANALYSES ET DISCUSSION

MEMOIRE DE FIN D'ETUDES

I. Caractéristiques des paramètres d'état et de nature

1. Analyse granulométrique

a. Résultats

Un récapitulatif des résultats du tamisage en fonction des couches latéritiques étudiées est consigné dans les tableaux de l'annexe. (*Cf. Tableau 9 au Tableau 16 ; les Tableau 21 et Tableau 22*). La *Figure 5* nous permet d'observer la granulométrie des différentes couches étudiées.

Les résultats du tamisage fait par voie sèche et par voie humide, nous permet d'établir différentes classes granulaires en fonction de leurs proportions respectives et des couches étudiées. (Cf. les annexes *Figure 29 et Figure 30*)

b. - Analyses et Discussions

i. Cu et Cc :

Pour toutes les couches de notre profil latéritique et selon chaque mode de tamisage qui a été fait, le coefficient d'uniformité aussi appelé coefficient de *HAZEN* est supérieur à 2 (Cu >2).

Suite à cela, nous concluons que sur la base des travaux de *CAQUOT ET KERISEL* ; la courbe granulométrique pour toutes les couches étudiées est étalée.

Aussi, le coefficient de courbure est compris entre 1 et 3 (1 < Cc < 3) pour toutes les couches et pour tous les types de tamisage. Nos matériaux sur toutes les couches peuvent être considérés comme étant bien gradués.

ii. D max

On constate que le D_{max} diminue lorsqu'on quitte le tamisage à voie sèche pour celui de la voie humide. Ce constat est valable pour les couches K1C1, K1C2 et K1C3. Par contre pour la couche K1C4 on constate que le D_{max} reste identique sur les deux types de tamisage.

En effet la variation du D $_{max}$ démontre que les grains à l'état naturel sont enveloppés par une certaine couche fine. Les grains de la couche K1C4 font l'exception par rapport aux trois autres couches. Ce phénomène pourrait s'expliquer par l'aspect compact de la couche K1C4 et l'aspect friable des couches K1C1, K1C2 et K1C4.

iii. La proportion granulaire :

Une analyse des proportions granulaires d'un tamisage fait par voie humide (tamisage après lavage), nous révèle que la teneur en fines est plus élevée sur la couche K1C4, ensuite sur la K1C1, puis la K1C3 et enfin la K1C2. La considération des résultats du tamisage fait par voie sèche nous révèle que les fines s'augmentent des plus hautes couches vers les plus basses couches. La portion fine de K1C4 fait exception de cette assertion.

Les résultats de K1C4 concernant sa proportion de fine est certainement causé par le mode d'échantillonnage de notre matériau car K1C4 était très compact.

Une observation des résultats du tamisage projeté dans les fuseaux proposés par le CEBTP pour usage en couches de base et de fondation, nous laisse voir que seules les couches K1C3 et K1C4 présentent des possibilités d'utilisation en couche de fondation et en couche de base (Cf. *les Figure 34 et Figure 33 et Figure 34*). Les couches K1C2 et K1C1 (*Figure 31, Figure 32*) sont dans les limites du fuseau de la couche de fondation .

Quand on observe la granulométrie de nos deux couches les mieux adaptées pour les structures de chaussées (K1C3 et K1C4) on constate que l'augmentation des fines causée par le compactage est inférieure à la valeur maximale préconisée par le CEBTP (8%).La production des fines n'est donc pas exagérée.

	Initial	Compacté à 10 coups	Compacté à 25 coups	Compacté à 55 coups
% fines K1C3	1,67%	1,73%	1,81%	3,20%
% fines K1C4	1,97%	2,56%	3,16%	6,00%

Figure 6: Production de fines après compactage

Les résultats les plus complets sont confinés dans les tableaux des annexes (*Tableau 30 et Tableau 31*) et représentés sur les figures de l'annexe (*Figure 35 et Figure 36*).On se rend compte que la production de fines n'est pas grande car ne surpassant pas l'alerte de 8% préconisée par le CEBTP. Une observation des courbes granulométriques citées ci-dessus nous montre qu'il n'y a pas une grande distinction entre celle avant compactage et les autres après compactage. Certes une petite différence existe dans la portion sable mais nous pouvons considérer que les courbes après compactage restent dans le même fuseau que celui de l'avant compactage. Il est à constater que le pourcentage de fines produites augmente en fonction de l'énergie de compactage appliquée.

2. Les limites

a. Résultats

Les valeurs des limites de liquidité et de plasticité des différentes couches latéritiques sont dans les annexes (*Tableau 32 au Tableau 35*) et les figures (*Figure 39 à la Figure 42*)..

Figure 7: Récapitulatif des limites des couches étudiées

b. - Analyse et Discussion

Selon les prescriptions de Classification GTR, les sols K1C4, K1C3 et K1C2 sont toutes considérées comme des sols faiblement argileux car leur indice de plasticité est inférieur à 12 (IP < 12). L'indice de plasticité va grandissant en fonction de la profondeur du profil. L'hypothèse de départ est donc vérifiée car plus le sol possède un IP plus élevé, moins il est adapté pour l'usage routier.

Par ailleurs, la couche K1C1 qui est la plus fine est considérée comme un sol moyennement argileux selon la Classification GTR car indice de plasticité (12,91) est inférieur à 25 (IP < 25).

Le volume de bleu ou valeur de bleue d'un sol (V_{Bs}) est le volume de bleu de méthylène adsorbée par 100g de ce sol. Cette valeur s'obtient par la relation de rapport entre le volume adsorbé et la masse sèche utilisée.

Cependant cette valeur ne prédit pas l'activité argileuse tant que la masse sèche utilisée n'est pas uniquement la portion de 0/5mm. Selon les prescriptions de la norme **XP P94-011**, cette activité A_{CB} se calcule par un rapport entre le volume de bleu absorbé et la portion 0/5mm.

Figure 8: La valeur bleue des sols étudiés

b. - Analyse et Discussion

Les résultats des valeurs bleu des sols étudiés nous renseignent que l'activité argileuse des sols augmente pendant que nous allons en profondeur de notre profil (de k1C4 vers K1C1). En effet, si la profondeur de la fouille augmente, les fines augmentent également et influent conséquemment sur l'activité argileuse.

Cependant, contre toute attente, la couche K1C3 présente une activité argileuse qui perturbe l'évolution grandissante de l'activité argileuse en fonction de la profondeur. Pour comprendre ce dynamisme il est indispensable de retourner voir la constitution géologique de notre profil. Une observation du profil montre un plan de schistosité sur la couche K1C3, qui est d'une nature absorbante car de couleur blanche (probablement argile provenant de l'altération des feldspaths cf. *Image 2*). En considération de l'activité argileuse de la couche K1C3, nous pouvons admettre que la couche 3 porte le nom de grave latéritique argileuse.

Au-delà de cette contre évolution, qu'engendre la couche K1C3, Il est à préciser que selon la classification GTR, toutes les couches latéritiques de notre profil sont tous sensibles à l'eau car leurs activités argileuses sont toutes supérieures à 0,2. Elles sont également toutes reconnues comme des sols sablo limoneux ($A_{CB} < 1,5$).

4. La teneur en eau initiale des couches du profil

a. - Résultats

Figure 9: Graphe donnant la teneur en eau initiale des couches du profil

b. - Analyse discussion

La variation de la teneur en eau initiale en fonction de la profondeur du profil ne dépend pas uniquement de la granulométrie des couches.

Pour ce qui est de notre profil latéritique, l'épaisseur des couches évolue d'une manière croissante en fonction de la profondeur. En effet les couches 1, 2, 3 et 4 ont des épaisseurs de couches respectivement égales à 4,40m ; 1,20m ; 0,80m et 1,63m. Ainsi donc ces différentes épaisseurs qui sont considérables pour les couches K1C1 et K1C2 donne une grande surface de ruissèlement qui favorise une meilleure infiltration de l'eau dans le sol. Ceci peut donc justifier la grande teneur en eau initiale sur les couches latéritiques profondes du profil prélevé en saison pluvieuse.

Quant à la couche K1C4 qui possède plutôt une épaisseur plus importante que celle de la couche de K1C3 n'a pourtant pas une teneur en eau initiale. En plus elle est la couche qui fait contact avec les premières gouttes de pluie. Elle est témoin de la grande majorité de ruissellement des eaux de pluie. Cette petite teneur en eau initiale de la couche K1C4 est certainement dû à son caractère compact et rigide. C'est d'ailleurs pour cette même raison que nos sols arables ne sont pas grandement riche car l'infiltration des eaux est moindre avec un grand ruissèlement.

5. L'essai Proctor *a. Résultats*

Les résultats de l'essai Proctor modifié sont confinés dans les annexes à travers les(*Tableau 38 au Tableau 43 et les Figure 43 à la Figure 10*)

Figure 10: Récapitulatif des résultats de l'essai Proctor

b. - Analyse et Discussion

Nous constatons que la densité sèche diminue en fonction de la profondeur des couches sur le profil étudié. Une étude de corrélation a été faite sur la valeur de la densité sèche de nos matériaux étudiés. Le but était de savoir avec lequel des paramètres la densité est fortement dépendante. L'étude de corrélation a été faite par rapport à :

- Le pourcentage de sable (la plus grande portion de nos sols)
- L'indice de plasticité (IP)
- Le poids spécifique des couches étudiées

Les résultats de ces corrélations sont mentionnées dans les annexes (Cf. *Figure 49 à Figure 51*). Il en ressort que la densité sèche est fortement dépendante du poids spécifique des couches.

En effet plus un sol latéritique contient des fines dans sa proportion granulaire, plus sa teneur en eau optimale est considérable. Cette teneur en eau élevée fait diminuer par contre la densité sèche du matériau. C'est ainsi qu'on conclue que la densité sèche de la latérite est grandement dépendant de la proportion granulaire qui lui constitue.

L'approximation de la densité sèche (PROCTOR modifié) en fonction du poids spécifique des grains sur les résultats du profil de Kamboinsé, donne une corrélation linéaire d'équation de $\gamma_d = 1,2683 * \gamma_s - 1,5511$.

Pour une couche de fondation, selon les prescriptions du CEBTP, les couches K1C3 et K1C4 peuvent être utilisés. En effet ces deux couches ayant une densité sèche respectivement 1,834 et 2,054 se trouvent dans la plage de densité sèche prescrite qui est de 1,8t/m³ à 2t/m³.

Pour une application routière, seule la couche de K1C4 est admissible pour une utilisation en couche de base. En effet sa densité sèche de 2,054t/m3 couvre avec seulement une petite marge les exigences de la densité sèche ($\gamma d > 2t/m3$) que prescrit le CEBTP.

II. Caractéristiques des paramètres mécaniques

1. Gonflement *a. - Résultats*

L'évolution du gonflement en fonction de la compacité du matériau est constatée d'une manière identique pour toutes les couches. En effet pour toutes les couches le gonflement est plus important pour les éprouvettes qui ont connu une plus grande énergie de compactage. (*Cf. Tableau 54 au Tableau 58 et Figure 52 à la Figure 56*).

Le récapitulatif de l'essai de gonflement nous permet de constater que la valeur du gonflement est moindre sur les couches supérieures (K1C4, K1C3) et plus élevées sur celles qui sont en profondeurs (K1C2, K1C1).

Une observation de la *Figure 11*, nous montre que le gonflement semble évolué en fonction de la profondeur des couches de notre profil. En effet on remarque que les couches K1C1 et K1C2 qui sont constitués d'une grande partie de fines ont un plus grand taux de gonflement que les couches K1C3 et K1C4 qui sont plutôt constitués de nodules appartenant majoritairement aux classes granulaires sables et graviers.

Figure 11: Récapitulatif du gonflement des couches étudiées

b. -Analyse et Discussions

Les résultats nous renseignent que plus la compacité est élevée (grande énergie de compactage) alors le gonflement également est important. On retient de l'expression compacité ; la quantité de matériau dans un volume donné. En effet plus la quantité d'un matériau est élevée alors sa portion fine l'est également. Il en ressort que la quantité de portion fine (d'où le gonflement aussi) évolue en fonction de l'importance de la compacité (énergie de compactage) d'un échantillon. C'est pourquoi les études ; DE RAO, DE PHANIKUMAR ET DE SHARMA EN 2004 affirment qu'il y a une croissance linéaire entre le gonflement et le poids volumique. Après avoir évoqué les travaux ci-dessus (Djedid & Ouadah , Octobre 2009); confirment cette assertion par les résultats issus de leurs travaux.

Nous constatons que le gonflement évolue positivement lorsque nous quittons les plus hautes couches pour les plus basses. En effet, ce constat se justifie par la présence de la portion argileuse. L'argile est un matériau gonflant retenant l'eau. C'est d'ailleurs cette vertu qui fait de lui le matériau adéquat dans la confection des noyaux étanches dans la réalisation des barrages en terre.

Par ailleurs, nous convenons avec les résultats que le gonflement de la couche K1C4 est inférieure à celui de la couche K1C3. Cependant, contre toute attente, le gonflement de la couche K1C2 semble être plus élevée que la couche K1C1. Cela se justifie par le fait que toutes ces deux couches sont constituées dans leur classe argileuse de Kaolinite. « La kaolinite est

électriquement neutre. Au total, elle ne retient facilement ni l'eau ni les ions que cette eau contient.» (LEGROS, 2013). Cette assertion de LEGROS explique les résultats que nous observons. En effet, la couche K1C1 semble avoir plus de fines et étant fortement tachetés de la couleur blanche (probablement de la Kaolinite) que la couche K1C2 qui est faiblement tachetés (Cf. *Image 2*).

Selon les explications de (Lérau, 2005), la structure de la Kaolinite est caractérisée par des liaisons fortes entre les atomes d'aluminium (Al) et de silice (Si) contrairement à la smectite et a l'illite qui ont des liaisons relativement lâches causé par la présence de cations K⁺ sur les liaisons Aluminium et Silice.

Ensuite force est de constater que la vitesse de gonflement évolue en fonction de la profondeur des couches de notre profil. En effet, la *Figure 11* ; qui nous fait observer le gonflement des compacités maximales des différentes couches, montre que le gonflement des Couches (K1C1 et K1C2) évolue lentement dans le temps (48h après) par rapport aux couches (K1C3 et K1C4). Cela se justifie par l'aspect fin des couches (K1C1 et K1C2) qui empêche la remontée d'eau par capillarité. Quant à la couche du mélange K1Cm, elle a une valeur de gonflement plus ou moins moyenne et cette valeur se stabilise environ après 48h d'immersion.

Pour ce qui est de l'application routière il est à noter que selon les prescriptions du CEBTP, la valeur du gonflement doit être inférieur à 1% pour ce qui est de la couche de base. Les différentes couches de notre profil (K1C1, K1C2, K1C3 et K1C4) ont respectivement une valeur de gonflement respective de 3,21% ; 4% ; 1,70% et de 1,26%. Il en ressort qu'aucune couche latéritique ne respecte pas les critères d'utilisation du CEBTP comme couche de base.

Pour ce qui est d'une couche de fondation, le guide pratique de dimensionnement des chaussées préconise un gonflement linéaire inférieur à 2,5% pour les sables argileux. Il en ressort que les couches K1C4 et K1C3 présentent des caractéristiques de gonflement intéressantes pour une utilisation en couche de fondation.

2. La valeur CBR *a. Résultats*

Cet essai nous a permis de déterminer la résistance au poinçonnement de nos couches étudiées, en fonction de leurs densités. Il s'agit donc de déterminer expérimentalement des indices qui serviront à déterminer l'épaisseur des couches de fondation et de base ; et établir une classification des sols.

Les valeurs des CBR obtenus en fonction des différentes couches de notre profil sont confinées dans les annexes (Cf. *Tableau 44 au Tableau 53et la Figure 57 à la Figure 66*). Un récapitulatif de tous ces résultats est proposé sur la *Figure 12*.

