

AUDIT ENERGETIQUE DU SIEGE DE LA SONABEL

A

OUAGADOUGOU

MEMOIRE POUR L'OBTENTION DU DIPLOME D'INGENIEUR 2IE AVEC GRADE DE **MASTER EN GENIE ELECTRIQUE ENERGETIQUE ET INDUSTRIEL**

OPTION: ENERGIE RENOUVELABLE

Présenté et soutenu publiquement le [08 JUILLET 2019] par

FOFANA DGIDE IVONNE (20131317)

Directeur de mémoire : M. Jean Francis SEMPORE, Enseignant à 2IE

Maître de stage : M. Honoré Patrice TOE Expert Agrée près les Cours et Tribunaux du Burkina Faso, Directeur Général de la Société I.C.B.

Structure d'accueil du stage : Ingénierie de Contrôle du Burkina (ICB)

Jury d'évaluation du stage :

Président: Pr. Yésouma COULIBALY

Membres et correcteurs : M.Francis SEMPORE

M. Ibrahim NEYA

Promotion [2018/2019]

DEDICACE

Je dédie ce document :

A mon défunt père, FOFANA K. VICTOR qui n'a ménagé aucun effort quand il s'agissait de la réussite scolaire de ses enfants;

A ma mère, FOFANA COULIBALY A. ALICE pour son amour inconditionnel et son soutien moral;

A mes frères, merci d'être là pour moi;

A tous mes oncles et tantes qui m'ont accompagné durant ma formation;

REMERCIEMENTS

Je tiens à remercier le Directeur Général de la Société d'Ingénierie et de Contrôle du Burkina (I.C.B), Monsieur Honoré Patrice TOE qui a bien voulu me donner cette opportunité d'effectuer ce stage dans sa prestigieuse structure.

Un grand merci à Monsieur Sanari FORO, Directeur Technique I.C.B pour son encadrement inconditionnel et sa grande disponibilité ainsi qu'à Patrick Gildas SALO, techniciens I.C.B avec qui j'ai beaucoup appris et qui n'ont ménagé aucun effort pour répondre à mes interminables questions.

M. Jean Francis SEMPORE, enseignant à 2IE, pour son encadrement, son aide dans la rédaction de ce mémoire.

Je remercie également toute l'équipe de la société I.C.B pour leur soutien et pour la bonne ambiance qui régnait.

Merci à Monsieur Arnaud Charlemagne OUATTARA pour m'avoir trouvé ce stage à I.C.B.

Je dis merci à tout le corps enseignant et le personnel de 2iE pour leur travail abattu tout au long de notre formation.

Je profite pour dire grand merci à toutes mes membres de ma promotion qui ont été de véritables compagnons.

Résumé

Les objectifs de cette étude consistaient à détecter les appareils de faibles performances énergétiques, proposer des solutions d'économies d'énergie, améliorer la fourniture d'électricité en introduisant l'utilisation d'un système photovoltaïque. Elle s'inscrit dans le cadre de la politique de l'Etat du Burkina qui a été mise en place pour la maîtrise de l'énergie qui doit conduire entre autre à une consommation économique et rationnelle de l'énergie électrique dans les bâtiments administratifs.

La suite de l'étude a permis de relever un potentiel d'économie d'énergie qui s'élève à 184 075 kWh par an sur une consommation annuelle de 807 351 kWh, soit une économie de 23 %. Ces économies d'énergie permettent non seulement d'éviter une émission de 165 667 kg CO2 par an, mais permettent aussi d'économiser 20 432 285 FCFA par an avec un temps de retour sur investissement égale à 6.3 ans. Au terme de notre étude nous avons recommandé les actions suivantes : le remplacement des climatiseurs split ordinaires par des split INVERTER et celui des lampes ordinaires par des LED, procéder à l'installation des batteries de condensateurs automatiques triphasées de 75 kVAr pour la compensation automatique de l'énergie réactive de l'immeuble, et enfin installer un système PV relié aux réseaux de 18,56 kWc qui en plus d'économiser l'énergie, il prend en compte l'aspect environnemental et l'alternance énergétique. Cependant la mise en œuvre de ces recommandations nécessite des fonds qui s'élèvent à 129 707 745 CFA.

Mots Clés:

- 1-Audit
- 2-Energie
- 3-Système photovoltaïque
- 4-Efficacité énergétique
- **5-Diagnostics**

ABSTRACT

The objectives of this study were to detect low energy performance devices, offer energy saving solutions, improve the supply of electricity by introducing the use of a photovoltaic system. It is part of the Burkina state policy that has been put in place for the control of energy, which must lead, among other things, to an economic and rational consumption of electrical energy in administrative buildings.

The rest of the study has identified a potential energy savings of 184 075 kWh per year on an annual consumption of 807 351 kWh, a saving of 23%. These energy savings have not only make it possible to avoid an emission of 165 667 kg CO2 per year, but also make it possible to save 20 432 285 FCFA per year with a return on investment equal to 6,3 years. At the end of our study we recommended the following actions: the replacement of ordinary split air conditioners by split inverter and that of ordinary lamps by LEDs, proceed to the installation of three-phase automatic capacitor banks of 75 kVAr for the compensation of the reactive energy of the building automatically, and finally install a PV system connected to 18.56 kWp networks which in addition to saving energy takes into account the environmental aspect and the energy alternation. However, the implementation of these recommendations requires funds amounting to 129 707 745 CFA

Key words:

- 1 -Audit
- 2-Energy
- 3-photovoltaic system
- 4-Energetic efficiency
- 5-Diagnosis

Liste des abréviations

2IE : Institut International d'Ingénierie de l'Eau et de l'Environnement

SONABEL: Société National d'Electricité du Burkina

HPT: Heure de Pointe

HPL: Heure Pleine

ICB: Ingénierie de Control du Burkina

kVA: kilo Volt Ampère

kW: kilo Watt

PV: Photo Voltaïque

RDC: Rez- De-Chosée

TRI: Temps de Retour sur Investissement

TD: Tableau Divisionnaire

TGBT: Tableau General Basse Tension

Table des matières

DEDICACE	i
REMERCIEMENTS	ii
Résumé	iii
LISTES DES TABLEAUX	ix
LISTE DES FIGURES	X
INTRODUCTION	11
CHAPITRE I	13
PRESENTATION DE L'ETUDE ET LA METHODOLOGIE DE L'ETUDE	13
I. PRESENTATION DE L'ETUDE	14
a. CONTEXTE DE L'ETUDE	14
b. PRESENTATION DE LA STRUCTURE D'ACCEUIL	14
c. PRESENTAION DU SIEGE DE LA SONABEL	15
II. METHODOLOGIE DE L'ETUDE ET NORMES	17
a. METHODOLOGIE DE L'ETUDE	17
b. OUTILS DE TRAVAIL	17
c. NORMES APPLICABLES	18
CHAPITRE II	19
ETAT DES LIEUX ET DIAGNOSTIC DES INSTALLATIONS ELECTRIQUES	19
I. Les installations électriques	21
a. Figure synoptique du réseau électrique existant	21
b. Bilan de puissance	22
c. Les sources d'alimentation en énergie électrique	23
d. La filerie et connexes	25
e. L'appareillage	26

II.	DIAGNOSTIC DES INSTALLATIONS ELECTRIQUES ET PROPOSITIO	NS DE
SOL	UTION	27
CHAPI	TRE 3	29
PROPO	OSITIONS D'AMELIORATION ENERGETIQUE DU	29
SIEGE	DE LA SONABEL	29
I. I	Diagnostics des consommations énergétiques	30
a.	Climatisation.	30
b.	Eclairage	31
c.	Appareil de chauffage d'eau (Cafetière)	32
d.	Bureautique1	33
e.	Bureautique 2	34
f.	Ascenseur	34
g.	Divers	35
h.	Bilan énergétique	36
i.	Aspect architecturale	40
II.	. ANALYSE DE LA FACTURATION	41
a.	Fourniture et tarification	41
b.	Analyse de la facture et la facturation	42
c.	Le rapport spécifique	44
III.	Proposition d'économie d'énergie	45
a.	Climatisation	45
b.	Eclairage	47
c.	Installation des batteries de compensation	48
IV.	Proposition d'installation d'un système photovoltaïque raccordé au réseau	49
a.	Généralité sur le système PV réseau	49
b.	Méthodologie employée	50
C.	Dimensionnement du générateur photovoltaïque	51

d.	Production	n énergétiqu	ie mensuelle photovo	oltaïque	54
e.	Economie d	'énergie eng	gendrée par le systèm	e photovoltaïque	55
f.	Système de	monitoring.			56
V.	PROPOSIT	ION DE ME	ESURE DEFFICACI	TE ENERGETIQUE	57
Chapitre	IV				58
EVALUA	ATION	DES	INCIDENCES	ENVIRONNEMENTALE	DES
RECOM	MENDATIO	ONS ET LE	BILAN DES INVES	STISSEMENTS	58
				ENVIRONNEMENTALE	
II.	BILAN DES	S INVESTIS	SSEMENTS		60
CONCLU	USION				61
VI.	BIBLIOGRA	APHIE			62
VII.	ANNEXES.				62

LISTES DES TABLEAUX

Tableau 1 Bilan de puissance	22
Tableau 2 Récapitulatif sur les sources d'alimentations	25
Tableau 3 Appareillage des deux bâtiments	26
Tableau 4 Diagnostic des équipements électriques et proposition de solution	27
Tableau 5 Heure de fonctionnement des équipements électriques	30
Tableau 6 Energie consommée par les climatiseurs	31
Tableau 7 Energie consommée par l'éclairage	32
Tableau 8 Energie consommée par les cafetières	32
Tableau 9 Energie consommée par la bureautique1	33
Tableau 10 Consommation énergétique des onduleurs	34
Tableau 11 Energie consommée pas les ascenseurs	34
Tableau 12 Consommation énergétique des divers	35
Tableau 13 Consommation énergétique annuelle de 8h à 16h	36
Tableau 14 consommation énergétique	39
Tableau 15 Tarification de type E1 non industrielle	41
Tableau 16 Facturation 2018	43
Tableau 17 analyse de la facture d'électricité année 2018	43
Tableau 18 la superficie des différents niveau des deux bâtiments	44
Tableau 19 Coût de l'énergie consommée par les climatiseurs	46
Tableau 20 Energie consommer par les climatiseurs après le remplacement des split ord	inaires
par des split INVERTER	46
Tableau 21 coût de l'énergie consommée par l'éclairage	47
Tableau 22 économie d'énergie réalisée après le replacement des lampes ordinaires	47
Tableau 23 paramètre de calcule de compensation générale	48
Tableau 24 surface disponible	50
Tableau 25 le Rayonnement solaire de la ville de Ouagadougou	51
Tableau 26 production énergétique par mois	55
Tableau 27economie d'énergie réalisée par le système PV	55
Tableau 28 la quantité de CO2 non émise	59
Tableau 29 cout estimatif des solution énergétiques	60

LISTE DES FIGURES

Figure 1 situation géographique du siège de la SONABEL Ouagadougou	16
Figure 3 consommation énergétique annuelle	37
Figure 4 Bilan énergétique	40
Figure 5 facturation 2018	42
Figure 6 repartition du montant de la facturation 2018	44
Figure 7 type de couplage	50
Figure 8 caractéristiques du SOLAR-log	56

INTRODUCTION

Nous sommes dans un monde où les ressources énergétiques deviennent de plus en plus chères, rares et certaines de ces énergies comme les énergies fossiles contribuent aux changements climatiques.