Figure 12: Récapitulatif des valeurs CBR des différentes couches étudiées

b. - Analyses et Discussions

Une observation des valeurs de CBR a une tendance d'évolution du CBR en fonction de la profondeur des couches de notre profil. Le CBR diminue en fonction de la profondeur du profil excepté la valeur de K1C3 qui est sensiblement égale à celle de la couche K1C4. En effet les valeurs observées sont de 61(pour la couche K1C3) et de 60 (pour la couche K1C4). Cela peut s'expliquer par le fait qu'il y'ait plus de particules fines dans la couche K1C4 que ce qu'on en trouve dans la couche K1C3. Cette différence de grandeur est vérifiée pour un tamisage par voie sèche (1,27% contre 2%) et s'empire d'ailleurs dans le cas du tamisage par voie humide (4,48% contre 7,69%).

3. L'essai de perméabilité *a. Résultats*

temps	mesure (mm)	dénivelée
0	145	0
1	152	7
2	152	7
4	160	15
8	163	18
15	164,5	19,5
60	173,5	28,5
120	182,5	37,5
240	183	38
480	185	40

Tableau 3: Suivi de la montée d'eau en fonction du temps

<i>adieau</i> 4.	Caicui	ae i	a per	meabu	ue
D:	(0.000	

Di (m)	0,008
Section A (m ²)	5,02655E-05
Volume eau (m3)	2,01062E-06
L	0,145
t	480
Section S (m ²)	0,0204
hO	100
ks	2,98342E-10

L'essai de perméabilité étant fait uniquement sur la couche K1C4 nous donne les résultats à travers les *Tableau 3 et Tableau 4*. Une observation de la montée d'eau est décrite dans les annexes à travers la *Figure 122*. La valeur de perméabilité trouvée est de 2,98 E-10.

ZOUNGRANA Salomon

b. - Analyses et Discussions

La couche K1C4 est celle qui semble avoir, d'un point de vue global, les meilleures caractéristiques pour une application routière. Par sa granulométrie (% de refus de 80μ m), nous déduisons qu'elle est considérée comme la plus perméable. En effet les fines d'un matériau réduit l'indice des vides et par la même occasion la perméabilité du sol car l'eau fait une remontée par capillarité à travers les vides. La valeur de perméabilité est inférieure à 10^{-9} . Selon les renseignements de la norme **NF P 94-512-11 ;** le drainage est pratiquement imperméable sur la couche K1C4 compactée.

4. L'essai Œdométrique *a. Résultats*

Les résultats ainsi obtenus sont résumés dans les annexe sur le Tableau 64.

	Cs	Cs	σ'p (droites	Mé CASA	thode de GRANDE	Eoed (kPa)	σ'νο	OCR
			concourantes)	σ'p	е			
K1C1	0,012	0,012	320,349	420	0,628	140 894,77	85,57	3,74
K1C4	0,002	0,002	424,899	440	0,967	54 740,49	34,71	12,24

Tableau 5: Tableau récapitulatif des résultats de l'essai Ædométrique

b. - Analyses et Discussions

La pression de pré-consolidation (σ 'p) vient après le segment de faible pente. Cette contrainte correspond à la contrainte effective maximale que le matériau dans son dépôt, a connu de toute son histoire géologique. Plusieurs raisons peuvent être causes de cette contrainte maximale. On peut donc citer :

- La suppression du poids du sol ou d'un prélèvement du sol résultant de l'érosion de surface
- Du prélèvement d'un échantillon
- Une variation de la pression interstitielle reliée à la fluctuation du niveau des mers
- Une sécheresse ou un pompage
- D'autres processus géologiques...

La contrainte actuelle des sols K1C1 et K1C4 qui sont respectivement de 85,57 et de 34,71 sont nettement inférieures à ces contraintes effectives maximales des deux couches consignées dans le tableau. Cette remarque justifie donc une faible baisse de l'indice des vides, d'où la faible pente de cette première droite. On l'appelle l'indice de ré compression (Cr). La faible baisse de l'indices des vides est une preuve que le matériau n'est pas susceptible à de grands tassements.

Le (CEBTP, 1984) dans la partie d'évaluation des charges routières préconise la charge maximale de l'essieu à 13 tonnes avec une estimation des surcharges de 10%. Le fascicule 61 titre II nous renseigne sur les caractéristiques des différents types de surcharges routières. Nous avons choisi le cas le plus contraignant qui est la surcharge du type Bc. Ses caractéristiques que nous avons considérées sont la distance d'axe en axe des deux roues d'un essieu (2m) avec la

surface d'impact de la roue (un carré de côté 20cm pour la roue avant et 25 cm pour a roue arrière). Nous estimons ainsi la surcharge routière à une contrainte de 35,85kPa.

La troisième partie de la courbe met en évidence le gonflement de l'échantillon d'argile qui survient malgré le fait que la pression est relâchée. Le tassement ne revient pas à sa position d'origine et la pente de cette droite est appelée indice de gonflement de coefficient Cs. On remarque que les coefficient Cr et Cs sont égales.

Les coefficient Cr ou Cs de la couche K1C1 est supérieure à ceux de la couche K1C4. Cela prouve que l'indice de gonflement de K1C1 est plus considérable que celui de K1C4. Le pouvoir gonflant œdométrique de la couche K1C1 est relativement égal à six (06) fois celui de la couche K1C4 (0,012 comparé à 0,002). Ces coefficients Cr et Cs sont relativement faibles. Cela atteste que nos matériaux ne sont pas susceptibles à des grandes valeurs de tassement.

Quant au coefficient Cc, il se manifeste au moment où la pression appliquée sur notre éprouvette dépasse la pression de consolidation estimée. C'est la période où le tassement du sol est grandissant de sorte à réduire conséquemment l'indice des vides. Une analyse comparée entre les coefficients des deux couches, montre que la couche K1C1 connait un grand tassement par rapport à celle de la couche K1C4.

Quand on fait une analyse comparée de la contrainte de pré-consolidation des deux couches ; on retient que dans le cours de l'histoire la couche K1C4 a supporté plus de contrainte que la couche K1C1. En considérant le principe de transmission des charges dans un sol, cette remarque nous semble être bien fondée. Cela nous laisse penser qu'il serait probable que le chargement le plus considérable de l'histoire de notre profil a été probablement une charge appliquée à la surface.

Les valeurs de l'indice des vides à la contrainte de pré-consolidation nous confirme les déductions que nous avons faite sur la perméabilité de la couche K1C4 par rapport à la couche K1C1. En effet l'indice des vides de la couche K1C1 est faible par rapport à celle de la couche K1C4.

Par ailleurs, il en ressort également de cette étude que le module de Young Œdométrique est plus important sur la couche K1C1 que la couche K1C4. On en conclut que la couche K1C4 connait plus de déformations dans le temps que la couche K1C1. La portion fine semble être d'une utilité contre les déformations rapides des chaussées.

5. La compression uniaxiale *a. Résultats*

Selon les études du (Ministère des Infrastures du Sénégal, Septembre 2013),la meilleure éprouvette qui donne de bons résultats de compression est l'éprouvette de 10*20 cm². Pour une raison d'indisponibilité de matériels, les essais se sont finalement faits sur l'éprouvette de 16*32. L'énergie de compactage retenue était de 440 coups pour toute l'éprouvette de 16*32 soit 44 coups sur 10 couches. L'étude comparée sur les éprouvettes de 10*20 montre que la contrainte est grande pour le compactage fait sur 5 couches (1,58MPa) par rapport à celui qui est fait sur 4 couches (1,40MPa).(Cf. *Figure 73*)

MEMOIRE DE FIN D'ETUDES

C'est ainsi qu'avec les grandes éprouvettes on obtient des valeurs de contraintes qui sont consignées dans les annexes (Cf. *Figure 74 à Figure 83 et Tableau 66*). Le récapitulatif des résultats les plus représentatifs sont mentionnés dans la *Figure 13*.

Figure 13: Récapitulatif des valeurs de Module de Young des couches étudiées

b. -Analyses et Discussions

Plusieurs littératures ont essayé de montrer une corrélation qui permet d'avoir la valeur du module de Young en fonction de plusieurs caractéristiques du sol notamment la valeur CBR. Notre tâche consiste à étudier ces corrélations et identifier celle qui s'approxime le mieux à nos sols.

Un rapport entre notre valeur de module expérimentale et ceux approximés par la littérature nous permet d'identifier l'approximation qui s'approche le mieux de nos caractéristiques (cf. tableau *ci-dessous*).

Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

raereau or raereau recupita	iang ac ia companaison	att mouthe										
Littérature et é	équations	K1C	K1C1		K1C2		K1C3		K1C4		K1Cm	
CBR		16,0	16,00		20,00		00	60,00		39,00		
E max (Mpa)		5140	,17	502,	15	2370,	,21	5891	,44	2855	,31	
E moyenne	(Mpa)	2581	,44	220,	66	872,	90	3014	,24	1438	,39	
		E c calculé	E moy E cal	E c calculé	E moy E cal	E c calculé	E moy E cal	E c calculé	E moy E cal	E c calculé	E moy E cal	
G Jeuffroy	E= 6,5*CBR^0,65	39,41	65,5	45,56	4,8	94,05	9,3	93,0	32,4	70,32	20,5	
Laboratoire Shell d'Amsterdam	E=10CBR	160,00	16,1	200,00	1,1	610,00	1,4	600,0	5,0	390,00	3,7	
Regis 1985	E = 0,85CBR^0,825	8,97	287,7	10,85	20,3	27,99	31,2	27,6	109,2	19,13	75,2	
LCPC, 2003	E = 5*CBR	80,00	32,3	100,00	2,2	305,00	2,9	300,0	10,0	195,00	7,4	
Papa Diallo NDIAYE, 2001	E(bar) = 32*CBR	512,00	5,0	640,00	0,3	1952,00	0,4	1920,0	1,6	1248,00	1,2	
CEBTP gros grains	E = 50*CBR	800,00	3,2	1000,00	0,2	3050,00	0,3	3000,0	1,0	1950,00	0,7	
CEBTP fraction fine	E = 30*CBR	480,00	5,4	600,00	0,4	1830,00	0,5	1800,0	1,7	1170,00	1,2	
Michel Zohou,1991	E= 9,5339CBR+127,985	280,53	9,2	318,66	0,7	709,55	1,2	700,0	4,3	499,81	2,9	
	E - 19 à 20 CPP	288,00	9,0	360,00	0,6	1098,00	0,8	1080,0	2,8	702,00	2,0	
LPC Cameroun,	E - 10 a 20 CBK	320,00	8,1	400,00	0,6	1220,00	0,7	1200,0	2,5	780,00	1,8	
σmin			3		1		1		1		1	
Conclusion		CEBTP gro	os grains	Laboratoi d'Amste	re Shell erdam	Mich Zohou,	nel 1991	CEBTP gro	os grains	Papa D NDIAYE,	iallo , 2001	

Tableau 6: Tableau récapitulatif de la comparaison du module de Young à la littérature

A l'issu de ces travaux de corrélation, nous avons retenu différentes approximations pour chaque couche que nous avons étudier.

Cependant force est de constater que la différence entre les valeurs estimées retenues et celles obtenues expérimentalement est considérable (exception faite de la couche K1C4). Le Tableau 7 ci-dessous récapitule les relations retenues et la différence remarquable enregistrée.

	K1C1	K1C2	K1C3	K1C4	K1Cm
relations retenues	CEBTP gros grains	Laboratoire Shell d'Amsterda m	Michel Zohou,1991	CEBTP gros grains	Papa Diallo NDIAYE, 2001
	E =		E=	E =	E(bar) =
Equations	50*CBR	E=10CBR	9,5339CBR+127,985	50*CBR	32*CBR
Différence	1781,44	20,66	163,34	14,24	190,39

Tableau 7 : Différence des relations retenues par rapport aux valeurs expérimentales

Vue qu'il y a une différence énorme entre les valeurs estimées dans les bibliographies et celles expérimentales ; nous avons désiré voir la corrélation qui puisse exister entre le module de YOUNG et les paramètres de nature de nos sols notamment la portion fine.

Figure 14: Corrélation des E max en fonction de la portion fine Figu

Figure 15: Corrélation des E moy en fonction de la portion fine

En conclusion nous retenons que la portion fine influe positivement sur les valeurs du module de Young et ceci avec un coefficient de détermination $R^2 \ge 0.97$ pour les valeurs moyennes du module. Cela se justifie probablement par le fait que les fines augmentent la cohésion du sol.

6. Le cisaillement direct *a. -Résultats*

La droite de Coulomb tracé à l'aide des contraintes de rupture, nous renseigne sur les caractéristiques obtenus suite à l'essai de cisaillement. La pente de la droite de Coulomb nous renseigne sur l'angle de frottement interne du sol et la constante de la droite de Coulomb correspond à la cohésion du sol.

L'angle de frottement d'un sol est défini comme l'angle de talus naturel. C'est la pente limite que prendra un talus en sable sec avec le temps. Cette pente correspond généralement à une valeur minimale de l'angle de frottement interne du matériau.

Quant à la cohésion, elle nous renseigne sur le degré auquel un matériau est capable de garder ses particules dans l'unité face aux menaces (intempéries) dressées contre lui.

Notre étude à consister à déterminer ces paramètres issus du cisaillement à travers les différentes couches de notre profil. Les différents résultats sont répertoriés dans les annexes à travers les (*Tableau 67 au Tableau 71 et la Figure 84 à la Figure 112*).

Une autre étude a été faite dans le but de voir l'évolution des paramètres de cisaillement en fonction de l'état hydrique et de consolidation. Cette étude s'est portée sur la couche K1C3. L'ensemble des résultats de cette étude sont rassemblés dans les annexes à travers les (*Figure 113 à la Figure 121 et les Tableau 72 au Tableau 74*).Un récapitulatif des résultats des différentes couches sont mentionnées dans la *Figure 16*. Après celui-ci le récapitulatif de l'étude d'Etat sur la couche K1C3 à travers l'essai de cisaillement consolidé et celui du non saturé.

Figure 16: Récapitulatif des paramètres du cisaillement

MEMOIRE DE FIN D'ETUDES

ZOUNGRANA Salomon

b. - Analyses et Discussions

Les résultats nous renseignent que l'angle de frottement interne évolue positivement de la couche K1C1 vers la couche K1C3. Elle rechute sur une valeur moindre à la couche K1C4 par rapport aux autres couches. Quant au mélange, K1Cm elle se retrouve à la moyenne des différentes couches et semble être plutôt grandement influencer par K1C4 et les fines.

Les études menées par *Lambe et Whitman en 1979 et Bowles en 1984* a permis de rassembler quelques types de sol en fonction de l'angle interne et de la compacité de ces sols.(Cf. le *Tableau* 8)

	Angle de frottement interne effectif φ'					
	Etat	lâche	Etat compact			
TTPE DE SOL	Particules arrondies	Particules angulaires	Particules arrondies	Particules angulaires		
Gravier	35°	40°	45°	50°		
Gravier et sable	36°	42°	40°	48°		
Sable à granulométrie étalée	34°	39°	40°	45°		
Sable fin à moyen à granulométrie						
serrée	30°	35°	37°	43°		
Sable silteux	25° à 35°		30° à 36°			
Silt	28° a	à 32°	30° a	à 35°		

Tableau 8: Angle de frottement interne de différents types de sols ((ROBITAILLE & TREMBLAY, 1997)

Dans le livre de géotechnique de (ROBITAILLE & TREMBLAY, 1997) on mentionne les éléments qui influent sur l'angle de frottement interne d'un sol. La compacité du matériau est le plus influent. Pour ce qui est de notre cas nous avons retenu une même compacité pour toutes les couches. Les éléments qui retiendront finalement notre attention sont la granulométrie et la forme des particules qui constituent le sol.

Soit un coefficient Mdg qui témoigne de l'apport des grains d'un sol dans sa stabilité géotechnique. En effet, la présence des grains dans un matériau augmente sa pression pendant l'essai de poinçonnement (CBR). Les nids de poules comme dommages routiers commencent justement par l'arrachement des grains du sol. (Ouédraogo, 2006).

Nous définissons Mdg par la relation suivante :

Mdg = Pression (CBR) * Refus (5mm).

Une corrélation de l'angle de frottement interne en fonction du module des grains nous donne la *Figure 17*.

Figure 17: Corrélation de l'angle de frottement interne par rapport aux grains des sols

Une considération du (*Tableau 75*) nous montre que la couche K1C4 n'adhère pas aisément dans la corrélation ci-dessus. En effet la description sommaire du matériau (*consignées et Image 17*) clarifie cette ambigüité. Les grains de la couche K1C4 possèdent des arrêtes arrondies par rapport à ceux de la couche K1C3 qui en possèdent des arrêtes anguleuses. Ce point de vue est soutenu par (ROBITAILLE & TREMBLAY, 1997, p. 391) en ces termes : «Plus les particules d'un sol sont angulaires, plus l'angle de frottement interne est important ; Inversement des particules arrondies font diminuer l'angle. »

La (*Figure 16*) nous renseigne également sur la variation de la cohésion des différentes couches étudiées à travers notre profil. Les couches K1C2 et K1C3 ont des cohésions sensiblement nulles. Par ailleurs pour mieux comprendre le comportement de nos sols, une tentative de corrélation entre la cohésion du sol et le module de finesse a été faite (Cf. *Figure 18*.)

Figure 18: Corrélation de la cohésion des sols (C) en fonction du module de finesse (Mdf)

MEMOIRE DE FIN D'ETUDES

ZOUNGRANA Salomon

La *Figure 18* nous renseigne que le module de finesse influe sur la cohésion d'un sol car indiquant une forte corrélation entre les deux paramètres. Pour une corrélation linéaire, le coefficient de détermination est de $R^2 = 0,9224$ contre une valeur de $R^2 = 0,995$ pour la corrélation polynomiale. La cohésion d'un sol exprime la capacité de ses particules à se maintenir ensemble lorsque l'on exerce sur le matériau une contrainte de traction. La présence des fines réduit l'indice de vide du matériau en occupant l'espace inter granulaire.

Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

CONCLUSIONS ET RECOMMANDATIONS

MEMOIRE DE FIN D'ETUDES

ZOUNGRANA Salomon

CONCLUSION

A la lumière de ces travaux, il est à retenir que les paramètres de nature et mécaniques d'un profil latéritique varie effectivement en fonction de la profondeur du profil à travers les caractéristiques des différentes couches qui le composent. En effet la classification des sols selon GTR classifie tous les sols de notre profil de type B4. Selon la classification HRB, les couches K1C1 et K1C2 sont classifiés A2-7 et les couches K1C3 et K1C4 sont classifiés respectivement A2-4 et A2-5.

Par ailleurs les paramètres mécaniques de notre profil évoluent également en fonction de sa profondeur. Cependant quelques irrégularités dans les couches parviennent à faire l'exception de l'évolution des paramètres mécaniques en fonction de la profondeur. Pour mieux comprendre le comportement de nos couches, une corrélation des paramètres mécaniques a été faite en fonction de la granulométrie et des paramètres de nature des différentes strates de notre profil. Les particularités du profil qui entrainent les irrégularités dans l'évolution des paramètres en fonction de la profondeur sont entre autres :

• La présence probable de la Kaolinite, qui est un élément non absorbant dans la couche K1C1 et moins dans la couche K1C2.

• La présence d'un plan de schistosité sur la couche K1C3 qui influe sur l'activité argileuse (Constitution de feldspaths) et également sur la valeur du CBR.

• La forme arrondie des arrêtes de la couche K1C4 qui influe négativement sur sa résistance au cisaillement.

RECOMMANDATIONS

Dans l'optique d'amener plus d'éclairage sur les caractéristiques du profil de Saam-tanga, (Kamboinsé) ; nous suggérons de :

- Faire une stabilisation au ciment et une litho-stabilisation afin de vérifier si nos couches peuvent être utilisés en couche de base aussi qu'en couche de fondation selon les prescriptions du CEBTP.
- Etudier le profil dans la plus grande profondeur afin de mieux connaitre la nature de la roche mère qui nous permettra d'obtenir plus de clarté sur la nature des concrétions, et les types d'argiles qui sont dans les différentes couches de notre profil.
- Faire l'analyse chimique et minéralogique afin de discerner la nature argileuse des différentes strates du profil étudié.
- Etendre cette étude sur d'autres profils latéritiques enfin de vérifier si la corrélation du Module de Young proposée par le CEBTP est adaptée aux matériaux latéritiques du BURKINA FASO.
- Etudier plus en profondeur l'influence de la granulométrie sur les paramètres mécaniques à travers la compression triaxiale et en condition drainée afin d'appréhender le comportement du matériau en 3D dans une condition hydrique très contraignante.
- Faire des essais géotechniques sur le facteur de la perméabilité des chaussées causées par les ruissellements des eaux en plus de ceux qui ont été menés qui concernent beaucoup plus la remontée des eaux de la nappe souterraine qui puissent influencer l'assise de la chaussée.

BIBLIOGRAPHIE

- AHLOUMESSOU, A. (juin 2010). Impact des propriétés physiques d'un sol graveleux latéritique sur les prpriétés mécaniques du graveleux latéritique amélioré au ciment.
- **KENFACK, T**. (Nov 2017). Influence de la classe granulaire des concasses de granite sur la mise en oeuvre de la technique de la litho-stabilisation en vue d'assurer une meuilleure durabilité des couches de base.
- AFES. (1998). Congrès mondial.
- Agence pour le développement international. (1964). Les sols latéritiques d'Afrique et d'autres sols difficiles d'Afrique. Baltimore, Maryland, USA: LYON ASSOCIATES,INC.
- Alexandre, J. (2002). LES CUIRASSES LATERITIQUES ET AUTRES FORMATIONS ET AUTRES FORMATIONS FERRUGINEUSES, EXEMPLE DU HAUT DE KATANGA. Belgique: n.v. Peeters s.a. (Herent, België).
- ALGALI, H. (novembre 2008). Caractérisation des Instabilités dans les milieux granulaires-Etude expérimentale et Simulation.
- **ARMATYS, M**. (Avril 2012). *MODIFICATION DES CLASSIFICATIONS GÉOMÉCANIQUES POUR LES MASSIFS ROCHEUX SCHISTEUX*.
- Aubert, G. (Aout 1954). Les sols latéritiques .
- AUTRET, P. (1980). Graveleux latéritique. Paris.
- AUTRET, P. (1983). Etudes latérites et graveleux latéritiques.
- **Bailly, L., & coll**. (Avril 2014). *NOCKAL- Typologie de minerais latéritiques de nouvelle calédonie et facteurs de concentration de Co et Ni.*
- BEAUVAIS, A. (Décembre 2005). LATERITES ET MORPHOGENESE.
- **BOEGLIN, J. L**. (Décembre 1990). Evolution minéralogique et géochimiques des cuirasses ferrugineuses de Gaoua (BURKINA FASO).
- **BOHI, Z.** (Nov 2008). caractérisation des sols latéritiques utilisés en construction routière : Le cas de la région de l'AGNEBY (COTE D'IVOIRE).
- Bourgeon, G., & Gunnel, Y. (2005). La latérite de Buchanan; Etude et gestion des sols.
- **Caroline Prognon;Hervé Thévéniaut.** (Décembre 2011.). Datation des carrières latéritiques. Dans P. M. Al, *Enjeux géologiques propres aux territoires tropicaux*.
- **CEBTP**. (1984). Guide Pratique de dimensionnement des chaussées pour les pays tropicaux.
- **COOPÉRATION, I. F**. (1987). *SÉMINAIRE RÉGIONAL SUR LES LATÉRITES : Sols, matériaux et minerai session 1 et 3.* PARIS.

MEMOIRE DE FIN D'ETUDES

Degoutte, G., & Royet, P. (2009). AIDE MEMOIRE DE MECANIQUE DES SOLS.

- **Djedid, A., & Ouadah , N**. (Octobre 2009). *Paramètres d'état et gonflement des sols argileux, exemple de la teneur en eau et de la densité sèche initiale.*
- DUCHAUFOUR, P. (1983). Pédologie Tome I. Pédogénèse et Classification. Paris: Masson.
- **FALL, M.** (Oct 1993). *Identification et caractérisation mécanique de graveleux latéritiques du SENEGAL : Application au domaine routier.*
- Gesellschaft, S. S.-S. (Aout 2009). Mouvement gravitaire.
- **GUIAO, A.** (juin 2011). Etudes des travaux de constructin de bitumage des voies de desserte de l'aéroport international de Ouagadougou à DONSIN : Tronçon de bouclage de la circulaire.
- IMAM, N.-D. (2003). Problématique du choix du module des matériaux recyclés dans le dimensionnement par la méthode rationelle : Application au tronçn DIAMNIADO-MBOUR.
- **Kamtchueng, & al**. (2015). *Geotechnical, chemical and mineralogical evaluation of lateritic soils in humid (Mfou, Central-Cameroon...).*
- **LAWANE GANA, A**. (2014). Caractérisation des matériaux latéritiques indurés pour une meuilleure utilisation dans l'habitat en Afrique.
- LEGROS, J. P. (2013). latérites et autres sols intertropicales.

Lérau, J. (2005). cours de géotechnique.

MAIGNIEN, R. (1954). DIFFERENTS PROCESSUS DE CUIRASSEMENT EN A. O. F.

MAIGNIEN, R. (1969). Manuel de prospection pédologique. Paris.

- MAIGNIEN, R. (Juin 1964). Compte rendu des recherches sur la latérite.
- **MESSAN, A**. (2003). *Etude du contact frottant entre pierres sèches.*
- **MILLOGO, Y**. (janvier 2008). *Etude géotechnique, chimique et minéralogique de matières premières argileuse et latéritique du BURKINA FASO améliorées aux liants hydrauliques: application au génie civil (bâtiment et route).*
- **Ministère des infrastructures du BURKINA FASO.** (Mars 2017). Norme technique de contrôle pour les travaux routiers . OUGADOUGOU.
- Ministère des Infrastures du Sénégal. (Septembre 2013). *RAPPORT D'ETUDE DE LATERITE TRAITEE AU CIMENT DE LA CARRIERE*.
- **OUEDRAOGO, A**. (juin 2011). *Etude technique et détaillée des travaux de contruction et de bitumage de l'interconnexion de la RN 01 et RN 04.*

MEMOIRE DE FIN D'ETUDES

Ouédraogo, M. (février 2006). Dégradations de surface des routes non revêtues. Bamako.

- **Prognon, C., Théveniaut, H., Maurizot, P., Lecomte, P., & Cabidoche, Y.-M**. (23 janvier 2012). Enjeux géologiques propres aux territoires tropicaux.
- **REIFFSTECK, P., & Al**. (2007). Influence de la répartition granulométrique sur le comportement mécanique d'un sol.
- **Riquier, J.** (Aout 1954). Formation d'une cuirasse ferrugineuse et manganésifère en région tropicale.
- **ROBITAILLE, V., & TREMBLAY, D**. (1997). *Mécanique des sols, Théorie et pratique*. Canada: Modulo Editeur.
- **SAMB, F**. (2014). *Modélisation par éléments finis des chaussées en graveleux latéritiques traitéq ou non et application au dimensionnement mécanistique.*
- Schlosser, F. (1981). le frottement dans les renforcements des sols:
- **SOULEY ISSIAKOU, M.** (déc 2016). *Caractérisation et valorisation des matériaux latéritiques utilisés en construction routière au Niger.*
- **TIONO, S**. (juil 2016). *Etude technique detaillées des travaux de voirie et d'assainissement du pole urbain de bassinko*.
- **TOE.** (Février 2007). Utilisation de la technique de litho-stabilisation en assise de chaussée. *Conférence des jeunes géotechniciens africains*, (p. 9). Tunisie.
- Y CHATELIN. (1972). historique, developpement des connaissance et formation des concepts actuels. Dans ORSTOM, *LES SOLS FERRALITIQUES tome 1*. PARIS.
- YAKAM TCHOUTA, G. (juin 2011). Travaux de renforcement de la route nationale N° 1 entre OUAGADOUGOU et SAKOINSE du PK 33+000 au PK 50+586 : Diagnostic des dégradations et propositions de solutions.

ZOHOU, M. (juillet 1991). *ETUDE DE LA CORRELATION ENTRE LE MODULE D'ELASTICITE ET L'INDICE DE PORTANCE CBR DANS LE DIMENSIONNEMENT DES SUPERSTRUCTUTRES ROUTIERES APPLICATION AUX GRAVELEUX LATERITIQUES.* Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

ANNEXES

MEMOIRE DE FIN D'ETUDES

ZOUNGRANA Salomon

ANNEXES 1 : TABLEAUX DES RESULTATS

Modules AFNOR	φ tamis mm	Refus partiels	Refus cumulés	% Refus cumulés	% Passants cumulés	Observations
50	80		0,0	0,000%	100,00%	
49	63		0,0	0,000%	100,00%	
48	50		0,0	0,000%	100,00%	cailloux
47	40		0,0	0,000%	100,00%	
46	31,5		0,0	0,000%	100,00%	
44	20	18,6	18,6	1,857%	98,14%	Graviara
41	10	22,9	41,5	4,136%	95,86%	Graviers
39	6,3	58,9	100,4	10,014%	89,99%	
37	4	112,7	213,1	21,253%	78,75%	
34	2	242,7	455,8	45,458%	54,54%	
31	1	101,5	557,3	55,579%	44,42%	sable
28	0,5	178,2	735,4	73,348%	26,65%	
24	0,2	124,4	859,8	85,754%	14,25%	
20	0,08	67,6	927,5	92,500%	7,50%	

Tableau 9: Résulte	ats du tamisag	e par voie humide	de la couche K1C1
I doitent). Result	no an iannous	e par voie minuae	at la conche mici

Tableau 10: Résultats du tamisage par voie humide de la couche K1C2

Modules	□□tamis	Refus	Refus	% Refus	% Passants	Observations
AFNOR	mm	partiels	cumulés	cumulés	cumulés	Observations
50	80	0,0 g	0,0	0,000%	100,00%	
49	63	0,0 g	0,0	0,000%	100,00%	
48	50	0,0 g	0,0	0,000%	100,00%	cailloux
47	40	0,0 g	0,0	0,000%	100,00%	
46	31,5	0,0 g	0,0	0,000%	100,00%	
45	25	0,0 g	0,0	0,000%	100,00%	
44	20	10,6 g	10,6	0,777%	99,22%	Graviers
41	10	37,6 g	48,3	3,524%	96,48%	
39	6,3	82,3 g	130,5	9,533%	90,47%	
37	4	121,5 g	252,0	18,403%	81,60%	
34	2	263,7 g	515,7	37,663%	62,34%	
31	1	233,8 g	749,5	54,740%	45,26%	sable
28	0,5	300,4 g	1 049,9	76,680%	23,32%	
24	0,2	166,8 g	1 216,7	88,861%	11,14%	
20	0,08	120,9 g	1 337,6	97,694%	2,31%	

Modules	□□tamis	Refus	Refus	% Refus	% Passants	Observations
AFNOR	mm	partiels	cumulés	cumulés	cumulés	Observations
50	80	0,00	0,0	0,000%	100,00%	
49	63	0,00	0,0	0,000%	100,00%	
48	50	0,00	0,0	0,000%	100,00%	cailloux
47	40	0,00	0,0	0,000%	100,00%	
46	31,5	0,00	0,0	0,000%	100,00%	
45	25	0,00	0,0	0,000%	100,00%	
44	20	42,63	42,6	3,333%	96,67%	Graviara
43	16	45,97 g	88,6	6,927%	93,07%	Glaviers
41	10	73,81 g	162,4	12,698%	87,30%	
39	6,3	87,77 g	250,2	19,560%	80,44%	
37	4	137,33 g	387,5	30,297%	69,70%	
34	2	218,54 g	606,1	47,384%	52,62%	
31	1	192,42 g	798,5	62,428%	37,57%	sable
28	0,5	141,26 g	939,7	73,472%	26,53%	
24	0,2	123,39 g	1 063,1	83,119%	16,88%	
20	0,08	158,61 g	1 221,7	95,520%	4,48%	