Ces problèmes aussi se font ressentir au Burkina Faso par un taux d'électrification qui n'est que 19%, pour une couverture du territoire national de 34%. Aussi le contraste entre les zones rurales et zones urbaines est très élevé, avec seulement 248 villages électrifiés dont 60 en 2016. Ainsi face à tous ces défis, la SONABEL (la Société Nationale d'Electricité du Burkina) est impuissante face à la demande qui devient de plus en plus élevée qui se manifeste par des coupures d'électricités intempestives. Il faut noter que le secteur de l'énergie au Burkina Faso est caractérisé par une forte dépendance des sources d'énergies fossiles, il est par conséquent nécessaire d'optimiser les consommations énergétiques en utilisant les sources d'énergies disponibles de manière efficiente et d'encourager la valorisation des sources d'énergies renouvelables.

Pour ce faire, pour montrer le bon exemple, il serait mieux de chercher à diminuer les factures électriques de l'Etat.

Ainsi depuis 2000, l'Etat du Burkina a entrepris une ambitieuse politique de maîtrise de l'énergie qui doit conduire entre autre à une consommation économique et rationnelle de l'énergie électrique dans les bâtiments administratifs, c'est ainsi que la SONABEL, qui s'est inscrite dans cette démarche a commandité un audit énergétique de ses propres installations dont son siège de Ouagadougou qui abrite deux bâtiments.

Ainsi pour parvenir à la demande de la SONABEL, un audit énergétique qui vise à identifier les principales sources de consommation d'énergies sera réalisées pour ensuite apporter des solutions pour réduire la facture d'électricité, cependant cette étude a été précédée par un audit électrique qui a permis de faire ressortir les défauts dans les installations électriques. De façon spécifique le travail a pour but de :

- Faire le diagnostic de l'état des lieux des installations électriques.
- Faire un diagnostic de la consommation énergétique (élaborer le bilan énergétique, analyser les factures d'électricité, analyser les résultats fournis par l'analyseur de réseau installé).
- Détecter les appareils de faibles performances énergétiques.

- Proposer des solutions d'économie d'énergie.
- Améliorer la fourniture d'électricité en introduisant l'utilisation des sources d'énergies renouvelables.
- Evaluer les investissements requis pour la mise en œuvre des recommandations.
- Evaluer les économies annuelles d'énergie.
- Analyser la rentabilité des recommandations.
- Evaluer les émissions de Gaz à Effet de Serre (GES) que les mesures retenues permettront d'éviter.

Pour atteindre nos objectifs le travail se déroulera en quatre principales étapes. La première partie concerne la présentation de l'étude et la méthodologie de l'étude. Pour ensuite faire l'état des lieux et élaborer un diagnostic. A la lumière des deux parties, nous allons proposer des solutions pour améliorer la consommation énergétique et enfin faire une évaluation des incidences environnementales des recommandations et le bilan des investissements.

CHAPITRE I

PRESENTATION DE L'ETUDE ET LA METHODOLOGIE DE L'ETUDE

I. PRESENTATION DE L'ETUDE

a. CONTEXTE DE L'ETUDE

Une politique fût mise en place par l'Etat du Burkina Faso en 2000, qui vise la maîtrise de l'énergie qui doit conduire à la consommation économique et rationnelle de l'énergie électrique dans les bâtiments administratifs. C'est dans cette optique que notre étude vise à optimiser la consommation énergétique des deux bâtiments du siège de la SONABEL.

b. PRESENTATION DE LA STRUCTURE D'ACCEUIL

La Société d'Ingénierie et de Contrôle du Burkina (I.C.B) est une Société à Responsabilité Limitée (SARL) de droit burkinabé au capital de 2 000 000 FCFA, créée en 1996 et dont le siège social est à Ouagadougou, en plein centre-ville. I.C.B Sarl est un cabinet d'ingénierie avec quatre principaux domaines d'intervention à savoir :

- l'Ingénierie-conseil pour la maîtrise d'œuvre de nouveaux projets industriels ou pour réorganiser des unités existantes ;
- le contrôle technique ;
- le conseil en maintenance et sécurité incendie ;
- l'expertise, et la formation.

La société I.C.B est aujourd'hui connue sur le plan national et sous régional pour son expertise très éprouvée. I.C.B intervient dans les secteurs suivants :

- L'Industrie
- La sécurité incendie
- Le Bâtiment et les Travaux publics
- L'Hydraulique
- Les biens de consommations
- La formation technique

En matière d'Ingénierie, I.C.B possède toutes les compétences nécessaires pour fournir des prestations qui s'étendent à toutes les phases du cycle des projets. L'expertise d'I.C. B en maintenance porte surtout sur le conseil. En effet, l'insuffisance de maintenance dans nos industries sous régionales est très grave et entraine de nombreuses conséquences en terme de productivité, de coût de production, d'énergie, etc. D'où la justification du conseil en maintenance.

La société possède une longue expérience en matière de contrôle technique permettant de conduire l'ensemble des opérations de vérification d'un équipement technique, d'une installation (ensemble d'équipements) ou d'un chantier afin de s'assurer de leur conformité aux normes réglementaires. Tous ces contrôles se font sur la base des normes internationales dites ISO (International Standard Organization), à moins que des normes nationales ne comportent des dispositions meilleures par rapport à celles-ci. La société réalise trois types d'Expertises : l'expertise judiciaire, l'expertise d'assurances et l'analyse des risques en amont ou en aval d'un sinistre et l'évaluation de patrimoine. I.C.B dispose d'un personnel permanant comprenant plusieurs cadres (Ingénieurs et techniciens multidisciplinaires) qui interviennent dans tous ses domaines principaux d'intervention. Ce personnel permanent est appuyé par un réseau d'experts indépendants spécialisés dans divers domaines comme le froid et la climatisation, l'environnement, la gestion et les finances, la sociologie etc. Enfin, I.C.B est équipé de moyens modernes informatiques, logistiques et de communications (Internet haut débit) ainsi que des équipements techniques lui permettant de réaliser aisément toutes ses missions.

Les principaux clients de I.C.B sont : SONABEL, UEMOA, les compagnies d'assurances, Vivo Energy et les promoteurs industriels.

c. PRESENTAION DU SIEGE DE LA SONABEL

La Société Nationale d'électricité du Burkina (SONABEL) est un acteur incontournable du service de l'électricité au Burkina c'est une Société d'Etat depuis le 14 avril 1995. Son capital qui était de 46 milliards de francs CFA est passé à 63 308 270 000 de francs CFA depuis le 15 juillet 2013. Ses principales activités sont la production, l'importation, le transport et la distribution de l'énergie électrique sur toute l'étendue du territoire du Burkina Faso sa direction générale (siège social) est installée à Ouagadougou, à l'adresse 55, Avenue de la Nation, au côté Est de la place de la Nation et à 50 m de l'institut français Georges Méliès du Burkina et se trouve au côté ouest de l'hôtel RAN SOMKETA Ouagadougou, elle fait plus précisément face au côte nord L'état-major générale de l'armée du Burkina. Pour plus de précision les

coordonnées GPS du siège social sont 12°22′13.39″N 01°31′35.7″W. Le siège social de la SONABEL est constitué de deux bâtiments, un nouveau bâtiment et un ancien bâtiment avec les niveaux respectifs R+5 et R+3 se faisant face chacun dont les entrées principales sont orientées vers l'ouest.

Dans cette zone existe de grands arbres qui entrainent un bon confort, les ouvertures sont bien orientées et ont tous des rideaux (les fenêtres), elles font face au sud et au nord.

Figure 1 situation géographique du siège de la SONABEL Ouagadougou

Ces deux bâtiments regroupent les Directions Centrales et les Départements ci-après :

- Direction des Etudes, de la Planification et de l'Equipement (DEPE);
- Direction du Transport (DT);
- Direction Commerciale et de la Clientèle(DCC);
- Direction de la Production(DP);
- Direction de la Distribution(DD);
- Direction des Finances et de la Comptabilité(DFC);
- Direction des Marchés et du Patrimoine (DMP) ;
- Direction des Ressources Humaines (DRH) ;
- Département Normalisation Environnement Sécurité (DNES) ;

FOFANA Dgide Ivonne [2018/2019] Mémoire de fin de cycle-Master Génie Energétique 16

- Département Audit et Contrôle de Gestion (DACG) ;

- Département de la Communication, des Archives et de la Documentation (DCAD) ;

- Département Informatique (DI) ;

Département Juridique et du Contentieux (DJC).

II. METHODOLOGIE DE L'ETUDE ET NORMES

a. METHODOLOGIE DE L'ETUDE

Pour mener à bien le travail notre méthodologie était basée sur ces déférentes étapes :

- Préparation et recherche documentaire :

Il s'agit de prendre connaissance de tous documents permettant de mener à bien l'étude.

Un audit électrique était réalisé, l'analyse de ce document était important

Collecte des données sur site :

L'Objectif de cette partie était d'approfondir les informations reçues grâce à l'audit électriques qui sont, les appareils électriques qui se trouvent dans chaque locale et enfin évaluer leurs temps de fonctionnement.

- Analyse des données collectées et proposition des solutions :

Après la collecte de données il faut les analyser, traiter, interpréter. Tout ceci a permis par la suite de déterminer les insuffisances pour enfin proposer des solutions visant à améliorer la consommation énergétique du siège de la SONABEL.

b. OUTILS DE TRAVAIL

Pour mener à bien le travail nous avons eu à utiliser certains appareils de mesures et des logiciels :

-Analyseur de réseau : analyse de paramètres électriques du réseau électrique

-Multimètre : pour la mesure des tensions d'intensités de résistances

-Excel : calcul des données

-Auto-CAD: pour la réalisation des plans électriques d'un bâtiment

-RETScreen: Pour évaluer les rayonnements solaires

c. NORMES APPLICABLES

L'étude a été réalisée en respectant des normes internationales européennes en la matière et à la règlementation au Burkina Faso. Ces référentiels sont :

- la norme C13-100 relative au poste de livraison établie à l'intérieur d'un
- bâtiment et alimenté par un réseau de distribution publique de 2ème catégorie ;
- la norme C15-100 traitant de l'exécution et de l'entretien des installations électriques Basse-Tension;
- la norme C15-102 portant sur les règles de protection contre la foudre et paratonnerre ;
- la norme C15-401 relative aux installations des groupes moteurs thermiques générateurs
- la norme C15-520 concernant les canalisations et leurs modes de pose et connexion ;
- la norme C15-531 portant sur les règles de protections contre les surtensions d'origines atmosphériques par parafoudre ;
- les prescriptions des constructeurs du matériel à installer ;
- les prescriptions du distributeur d'énergie électrique « SONABEL ».

CHAPITRE II

ETAT DES LIEUX ET DIAGNOSTIC DES INSTALLATIONS
ELECTRIQUES

Audit énergétique du S	Audit énergétique du Siège de la SONABEL à Ouagadougou		
FOFANA Dgide Ivonne [2018/2019]	Mémoire de fin de cycle-Master Génie Energétique 20		

Pour réaliser un audit énergétique d'un bâtiment, il faut chercher à recenser tous les équipements électriques qui existent dans le bâtiment. Cette partie de l'étude sera consacrée à l'analyse de l'existant.

- I. Les installations électriques
- a. Figure synoptique du réseau électrique existant

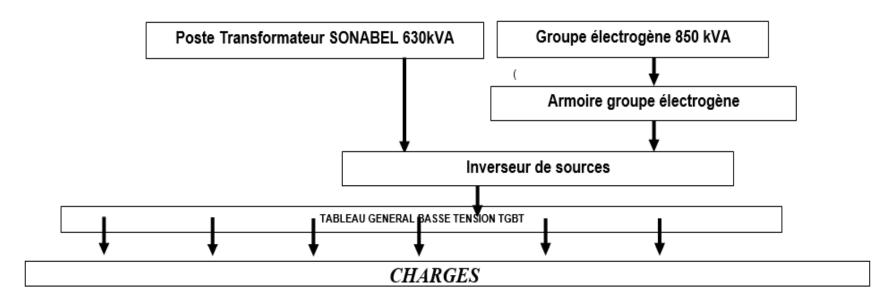


Figure 2 tableau synoptique du réseau électrique SONABEL

b. Bilan de puissance

Le bilan de puissance du siège de la SONABEL est récapitulé dans le tableau ci-après (voir ANNEXE I pour plus de détails). La puissance totale installée est estimée 419, 37 kW, cette puissance totale est y compris une extension de 20%.

Tableau 1 Bilan de puissance

STRUCTURES	DSIGNATION DES TABLEAUX ELCTRIQUES	PUISSANCE FOISONNEES (W)	COSρ	PUISSANCE APPARENTE S (kVA)	Tangρ	PUISSANCE REACTIVE Q (kVAr)
	TD RDC	29 577				
	TD R+1	28 061			0,36	
R+3	TD R+2	21 817		446,14		151,69
	TD R+3	22 257				
	TGBT S ANC BAT	101 711	0,94			
	TD RDC	57 762				
	TD R+1	49 472				
	TD R+2	29 072				
R+5	TD R+3	32 894				
	TD R+4	45 446				
	TD R+5	5 746				
	TGBT S NOUV BAT	220 393				
Ascenseur	TD ASC	23 542				
Onduleur	TP OND	73 728				
	TGBT Général	419 374				

c. Les sources d'alimentation en énergie électrique

La source principale

Les deux bâtiments sont alimentés par le réseau public de la SONABEL à travers un transformateur de 630 kVA, ce qui veut dire que la source principale est le réseau SONABEL.

Le transformateur n'est pas en surcharge, l'analyse des factures d'électricités des deux (02) dernières années a donné une puissance maximum de 388 kW (juin 2016) soit 517 kVA.

L'analyseur de réseau a permis de relever les différents paramètres électriques du réseau sur une période allant du 15au 18 octobre 2018.

L'analyseur de réseaux électriques est triphasé à affichage graphique couleur et à batterie rechargeable intégrée.

Il permet:

- De mesurer des valeurs efficaces, des puissances et des perturbations des réseaux de distribution d'électricité.
- D'obtenir une image instantanée des principaux caractéristiques d'un réseau triphasé.
- De suivre les variations des différents paramètres dans le temps.

Cet appareil est conforme à la norme de sécurité IEC 61010-2-030, les cordons sont conformes à l'IEC 61010-031 et les capteurs de courant sont conformes à l'IEC 61010-2-032, pour des tensions jusqu'à 600 V en catégorie IV ou 1 000 V en catégorie III.

Il a été branché au tableau général basse tension(TGBT) qui se trouve dans le local technique

• Données de l'analyse

- Les tensions composées U (V)

	U1	U2	U3
MOYENNE en V	414,5	415,5	413,3
MAXIMUM en V	433	434	430

La tension composée (400) varie entre 413,3 V et 434 V soit 3,32% et 8,5% ce qui entre dans la marge de tolérance des variations de tensions imposées par les fournisseurs d'électricité dont les tolérances varient autour de -10% et + 10%. Ce qui est acceptable.

La fréquence (Hz)

	F
MINIMUM en Hz	49,6
MOYENNE en Hz	50,1
MAXIMUM en Hz	50,81

La fréquence varie dans l'ordre de -0,8% et +1,62 %. Cette variation ne respecte pas la gamme de tolérance +/- 1%.

- Le facteur de puissance cosp

	Cosp
MINIMUM	0,663
MOYEN	0,938
MAXIMUM	0,976

Le facteur de puissance donne une valeur minimale de 0,58, une moyenne de 0,929 et une valeur maximale de 0,98. Elle peut être améliorée par l'installation des batteries de compensation.

• La source de secours

En cas de défaillance de la source principale, les bâtiments sont alimentés par un (01) groupe électrogène de secours automatique de 850 kVA de marque SDMO.

Le groupe est en bon état, l'inversion de sources se fait automatiquement. Il n'est pas en surcharge.

La puissance apparente se calcule comme suit :

$$S = \frac{Pp(kW)}{cos\rho*Ke} \text{ (kVA)}$$

Tableau 2 Récapitulatif sur les sources d'alimentations

	Dimensionnement				Puissance de	
Désignation de l'équipement	Puissance maximum enregistrée (kW)	Coefficient d'exploitation	cosp	S (kVA) calculée	la source installée (kVA)	Observations
Transformateur	388	0,8	0,938	517	630	Conforme
Groupe électrogène	388	0,9	0,938	460	850	Conforme

d. La filerie et connexes

La filerie utilisée se compose principalement :

- De fils rigides de 1.5mm² à 4mm² pour les installations intérieures, ils sont posés dans des tubes en mode encastrés dans les murs et dans les plafonds.
- De câbles, qui sont généralement enterrés avec des tubes PVC ou posés en apparent sur des chemins de câbles ou dans des goulottes.
- De boîtes de raccordement et des accessoires de raccordement.

Les canalisations électriques ont été réalisées il y a plus de 20 ans.

e. L'appareillage

Tableau 3 Appareillage des deux bâtiments

DESIGNATION	OBSERVATION
CLIMATISEUR	160 climatiseurs. On a :
	- Des split
	- Climatiseur armoire
	- Climatiseur fenêtre
ECLAIRAGE	Certains de ces climatiseurs sont en mauvais état 568 luminaires de tous types confondus
ECLARAGE	306 idifilialies de tous types comondus
	- LED
	- Réglette duo
	- Réglette mono
	Des luminaires en mauvais état avec des bureau mal éclaires
	avec l'éclairement qui n'atteint pas 300 lux
ASCENSEUR	2 ascenseurs au total, qui fonctionnent normalement
BUREAUTIQUE 1	Nous avons entre autre :
	1 10 40 41 5.42 5.42 5
	-Des imprimantes
	- Des photocopieuses
	- Des ordinateurs portables
	- des vidéos projecteurs
	Cela nous ramène à 150 au total
BUREAUTIQUE 2	2 onduleurs de 60 KVA chacun qui alimentent le circuit
	onduleux
APPAREIL DE CHAUFFAGE	24 cafetières en somme
D'EAU (CAFETIERE)	Des cafetières énergivores
DIVERS	53 autres équipements qui sont entre autres
	- Des réfrigérateurs
	- Téléviseurs
	- Brasseurs

II. DIAGNOSTIC DES INSTALLATIONS ELECTRIQUES ET PROPOSITIONS DE SOLUTION

Le tableau ci-dessous est un état récapitulatif du diagnostic des installations électriques et des solutions préconisées pour leur mise aux normes.

Tableau 4 Diagnostic des équipements électriques et proposition de solution

DISIGNATION	INSUFFISANCE MAJEURES CONSTATEES	SOLUTIONS PRECONISEES	REFFERENCES
			NORMATIVE
Poste transformateur	Les principales anomalies relevées dans le poste sont : - Manque d'entretien (Equipements poussiéreux, toiles d'araignées, trace d'huile sur la partie supérieure du transformateur, etc.) - Bruit normal du transformateur.	- Faire un entretien général du poste (dépoussiérer, nettoyer, enlever les traces d'huile, vérifier tous les serrages, etc.). Effectuer une maintenance périodique du poste.	NF C 13-100
Groupe électrogène	Pas d'anomalies à relever sur le groupe électrogène, il est en bon état.		
Canalisations électriques et connexes	Les principales anomalies relevées sur les canalisations électriques sont : - Les mauvaises conditions de pose et la vétusté (plus de 20 ans) du câble d'alimentation de l'Ancien Bâtiment	 Remplacer le câble d'alimentation de l'Ancien Bâtiment Remplacer les trois (03) câbles qui alimentent le nouveau bâtiment 	NF C C15-100

	- Echauffement de certains câbles (ascenseur, Archive au R5, etc.)
Appareillage électrique	 Sur les 568 luminaires inventoriés 521 sont en bon état et 47 en mauvais état soit un taux de défaillance de 11.085%. 329 luminaires ne sont pas en LED. Le rhéostat d'un brasseur d'air de la salle d'attente au RDC du Nouveau Bâtiment est en mauvais état Sur les 160 climatiseurs recensés 156 sont en bon état et 4 en mauvais état. Certains climatiseurs sont de l'ancienne génération, énergivore (21 climatiseurs de type fenêtre). Les climatiseurs manquent d'entretien Le réseau d'éclairage de sécurité est insuffisant et n'est pas fonctionnel dans les deux (02) immeubles Plusieurs bureaux sont mal éclairés (Standard (52 Lux), Bureau DMP (125 Lux), Secrion Commande (109 Lux), Chef département suivi projet (108 lux), Bureau infirmier (152 lux), Secrétariat informatique (117 lux), etc.). L'éclairement recommandé dans les bureaux est 500 Lux. Faire un entretien général des appareils défectueux, ou vétustes. Remplacer ou réparer tous les appareils défectueux, ou vétustes. Remplacer ou réparer tous les appareils défectueux, ou vétustes. Activités de la nouvelle génération disposant d'un Coefficient de Performance supérieur à 3. NF C C15-100

CHAPITRE 3

PROPOSITIONS D'AMELIORATION ENERGETIQUE DU

SIEGE DE LA SONABEL

I. Diagnostics des consommations énergétiques

Pour vouloir diminuer la consommation énergétique du siège, ce qui va entrainer réduction de la facture d'électricité. Il faut commencer à faire le bilan énergétique pour ensuite détecter les équipements électriques qui ont une faible performance énergétique.

Le bilan énergétique est plus précis quand les heures de fonctionnement des équipements sont bien définies. Le plus grand défi de cette partie était de pouvoir définir avec exactitude les temps d'utilisation des équipements, car les occupants des bureaux avaient du mal à définir le temps de fonctionnement des appareils ou certains bureaux étaient carrément fermés.