Tableau 11: Résultats du tamisage par voie humide de la couche K1C3

Tableau 12 : Résultats du tamisage par voie humide de la couche K1C4

Modules AFNOR	□ □ tamis mm	Refus partiels	Refus cumulés	% Refus cumulés	% Passants cumulés	Observations
50	80		0,0	0,000%	100,00%	
49	63		0,0	0,000%	100,00%	
48	50		0,0	0,000%	100,00%	cailloux
47	40		0,0	0,000%	100,00%	
46	31,5		0,0	0,000%	100,00%	
45	25		0,0	0,000%	100,00%	
44	20	0,00 g	0,0	0,000%	100,00%	Graviara
43	16	6,52 g	6,5	0,269%	99,73%	Olaviels
41	10	0,00 g	6,5	0,269%	99,73%	
39	6,3	261,54 g	268,1	11,060%	88,94%	
37	4	423,14 g	691,2	28,520%	71,48%	
34	2	722,42 g	1 413,6	58,328%	41,67%	
31	1	300,97 g	1 714,6	70,746%	29,25%	sable
28	0,5	249,65 g	1 964,2	81,047%	18,95%	
24	0,2	166,19 g	2 130,4	87,904%	12,10%	
20	0,08	107 g	2 237,3	92,311%	7,69%	
Modules	□ □ tamis	Refus partiels	Refus cumulés	% Refus	% Passants	Observations
---------	-----------	-------------------	------------------	------------	---------------	--------------
minor		particis	cumules	cumulés	cumulés	
50	80					
49	63					
48	50					cailloux
47	40					
46	31,5	0,0 g	0,0	0,000%	100,00%	
45	25	119,00	119,0	3,967%	96,03%	
44	20	162,00	281,0	9,367%	90,63%	
43	16	104,00 g	385,0	12,833%	87,17%	Graviers
42	12,5	158,00 g	543,0	18,100%	81,90%	Graviers
41	10	150,00 g	693,0	23,100%	76,90%	
40	8	162,00 g	855,0	28,500%	71,50%	
39	6,3	161,00 g	1 016,0	33,867%	66,13%	
38	5	149,00 g	1 165,0	38,833%	61,17%	
37	4	132,00 g	1 297,0	43,233%	56,77%	
36	3,15	131,00 g	1 428,0	47,600%	52,40%	
35	2,5	131,00 g	1 559,0	51,967%	48,03%	
34	2	127,00	1 686,0	56,200%	43,80%	
33	1,6	119,00 g	1 805,0	60,167%	39,83%	
32	1,25	135,00 g	1 940,0	64,667%	35,33%	
31	1	96,00 g	2 036,0	67,867%	32,13%	
30	0,8	73,00 g	2 109,0	70,300%	29,70%	1. 1.
29	0,63	82,00 g	2 191,0	73,033%	26,97%	sable
28	0,5	76,00 g	2 267,0	75,567%	24,43%	
27	0,4	65,00 g	2 332,0	77,733%	22,27%	
26	0,315	63,00 g	2 395,0	79,833%	20,17%	
25	0,25	55,00 g	2 450,0	81,667%	18,33%	
24	0,2	59,00 g	2 509,0	83,633%	16,37%	
23	0,16	53,00 g	2 562,0	85,400%	14,60%	
22	0,125	97,00 g	2 659,0	88,633%	11,37%	
21	0,1	186,00 g	2 845,0	94,833%	5,17%	
20	0,08	60,00 g	2 905,0	96,833%	3,17%	

Tableau 13: Résultats du tamisage par voie sèche de la couche K1C1

		C				
Modulog	□□tomia	Dofus	Dofue	%	%	
AFNOR		nortials	cumulós	Refus	Passants	Observations
AFNOR	111111	partiels	cumules	cumulés	cumulés	
50	80					
49	63					
48	50					cailloux
47	40					
46	31,5	0,0 g	0,0	0,000%	100,00%	
45	25	33,00	33,0	1,100%	98,90%	
44	20	177,00	210,0	7,000%	93,00%	
43	16	130,00 g	340,0	11,333%	88,67%	Graviers
42	12,5	157,00 g	497,0	16,567%	83,43%	Glavicis
41	10	136,00 g	633,0	21,100%	78,90%	
40	8	175,00 g	808,0	26,933%	73,07%	
39	6,3	186,00 g	994,0	33,133%	66,87%	
38	5	191,00 g	1 185,0	39,500%	60,50%	
37	4	184,00 g	1 369,0	45,633%	54,37%	
36	3,15	176,00 g	1 545,0	51,500%	48,50%	
35	2,5	159,00 g	1 704,0	56,800%	43,20%	
34	2	137,00	1 841,0	61,367%	38,63%	
33	1,6	132,00 g	1 973,0	65,767%	34,23%	
32	1,25	137,00 g	2 110,0	70,333%	29,67%	
31	1	92,00 g	2 202,0	73,400%	26,60%	
30	0,8	81,00 g	2 283,0	76,100%	23,90%	
29	0,63	78,00 g	2 361,0	78,700%	21,30%	sable
28	0,5	67,00 g	2 428,0	80,933%	19,07%	
27	0,4	60,00 g	2 488,0	82,933%	17,07%	
26	0,315	54,00 g	2 542,0	84,733%	15,27%	
25	0.25	50,00 g	2 592,0	86,400%	13,60%	
24	0,2	50,00 g	2 642,0	88,067%	11,93%	
23	0,16	54,00 g	2 696,0	89,867%	10,13%	
22	0,125	80,00 g	2 776,0	92,533%	7,47%	
21	0,1	79,00 g	2 855,0	95,167%	4,83%	
20	0,08	75,00 g	2 930,0	97,667%	2,33%	

Tableau 14: Résultats du tamisage par voie sèche de la couche K1C2

MEMOIRE DE FIN D'ETUDES

Madulaa		Dofus	Dofus	%	%	
AFNOR		nortials	cumulós	Refus	Passants	Observations
AFIOR	111111	partiels	cumules	cumulés	cumulés	
47	40					Cailloux
46	31,5	0,0 g	0,0	0,000%	100,00%	Callioux
45	25	22,00	22,0	0,733%	99,27%	
44	20	19,00	41,0	1,367%	98,63%	
43	16	75,00 g	116,0	3,867%	96,13%	Graviara
42	12,5	65,00 g	181,0	6,033%	93,97%	Glaviers
41	10	127,00 g	308,0	10,267%	89,73%	
40	8	161,00 g	469,0	15,633%	84,37%	
39	6,3	201,00 g	670,0	22,333%	77,67%	
38	5	239,00 g	909,0	30,300%	69,70%	
37	4	218,00 g	1 127,0	37,567%	62,43%	
36	3,15	209,00 g	1 336,0	44,533%	55,47%	
35	2,5	205,00 g	1 541,0	51,367%	48,63%	
34	2	176,00 g	1 717,0	57,233%	42,77%	
33	1,6	159,00 g	1 876,0	62,533%	37,47%	
32	1,25	177,00 g	2 053,0	68,433%	31,57%	
31	1	117,00 g	2 170,0	72,333%	27,67%	
30	0,8	105,00 g	2 275,0	75,833%	24,17%	1.1
29	0,63	93,00 g	2 368,0	78,933%	21,07%	sable
28	0,5	86,00 g	2 454,0	81,800%	18,20%	
27	0,4	61,00 g	2 515,0	83,833%	16,17%	
26	0,315	77,00 g	2 592,0	86,400%	13,60%	
25	0.25	57.00 g	2 649,0	88,300%	11,70%	
24	0,2	66,00 g	2 715,0	90,500%	9,50%	
23	0,16	69,00 g	2 784,0	92,800%	7,20%	
22	0,125	85,00 g	2 869,0	95,633%	4,37%	
21	0,1	72,00 g	2 941,0	98,033%	1,97%	
20	0,08	9,00 g	2 950,0	98,333%	1,67%	

 Tableau 15: Résultats du tamisage par voie sèche de la couche K1C3

% % Modules □□tamis Refus Refus Refus **Passants Observations** AFNOR mm partiels cumulés cumulés cumulés 47 40 31,5 46 45 25 44 20 0.00 0.0 0.000% 100.00% 43 16 26,00 g 26.0 99,13% 0.867% Graviers 42 12,5 37,00 g 63,0 2,100% 97,90% 58,00 g 121,0 4,033% 95,97% 41 10 249,0 8,300% 91,70% 40 8 128,00 g 39 6,3 193,00 g 442,0 14,733% 85,27% 23,700% 38 5 269,00 g 711,0 76,30% 37 347,00 g 35,267% 64,73% 4 1 058,0 36 3,15 387.00 g 1 445,0 48,167% 51,83% 334,00 g 59,300% 35 2,5 1 779,0 40,70% 34 267,00 2 046,0 68,200% 31,80% 2 75,467% 33 1.6 218,00 g 2 264,0 24,53% 32 1,25 202,00 g 2 466,0 82,200% 17,80% 31 119,00 g 2 585,0 86,167% 13,83% 1 30 0,8 87,00 g 2 672,0 89,067% 10,93% sable 29 2 737,0 91,233% 8,77% 0.63 65,00 g 0,5 2 791,0 93,033% 28 6,97% 54,00 g 27 2 829,0 0,4 38.00 g 94,300% 5,70% 0,315 34,00 g 2 863,0 95,433% 4,57% 26 25 2 885,0 22,00 g 96,167% 3,83% 0.25 24 0,2 2 885,0 96,167% 3,83% 23 2 911,0 97,033% 2,97% 26,00 g 0,16 22 2 911,0 97,033% 2,97% 0,125 21 0,1 23,00 g 2 934,0 97,800% 2,20% 20 0,08 7.00 g 2 941.0 98,033% 1,97%

Tableau 16: Résultats du tamisage par voie sèche de la couche K1C4

Heures	Temps	cumulé	Lecture	Température	Correction	Lecture	Profondeur	Facteur	Diamètre équivalent	Pourcentage	Passant échantillon	Diamètre (mm)	pourcentage %
t0 = 16/03/2017 09:33	tc de le	ecture	R	T°c	CT+Cm- Cd	corrigée Rc	effective Hr (cm)	F	Φ (mm)	Φ P(%)	p (p = C.P) en %	0.08	3.17%
09:33:56	30 s	30	1008,0	28,0	2,2	1010,2	16,3	1,00	74	84,7%	2,7%	0,074	0,0268
09:34:26	1 min	60	1007,0	28,0	2,2	1009,2	16,5	1,00	52	76,3%	2,4%	0,052	0,0242
09:35:26	2 min	120	1005,0	28,0	2,2	1007,2	16,8	1,00	37	59,7%	1,9%	0,037	0,0189
09:38:26	5 min	300	1005,0	28,0	2,2	1007,2	16,8	1,00	24	59,7%	1,9%	0,024	0,0189
09:43:26	10 min	600	1004,0	28,0	2,2	1006,2	17,0	1,00	17	51,3%	1,6%	0,017	0,0163
09:53:26	20 min	1200	1003,0	28,0	2,2	1005,2	17,2	1,00	12	43,0%	1,4%	0,012	0,0136
10:13:26	40 min	2400	1003,0	28,0	2,2	1005,2	17,2	1,00	8	43,0%	1,4%	0,008	0,0136
10:53:26	80 min	4800	1003,0	28,5	2,3	1005,3	17,1	0,99	6	44,1%	1,4%	0,006	0,0140
13:33:26	4 h	14400	1001,0	29,5	2,6	1003,6	17,5	0,98	3	29,7%	0,9%	0,003	0,0094
09:33:26 J+1	24 h	86400	1000,0	28,0	2,2	1002,2	17,7	1,00	1	18,0%	0,6%	0,001	0,0057

Tableau 17: Résultats de la sédimentométrie de la couche K1C1

Tableau 18: Résultats de la sédimentométrie de la couche K1C2

	Heures	Temps	cumulé	Lecture	Température	Correction	Lecture	Profondeur	Facteur	Diamètre équivalent	Pourcentage	Passant échantillon	Diamètre (mm)	pouecentage %
t0 =	16/03/2017 09:33	tc de le	ecture	R	T °c	CT+Cm- Cd	corrigée Rc	effective Hr (cm)	F	Φ (□m)	Φ P (%)	p (p = C.P) en %	0,08	2,33%
	09:33:56	30 s	30	1008,0	28,0	2,2	1010,2	16,3	1,00	74	84,7%	2,0%	0,074	0,0198
	09:34:26	1 min	60	1007,0	28,0	2,2	1009,2	16,5	1,00	52	76,3%	1,8%	0,052	0,0178
	09:35:26	2 min	120	1005,0	28,0	2,2	1007,2	16,8	1,00	37	59,7%	1,4%	0,037	0,0139
	09:38:26	5 min	300	1005,0	28,0	2,2	1007,2	16,8	1,00	24	59,7%	1,4%	0,024	0,0139
	09:43:26	10 min	600	1004,0	28,0	2,2	1006,2	17,0	1,00	17	51,3%	1,2%	0,017	0,0120
	09:53:26	20 min	1200	1003,0	28,0	2,2	1005,2	17,2	1,00	12	43,0%	1,0%	0,012	0,0100
	10:13:26	40 min	2400	1003,0	28,0	2,2	1005,2	17,2	1,00	8	43,0%	1,0%	0,008	0,0100
	10:53:26	80 min	4800	1002,0	29,0	2,4	1004,4	17,3	0,99	6	36,9%	0,9%	0,006	0,0086
	13:33:26	4 h	14400	1002,0	29,0	2,4	1004,4	17,3	0,99	3	36,9%	0,9%	0,003	0,0086
	09:33:26 J+1	24 h	86400	1001,0	30,0	2,7	1003,7	17,4	0,98	1	30,8%	0,7%	0,001	0,0072

t0 =	Heures 16/03/2017 09:33	Ten cumi de lea	nps 1lé tc cture	Lectu re R	Températ ure T °c	Correcti on CT+Cm -Cd	Lectur e corrig ée Rc	Profond eur effective Hr (cm)	Facte ur F	Diamètr e équival ent Φ (□m)	Pourcenta ge des grains < Φ P (%)	Passant échantill on p (p = C.P) en	Diamètre (mm)	pourcentag e %
	09:33:56	30 s	30	1004, 0	27,0	1,9	1005, 9	17,0	0,94	71	46,5%	0,8%	0,071	0,0078
	09:34:26	1 min	60	1003, 0	27,0	1,9	1004, 9	17,2	0,94	50	38,6%	0,6%	0,050	0,0064
	09:35:26	2 min	120	1003, 0	27,0	1,9	1004, 9	17,2	0,94	36	38,6%	0,6%	0,036	0,0064
	09:38:26	5 min	300	1003, 0	27,0	1,9	1004, 9	17,2	0,94	23	38,6%	0,6%	0,023	0,0064
	09:43:26	10 min	600	1002, 0	27,0	1,9	1003, 9	17,4	0,94	16	30,7%	0,5%	0,016	0,0051
	09:53:26	20 min	1200	1002, 0	27,0	1,9	1003, 9	17,4	0,94	11	30,7%	0,5%	0,011	0,0051
	10:13:26	40 min	2400	1002, 0	27,0	1,9	1003, 9	17,4	0,94	8	30,7%	0,5%	0,008	0,0051
	10:53:26	80 min	4800	1001, 0	27,0	1,9	1002, 9	17,6	0,94	6	22,8%	0,4%	0,006	0,0038
	13:33:26	4 h		1000, 0	29,0	2,4	1002, 4	17,7	0,92	3	19,2%	0,3%	0,003	0,0032
C	09:33:26 J+1	24 h	8640 0	$\begin{array}{c} \overline{1000}, \\ 0 \end{array}$	28,0	2,2	$\frac{1002}{2},$	17,7	0,93	1	17,1%	0,3%	0,001	0,0028

Tableau 19: Résultats de la sédimentométrie de la couche K1C3

MEMOIRE DE FIN D'ETUDES

	Heures	Tom		Lastu	Tommánat	Correcti	Lectu	Profond	Faata	Diamèt	Pourcent age	Passant échantill	Diamètre (mm)	pourcentag e %
t0 =	16/03/2017 09:33	cumu de leo	nps ilé tc cture	re R	ure T °c	on CT+Cm -Cd	re corrig ée Rc	eur effective Hr (cm)	ur F	fe équival ent Φ (mm)	des grains < Φ P (%)	on p (p = C.P) en %	0,08	1,97%
	09:33:56	30 s	30	1009, 0	27,0	1,9	1010, 9	16,1	0,93	68	85,0%	1,7%	0,068	0,0167
	09:34:26	1 min	60	1007, 0	27,0	1,9	1008, 9	16,5	0,93	49	69,4%	1,4%	0,049	0,0137
	09:35:26	2 min	120	1007, 0	27,0	1,9	1008, 9	16,5	0,93	34	69,4%	1,4%	0,034	0,0137
	09:38:26	5 min	300	1007, 0	27,0	1,9	1008, 9	16,5	0,93	22	69,4%	1,4%	0,022	0,0137
	09:43:26	10 min	600	1007, 0	27,0	1,9	1008, 9	16,5	0,93	15	69,4%	1,4%	0,015	0,0137
	09:53:26	20 min	120 0	1007, 0	27,0	1,9	1008, 9	16,5	0,93	11	69,4%	1,4%	0,011	0,0137
	10:13:26	40 min	240 0	1007, 0	27,0	1,9	1008, 9	16,5	0,93	8	69,4%	1,4%	0,008	0,0137
	10:53:26	80 min	480 0	1007, 0	27,0	1,9	1008, 9	16,5	0,93	5	69,4%	1,4%	0,005	0,0137
	13:33:26	4 h	144 00	1006, 0	29,0	2,4	1008, 4	16,6	0,91	3	65,8%	1,3%	0,003	0,0129
C	9:33:26 J+1	24 h	864 00	1004, 0	28,0	2,2	1006, 2	17,0	0,92	1	48,1%	0,9%	0,001	0,0095

Tableau 20: Résultats de la sédimentométrie de la couche K1C4

MEMOIRE DE FIN D'ETUDES

	Tamisage par voie humide										
	Passant 80 µm Passant 2 mm D max (mm) Cu Cc Mdf										
K1C1	7,50%	54,54%	20	25,00	1,56	0,97					
K1C2	2,31%	62,34%	20	10,00	0,99	0,24					
K1C3	4,48%	52,62%	20	20,00	0,99	0,40					
K1C4	7,69%	41,67%	16	12,50	2,00	0,62					

T 11 01	D /	1	1 1	1			1 . 1
Tableau 21:	Recapitulatif	aes	resultats	au	tamisage	par voie	питіае

Tableau 22: Récapitulatif des résultats du tamisage par voie sèche

TAMISAGE PAR VOIE SECHE										
	Passant 80 µm	Passant 2 mm	D max (mm)	Cu	Cc	Mdf				
K1C1	3,17%	43,80%	25	40,000	1,600	0,410				
K1C2	2,33%	38,63%	25	31,250	1,240	0,238				
K1C3	1,67%	42,77%	25	20,000	1,563	0,148				
K1C4	1,97%	31,80%	16	5,000	1,250	0,157				

Tableau 23: Comparaison de la couche K1C1 et fuseaux de base et de fondation du CEBTP

fuseau	de cou	che de		couc	he de	
f	ondation	1	V1C1	base		
φ (mm)	Max	Min	KICI	Max	Min	
50	100%	100%	100,00%	100%	100%	
40	95%	100%	100,00%	95%	100%	
31,5	90%	100%	100,00%	85%	100%	
20	75%	100%	98,14%	60%	100%	
10	58%	100%	95,86%	35%	90%	
5	40%	78%	78,75%	20%	75%	
2	28%	65%	54,54%	12%	50%	
1	22%	56%	44,42%	10%	40%	
0,5	18%	50%	26,65%	7%	35%	
0,08	5%	35%	7,50%	4%	20%	

Tableau 25: Comparaison	de la couche	K1C3	et fuseaux
<i>de base et de fondation du</i>	CEBTP		

fuseau	de couch	ne de		couc	he de		
f	ondation		K1C3	base			
φ (mm)	Max	Min		Max	Min		
50	100%	100%	100%	100%	100%		
40	95%	100%	100,00%	95%	100%		
31,5	90%	100%	100,00%	85%	100%		
20	75%	100%	96,67%	60%	100%		
10	58%	100%	87,30%	35%	90%		
5	40%	78%	69,70%	20%	75%		
2	28%	65%	52,62%	12%	50%		
1	22%	56%	37,57%	10%	40%		
0,5	18%	50%	26,53%	7%	35%		
0,08	5%	35%	4,48%	4%	20%		

Tableau 24: Comparaison de la couche K1C2 et fuseaux de base et de fondation du CEBTP

fuseau	ı de cou	che de		couc	he de		
f	ondatio	n	V1C2	base			
φ (mm)	Max	Min	KIC2	Max	Min		
50	100%	100%	100%	100%	100%		
40	95%	100%	100,00%	95%	100%		
31,5	90%	100%	100,00%	85%	100%		
20	75%	100%	99,22%	60%	100%		
10	58%	100%	96,48%	35%	90%		
5	40%	78%	81,60%	20%	75%		
2	28%	65%	62,34%	12%	50%		
1	22%	56%	45,26%	10%	40%		
0,5	18%	50%	23,32%	7%	35%		
0,08	5%	35%	2,31%	4%	20%		

Tableau 26: Comparaison de la couche K1C4 et fuseaux de base et de fondation du CEBTP

fuseau	de couc	he de		couche de			
f	ondation		K1C4	ba	ise		
φ (mm)	Max	Min		Max	Min		
50	100%	100%	100%	100%	100%		
40	95%	100%	100,00%	95%	100%		
31,5	90%	100%	100,00%	85%	100%		
20	75%	100%	100,00%	60%	100%		
10	58%	100%	100,00%	35%	90%		
5	40%	78%	71,48%	20%	75%		
2	28%	65%	41,67%	12%	50%		
1	22%	56%	29,25%	10%	40%		
0,5	18%	50%	18,95%	7%	35%		
0,08	5%	35%	7,69%	4%	20%		

MEMOIRE DE FIN D'ETUDES

	CAILLOUX	GRAVIER	SABLE	LIMON ET ARGILE	TOTAL
K1C1	0,000%	10,01%	82,486%	7,50%	100%
K1C2	0,00%	9,53%	88,16%	2,31%	100%
K1C3	0,00%	19,56%	75,96%	4,48%	100%
K1C4	0,00%	11,06%	81,25%	7,69%	100%

Tableau 27: Proportion granulaire des couches étudiées par le tamisage par voie humide

Tableau 28: Proportion granulaire des couches étudiées par le tamisage par voie sèche

	CAILLOUX	GRAVIER	SABLE	LIMON ET ARGILE	TOTAL
K1C1	0	28,50%	68,333%	3,17%	100,00%
K1C2	0	26,93%	70,733%	2,33%	100,00%
K1C3	0	15,63%	82,700%	1,67%	100,00%
K1C4	0	8,30%	89,733%	1,97%	100,00%

Tableau 29: Résultats du poids spécifique des différentes couches

N°	Poids sec	Volume	Pression	n finale (P	antillon			
échantill	matériaux	d'eau		+ chambre	es (mWs)		Valeur	
on	mis dans	distillé	1ère	2ième	3ième	P	Vlu	ys
(le cas échéant)	(g)	(cm3)	essai	essai	essai	moyen ne	(cm3)	(1/m3)
K1C1	875 27 a	0.00 cm^{2}	6 30	5 20	5.00	5.80	349,90	2,50
KICI	87 <i>3,</i> 27 g	0,00 0113	0,50	5,20	5,90	5,80	ст3	T/m3
K1C2	640 20 g	300,00	8 80	5 40	7.40	7 20	545,19	2,61
KIC2	040,29 g	cm3	0,00	5,40	7,40	7,20	ст3	T/m3
K1C3	660 35 g	340,00	0.00	6.20	7 50	7 57	582,57	2,72
KIC5	000,55 g	cm3	9,00	0,20	7,50	7,57	ст3	T/m3
K1C4		350,00	0.00	1 25	8 00	7 72	596,69	2,80
KIC4	690,40	cm3	9,90	4,33	8,90	1,12	ст3	T/m3

Tableau 30 : Variation granulaire après compactage de la couche K1C3

M od ule s AF N O R	f ta m is m m	Re fus pa rti els	Re fus cu m ulé s ini	refu s cum _10 cps	refu s cum _25 cps	refu s cum _55 cps	% Re fus cu mu lés ini	% Refus cumu lés_1 0cps	% Refus cumu lés_2 5cps	% Refus cumu lés_5 5cps	% Pass ants cum ulés _ini	% Passa nts cumu lés_1 0cps	% Passa nts cumu lés_2 5cps	% Passa nts cumu lés_5 5cps
45	2	0,0		0,00	0,00	0,00	0,0	0,000	0,00	0,00	100,	100,0	100,0	100,0
	5	0					00	%	%	%	00%	0%	0%	0%
							%							
44	2	0,0	0,0	0,00	0,00	0,00	0,0	0,000	0,00	0,00	100,	100,0	100,0	100,0
	0	0					00	%	%	%	00%	0%	0%	0%
							%							
43	1	26,	26,	6,50	6,93	0,00	0,8	0,550	0,58	0,00	99,1	99,45	99,42	100,0
	6	00	0				67	%	%	%	3%	%	%	0%
		g					%							

MEMOIRE DE FIN D'ETUDES

42	1	37,	63,	10,4	11,0	28,9	2,1	0,880	0,92	2,46	97,9	99,12	99,08	97,54
	2, 5	00 g	0	0	0	0	00 %	%	%	%	0%	%	%	%
41	1	58,	12	22,8	36,2	67,6	4,0	1,933	3,04	5,75	95,9 7%	98,07	96,96	94,25
	0	g	1,0	4	4	0	33 %	%	%	%	7%	%	%	%
40	8	12	24	61,2	80,2	137,	8,3	5,180	6,74	11,66	91,7	94,82	93,26	88,34
		8,0 0 g	9,0	1	8	02	00 %	%	%	%	0%	%	%	%
39	6,	19	44	124,	139,	224,	14,	10,49	11,73	19,08	85,2	89,50	88,27	80,92
	3	3,0 0 g	2,0	05	84	21	73 3%	8%	%	%	7%	%	%	%
38	5	26	71	199,	222,	318,	23,	16,91	18,68	27,07	76,3	83,09	81,32	72,93
		9,0 0 g	1,0	84	62	08	70 0%	3%	%	%	0%	%	%	%
37	4	34	1	304,	295,	390,	35,	25,73	24,77	33,19	64,7	74,26	75,23	66,81
		7,0 0 g	05 8.0	09	27	00	26 7%	5%	%	%	3%	%	%	%
36	3,	38	1	395,	377,	488,	48,	33,47	31,65	41,53	51,8	66,53	68,35	58,47
	1 5	7,0 0 g	44 5 0	54	26	01	16 7%	5%	%	%	3%	%	%	%
35	2,	33	1	478,	455,	565,	59,	40,53	38,19	48,16	40,7	59,47	61,81	51,84
	5	4,0 0 g	77 9.0	90	26	86	30 0%	0%	%	%	0%	%	%	%
34	2	26	2	553,	530,	634,	68,	46,82	44,48	53,97	31,8	53,17	55,52	46,03
		7,0	04 6.0	32	19	20	20	8%	%	%	0%	%	%	%
33	1,	21	2	619,	597,	696,	75,	52,42	50,09	59,27	24,5	47,58	49,91	40,73
	6	8,0 0 σ	26 4 0	45	11	42	46 7%	5%	%	%	3%	%	%	%
32	1,	20	2	685,	665,	757,	82,	57,99	55,80	64,48	17,8	42,01	44,20	35,52
	2	2,0	46 6 0	21	17	68	20	0%	%	%	0%	%	%	%
31	1	11	2	801,	779,	811,	86,	67,87	65,39	69,02	13,8	32,13	34,61	30,98
		9,0 0 g	58 5.0	96	48	01	16 7%	1%	%	%	3%	%	%	%
30	0,	87,	2	823,	798,	841,	89,	69,69	67,01	71,63	10,9	30,30	32,99	28,37
	8	00 ~	67 2.0	54	76	64	06 70/	7%	%	%	3%	%	%	%
29	0,	g 65,	2,0	863,	842,	880,	91,	73,06	70,72	74,91	8,77	26,93	29,28	25,09
	6	00	73	37	96	14	23	8%	%	%	%	%	%	%
28	3 0,	<u>g</u> 54,	2	900,	880,	914,	3% 93,	76,23	73,90	77,83	6,97	23,76	26,10	22,17
	5	00	79	82	85	56	03	7%	%	%	%	%	%	%
27	0,	g 38,	1,0	926,	908,	940,	3% 94,	78,43	76,22	80,04	5,70	21,56	23,78	19,96
	4	00	82	82	56	47	30	8%	%	%	%	%	%	%
26	0,	g 34,	9,0 2	954,	937,	963,	0% 95,	80,81	78,63	81,96	4,57	19,19	21,37	18,04
	3	00	86	86	29	02	43	1%	%	%	%	%	%	%
	1 5	g	3,0				3%							
25	0,	22,	2	976,	964,	988, 92	96,	82,65	80,95	84,16	3,83	17,35	19,05	15,84
	2 5	00 g	88 5.0	61	88	83	16 7%	1%	%	%	%	%	%	%
24	0,	υ	2	1	1	1	96,	84,86	85,05	87,37	3,83	15,13	14,95	12,63
	2		88 5,0	002, 80	013, 74	026, 54	16 7%	8%	%	%	%	%	%	%

MEMOIRE DE FIN D'ETUDES

23	0,	26,	2	1	1	1	97,	87,36	88,70	89,17	2,97	12,63	11,30	10,83
	1	00	91	032,	057,	047,	03	9%	%	%	%	%	%	%
	6	g	1,0	35	30	70	3%							
22	0,		2	1	1	1	97,	93,10	92,57	92,03	2,97	6,90	7,43	7,97
	1		91	100,	103,	081,	03	3%	%	%	%	%	%	%
	2		1,0	10	39	35	3%							
	5													
21	0,	23,	2	1	1	1	97,	96,16	96,79	95,83	2,20	3,84	3,21	4,17
	1	00	93	136,	153,	125,	80	0%	%	%	%	%	%	%
		g	4,0	23	68	96	0%							
20	0,	7,0	2	1	1	1	98,	96,79	98,19	98,53	1,97	3,20	1,81	1,47
	0	0 g	94	143,	170,	157,	03	7%	%	%	%	%	%	%
	8		1,0	75	42	69	3%							