La SONABEL est un bâtiment administratif qui ouvre de 8h à 16h avec une pause allant de 12h à 13h; sur ces faits nous avons défini un temps de fonctionnement en fonction du type d'appareil. Par la suite appliquer des coefficients pour se rapprocher des données (énergie) qu'a fournie l'analyseur de réseau.

Tableau 5 Heure de fonctionnement des équipements électriques

Equipoment	Tei	mps de marc	the par jour	Temps cumulé
Equipement	Nov/Févr. (1)	Mars/Juin (2)	Juil./Oct. (3)	en (h) par an (4)
Climatiseurs	4	8	6,8	1578
Brasseurs	2	5	4	925
Photocopieurs	3	3	3	750
Eclairage intérieur (bureaux)	8	8	8	2000
Matériel Informatique	3	3	3	750
Divers	6	6	6	1500
Heures de fo	nctionnemen	8h-12h/	13h-16h	
Heure	de pointe (H	10h-	-14h	
Heur	e pleine (HP	8h-10h/	14h-16h	

a. Climatisation

Un bon nombre des locaux des deux bâtiments sont équipés de climatiseurs de types armoires, split et fenêtres. La température de réglage des climatiseurs varie autour de 18° C, ce qui est une température basse. Sachant que la température externe au Burkina Faso peut atteindre les 41° C, et avec une telle température de consigne la différence de température(Δt) est importante ; qui dit une différence de température élevée dit alors une puissance frigorifique (Pf=f(Δt)) importante.

Comme recommandations:

- ✓ Régler la température de consigne à 25°C. Avec cette température non seulement le confort thermique est assuré mais aussi le travail du compresseur du climatiseur ne sera réduit.
- ✓ La puissance électrique des climatiseurs varie de 1.5 Ch à 3 Ch; ainsi donc pour les locaux occupant peu d'individus (maximum 3 personnes) et ayant une superficie restreinte il serait judicieux d'installer des climatiseurs avec une puissance max de 2 Ch quel que soit l'occupant du local (quand il s'agit de petite superficie).
- ✓ Certains climatiseurs sont de l'ancienne génération, énergivore. Comme recommandation, installer des climatiseurs inventeurs.

Tableau 6 Energie consommée par les climatiseurs

RECAPITULATIF					
Désignation	Quantité	Puissance	Puissance total (W)	Energie(kWh)	
climatiseur					
armoire	7	7600(W)/4380(W)	43 540,00	130	
climatiseur split	120	1,5(Ch)/2(Ch)/ 3(Ch)	180 536,00	552	
climatiseur fenêtre	23	2(Ch)/3(Ch)/3,5(Ch)	35 768,00	148	
	830				
	NOV-FEV (kWh)				
	140 849				
	105 637				
	Д	NNUELLE (kWh)		312 768	

b. Eclairage

L'éclairage est constitué des spots des globes et des lampes de types réglettes à LED et à tubes fluorescents de 1.2 et 0.6 m. l'éclairage des deux bâtiments (les bureaux) dépend du comportement des usagers. Nous avons fini par considérer que le temps de marche de l'éclairage des locaux est fonction de leur temps d'occupation, pour ce faire nous avons pris 8h de fonctionnement allant de 8h à 16h.

Comme recommandations:

- ✓ Remplacer les réglettes ordinaires par des LED
- ✓ Eteindre les luminaires quand les locaux ne sont pas occupés

Tableau 7 Energie consommée par l'éclairage

	RECAPITULATIF				
Designation	QTE	Puissance U(W)	Puissance total (W)	Energie(Wh)	
Designation		, ,			
Globe	69	40	2760	17 496,00	
Reglette					
mono 1,20 m	30	45	1350	6 804,00	
Reglette duo					
1,20m	175	90	15750	110 808,00	
Reglette					
mono 0,6m	23	27	621	3 888,00	
Reglette duo					
0,6m	25	54	1350	9 136,80	
LED duo					
1,20m	155	30	4650	33 480,00	
led duo 0,6m	46	18	828	5 961,60	
LED mono					
1,20m	15	15	225	1 620,00	
led mono					
0,6m	23	9	207	1 344,60	
spot	7	15	105	756,00	
Eclairage					
externe	112	_	3150	50 400,00	
	241 695,00				
	ENERGIE JOURNALIERE /Wh NOV-FEV /Wh				
	MARS-JUIN /Wh				
	MARS-JUIN /Wh 20 785 770 JUIL-OCT /Wh 21 752 550				
	ANNUELLE /Wh 63 565 785,0				

c. Appareil de chauffage d'eau (Cafetière)

Les cafetières sont utilisées pour chauffer de l'eau pour la consommation, cependant la puissance de certaines cafetières sont trop élevées (1000-1500 W).

Comme recommandations:

Utiliser de cafetières de la nouvelle génération économique, qui ont une faible puissance.

Tableau 8 Energie consommée par les cafetières

RECAPITULATIF					
Désignation	Quantité	Puissance (W)	Puissance total (W)	Energie(kWh)	
Cafetière	24	1000/1500	I		40
		40			
		3 412			
		6 747			

JUIL-OCT (kWh)	6 001
ANNUELLE (kWh)	16 161

d. Bureautique1

La bureautique est constituée principalement de :

- Photocopieuse
- -D'ordinateur portable
- -Chaque bureau a son imprimante
- -Compteuse scanneur
- -Tactilographe
- -Vidéo projecteur

Les détails sur les équipements se trouvent dans le tableau ci-dessous

Comme recommandations:

✓ Installer des imprimantes par niveau au lieu d'en avoir dans chaque bureau. Cela va en diminuer le nombre d'où la réduction de la consommation énergétique, cependant chaque guichet peut avoir son imprimante.

Tableau 9 Energie consommée par la bureautique l

	RECAPITULATIF					
			Puissance total			
Désignation	Quantité	Puissance (W)	(W)	Energie(kWh)		
photocopieur	10	1196W/1150W/	10120	18,19		
ordinateur						
portable	14	75W/ 80W/	1130	2, 53		
imprimante	118	310W/805W/	85119,9	196, 65		
compteuse	1	40W	40	0,140		
scanneur	3	345W/690W	1725	3,62		
Tactilograph	1	50W	50	0,07		
vidéo						
projecteur	3	229W/667W	1633	4, 57		
	ENERGIE JOURNALIERE (kWh)					
	18 061, 92					
	19 190, 78					
	19 190, 78					
	ANNUELLE (kWh) 56 4					

e. Bureautique 2

Il s'agit des deux onduleurs, qui constituent une source d'énergie pour les circuits ondulés et assurent la continuité pendant le temps de mise en marche du groupe électrogène quand il y'a coupure d'électricité. Le tableau ci-dessous montre, l'énergie calculée est celle consommée par les onduleurs lors et après les heures de service (confère annexe II). Le circuit ondulé est l'ensemble de :

-Des Serveurs

-Des ordinateurs fixes

Tableau 10 Consommation énergétique des onduleurs

	RECAPITULATIF					
Désignation	QTE	Puissance (W)	Puissance total (W)	Energie(kWh)		
Bureautique 2	2	48 000	96 000,00	460,80		
Bureautique 2						
fonctionnant de						
16h à 8h	2	48 000	96 000,00	307, 20		
	768					
	92 160					
	93 696					
	94 464					
	280 320					

f. Ascenseur

Les ascenseurs permettent aux individus d'accéder facilement et rapidement aux différents niveaux du nouveau bâtiment, les ascenseurs fonctionnent normalement, pas de défaut constaté.

Tableau 11 Energie consommée pas les ascenseurs

RECAPITULATIF					
Désignation	Désignation Quantité Puissance (W) Puissance total (W)				
Ascenseur	2	7 500,00	15 000,00	36	
	36				
	2 880				
	6 120				
	4 590				
	13 590				

g. Divers

Nous avons:

- ✓ Téléviseurs
- ✓ Réfrigérateurs
- ✓ Boomer
- ✓ Stérilisateur
- ✓ Radiologie

Pas de recommandation à faire tous les équipements fonctionnent normalement sans défaut.

Tableau 12 Consommation énergétique des divers

	RECAPITULATIF				
Désignation	Quantité	Puissance	Puissance total (W)	Energie(kWh)	
brasseur	1	50W	50	0,14	
Extracteur	18	85/70/40 W	130	3,35	
téléviseur	14	110W/99W	16163	3,09	
réfrigérateur	16	163W/253W/	3105,9	18,15	
Boomer	1	18W	18	0,03	
stérilisateur	1	950	950	2,85	
congélateur	3	144W/152W/	448	2,69	
fontaine d'eau	1	550W	550	0,83	
Radiologie	1	100W	100	0,150	
	ENERGIE J	OURNALIERE (kv	Vh)	31,27	
	2 720, 06				
	2 688,79				
JUIL-OCT (kWh)				2 813,85	
	INA	NUELLE (kWh)		8 222,70	

h. Bilan énergétique

Cette partie constitue la synthèse des consommations énergétique des eux immeubles

Tableau 13 Consommation énergétique annuelle de 8h à 16h

DESIGNATION	consommation journalière(Wh) de 8h à	CONSOMINATION ENERGETIQUE / de on a fun (vvn)			ANNEE (Wh)
	16h	Nov-Févr. (1)	Mars-Juin (2)	Juil-Oct. (3)	
CLIMATISEUR	790 378,24	68 762 906,88	135 945 057,28	120 927 870,72	325 635 834,88
ECLAIRAGE	191 295,00	16 642 665,00	16 451 370,00	17 216 550,00	50 310 585,00
ASCENSEUR	36 000,00	3 132 000,00	3 096 000,00	3 240 000,00	9 468 000,00
Appareil de chauffage					
d'eau (CAFETIERE)	39 225,00	3 412 575,00	3 373 350,00	3 530 250,00	10 316 175,00
BUREAUTIQUE1	225 773,94	19 642 332,78	19 416 558,84	20 319 654,60	59 378 546,22
BUREAUTIQUE 2	460 800,00	55 296 000,00	56 217 600,00	56 678 400,00	168 192 000,00
DIVERS	31 265,00	2 720 055,00	2 688 790,00	2 813 850,00	8 222 695,00
TOTAL	1 768 872,31				631 523 836,10

Ces valeurs sont des estimations car :

Les temps de fonctionnement de différents équipements ont été à partir des informations reçues, Certains bureaux étaient fermés lors de la collecte des données. Cependant avec les informations obtenues grâce à l'analyseur de réseau, nous avons pu approcher la valeur réelle de la consommation journalière. Nous sommes parties de l'énergie consommée durant une journée de 8h à 16h (l'heur pendant laquelle les bureaux sont ouvrables) pour détermine l'énergie consommée annuellement.

Les informations enregistrées par l'analyseur de réseau comme, l'énergie consommée (Eréelle) dans la journée du 16 octobre 2018 de 8h à 16h est de :

Eréelle(8h-16h) = 1 664 757,966 Wh

L'énergie journalière consommée de 8h à 16h calculer (Eth.) est :

Eth(8h-16h) = 1768 872 Wh

On peut constater que la valeur théorique est proche de la valeur réelle (avec un ratio de 1.06).

Cette énergie théorique de la consommation énergétique de 8h à 16h ne suffit pas d'élaborer un bilan énergétique annuelle précis, pour ce faire il faudra considérer une consommation énergétique journalière sur 24h.

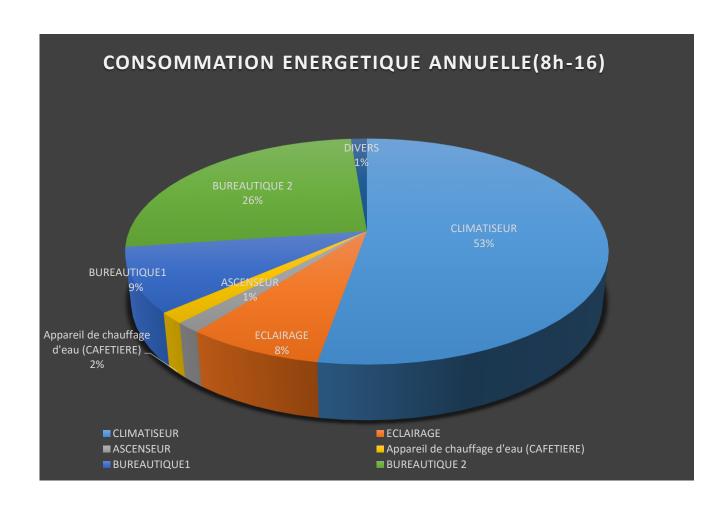


Figure 2 consommation énergétique annuelle

Selon le graphe ci-dessus nous constatons que la climatisation est la première source de consommation d'énergie qui pèse sur la facture énergétique avec une part de 53%.

Pour voir la facture d'électricité réduire considérablement il faut faudra trouver des solutions pour amener les climatiseurs à consommer moins en énergie tout en respectant le confort thermique des individus.

Le tableau ci-dessous constitue la consommation énergétique journalière des deux bâtiments au cour de 24h, cette consommation diffère de la consommation énergétique journalière de 8h à 16h à cause de la présence de l'onduleur qui fonction 24h sur 24h et du fonctionnement de certains luminaires dans la nuit. La consommation énergétique annuelle obtenue est de 756 907,04 kWh, cette valeur nous permettra de faire des rapprochements avec la facturation.

Tableau 14 consommation énergétique

DESIGNATION	consommation	CONSOMMATION ENERGETIQUE / journalière (Wh) /24h			ANNEE (Wh)
	journalière(Wh) /24 h	Nov-Févr. (1)	Mars-Juin (2)	Juil-Oct. (3)	
CLIMATISEUR	790 378,24	68 762 906,88	135 945 057,28	120 927 870,72	325 635 834,88
ECLAIRAGE	191 295,00	16 642 665,00	16 451 370,00	17 216 550,00	50 310 585,00
ECLAIRAGE EXTERNE	50 400,00	4 384 800,00	4 334 400,00	4 536 000,00	13 255 200,00
ASCENSEUR	36 000,00	3 132 000,00	3 096 000,00	3 240 000,00	9 468 000,00
Appareil de					
chauffage					
d'eau(CAFETIERE)	39 225,00	3 412 575,00	3 373 350,00	3 530 250,00	10 316 175,00
BUREAUTIQUE 1	225 773,94	19 642 332,78	19 416 558,84	20 319 654,60	59 378 546,22
BUREAUTIQUE 2	768 000,00	92 160 000,00	93 696 000,00	94 464 000,00	280 320 000,00
DIVERS	31 265,00	2 720 055,00	2 688 790,00	2 813 850,00	8 222 695,00
TOTAL	2 132 337,18				756 907 036,10

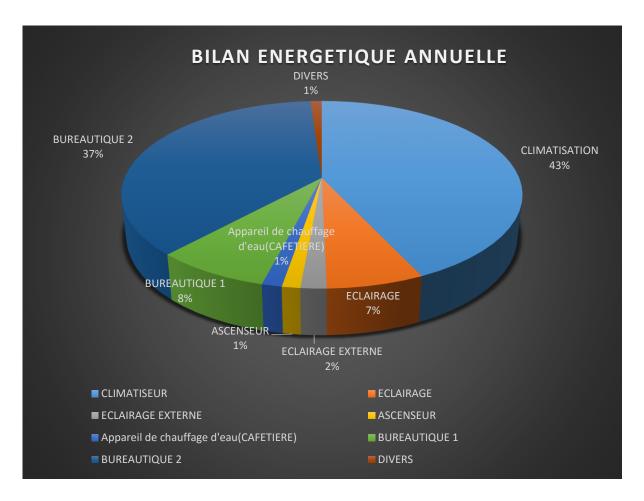


Figure 3 Bilan énergétique

Selon le graphique ci-dessus nous constatons que la principale source de consommation d'énergie est le poste climatisation avec une part de 43% suivit de celui de la bureautique2

i. Aspect architecturale

L'aspect architectural d'un bâtiment a une influence considérable sur sa consommation d'énergie. En effet dans l'orientation des bâtiments, on doit éviter que les ouvertures soient exposées directement aux rayons solaires.

Les deux bâtiments ont leurs façades principales orientés vers le Nord/Sud. Les portes et les fenêtres sont bien protégées des rayons solaires grâce au style architectural et les rideaux utilisés.

La couleur des parois contribue à une efficacité électrique de l'éclairage. Ainsi le fait que les parois sont peintes en couleur claire, les bureaux sont bien éclairés a des heures données juste avec le rayonnement du soleil. Cela est favorable aux économies d'énergie car certains luminaires peuvent être éteindre à des heures de la journée.

FOFANA Dgide Ivonne [2018/2019] Mémoire de fin de cycle-Master Génie Energétique 40

Les bâtiments sont bien orientés par rapport à l'ensoleillement. Pour cela il n'y a donc pas de disposition particulière à prendre au niveau des portes et fenêtres, comme la pose de film solaire ou de brise-soleil.

ANALYSE DE LA FACTURATION 11.

Cette partie a pour objectif d'analyser le type d'abonnement, comprendre la tarification et pour ensuite déterminer le cout moyen du kWh, ce qui sera important pour la suite de l'étude.

a. Fourniture et tarification

• Fourniture en énergie électrique

Le comptage est assuré par un compteur de type E1 non industriel moyenne tension (MT)

La puissance maximum enregistrée est de 388kW (juin 2018)

• Tarification de l'énergie électrique

L'énergie électrique est facturée en fonction :

- -Un prix proportionnel par kWh effectivement consommée
- -Une prime fixe annuelle payable par mensualité
- -Une majoration pour dépassement éventuel de la puissance souscrite
- -Une majoration éventuelle pour production d'énergie réactive ($\cos \rho$)
- -Une majoration cote BT du transformateur s'il en existe
- -Une pénalité éventuelle pour garantie de consommation non atteinte
- -Les frais de location et d'entretien du système de comptage
- -Les taxes (Dev, audio-visuel, Electrification TVA)

L'abonné est soumis à une tarification de type E1 non industriel (double tarif)

Tableau 15 Tarification de type E1 non industrielle

Type de tarification	Tarif HPT	Tarif HPL	Prime fixe annuelle	
	FCFA/ kWh	FCFA / kWh	FCFA/kW / AN	
E1	139	64	70 826	

b. Analyse de la facture et la facturation

Analyse de la facture

Selon le graphique ci-dessous on peut constater que l'énergie maximum est consommée dans le mois de décembre. Selon le tableau ci-dessous l'horaire du mois de décembre fait 1085 h, Cela est dû au fait que l'index du compteur n'a pas été relevé tôt car l'heure maximale qu'on peut obtenir dans un mois est 744 h.

Après le mois de décembre les mois de février à avril constituent les mois pendant lesquels la consommation énergétique est importante, cela se justifie par le fait que ces mois sont caractérisés par une période de chaleur ce qui va entrainer l'utilisation importante des climatiseurs

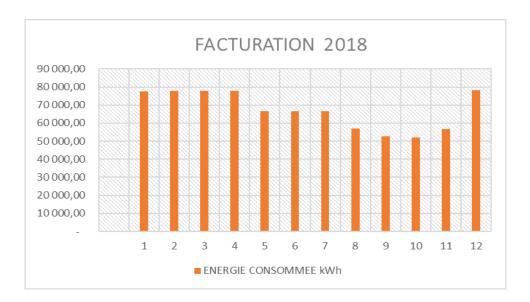


Figure 4 facturation 2018

Tableau 16 Facturation 2018

PERIOD	ANNEL	MAXIEUR(kVy)	HORAIRE	ENERGIE kWh
1	2018	350	564	77 659,00
2	2018	250	569	77 911,00
3	2018	250	569	77 911,00
4	2018	250	569	77 911,00
5	2018	309	694	66 541,00
6	2018	309	694	66 541,00
7	2018	309	694	66 541,00
8	2018	247	566	56 971,00
9	2018	226	906	52 782,00
10	2018	235	688	51 940,00
11	2018	292	681	56 508,00
12	2018	358	1085	78 135,00
	ENERGIE T	OTAL		807 351,00

> Facturation

L'analyse des factures d'électricité de la SONABEL de l'année 2018 (12 mois), nous donne un coût moyen du kWh d'énergie est 111 FCFA. Ce qui est une très bonne moyenne, car il est d'environ 120 FCFA dans l'administration générale.

Selon le tableau ci-dessous on constate que l'énergie annuelle consommée est égale à 807 351 kWh, l'énergie théorique annuelle déterminée est égale à 756 907,04 kWh (avec un ratio de 1.07). Cette différence est due au fait que les occupants des locaux ne maitrisent pas le temps de fonctionnement des équipements pour nous informer avec exactitudes.

Tableau 17 analyse de la facture d'électricité année 2018

	Unité	abonnement
type d'abonnement	_	E1
tarif HPT	FCFA	139,00
tarif HPL	FCFA	64,00
Prime fixe	FCFA/kW /AN	70 826,00
Energie consommée HPT/12 mois	kWh	345 212,00
Energie consommée HPL /12 mois	kWh	462 139,00
Energie totale consommée/ 12mois	kWh	807 351,00
montant HPT /12 mois	FCFA	47 984 468,00
montant HPL /12 mois	FCFA	29 576 896,00
montant total	FCFA	89 546 504,00
montant total des taxes et prime	FCFA	11 985 140,00
coÛt moyenne d'élelectricité	FCFA	110,91

Selon le graphe ci-dessous on constate que, les consommations énergétiques pendant les heures de pointes (HPT) constituent 79% du coût de la facturation.

Il faudra chercher à diminuer la consommation énergétique pendant les HPT pour vouloir constater une réduction importante de la facture d'électricité.