				0				1	0						
Mo dul es AF NO R	□□ ta mis m m	Re fus pa rti els	Re fus cu mu lés ini	refu s cum _10c ps	refu s cum _25c ps	refu s cum _55c ps	% Ref us cu mu lés ini	% Refus cumul és_10 cps	% Refus cumul és_25 cps	% Refus cumul és_55 cps	% Pass ants cum ulés _ini	% Passa nts cumul és_10 cps	% Passa nts cumul és_25 cps	% Passa nts cumul és_55 cps	Obse rvati ons
4.4	20	0,0	0.0	0.0	0.00	0.00	0,0 00	0,000	0.000/	0.000/	100,	100,0	100,0	100,0	
44	16	0 26, 00	26,	0,0	0,00	0,00	% 0,8 67 %	% 0,000 %	0,00%	0,00%	99,1	100,0	100,0	100,0	
42	12, 5	37, 00	63, 0	10,0	6,46	4,87	2,1 00 %	0,883 %	0,49%	0,45%	97,9 0%	99,12 %	99,51 %	99,55 %	Gravi ers
41	10	58, 00 g	12 1,0	20,8	21,4 0	17,3 7	4,0 33 %	1,835 %	1,61%	1,60%	95,9 7%	98,17 %	98,39 %	98,40 %	
40	8	12 8,0 0 g	24 9,0	62,2	65,3 0	62,7 6	8,3 00 %	5,496 %	4,91%	5,79%	91,7 0%	94,50 %	95,09 %	94,21 %	
39	6,3	19 3,0 0 g	44 2,0	135, 0	137, 93	155, 02	14, 733 %	11,92 3%	10,37 %	14,29 %	85,2 7%	88,08 %	89,63 %	85,71 %	
38	5	26 9,0 0 g	71 1,0	248, 2	252, 02	264, 92	23, 700 %	21,92 6%	18,94 %	24,42 %	76,3 0%	78,07 %	81,06 %	75,58 %	
37	4	34 7,0 0 g	1 05 8,0	366, 3	375, 82	394, 21	35, 267 %	32,36 3%	28,25 %	36,34 %	64,7 3%	67,64 %	71,75 %	63,66 %	
36	3,1 5	38 7,0 0 g	1 44 5,0	479, 8	508, 97	494, 18	48, 167 %	42,38 4%	38,25 %	45,56 %	51,8 3%	57,62 %	61,75 %	54,44 %	
35	2,5	33 4,0 0 g	1 77 9,0	574, 3	623, 4	581, 8	59, 300 %	50,73 7%	46,85 %	53,63 %	40,7 0%	49,26 %	53,15 %	46,37 %	
34	2	26 7,0 0	2 04 6,0	649, 8	722, 3	649, 9	68, 200 %	57,41 0%	54,28 %	59,91 %	31,8 0%	42,59 %	45,72 %	40,09 %	ashla
33	1,6	21 8,0 0 g	2 26 4,0	712, 5	805, 0	705, 6	75, 467 %	62,94 2%	60,50 %	65,04 %	24,5 3%	37,06 %	39,50 %	34,96 %	sable
32	1,2 5	20 2,0 0 g	2 46 6,0	780, 3	894, 0	766, 3	82, 200 %	68,93 2%	67,19 %	70,64 %	17,8 0%	31,07 %	32,81 %	29,36 %	
31	1	11 9,0 0 g	2 58 5,0	828, 7	953, 0	827, 4	86, 167 %	73,21 4%	71,62 %	76,27 %	13,8 3%	26,79 %	28,38 %	23,73 %	
30	0,8	87, 00 g	2 67 2,0	857, 5	997, 0	828, 4	89, 067 %	75,75 8%	74,93 %	76,36 %	10,9 3%	24,24 %	25,07 %	23,64 %	
29	0,6 3	65, 00 g	2 73 7.0	894, 4	1 104, 7	848, 9	91, 233 %	79,01 8%	83,03 %	78,25 %	8,77 %	20,98 %	16,97 %	21,75 %	

Tableau 31:	Variation	granulaire	après	compactage	de la	a couche K1C4
I ubicun 51.	variation	Sianaane	upres	compaciage	uc n	A COMUNE MICT

MEMOIRE DE FIN D'ETUDES

		54,	2		1		93,								
		00	79	931,	108,	876,	033	82,30	83,32	80,77	6,97	17,70	16,68	19,23	
28	0,5	g	1,0	6	6	2	%	3%	%	%	%	%	%	%	
		38,	2		1		94,								
		00	82	963,	125,	903,	300	85,12	84,59	83,30	5,70	14,88	15,41	16,70	
27	0,4	g	9,0	5	5	6	%	1%	%	%	%	%	%	%	
		34,	2		1		95,								
	0,3	00	86	991,	159,	928,	433	87,56	87,16	85,56	4,57	12,43	12,84	14,44	
26	15	g	3,0	2	7	2	%	9%	%	%	%	%	%	%	
		22,	2	1	1		96,								
	0,2	00	88	014,	183,	950,	167	89,62	88,97	87,60	3,83	10,37	11,03	12,40	
25	5	g	5,0	5	8	2	%	6%	%	%	%	%	%	%	cabla
			2	1	1		96,								Sable
			88	040,	208,	972,	167	91,93	90,83	89,63	3,83			10,37	
24	0,2		5,0	6	5	3	%	2%	%	%	%	8,07%	9,17%	%	
		26,	2	1	1		97,								
	0,1	00	91	049,	211,	973,	033	92,73	91,05	89,71	2,97			10,29	
23	6	g	1,0	7	5	1	%	3%	%	%	%	7,27%	8,95%	%	
			2	1	1	1	97,								
	0,1		91	077,	254,	010,	033	95,20	94,30	93,14	2,97				
22	25		1,0	7	7	4	%	7%	%	%	%	4,79%	5,70%	6,86%	
		23,	2	1	1	1	97,								
		00	93	099,	275,	030,	800	97,12	95,88	95,00	2,20				
21	0,1	g	4,0	4	7	6	%	7%	%	%	%	2,87%	4,12%	5,00%	
			2	1	1	1	98,								
	0,0	7,0	94	103,	288,	032,	033	97,44	96,84	95,15	1,97				
20	8	0 g	1,0	0	6	2	%	4%	%	%	%	2,56%	3,16%	6,00%	

Tableau 32: Feuille de calcul des résultats des limites de la couche K1C1

LIMITES K1C1											
	L L	.IMI' .IQU	re di Iditi	E E	LIMITE DE PLASTICIT E						
Nombre de coups	29	33	17	19	-	-	-				
Numéro tare	1	2	3	4	5	6	7				
Poids total. hum.	31, 78	31, 82	29, 30	22, 37	21, 70	21, 17					
Poids	27,	27,	25,	25,	20,	20,	20,				
total sec	15	18	24	73	87	43	04				
Poids tare	17, 44	17, 04	17, 84	17, 65	16, 9	17, 03	16, 98				
Poids de	4,6	4,6	4,0	4,3	1,5	1,2	1,1				
l'eau	3	4	6	7	0	7	3				
Poids du	9,7	10,	7,4	8,0	3,9	3,4	3,0				
sol sec	1	14	0	8	7	0	6				
Teneur en	47,	45,	54,	54,	37,	37,	36,				
eau	68	76	86	08	78	35	93				
RESULT ATS	LL =	50, 3	IP =	12, 9		LP	37, 35				

Tableau 33: Feuille de calcul des résultats des limites de la couche K1C2

LIMITES K1C2										
	L L	.IMI .IQU	fe di Iditi	E E	LIMITE DE PLASTICIT E					
Nombre de coups	20	18	34	23	-	-	-			
Numéro tare	1	2	3	4	5	6	7			
Poids total. hum.	26, 25	30, 29	31, 95	31, 04	22, 45	20, 85	22, 59			
Poids	23,	25,	27,	26,	21,	19,	21,			
total sec	54	98	89	75	48	63	19			
Poids tare	18,	17,	18,	18,	18,	16,	17,			
	35	80	26	09	92	42	54			
Poids de	2,7	4,3	4,0	4,2	0,9	1,2	1,4			
l'eau	1	1	6	9	7	2	0			
Poids du sol sec	5,1	8,1	9,6	8,6	2,5	3,2	3,6			
	9	8	3	6	6	1	5			
Teneur en eau	52,	52,	42,	49,	37,	38,	38,			
	26	72	14	52	89	01	36			
RESULT	LL	48,	IP	10,		LP	38,			
ATS	=	3	=	2		=	08			

MEMOIRE DE FIN D'ETUDES

LIMITES K1C3										
	LIN	MITE DE	LIQUIDI	LIMITE DE PLASTICITE						
Nombre de coups	16	16 19 35 17 -								
Numéro tare	4	3	2	1	5	6	7			
Poids total. hum.	29,97	33,85	31,29	28,31	21,34	19,47	21,46			
Poids total sec	25,85	29,17	28,22	24,65	20,37	18,70	20,73			
Poids tare	17,76	18,14	17,71	17,37	17,28	16,17	18,35			
Poids de l'eau	4,12	4,68	3,07	3,66	0,97	0,77	0,73			
Poids du sol sec	8,09	11,03	10,51	7,28	3,09	2,53	2,38			
Teneur en eau	50,93	42,43	29,21	50,27	31,39	30,43	30,67			
RESULTATS	LL =	39,7	IP =	8,8		LP	30,83			

Tableau 34: Feuille de calcul des résultats des limites de la couche K1C3

Tableau 35: Feuille de calcul des résultats des limites de la couche K1C4

LIMITES K1C4											
	LIN	AITE DE	LIQUID	LIMITE DE PLASTICITE							
Nombre de coups	16	16 20 28 33									
Numéro tare	4	3	2	1	5	6	7				
Poids total. hum.	29,56	28,55	34,56	32,61	20,33	19,57	19,73				
Poids total sec	26,05	25,31	30,10	28,65	19,89	19,09	19,14				
Poids tare	18,24	17,77	18,58	17,86	18,54	17,63	17,29				
Poids de l'eau	3,51	3,24	4,46	3,96	0,44	0,48	0,59				
Poids du sol sec	7,81	7,54	11,52	10,79	1,35	1,46	1,85				
Teneur en eau	44,94	42,97	38,72	36,70	32,59	32,88	31,89				
RESULTATS	LL = 40.5 $IP = 8.0$ $LP = 32.4$										

Tableau 36: Résultats du test au Bleu de Méthylène

Identification de la couche	K1C1	K1C2	K1C3	K1C4
D max	25 mm	25 mm	16 mm	10 mm
Masse sèche prélevée	5000	5000	3200	2000
Masse sèche passant le tamis de 5mm	3240	2940	1367,3	1540
Coefficient pondérale C fraction 0/5	64,80%	58,80%	42,73%	77,00%
Poids humide prise n° 2 (en g)	1000	1000	1000	1000
Poids sec prise n°2 (en g)	994	929	981	908
Teneur en eau ω du matériau	0,60%	7,64%	1,94%	10,13%
Masse sèche 0/5 introduite en solution (en g)	60	60	60	60
Volume de bleu introduit (cm3)	50	40	50	35
La valeur bleue VBS	0,833	0,667	0,833	0,583

	K1C1	K1C2	K1C3	K1C4
LL	50,3	48,3	39,7	40,5
LP	37,4	38,1	30,8	32,5
IP	12,9	10,2	8,9	8,0

Tableau 37: Récapitulation des limites des couches étudiées

Tableau 38: Résultats de l'essai Proctor de la couche K1C1

Teneur	en eau souhaitée	12	.%	14	.%	16	%	18	3%	20%	
Eau	de mouillage	84	40	98	30	11	20	12	60	1400	
	Poids total humide (g)	15230,00		15290,00		15570,00		15350,00		1526	0,00
Poids du moule (g)		1134	0,00	1134	0,00	1134	0,00	1134	0,00	1134	0,00
Densité	Poids net humide (g)	389	3890,00		3950,00		4230,00		0,00	3920,00	
	Volume du moule (cm3)	212	2127,92		7,92	2127,92		2127,92		2127,92	
	Numéro tare	1fi	1fs	2fi	2fs	3fi	3fs	4fi	4fs	5fi	5fs
	Poids tare (g)	16,38	17,07	16,86	17,49	17,97	18,73	17,99	17,47	16,63	17,8
Teneur en	Poids total humide (g)	99,45	97,43	113,5 0	109,9 0	108,0 2	121,6 8	104,1 6	99,64	120,9 4	120, 5
eau	Poids total sec (g)	90,18	88,18	103,3 0	96,85	92,42	102,4 8	85,59	81,84	97,35	96,7
	Topour on $oou(\%)$	12,57	13,00	11,80	16,45	20,95	22,92	27,47	27,65	29,23	30,3
	Telleur ell'eau (70)	%	%	%	%	%	%	%	%	%	%
Teneur en eau moyenne (%)		12,	8%	14,	1%	21,9%		27,6%		29,7	7%
Densité h	Densité humide γ (g/cm3) :		83	1,86		1,99		1,88		1,84	
Densité s	Densité sèche yd (g/cm3) :		62	1,	63	1,63		1,48		1,42	

Tableau 39: Résultats de l'essai Proctor de la couche K1C2

Teneur	en eau souhaitée	6	%	89	%	10	9%	12	%	14%		
Eau	de mouillage	42	20	560		70	00	84	40	980		
	Poids total humide (g)	1554	15540,00		15810,00		15840,00		15810,00		0,00	
Poids du moule (g)		1134	0,00	1134	0,00	1134	0,00	1134	-0,00	1134	0,00	
Densité	Poids net humide (g)	4200,00		4470,00		4500,00		447	0,00	4450	0,00	
	Volume du moule (cm3)	212	2127,92		2127,92		7,92	2127,92		2127,92		
	Numéro tare	5fi	5fs	1fi	1fs	2fi	2fs	3fi	3fs	4fi	4fs	
	Poids tare (g)	16,43	17,71	18,46	18,73	18,35	18,04	18,48	17,58	17,75	19,4	
Teneur en	Poids total humide (g)	88,19	98,76	88,00	92,02	88,96	93,30	96,47	95,26	98,57	109, 3	
eau	Poids total sec (g)	78,86	88,34	80,52	76,36	77,04	80,44	73,19	82,05	73,36	91,6	
Teneur en eau (%)		14,96	14,76	12,06	27,17	20,32	20,60	42,56	20,49	45,35 %	24,4	
Tangur an agu mayanna $(0')$		70	70 00/	70	70 60/	70	<u>%</u> %		70 50/	70	70)0/	
Teneur en eau moyenne (%)		14,	770 07	19,	10	20,5%		51,5%		34,5	70	
Densite h	umide γ (g/cm3):	1,	9/	2,10		2,11		2,10		2,09		
Densité s	èche γd (g/cm3) :	1,	72	1,	76	1,	1,76		1,60		1,55	

Teneur	en eau souhaitée	29	%	49	%	6	%	8	%	10	%
Eau	de mouillage	14	40	28	30	42	20	56	50	70	00
	Poids total humide (g)	15600,00		15600,00 15810,00		15890,00		15650,00		1561	0,00
Donaitá	Poids du moule (g)	1134	0,00	1134	0,00	1134	10,00	1134	0,00	1134	0,00
Densite	Poids net humide (g)	426	4260,00		0,00	455	0,00	431	0,00	4270	0,00
	Volume du moule (cm3)	2127,92		2127,92		2127,92		2127,92		2127,92	
	Numéro tare	5fi	5fs	2fi	2fs	1fi	1s	3fi	3fs	4fi	4fs
	Poids tare (g)	17,37	17,77	17,96	18,71	16,67	17,35	18,04	16,87	18,92	18,57
	Poids total humide	126,6	107,3	118,1	101,1	117,2	127,1	128,0	110,4	115,8	125,9
Teneur en	(g)	3	8	7	0	3	7	9	1	9	2
eau	Poids total sec (g)	114,5 7	97,32	105,6 5	89,39	103,2 5	110,2 8	110,5 3	94,30	98,84	108,4
	Teneur en eau (%)	12,40	12,65	14,27	16,57	16,15	18,17	18,98	20,81	21,3	19,5
Telleul ell eau (%)		%	%	%	%	%	%	%	%	%	%
Teneur en eau moyenne (%)		12,	5%	15,	4%	17,2%		19,9%		20,4	4%
Densité h	umide \Box (g/cm3):	2,	00	2,	10	2,14		2,03		2,0	01
Densité sè	Densité sèche 🗌 🗋 d (g/cm3) :		78	1,82		1,83		1,69		1,0	67