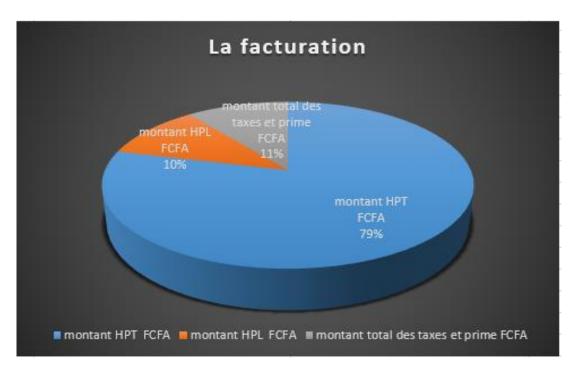


Figure 5 repartition du montant de la facturation 2018

c. Le rapport spécifique

Avec une superficie totale de 5 879,25 m2 l'énergie annuelle consommée en 2018 par les deux bâtiments s'élevait à 807 351 kWh, ces valeurs nous permettent d'obtenir un rapport kWh/m2 égale à 137,32. Cette valeur permettra d'alimenter la base de donné des consommations spécifiques des bâtiments.

Tableau 18 la superficie des différents niveau des deux bâtiments

ANCIEN BATIMENT		NOUVEAU BATIMENT	
NIVEAU	SUPERFICIE m ²	NIVEAU	SUPERFICIE m ²
RDC	573.59	RDC	809.84
R1	418.82	R1	809.84
R2	418.82	R2	809.84

R3	418.82	R3	809.84
		R4	809.84
TOTAL			5 879.25

III. Proposition d'économie d'énergie

a. Climatisation

Selon la figure 4 on constate que les climatiseurs sont les principales sources de consommation, pour ce faire il faut chercher à remplacer les climatiseurs existant par des climatiseurs plus économiques en énergie.

Nous avons trois types de climatiseurs qui sont installés dans les deux bâtiments : les climatiseurs armoires, split et fenêtre. Ces climatiseurs fonctionnent selon le principe du tout ou rien, en effet Comme pour un réfrigérateur, le compresseur climatisation marche à plein régime pour obtenir une température voulue. Celle-ci atteinte, le compresseur clim cesse de tourner pour redémarrer ensuite, lorsque la température s'élève et ceci sans discontinuer.

Cette alternance de cycles marche/arrêt ne permet pas d'avoir une température constante et provoque par ailleurs, usure prématurée du compresseur, sensation d'inconfort et surconsommation énergétique. En outre, à chaque arrêt du compresseur, l'humidité de la pièce s'élève brusquement.

Pour palier a tous ces problèmes nous allons nous intéresser aux climatiseurs inventer qui arrivent à économiser 60 à 80% d'énergie.

En effet ces climatiseurs ont des compresseurs INVERTER VEV (Vitesse Variable) qui permettent de pallier à la plus infime variation de température en régulant immédiatement sa vitesse dès que la température intérieure varie. Par ailleurs, si la température à l'extérieur est élevée, il fournit plus de puissance et à l'inverse, il se modère s'il fait doux dehors.

Un climatiseur INVERTER s'apparente en fait à un climatiseur à vitesse variable.

Les avantages d'un climatiseur INVERTER :

-Une température constante

L'impression de courants d'air ressentie disparait et le confort est sans commune mesure avec la clim classique.

FOFANA Dgide Ivonne [2018/2019] Mémoire de fin de cycle-Master Génie Energétique 45

- -Une longévité accrue des compresseurs.
- -Une économie sur la facture d'électricité pouvant aller au-delà des 60-80% par rapport à la climatisation traditionnelle.

Nous allons remplacer les climatiseurs split par des climatiseurs split INVERTER qui sont les mieux maitrisés au Burkina Faso, la maison DAIKIN propose des split INVERTER de qualité sur le terrain.

Tableau 19 Coût de l'énergie consommée par les climatiseurs

COÛT DE L'ENERGIE FCFA				
NOV-FEV	7 357 277,49			
MARS-JUIN	15 634 214,67			
JUIL-OCT	11 725 661,00			
ANNUELLE	34 717 153,16			

Tableau 20 Energie consommer par les climatiseurs après le remplacement des split ordinaires par des split INVERTER

Désignation	QTE	Puissance U(W)	Puissance total (W)	Energie(Wh)
			43	129
climatiseur armoire	7	7600/4380	540,00	696,00
			180	166
climatiseur split	127	1,5 cv/2cv/ 3cv	536,00	145,28
				147
climatiseur fenêtre	26	2cv/ 3cv/3,5cv /	35768	430,40
				443
	ENERGIE	JOURNALIERE /Wh		271,68
				38 564
	N	OV-FEV /Wh		636,16
				76 242
	728,96			
	67 820			
	JI	JIL-OCT /Wh		567,04
				182 627
	1A	NNUELLE /Wh		932,16
	4 280			
	674,61			
	8 462			
	942,91			
	7 528			
	082,94			
	20 271			
		ANNUELLE		700,47

Energie annuelle économisée kWh	130 139,21
Coût de l'énergie économisée FCFA	14 445 452,69

Grace à l'installation des climatiseurs split inverter nous pouvons économiser 14 44 452,69 FCFA par ans avec un TRI 5.6 ans

b. Eclairage

Dans l'optique de plus économiser en énergie nous avons décidé de remplacer les tubes fluorescents par des LED, car les LED ont une efficacité lumineuse (50 à 100 lm/W) et une durée de vie utile (15 000 à 50 000 h) plus important.

Cependant l'éclairement c'est l'apport de luminaires sains nécessaires à la vision dans le bâtiment. Pour assurer la vision dans les bureaux, l'éclairement requis est 500 lux.

Tableau 21 coût de l'énergie consommée par l'éclairage

COÛT DE L'ENERGIE FCFA				
NOV-FEV	2 334 048,62			
MARS-JUIN	2 307 220,47			
JUIL-OCT	2 414 533,05			
ANNUELLE	7 055 802,14			

Tableau 22 économie d'énergie réalisée après le replacement des lampes ordinaires

- /			Puissance total	
Désignation	QTE	Puissance(W)	(W)	Energie(kWh)
Globe	69	40	2760	17, 50
LED duo 1,20m	330	30	9900	70, 42
LED duo 0,6m	71	18	1278	9
LED mono				
1,20m	45	15	675	3, 89
LED mono 0,6m	46	9	414	2, 64
Spot	7	15	105	756,00
	104, 20			
NOV-FEV (kWh)				8 336, 14
MARS-JUIN (kWh)				8 857, 15
JUIL-OCT (kWh)			8 857, 15	
	ANN	UELLE (kWh)		26 050, 45
		COÛT DE L'ENEF	RGIE FCFA	
	925, 31			
MARS-JUIN				983, 14
	J	UIL-OCT		983, 14
	Α	NNUELLE		2 891, 60

Energie annuelle économisée kWh	22 905,51
Coût de l'énergie économisée FCFA	2 542 511,79

Cette action nous permet d'économisée 2 542 511,79 FCFA par ans, avec un temps de retour sur investissement (TRI) égale à 2 ans.

c. Installation des batteries de compensation

Selon l'analyseur de réseaux le facteur de puissance varie, donne une valeur minimale de 0,58, moyenne de 0.938 et une valeur maximale de 0.968. La moyenne dépasse la valeur préconisée par la SONABEL (0.8) ce qui est bien. Et selon la facturation de 2018 la SONABEL bénéficie d'une bonification maximum de 8%. L'installation d'une batterie de condensation automatique sera nécessaire pas pour un gain financier mais pour modifier le facteur de puissance quand il le faut car on n'a pu constater que le facteur de puissance maximum pouvait atteindre les 0,58 ce qui n'est pas bon. Ce facteur de puissance doit être améliorer à 0,98 par l'installation de batteries de compensation.

Le dimensionnement de la compensation générale est faite par la formule suivante.

$$Q(kVAr) = P(kW)*(tg\rho 1 - tg\rho 2)$$

Q(kVAr) = Puissance de la batterie

P(kW) = Puissance active considérée (388kW maxi enregistré sur les 3 dernières années)

 $Tg\rho 1 = Tangente initiale = Energie réactive(kVArh) / (Energie active (kWh) = 0.37$

 $tg\rho 2$ = Tangente correspondant à la compensation désirée ($cos\rho = 0.98$ pour $tg\rho 2 = 0.20$)

Tableau 23 paramètre de calcule de compensation générale

PERIODE		P MAXI ENREGISTREE	REACTIF	ENERGIE AC	tg		
	AGDE	(kW)	REATOTH	Pleine	Pointe	Totale	initial
6	2016	388	29 639	45 686	35 501	81 187	0,37

$$Q(kVAr) = 388x (0.37 - 0.20) = 66kVAr$$

Q(kVAr) = 66 kVAr

Pour améliorer le cosp à 0,98, il faudra installer une bactérie de 66 kVAr

Le choix se portera sur une batterie de condensateur automatique de type M7540 de puissance 75kVAr, chez le fabricant Legrand.

Proposition d'installation d'un système photovoltaïque raccordé au réseau IV.

Cette partie de l'étude a pour objectif de réduire la facture d'électricité du siège de la SONABEL en produisant de l'énergie verte.

Pour produire cette énergie verte le choix s'est porté sur un système PV raccordée au réseau, non seulement nous aurons la possibilité de réduire la facture d'électricité mais grâce à ce système nous allons réduire l'empreinte carbone du siège.

a. Généralité sur le système PV réseau

Pour un système PV réseau, l'installation ne nécessite pas un système de stockage ; le réseau électrique joue le rôle de système de stockage de capacité infinie.

Nous avons deux cas quant à la l'utilisation de l'énergie produite :

- -Dans le premier cas seule l'énergie en excès est vendue au distributeur de réseau ;
- -Dans le deuxième cas toute l'énergie produite est revendue au distributeur de réseau.

Nous nous situons dans le premier cas, car l'objectif principal est de produire de l'énergie verte pour réduire la facture électrique.

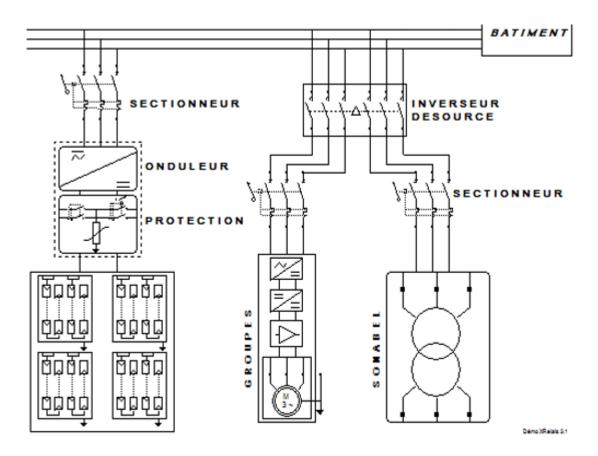


Figure 6 type de couplage

b. Méthodologie employée

Sur la terrasse accessible du nouveau bâtiment R+5, nous avons identifié l'espace disponible pour l'installation du champ PV. Nous avons déterminé la puissance crête que peut produire le système et cette puissance crête va nous servir à poursuivre le dimensionnement.

La surface disponible:

Tableau 24 surface disponible

Terrasse	Longueur	Largeur	Superficie	Reserve pour	Superficie
	(m)	(m)	(m^2)	circulation	utile (m ²)
	(m)	(m)	(111)	(10-20%)	
1	11.706	8.404	98.377	20	78.702
2	6.956	5.452	35.96	10	32.364

La surface totale disponible est de 111.066 m²

c. Dimensionnement du générateur photovoltaïque

1. Ressources énergétiques

Pour vouloir installer un système solaire il faut chercher à déterminer les ressources solaires disponibles. Le projet aura lieu au Burkina Faso plus précisément dans la ville de Ouagadougou.

Les données météorologiques ont été obtenues par le logiciel RETsreen .

Tableau 25 le Rayonnement solaire de la ville de Ouagadougou

Latitude: 12°5 Longitude: 1°4 Azimute: 0 Inclinaison :15°

Mois	Rayonnement solaire quotidien - horizontal kWh/m²/j	Rayonnement solaire quotidien - incliné kWh/m²/j
Janvier	5,47	6,18
Février	6,36	6,90
Mars	6,45	6,61
Avril	6,39	6,21
Mai	6,20	5,79
Juin	6,10	5,60
Juillet	5,72	5,31
Août	5,37	5,15
Septembre	5,79	5,80
Octobre	5,93	6,29
Novembre	5,76	6,45
Décembre	5,32	6,09
Annuel	5,90	6,03

2. Choix de l'Onduleur

Pour cette étape nous avons choisi 8 Onduleurs dont l'ensemble compatible avec notre puissance crête et nous avons procédé à des vérifications grâce aux règles suivantes dans le but de valider notre choix:

- -La tension MPP du générateur PV (Vmpp) doit être supérieure à la tension minimale et inferieur à la tension maximale admise à l'entrée de l'onduleur ;
- -La tension en circuit ouvert du générateur PV (Voc) doit être inférieure à la tension maximum admise à l'entrée de l'onduleur;
- -Le ratio de puissance doit être compris entre 90% et 110%;

Tous les strings connectés à un même onduleur doivent avoir la même tension continue.

3. Protection Surintensité

Pour la protection contre les surintensités nous allons disposer notre installation de disjoncteurs du coté continu et du coté alternatif. Ces disjoncteurs doivent respectés les conditions suivantes:

-Coté continu : $U_{Dij} \ge 1,15 \ U_{OC\ string}$ et $I_{Max\ ccond} \le I_{cal-dijoncteur}$

-Coté alternatif : $k * I_{cal} \le CAL_{pro}$ avec k=1.

4. Protection Surtensions atmosphériques

Pour la protection de notre Onduleur contre les surtensions atmosphériques, nous envisagerons l'installations de parafoudres du coté continu et du coté alternatif. Ils auront pour but de détecter les surtensions et de les diriger vers la terre le plus rapidement possible

5. Calcul de câbles

Il s'agit de déterminer la section des câbles pour le transport de l'énergie produite des panneaux à l'onduleur. Pour ce transite d'énergie nous utiliserons des câbles en cuivre. Il est important de noter que la section de nos câbles doit respecter un courant admissible et une chute de tension admissible de 2%.

6. Résultats

Dimensionnement

Pour notre installation photovoltaïque nous avons :

- -Nous avons installé 8 sous-champs et par sous-champs il y'a 8 module ce qui fait au total 64 modules à installer;
- -8 onduleurs;
- -Puissance crête de 18,56 kWc;
- -Production annuelle du champ estimé à 31 029,92 kWh.

Onduleur

Nous avons opté d'installer 8 l'onduleurs chacun de type SMA-SB2500TLST-21 (2 500W). Ci-dessous les vérifications de la compatibilité de notre Onduleur :

-Tension nominale:

$$Voc - champ = 313,52 V < Vmax - ond 750 VOK$$

-Plage de tension MPP:

$$180 \text{ V} \le \text{Vmax} - \text{champ} \le 500 = 180 \text{ V} \le 255,68 \text{ V} \le 500 \text{ V} OK$$

-Courant d'entré onduleur :

$$I_{sc\ champ} = 9,63\ A < I_{max\ ond} = 15\ A\ OK$$

-Ratio de puissance :

$$0.9 \le Pr = 1.08 \le 1.1 \ OK$$

Protection surintensité

Coté continu : nous avons choisi le disjoncteur CF2000022 avec un courant de fonctionnement de 20 A

$$360,55 V = U_{Dij} \ge 1,15 \times 313,52$$

 $I_{\text{max ond}} = 15 A \le I_{cal-dijoncteur} = 20 A$

Coté alternatif: nous avons choisi le disjoncteur S802S-B16 de 16A

$$11,17 A \leq CAL_{pro} = 16 A$$

Protection Surtensions atmosphériques

Coté continu : Notre bâtiment serrant équipé d'un paratonnerre, la mise en place de parafoudre. Nous installerons des parafoudres de Phoenix contact de Gamme OVR PV pour les circuits DC de type OVR PV 40-600C avec une tension maximum de 670 V

Coté alternatif: Notre bâtiment serrant équipé d'un paratonnerre, la mise en place. Nous installerons alors un parafoudre de Gamme OVR pour les circuits AC de type N1 10 275.

Déterminations des sections de câbles

Avec un courant admissible de 11,17 A à la sortie de chaque onduleur (avec calibre de disjoncteur 16 A), le tableau nous amène à choisir une section de 2,5 mm² Cu de la sortie de l'onduleur au jeux de bar. De la sortie du jeu de bar à l'entrée du tableau divisionnaire avec un courant admissible de 99 A nous avons choisi une section de câble de 35 mm².

d. Production énergétique mensuelle photovoltaïque

A partir de la puissance crête déterminée on peut calculer l'énergie mensuelle à partir de cette formule

$$E_{MP} = N_{iM} * PR * H * Po$$

E_{MP}: Energie mensuelle produite par notre installation (kWh)

N_{JM}: Nombre de jours mensuel

H: Irradiation (rayonnement) solaire en moyenne par jour sur notre inclinaison de 15 (kWh/m²/jour)

PR: Ratio de performance (%)

Po: Puissance crête de l'installation (kWc)

Tableau 26 production énergétique par mois

	JANVIER	FEVRIER	MARS	AVRIL	MAI	JUIN	JUILLET	AOÛT	SEPTEMBRE	OCTOBRE	NOVEMBRE	DÉCEMBRE
Jours	31	28	31	30	31	30	31	30	31	30	31	31
Rayonnement (kWh /m2 /j)	6,18	6,9	6,61	6,21	5,79	5,6	5,31	5,15	5,8	6,29	6,45	6,09
Ratio de performance	0,76	0,76	0,76	0,76	0,76	0,76	0,76	0,76	0,76	0,76	0,76	0,76
Puissance crête (kW)	18,56	18,56	18,56	18,56	18,56	18,56	18,56	18,56	18,56	18,56	18,56	18,56
Energie produite(kWh)	2 702,35	2 725,20	2 890,38	2 627,87	2 531,81	2 369,74	2 321,92	2 179,32	2 536,19	2 661,73	2 820,41	2 663,00
ANNUELLE (kWh)	31 029,92											

e. Economie d'énergie engendrée par le système photovoltaïque

Tableau 27economie d'énergie réalisée par le système PV

	CONSON	MMATION ENERGETIQUE / 24	lh (kWh)	ANNUELLE (kWh)				
	Nov-Févr. (1)	évr. (1) Mars-Juin (2) Juil-Oct. (3)						
NON solaire kWh	290 213,00	288 904,00	228 234,00	807 351,00				
PART du solaire kWh	10 910,96	10 419,81	9 699,15	31 029,92				
coût de l'énergie non solaire FCFA	32 213 643,00	32 068 344,00	25 333 974,00	89 615 961,00				
Economie FCFA	1 211 116,97	1 156 598,55	1 076 605,83	3 444 321,35				

Selon le tableau ci-dessus l'apport énergétique du système solaire s'évalue à 31 029.92 kWh (soit une couverture de 4 %)

f. Système de monitoring

Pour le système de monitoring notre choix se posera sur Solar-Log 1200 WiFi.

Grace à une technique spécifique, la commande, l'évaluation et la représentation de tous les paramètres se réalisent via le navigateur Web indépendant du système d'exploitation

Solar-log a la capacité de :

Surveillance des strings

Surveillance de défaillance et de performance des onduleurs individuels

Compatibilité complet internet ; envoie des messages par email et SMS

	9	9		
Modèle	Solar-Log 1200 WiFi	Solar-Log 1200 BT, SMA Bluetooth	Solar-Log 1200 WiFi BT, SMA Bluetooth	Solar-Log 1200 GPRS
Nombre d'onduleurs	Au choix	Au choix	Au choix	Au choix
Nombre de fabricants d'onduleurs	2	2	2	2
Configuration des logiciels	Flexible	Flexible	Flexible	Flexible
Taille max. conseillée pour l'installation	100 kWc	100 kWc	100 kWc	100 kWc
Longueur max. du câble	1000 m	1000 m	1000 m	1000 m
Tension (Secteur / Appareils)	115 - 230 V / 12 V	115 - 230 V / 12 V	115 - 230 V / 12 V	115 - 230 V / 12 V
Puissance absorbée	3 W	3 W	3 W	3 W
Température ambiante	-10 à +50 °C	-10 à +50 °C	-10 à +50 °C	-10 à +50 °C
Type de protection	IP20	IP20	IP20	IP20
Boîtier	Plastique	Plastique	Plastique	Plastique
Affichage	Message d'état LCD, écran graphique avec écran tactile	Message d'état LCD, écran graphique avec écran tactile	Message d'état LCD, écran graphique avec écran tactile	Message d'état LCD, écran graphique avec écran tactile
Interface	1 x RS485/RS422, 1 x RS485, 1 x port Ethernet RJ45 10/100 Mbit, 1 x USB, 2 x S0-In, 1 x contact sans potential (relais), WiFi	1 x RS485/RS422, 1 x RS485, 1 x port Ethernet RJ45 10/100 Mbit, 1 x USB, 2 x S0-In, 1 x contact sans potentiel (relais), Bluetooth	1 x RS485/RS422, 1 x RS485, 1 x port Ethernet RJ45 10/100 Mbit, 1 x USB, 2 x S0-In, 1 x contact sans potentiel (relais), WiFi, Bluetooth	1 x RS485/RS422, 1 x RS485, 1 x port Ethernet RJ45 10/100 Mbit, 1 x USB, 2 x S0-In 1 x contact sans potentiel (relais), GPRS
Commande	Par navigateur Web et écran graphique avec écran tactile	Par navigateur Web et écran graphique avec écran tactile	Par navigateur Web et écran graphique avec écran tactile	Par navigateur Web et écran graphique avec écran tactile
Langues	Multilingue	Multilingue	Multilingue	Multilingue
Exploitation	Serveur Web intégré	Serveur Web intégré	Serveur Web intégré	Serveur Web intégré
Dimensions (L / I / H)	225 mm / 285 mm / 40 mm	225 mm / 285 mm / 40 mm	225 mm / 285 mm / 40 mm	225 mm / 285 mm / 40 mm
Poids	0.80 kg	0.80 kg	0.80 kg	0.80 kg
Garantie	5 ans	5 ans	5 ans	5 ans

Figure 7 caractéristiques du SOLAR-log

V. PROPOSITION DE MESURE DEFFICACITE ENERGETIQUE

Après les propositions faites pour économiser en énergie, il faut s'assurer de la pérennisation de ces solutions, pour ce faire il serait judicieux de mettre en place certaines actions :

- -Mettre en place une équipe qui va s'occuper du volet énergie et assurer la maintenance des différents équipements électriques.
- -Réajuster la température de consigne des climatiseurs de 18 à 25 °C
- -Encourager le personnelle à éteindre les luminaires, climatiseurs tous équipements électriques quand ils quittent les locaux et coller des affiches qui véhicules des messages comme 'Arrêtez les appareils en quittant le local' sur les murs pour les rappeler.
- -Nettoyage des plaques solaire est hyper important pour un bon rendement, donc déléguer des personnes pour assurer le nettoyage régulier de plaque solaire.
- -Faire un entretien régulier des différents postes.