Tableau 40: Résultats de l'essai Proctor de la couche K1C3

Tableau 41: Résultats de l'essai Proctor de la couche K1C4

Teneur	en eau souhaitée	29	%	4	%	6	%	8	%	10	%
Eau	de mouillage	14	40	28	30	42	20	56	50	70	0
	Poids total humide (g)	1582	20,00	16240,00		16220,00		16000,00		15810,00	
	Poids du moule (g)	1134	11340,00		0,00	1134	0,00	1134	-0,00	1134	0,00
Densité	Poids net humide (g)	4480,00		4900,00		4880,00		4660,00		4470,00	
	Volume du moule (cm3)	212	2127,92		7,92	212	7,92	212	7,92	2127,92	
	Numéro tare	4fi	4fs	3fi	3fs	1fi	1fs	2fi	2fs	5fi	5fs
	Poids tare (g)	18,5 2	18,5 8	18,02	16,87	17,38	16,62	17,96	18,73	17,32	17,7
Teneur en	Poids total humide (g)	126, 83	108, 82	117,7 3	113,5 1	104,5 7	107,4 7	104,6 0	126,8 5	125,9 9	123, 3
Cau	Poids total sec (g)	117, 26	100, 74	106,6 2	103,2 4	93,05	95,34	91,28	110,6 7	108,3 2	105, 4
Teneur en eau (%)		9,70 %	9,83 %	12,53 %	11,88 %	15,23 %	15,42 %	18,16 %	17,60 %	19,42 %	20,3 %
Teneur en eau moyenne (%)		9,8	3%	12,	2%	15,3%		17,9%		19,9%	
Densité hu	umide \Box (g/cm3) :	2,	11	2,	30	2,	29	2,	19	2,1	0
Densité sè	Densité sèche $\Box \Box d (g/cm3)$:		92	2,	05	1,99		1,86		1,75	

_										100/	
Teneur e	en eau souhaitée	49	%	6	%		%	10	9%	12	%
Eau	de mouillage	28	30	42	20	56	50	70	00	84	-0
	Poids total humide (g)	1548	0,00	15690,00		15790,00		15580,00		1546	0,00
	Poids du moule (g)	1134	11340,00		0,00	1134	-0,00	1134	0,00	1134	0,00
Densité	Poids net humide (g)	4140,00		4350,00		4450,00		4240,00		4120,00	
	Volume du moule (cm3)	212	2127,92		2127,92		2127,92		2127,92		7,92
	Numéro tare	1fi	1fs	2fi	2fs	3fi	3fs	4fi	4fs	5fi	5fs
	Poids tare (g)	17,55	17,50	17,35	17,37	18,69	17,64	18,25	18,50	17,72	18,5 6
Teneur en	Poids total humide (g)	103,7 4	103,1 8	111,6 5	94,84	106,5 8	128,1 6	83,21	87,57	111,7 2	103, 14
cau	Poids total sec (g)		92,81	98,98	81,88	92,69	110,4 7	72,32	75,76	94,53	88,3 3
Teneur en eau (%)		12,51 %	13,77 %	15,53 %	20,08 %	18,77 %	19,06 %	20,15 %	20,63 %	22,38 %	21,2 %
Teneur en eau moyenne (%)		13,	1%	17,	8%	18,9%		20,4%		21,8%	
Densité hu	umide \Box (g/cm3):	1,9	95	2,04		2,09		1,99		1,94	
Densité sè	che $\Box \Box d (g/cm3)$:	1,	72	1,	74	1,76		1,66		1,59	

Tableau 42: Résultats de l'essai Proctor de la couche K1Cm

Tableau 43: Récapitulatif des résultats de l'essai Proctor

	K1C1	K1C2	K1C3	K1C4	K1Cm
W opt	20,0	19,4	16,6	12,6	18,9
γd opt	1,6	1,76	1,83	2,05	1,76

 Tableau 44: Résistance au poinçonnement de la couche K1C1
 Tableau 45: Résistance au poinçonnement de la couche

 Enfoncement
 55cours
 10cours

 K1C2
 K1C2

Enfoncement	5500	ups	2500	ups	1000	ups	KIC2	1				1	
(mm)	Force	CBR	Force	CBR	Force	CBR	Enfonce- ment	55co	ups	25co	ups	10co	ups
0	0		0		0		(mm)	Force	CBR	Force	CBR	Force	CBR
0,25	20,90		10,50		10,50		0	0		0		0	
0,5	31,40		20,90		10,50		0,25	62,70		41,80		10,50	
0,75	35,40		31,40		20,90		0,5	83,60		62,70		20,90	
1	42,40		41,80		31,40		0,75	104,60		73,20		30,50	
1,5	62,70		52,30		41,80		1	136,10		94,10		41,80	
2	92,10		73,20		52,30		1,5	177,80		125,50		52,40	
2,5	125,50	9,4	94,10	7,0	62,70	4,7	2	230,10		177,80		83,60	
3	146,40		115,10		83,60		2,5	292,80	21,9	209,20	15,7	125,50	9,4
4	230,10		146,40		125,50		3	355,60		240,60		167,30	
5	292,80	14,7	188,20	9,4	146,40	7,3	4	460,20		303,30		251,00	
P							5	564,80	28,3	366,10	18,4	313,80	15,7

Tableau 46: Résultat CBR de la couche K1C1

	Nombre de coups	55 coups	25 coups	10 coups
CBR	à 2,5mm	9	7	5
:	à 5,0mm	15	9	7
	Maxi.	15	9	7

Tableau 47: Résultat CBR de la couche K1C2

	Nombre de coups	55 coups	25 coups	10 coups
CBR	à 2,5mm	22	16	9
:	à 5,0mm	28	18	16
	Maxi.	28	18	16

MEMOIRE DE FIN D'ETUDES

Enfonce	55co	ups	25co	ups	10coups		
ment	Forc	CB	Forc	CB	Forc	CB	
(mm)	e	R	e	R	e	R	
0	0		0		0		
0.25	167,		156,		104,		
0,23	30		90		60		
0.5	251,		209,		125,		
0,5	00		20		50		
0.75	334,		313,		146,		
0,75	70		80		40		
1	418,		376,		156,		
1	40		50		90		
15	585,		543,		177,		
1,5	70		90		80		
C	711,		700,		188,		
2	20		80		20		
2.5	878,	65,	815,	61,	198,	14,	
2,5	60	8	80	1	70	9	
2	1004		962,		209,		
3	,10		30		20		
1	1280		1066		240,		
4	,60		,90		60		
5	1569	78,	1297	65,	240,	12,	
5	,00	7	,00	1	60	1	

Tableau 48: Résistance au poinçonnement de la couche K1C3

poinçonnement de la couche K1C4								
Enfonce	55co	ups	25co	ups	10co	ups		
ment	Forc	CB	Forc	CB	Forc	CB		
(mm)	e	R	e	R	e	R		
0	0		0		0			
0.25	104,		115,		52,3			
0,23	60		06		0			
0.5	167,		177,		73,2			
0,5	36		82		2			
0.75	209,		198,		94,1			
0,75	20		74		4			
1	271,		230,		115,			
	96		12		06			
15	355,		240,		156,			
1,5	64		58		90			
2	439,		313,		167,			
2	33		80		36			
25	523,	39,	366,	27,	198,	14,		
2,5	70	2	10	4	74	9		
3	609,		397,		219,			
5	91		48		66			
1	696,		460,		240,			
	12		25		58			
5	717,	36,	470,	23,	251,	12,		
5	67	0	71	6	04	6		

Tableau 49: Résistance au

Tableau 50: Résistance au poinçonnement de la couche K1Cm

Enfonce ment (mm)	55coups		25coups		10coups	
Emonce-ment (mm)	Force	CBR	Force	CBR	Force	CBR
0	0		0		0	
0,25	146,40		125,50		41,80	
0,5	209,20		167,30		83,60	
0,75	251,00		209,20		104,60	
1	292,80		251,00		146,40	
1,5	397,40		355,60		209,20	
2	502,00		418,40		292,80	
2,5	564,80	42,3	502,00	37,6	334,70	25,1
3	627,60		564,80		418,40	
4	815,80		690,30		585,70	
5	983,20	49,3	815,80	40,9	711,20	35,7

Tableau 51: Résultat CBR de la couche K1C3

	Nombre de	55	25	10
CDD	coups	coups	coups	coups
СВК	à 2,5mm	66	61	15
:	à 5,0mm	79	65	12
	Maxi.	79	65	15

Tableau 52: Résultat CBR de la couche K1C4

	Nombre de	55cou	25cou	10
CDD	coups	ps	ps	coups
СВК :	à 2,5mm	39	27	15
	à 5,0mm	36	24	13
	Maxi.	39	27	15

Tableau 55: Resultat CBR ae la couche K.
--

	Nombre de	55	25	10
CDD	coups	coups	coups	coups
свк :	à 2,5mm	42	38	25
	à 5,0mm	49	41	36
	Maxi.	49	41	36

MEMOIRE DE FIN D'ETUDES

	t (h)	0	2,00	6,0	24,0	48,0	72,0	96,0
	lecture	0	163	247,000	326,00	350,500	371,5	372,5
Moule 1	$\Delta h (mm)$	0	1,63	0,84	0,79	0,25	0,21	0,01
	g_m1_55	0	1,41%	2,13%	2,81%	3,02%	3,20%	3,21%
	lecture	100	158	269,000	275,000	300,000	305,000	315,000
Moule 2	$\Delta h (mm)$	0	0,58	1,11	0,06	0,25	0,05	0,10
	g_m2_25	0	0,50%	1,46%	1,51%	1,72%	1,77%	1,85%
	lecture	0	42	146,000	152,000	159,000	184	186
Moule 3	$\Delta h (mm)$	0	0,42	1,04	0,06	0,07	0,25	0,02
	g_m3_10	0	0,36%	1,26%	1,31%	1,37%	1,59%	1,60%

Tableau 55: Résultats de l'essai de gonflement par immersion de la couche K1C2

	t (h)	0	2,00	6,0	24,0	48,0	72,0	96,0
	lecture	0	63	192,000	438,00	456,000	464,5	464,5
Moule 1	$\Delta h (mm)$	0	0,63	1,29	2,46	0,18	0,09	0,00
	g_m1_55	0	0,54%	1,66%	3,78%	3,93%	4,00%	4,00%
	lecture	100	158	274,000	512,000	524,500	526	526
Moule 2	$\Delta h (mm)$	0	0,58	1,16	2,38	0,13	0,02	0,00
	g_m2_25	0	0,50%	1,50%	3,55%	3,66%	3,67%	3,67%
	lecture	0	42	146,000	296,000	301,000	304,5	304,5
Moule 3	$\Delta h (mm)$	0	0,42	1,04	1,50	0,05	0,04	0,00
	g_m3_10	0	0,36%	1,26%	2,55%	2,59%	2,63%	2,63%

Tableau 56: Résultats de l'essai de gonflement par immersion de la couche K1C3

	t (h)	0	2,00	6,0	24,0	48,0	72,0	96,0
	lecture	0	18	163,000	174,00	189,500	191,5	197
Moule 1	$\Delta h (mm)$	0	0,18	1,45	0,11	0,16	0,02	0,06
	g_m1_55	0	0,16%	1,41%	1,50%	1,63%	1,65%	1,70%
	lecture	0	13	124,500	163,00	174,000	176	179
Moule 2	$\Delta h (mm)$	0	0,13	1,12	0,39	0,11	0,02	0,03
	g_m2_25	0	0,11%	1,07%	1,41%	1,50%	1,52%	1,54%
	lecture	0	11,5	116,500	124,00	124,000	125	125
Moule 3	$\Delta h (mm)$	0	0,12	1,05	0,08	0,00	0,01	0,00
	g_m3_10	0	0,10%	1,00%	1,07%	1,07%	1,08%	1,08%

Tableau 57: Résultats de l'essai de gonflement par immersion de la couche K1C4

			0	v 1				
	t	0	2,00	6,0	24,0	48,0	72,0	96,0
	lecture	0	167	181,500	186,00	187,000	188	188
Moule 1	$\Delta h (mm)$	0	1,67	1,82	1,86	1,87	1,88	1,88
	g_m1_55	0	1,44%	1,56%	1,60%	1,61%	1,62%	1,62%
	lecture	0	142	147,500	152,000	153,000	153,5	153,5
Moule 2	$\Delta h (mm)$	0	1,42	0,06	0,05	0,01	0,01	0,00
	g_m2_25	0	1,22%	1,27%	1,31%	1,32%	1,32%	1,32%
	lecture	0	94	95,000	96,500	97,000	97,5	97,5
Moule 3	$\Delta h (mm)$	0	0,94	0,01	0,02	0,01	0,01	0,00
	g_m3_10	0	0,81%	0,82%	0,83%	0,84%	0,84%	0,84%

MEMOIRE DE FIN D'ETUDES

	t (h)	0	2,00	6,0	24,0	48,0	72,0	96,0
	lecture	0	116	155,000	195,00	220,000	223	227
Moule 1	$\Delta h (mm)$	0	1,16	1,55	1,95	2,20	2,23	2,27
	g_m1_55	0	1,00%	1,34%	1,68%	1,90%	1,92%	1,96%
	lecture	0	111,5	149,000	192,000	207,000	210	218
Moule 2	$\Delta h (mm)$	0	1,12	0,38	0,43	0,15	0,03	0,08
	g_m2_25	0	0,96%	1,28%	1,66%	1,78%	1,81%	1,88%
	lecture	0	106	135,500	152,500	166,500	170	176
Moule 3	$\Delta h (mm)$	0	1,06	0,30	0,17	0,14	0,04	0,06
	g_m3_10	0	0,91%	1,17%	1,31%	1,44%	1,47%	1,52%

Tableau 58: Résultats de l'essai de gonflement par immersion de la couche K1Cm

Tubleau 39. Trincipe de chargement de l'essai Duometri	Tableau 5	59: Princi	oe de char	rgement de	l'essai	Edométriq	iue
--	-----------	------------	------------	------------	---------	------------------	-----

		CH	ARGEM	1ENT			DECHARGEMENT				
Masse sur le plateau (kg)	1	2	4	8	16	32	16	8	4	2	1
contrainte (kPa)	25,4 91	50,9 82	101,9 63	203,9 27	407,8 53	815,7 07	407,8 53	203,9 27	101,9 63	50,9 82	25,4 91

Tableau 60: Suivi de la déformation œdométrique de la couche K1C1

Heure	temps				Déi	formatio	ons E (¢	V_{0}) = Δh	/hi			
07h28mn00s	0	685	659	630	594	555	513,5	466,5	479	480	480,9	480,9
07h28mn15s	0,25	682	654	610	570	524	486	469,5	479,5	480,5	480,9	480,9
07h28mn30s	0,5	680	650	607	565	521,5	479	469,5	480	480,5	480,9	480,9
07h29mn	1	676,5	646	605	562	520	476	469,5	480	480,5	480,9	480,9
07h30mn	2	675	642	603,5	561	519	474	469,5	480	480,5	480,9	480,9
07h32mn	4	672	639,5	602	560,5	518,5	473	469,5	480	480,5	480,9	480,9
07h36mn	8	671	638	601	559	518	472,5	470	480	480,5	480,9	480,9
07h43mn	15	666	637,5	600	558,5	517,5	472	470	480	480,9	480,9	480,9
07h58mn	30	663,5	637	599,5	558	516,5	471,5	470	480	480,9	480,9	480,9
08h28mn	60	662,9	636,5	599	557	516,5	470,5	470	480	480,9	480,9	480,9
09h28mn	2h	661	635,5	598	556,5	516		470	480	480,9	480,9	480,9
11h 28mn	4h	660,5	635	597	556	515	469	470	480	480,9	480,9	480,9
15h28mn	8h	660,5	634,5	596,5	555	514,5	468	470	480	480,9	480,9	480,9
07h28mn+1jr	24h	659	630	594	555	513,5	466,5	479	480	480,9	480,9	480,9

Tableau 61: Analyse des résultats observés sur la couche K1C1

Déformation à 24h Ah1 (cm)			0,03	0,01	0,02	0,0	0,00	0,0	0,00	0,00	
Deformation a 2411 2111 (cm)	0	0	25	32	13	29	15	02	05	05	0
Déformation du système Ah?							-				
							0,00				
(cm)			0,02				4				
Déformation réelle $\Delta h = \Delta h1$ -			0,01	0,01	0,02	0,0	0,00	0,0	0,00	0,00	
$\Delta h2 (cm)$	0	0	25	32	13	29	55	02	05	05	0
Houtours $h = h_0$ Ab			1,98	1,98	1,97	1,9	1,99	1,9	1,99	1,99	
Hauteurs II – IIO - ΔII	2	2	75	68	87	71	45	98	95	95	2
	09	09	0.96	0.96	0.95	0.9	0.96	09	0.97	0.97	09
Indice des vides $e = (h-hs)/hs$	73	73	0	0	2	44	7	71	2	2	73

MEMOIRE DE FIN D'ETUDES

Tubleau 02. Sul	vi ue iu u	lejormation æ	aomein	que ae u	a couche	e KIC4				
Heure	temps			Défe	ormations	s E (%) =	= Δh/hi			
07h28mn00s	0	700	667,5	654,3	633	604	605,5	607,5	608	608,5
07h28mn15s	15	685	661,5	641	612,5	605	606,5	608	608,5	608,5
07h28mn30s	30	684,5	661	640	613,5	605,5	607	608	608,5	608,5
07h29mn	1	683,5	660,5	639	613	605,5	607	608	608,5	608,5
07h30mn	2	682	659,9	638,3	611,5	605,5	607	608	608,5	608,5
07h32mn	4	680	659	637,9	610,5	605,5	607	608	608,5	608,5
07h36mn	8	677	658,5	636,4	609,8	605,5	607,5	608	608,5	608,5
07h43mn	15	673	658,3	636	609,2	605,5	607,5	608	608,5	608,5
07h58mn	30	670,5	658	635,5	608,8	605,5	607,5	608	608,5	608,5
08h28mn	60	669,5	657,9	635	608,3	605,5	607,5	608	608,5	608,5
09h28mn	120	669	657,5	634,9	608	605,5	607,5	608	608,5	608,5
11h 28mn	240	668,9	657,5	633,3	607,8	605,5	607,5	608	608,5	608,5
15h28mn	480	668,9	657	633	607,5	605,5	607,5	608	608,5	608,5
07h28mn+1jr	24	667,5	654,3	633	604	605,5	607,5	608	608,5	608,5

 Tableau 62: Suivi de la déformation œdométrique de la couche K1C4

Tableau 63: Analyse des résultats observés sur la couche K1C4

Déformation à 24h Δ h1 (cm)	0,026	0,029	0,036	0,039	0,0415	0,047	0,0125	0,001	0,0009	0	0
Déformation du système $\Delta h2$ (cm)											
Déformation réelle $\Delta h = \Delta h 1 - \Delta h 2$ (cm)	0,026	0,029	0,036	0,039	0,0415	0,047	0,0125	0,001	0,0009	0	0
Hauteurs $h = ho - \Delta h$	1,874	1,871	1,864	1,861	1,8585	1,853	1,8875	1,899	1,8991	1,9	1,9
Indice des vides e = (h-hs)/hs	0,614	0,611	0,605	0,602	0,600	0,595	0,625	0,635	0,635	0,636	0,636

Tableau 64: Récapitulatif des résultats de l'essai Oedométrique des couches étudiées

	σ'p (droites	Méthode de	e CASAGRANDE	E and (IrDa)	-lava	OCD
	concourantes)	σ'p	e	Eoed (KPa)	σνο	UCK
K1C1	320,349	420	0,628	140 894,77	85,57	3,74
K1C4	424,899	440	0,967	54 740,49	34,71	12,24

Tableau 65: L'influence des caractéristiques de l'éprouvette sur la résistance mécanique

	Caractéristiques	F max (kN)	σ max (MPa)
Eprouvette 1	40 coups * 4 couches	2,2	1,40
Eprouvette 2	32 coups * 5 couches	2,48	1,58

Tableau 66: Récapitulatif des valeurs de Modules de Young des couches étudiées

	E max	E moyenne
K1C1	5140	2581
K1C2	502	221
K1C3	2370	873
K1C4	5891	3014
K1Cm	2855	1438

MEMOIRE DE FIN D'ETUDES

Tableau 67:	Résultats	de l'essai	de cisaille	ment de la	couche
KICI					

111-01				
M (kg)	2	4	7,125	15
σ max	62,28	134,07	198,77	422,70
τmax	50,89	56,42	66,75	109,40

Tableau 68: Résultats de l'essai de cisaillement de la couche K1C2

1102				
M (kg)	2	4	7,125	15
σ max	56,7879	111,33006	221,0207	505 <i>,</i> 6
т тах	29,1389	32,777778	49,16667	158,11

Tableau 69: Résultats de l'essai de cisaillement de la couche K1C3

RI CO			
M (kg)	2	4	7,125
σ max	71,88	146,88	233,52
τmax	82,89	150,83	268,61

Tableau 71: Résultats de l'essai de cisaillement de la couche K1Cm

M (kg)	2	4	7,125	15
σ max	57,91	148,56744	199,1	676,55
τmax	42,36	45	51,94	117,833

K1C4 2 00 / 1 00 / 7 13 $M(k\alpha)$ 15.00

Tableau 70: Résultats de l'essai de cisaillement de la couche

M (Kg)	2,00	4,00	7,15	13,00
σ max	65,35	142,11	219,71	416,78
τ max	23,89	24,72	38,25	69,28

Tableau 73: Résultats de l'essai de cisaillement de la couche K1C3 consolidé

M (kg)	2,00	4,00	7,13
σmax	67,64	120,52	224,77
τmax	12,22	25,56	71,94

Tableau 72: Résultats de l'essai de cisaillement de la couche K1C3 non saturé

M (kg)	2,00	4,00	7,13
σ max	56,95	122,54	238,68
τmax	133,17	202,47	268,72

v man	12,22	20,00	, 1, 2 1	

Tableau 74: Récapitulatif des résultats de cisaillement des couches étudiées

	K1C1	K1C2	K1C3	K1C4	K1Cm
Ψ	9,58	17,11883234	49,09922	7,80	7,339289
Cc	36,36	-3,9417	-6,5993	10,68	29,429
Mdf	0,97	0,24	0,4	0,62	

	K1C1	K1C2	K1C3	K1C4
Ψ	9,6	17,3	48,8	7,8
Cc	36,4	0,8	3,0	10,0
Pression CBR	149	288	799	366
Passant 5mm	64,8%	58,8%	42,7%	77,0%
Mdg	52	119	458	84

ANNEXES 2 : GRAPHIQUES ET DIAGRAMMES

Figure 22: Courbe granulométrique par voie humide de la couche K1C4 Figure 21: Courbe granulométrique par voie humide de la couche K1C3

MEMOIRE DE FIN D'ETUDES ZOUNGRANA Salomon 0,1

0,01

0,001

0,0001

Figure 23: Courbe granulométrique par voie sèche de la couche K1C1

Figure 24: Courbe granulométrique par voie sèche de la couche K1C2

Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

Figure 25: Courbe granulométrique par voie sèche de la couche K1C3

Figure 26: Courbe granulométrique par voie sèche de la couche K1C14

MEMOIRE DE FIN D'ETUDES

Figure 27: Courbes granulométriques des couches étudiées par voie humide Figure 28: Courbes granulométriques des couches étudiées par voie sèche

MEMOIRE DE FIN D'ETUDES

Figure 29: Répartition granulaire des couches étudiées par voie sèche

Figure 30: Répartition granulaire des couches étudiées par voie humide

MEMOIRE DE FIN D'ETUDES

Figure 31: Projection de la couche K1C1 dans le fuseau de base et de fondation du CEBTP

Figure 32: Projection de la couche K1C2 dans le fuseau de base et de fondation du CEBTP

Figure 33: Projection de la couche K1C3 dans le fuseau de base et de fondation du CEBTP

MEMOIRE DE FIN D'ETUDES

Figure 34: Projection de la couche K1C4 dans le fuseau de base et de fondation du CEBTP

Figure 36: Etude comparée de la granulométrie après compactage de la couche K1C4

80,00%

70.00%

50,00%

50,00%

40,00%

30,00%

20,00%

10,00%

0,00%

100

Pourcentage (%)

Figure 37: Résultats du poids spécifique des couches étudiées

Figure 38: Résultats de l'essai de bleu de méthylène des couches étudiées

Figure 39: Résultats de l'essai des limites de la couche K1C1

Figure 40: Résultats de l'essai des limites de la couche K1C2

Figure 41: Résultats de l'essai des limites de la couche K1C3

Figure 42: Résultats de l'essai des limites de la couche K1C4

Figure 43: Courbe de l'essai Proctor de la couche K1C1

Figure 44: Courbe de l'essai Proctor de la couche K1C2

Figure 45: Courbe de l'essai Proctor de la couche K1C3

Figure 46: Courbe de l'essai Proctor de la couche K1C4

MEMOIRE DE FIN D'ETUDES

Figure 47: Courbe de l'essai Proctor de la couche K1Cm

Figure 48: Graphe donnant la densité sèche des couches du profil

Figure 49: Corrélation de la densité sèche en fonction du poids spécifique

Figure 50: Corrélation de la densité sèche en fonction de l'indice de plasticité

Figure 51: Corrélation de la densité sèche en fonction de la portion sable de la granularité

Figure 52: Résultats de l'essai de gonflement de la couche K1C1

Figure 53: Résultats de l'essai de gonflement de la couche K1C2

Figure 54: Résultats de l'essai de gonflement de la couche K1C3

Figure 55: Résultats de l'essai de gonflement de la couche K1C4

Figure 56: Résultats de l'essai de gonflement de la couche K1Cm

Figure 57: Graphique du poinçonnement CBR de la couche K1C1

Figure 58: Graphique du poinçonnement CBR de la couche K1C2

Figure 59: Graphique du poinçonnement CBR de la couche K1C3

Figure 60: Graphique du poinçonnement CBR de la couche K1C4

Figure 61: Graphique du poinçonnement CBR de la couche K1Cm

Figure 62: Détermination de la valeur CBR de la couche K1C1

Figure 63: Détermination de la valeur CBR de la couche K1C2

Figure 64: Détermination de la valeur CBR de la couche K1C3

Figure 65: Détermination de la valeur CBR de la couche K1C4

Figure 66: Détermination de la valeur CBR de la couche K1Cm

Caractérisation de la latérite de KAMBOINSE en vue d'une utilisation durable dans les structures de chaussées

Figure 68: : Courbe de l'essai Ædométrique de la couche K1C1 par la méthode des pentes concourantes

MEMOIRE DE FIN D'ETUDES ZOUNGRANA Salomon 111

Figure 69: Courbe de l'essai Ædométrique de la couche K1C4 par la méthode de CASAGRANDE

MEMOIRE DE FIN D'ETUDES	ZOUNGRANA Salomon	
		112

Figure 70: Courbe de l'essai Ædométrique de la couche K1C4 par la méthode des pentes concourantes

*Figure 71: Résistance à la compression de l'éprouvette 1 (40 coups * 4couches)*

Figure 73: Influence du nombre de couches sur la contrainte maximal

Figure 74: Déplacements représentatifs des capteurs de la couche K1C1

Figure 75: Déplacements représentatifs des capteurs de la couche K1C2

Figure 76: Courbe pour déterminer le Module de Young de la couche K1C1

Figure 77: Courbe pour déterminer le Module de Young de la couche K1C2

Figure 78:Déplacements représentatifs des capteurs de la couche K1C3

Figure 79: Déplacements représentatifs des capteurs de la couche K1C4

Figure 80: Courbe pour déterminer le Module de Young de la couche K1C3

Figure 81: Courbe pour déterminer le Module de Young de la couche K1C4

Figure 82: Déplacements représentatifs des capteurs de la couche K1Cm

Figure 83: Courbe pour déterminer le Module de Young de la couche K1Cm

Figure 84: Cisaillement par la masse de 2kg de la couche K1C1

Figure 86: Cisaillement par la masse de 7,125kg de la couche K1C1

Figure 85: Cisaillement par la masse de 4kg de la couche K1C1

Figure 87: Cisaillement par la masse de 15kg de la couche K1C1

Figure 88: Contrainte tangentielle en fonction du déplacement horizontal de la couche K1C1

Figure 90: Cisaillement par la masse de 2kg de la couche K1C2

Figure 89: Paramètres du cisaillement de la couche K1C1

Figure 91: Cisaillement par la masse de 4kg de la couche K1C2

Figure 92: Cisaillement par la masse de 7,125kg de la couche K1C2

Figure 94:Contrainte tangentielle en fonction du déplacement horizontal de la couche KIC2

Figure 93: Cisaillement par la masse de 15kg de la couche K1C2

Figure 95: Paramètres du cisaillement de la couche K1C2

Figure 96: Cisaillement par la masse de 2kg de la couche K1C3

Figure 98: Cisaillement par la masse de 7,125kg de la couche K1C3

Figure 97: Cisaillement par la masse de 4kg de la couche K1C3

Figure 99: Contrainte tangentielle en fonction du déplacement horizontal de la couche K1C3

Figure 100: Paramètres du cisaillement de la couche K1C3

Figure 101: Cisaillement par la masse de 2kg de la couche K1C4

Figure 102: Cisaillement par la masse de 4kg de la couche K1C4

Figure 103: Cisaillement par la masse de 7,125kg de la couche K1C4

Figure 105: Contrainte tangentielle en fonction du déplacement horizontal de la couche K1C4

Figure 104: Cisaillement par la masse de 15kg de la couche K1C4

Figure 106: Paramètres du cisaillement de la couche K1C4

Figure 107: Cisaillement par la masse de 2kg de la couche K1Cm

Figure 109: Cisaillement par la masse de 7,125kg de la couche K1Cm

Figure 108: Cisaillement par la masse de 4kg de la couche K1Cm

Figure 110: Cisaillement par la masse de 15kg de la couche K1Cm

Figure 112: Paramètres du cisaillement de la couche K1Cm

Figure 113: Cisaillement par la masse de 2kg de la couche K1C3 non saturé

Figure 114: Cisaillement par la masse de 4kg de la couche K1C3 non saturé

Figure 115: Cisaillement par la masse de 7,125kg de la couche K1C3 non saturé

Figure 117: Paramètres du cisaillement de la couche K1C3 non saturé

Figure 118: Cisaillement par la masse de 2kg de la couche K1C3 saturé consolidé

Figure 120: Cisaillement par la masse de 7,125kg de la couche K1C3 Consolidé saturé

Figure 119: Cisaillement par la masse de 4kg de la couche K1C3 saturé consolidé

Figure 121: Paramètres du cisaillement de la couche K1C3 consolidé saturé

Figure 122: Suivi de la montée d'eau dans le perméamètre

Figure 123: Carte géologique du BURKINA FASO (d'après HOTTIN et OUEDRAOGO, 1975)

ANNEXES 3 : IMAGES D'ILLUSTRATION

Image 2: Identification de l'emprunt et ses couches stratigraphiques

Image 3: Prélèvement et Echantillonnage du matériau

MEMOIRE DE FIN D'ETUDES

Image 4: Lavage du matériau pour essai géotechnique

Image 5: Matériau lavé pour analyse granulométrique et limites

Image 6: Eprouvette en immersion pour essai de gonflement

Image 7: Limites d'Atterberg

Image 8: Sédimentométrie

Image 9: Tamisage

Image 10: Essai Ædométrique

Image 11: Poinçonnement pour l'essai de CBR

Image 12: Essai de compression uniaxiale

MEMOIRE DE FIN D'ETUDES

Image 13: latérite provenant de la couche K1C1

Image 14: latérite provenant de la couche K1C2

Image 15: latérite provenant de la couche K1C3

ZOUNGRANA Salomon

Image 16: latérite provenant de la couche K1C4

Image 17: Arrêtes distinctives de K1C3 et K1C4

Image 18: Eprouvettes de (10,20) de 4 et 5 couches

ZOUNGRANA Salomon

Image 19: Fissures

Image 20: Affaissement

Image 21: Ornière

Image 22: Arrachement

Image 23: Nids de poule

Image 24: Epaufrure

Image 25: Ressuage

ZOUNGRANA Salomon

MEMOIRE DE FIN D'ETUDES

Image 26: Tôle ondulée

Image 27: Levée de poussière

Image 28: Nids de poule

Image 29: Ravinement

Image 30: Ornières

Image 31: Bourbier dans les lieux 'affaissement

Image 32: Erosion dans les lieux longitudinaux

MEMOIRE DE FIN D'ETUDES

ZOUNGRANA Salomon