Chapitre IV

EVALUATION DES INCIDENCES ENVIRONNEMENTALE DES RECOMMENDATIONS ET LE BILAN DES INVESTISSEMENTS

I. EVALUATION DES INCIDENCES ENVIRONNEMENTALE DES RECOMMENDATIONS

Dans cette partie du travail nous allons évaluer la quantité de CO₂ non émise grâce aux économies d'énergies réalisées.

Dans les centrales thermiques au Burkina Faso les combustibles utilisent pour le fonctionnement des groupes sont des combustibles lourds (DDO, HFO).

Lors de la combustion de ces combustibles, des gaz à effet de serres (GES) sont émis. Parmi ces gaz nous avons CO₂ qui représentes 70% des émissions de gaz à effets de serres d'origine anthropique. Il est principalement issu de la combustion des énergies fossiles, ce qui est notre cas.

Au Burkina Faso en 2010 un ratio de kgCO2 /kWh a été défini (0.90kg CO2/kWh), ce ratio servira à quantifier l'émission de CO2 évitée grâce aux mesures proposées.

Tableau 28 la quantité de CO2 non émise

	Energie économisée		Emission de CO2
Désignation	kWh	Ratio kg CO2/kWh	kg
CLIMATISEUR	130 139,21	0,90	117 125,29
PV	31 029,92	0,90	27 926,93
ECLAIRAGE	22 905,51	0,90	20 614,96
TOTA	AL .		165 667,18

Si toutes les solutions proposées pour réduire la consommation énergétique sont respectées, nous pouvons empêcher une émission de 165 667,18 kg de CO2, ce qui peut contribuer à freiner le changement climatique.

II. BILAN DES INVESTISSEMENTS

Tableau 29 cout estimatif des solution énergétiques

DESIGNATION	COUT FCFA
ECLAIRAGE	4 900 500,00
CLIMATISTION	80 098 950,00
BATERRIE DE	
COMPSATION	3 360 150,00
PV	41 348 145,40
TOTAL	129 707 745,40

Arrête le présent cout des travaux des solutions énergétiques à CENT VINGT- NEUF MILLIONS SEPT- CENT- SEPT MILLE SEPT CENT QUARANTE CINQ VIRGULE QUARANTE FCFA.

CONCLUSION

Le travail accompli est l'audit énergétique du siégé la SONABEL Ouagadougou, qui est encouragé par l'Etat burkinabè.

L'étude nous a permis d'identifier un potentiel d'économie d'énergie qui s'évalue à 184 075 kWh par an sur une consommation annuelle de 807 351 kWh, soit une économie de 23 %. Ces économies d'énergie permettent d'éviter 165 667 kg CO2 par an et entrainent une économie de 20 432 285 FCFA par an avec un TRI égale à 6,3 ans. Les actions proposées sont :

- -Remplacement des climatiseurs split ordinaires par des split INVERTER
- -Remplacement des lampes ordinaires par des LED
- -Installation des batteries de condensateurs automatiques triphasés de 75 kVAr pour la compensation de l'énergie réactive de l'immeuble
- -Installation d'un système PV relié aux réseaux de 18.56 kWc qui en plus d'économie d'énergie prend en compte l'aspect environnemental et l'alternance énergétique.

Les recommandations n'empêchent pas que les occupants des locaux soient sensibiliser au reflexe d'économique, en arrêtant systématiquement les appareils électriques non utilisés. Cependant il faut noter qu'il existe des problèmes sur les installations électriques de nature à compromettre la sécurité des personnes et des biens qu'il faudra chercher à résoudre. L'ensemble des investissements nécessaires à cet effet est de 129 707 745 FCFA qui s'explique par un besoin d'amélioration la facture d'électricité et de réduire les émission GES.

VI. BIBLIOGRAPHIE

- 1. AHMED O BAGRE. Cours de dimensionnement technique des installations PV connectée au réseau. Master 1 Génie Electrique Energétique au 2iE Ouagadougou 2017-2018
- 2. COULIBALY Yézouma. Cours d'audit énergétique. Master 1 Génie Electrique Energétique au 2iE Ouagadougou 2017-2018
- 3. COULIBALY Yézouma. Thermique du Bâtiment Master 1 Génie Electrique Energétique, 2iE Ouagadougou 2017-2018.
- 4. DAVID B. TSUANYO. Cours d'enjeux énergétique Master 1 Génie Electrique Energétique 2017-2018
- 5. PAUL COMPAORE. Cours de facturation électrique. Master 1 Génie Electrique Energétique au 2IE Ouagadougou 2017-2018
- 6. Climatiseurs Inverter, économie d'énergie et confort | LG Tunisie https://www.lg.com/tn/climatiseurs-inverter (accès en Mai 2019)
- 7. Les différents types d'installations solaires photovoltaïques Écohabitation https://www.ecohabitation.com/guides/2590/les-differents-types-dinstallations-solaires-photovoltaiques/ (accès en avril 2019)
- 8. Un audit énergétique pour quoi faire ? bilan thermique, diagnostic énergétique, économies d'énergie http://www.auditenergetique.net/ (accès en Janvier 2019)

VII. ANNEXES

ANNEXE I: BILAN DE PUISSANCE

ANNEXE II: BILAN ENERGETIQUE ET ANALYSE DE LA FACTURATION

ANNEXE III: FACTURE ELECTRIQUE SONABEL

ANNEXE IV: DETAIL DE L'ANALYSEUR DE RESEAU

ANNEXE V: BILAN DES INVESTISSEMENTS

ANNEXE VI: DIAGNOSTIC DETAILLE DES INSTALLATIONS ELECTRIQUES

ANNEXE VII: DIMENSIONNEMENT PHOTO VOLTAÏQUE

ANNEXE I : BILAN DE PUISSANCE

E	BILAN DE P	PUISSANCE DES INSTAL	LATIONS	ELEC	CTRIC	QUES	DU S	SIEGI	E DE L	A SC	NABI	EL A	OUAG	ADOUGO	U
N°	LIEUX	SOUS LIEUX	DESIGNATION	QTE	<u>PU</u>	P T (w)	Ku	Ks0	P T F1 (w)	Ks1	P T F2 (w)	Ks2	P T F3 (w)	EXTENSION 20%	PTF(w)/ COFFRET
<u>TGBT</u>		TABLEAU GE	NERAL BASSE	TENSI	ON (TG	BT) PUIS	SANCE	TOTA	LE INSTA	LLEE				_	<u>419 374</u>
<u>CE ASC</u> <u>1</u>		COFFRET ASCENSEUR 1								1,0	10 361	1	10 361	2 072	<u>12 433</u>
ASC1	Nouveau Bâtiment	Local ascenseur 1	Ascenseur	1	7 500	7 500	1	1	7 500						
L	Nouveau Bâtiment	Local ascenseur 1	Réglette de 1,20 / 36W	2	45	90	1	1	90						
PC	Nouveau Bâtiment	Local ascenseur 1	Prise de courant 2 pôles	1	2 816	2 816	0,2	1	563						
CL	Nouveau Bâtiment	Local ascenseur 1	Climatiseur split de 1,5CV	2	1 104	2 208	1	1	2 208						
CE ASC 2		COFFRET ASCENSEUR 2								1,0	9 257	1	9 257	1 851	<u>11 109</u>
ASC2	Nouveau Bâtiment	Local ascenseur 2	Ascenseur	1	7 500	7 500	1	1	7 500						
L	Nouveau Bâtiment	Local ascenseur 2	Réglette de 1,20 / 36W	2	45	90	1	1	90						
PC	Nouveau Bâtiment	Local ascenseur 2	Prise de courant 2 pôles	1	2 816	2 816	0,2	1	563						
CL	Nouveau Bâtiment	Local ascenseur 2	Climatiseur split de 1,5CV	1	1 104	1 104	1	1	1 104						
TA OND		TABLEAU GENERAL ONDULEURS								0,8	76 800	0,8	61 440	12 288	<u>73 728</u>
OND1	ONDULEUR 1			1	48 000 48	48 000	1	1	48 000						
OND2	ONDULEUR 2	ONDULEUR 2				48 000	1	1	48 000						
TGS AB	TABLEAU GE	NERAL BASSE TENSION SECONDA BATIMENT	IRE ANCIEN												<u>101 711</u>

TD RDC	TABLEAU DIVIS	SIONNAIRE RDC ANCIEN										0,8	25 719	3 858	29 577
L R0 AB		CUITS LUMINAIRES RDC										<u> </u>			
BR1	Ancien Bâtiment RDC	Accueil	Brasseur d'air 80W	5	80	400	1	1	400						
	Ancien Bâtiment RDC	Accueil	Brasseur d'air plafonier 50W	1	50					1	690				
BR2	Ancien Bâtiment RDC	Extérieur accueil	Brasseur panasonic 80W	3	80	290	1	1	290						
	CIRC	UITS CLIMATISEURS RDC													
AF1	Ancien Bâtiment RDC	Couloir Guichet	Climatiseur armoire frigorifique de 7600 W	1	3 680	3 680	1	1	3 680						
AF2	Ancien Bâtiment RDC	Accueil	Climatiseur armoire frigorifique de 7600 W	1	3 680	3 680	1	1	3 680						
AF3	Ancien Bâtiment RDC	Accueil	Climatiseur armoire frigorifique de 7600 W	1	3 680	3 680	1	1	3 680						
AF4	Ancien Bâtiment RDC	Accueil	Climatiseur armoire frigorifique de 7600 W	1	3 680	3 680	1	1	3 680	1	24 214				
CL1	Ancien Bâtiment RDC	Chef Groupe Guichet siège	Climatiseur fenêtre LG 1.5 CV	1	1 104	1 104	1	1	1 104						
CL2	Ancien Bâtiment RDC	Call center et dépannage	Climatiseur Split 1.5 CV	1	1 104	1 104	1	1	1 104						
CL3	Ancien Bâtiment RDC	Call center et dépannage	Climatiseur Split 1.5 CV	1	1 104	1 104	1	1	1 104						
CL4	Ancien Bâtiment RDC	Call center et dépannage	Climatiseur Split 1.5 CV	1	1 104	1 104	1	1	1 104						
CL5	Ancien Bâtiment RDC	Couloir Guichet	Climatiseur Split 3 CV	1	2 208	2 208	1	1	2 208						

	Ancien Bâtiment RDC	Groupe petite intervention + chef groupe	Réglette mono 1.20m 36W	1	45	45									
	Ancien Bâtiment RDC	Guichet 8	Réglette mono 1.20m led 15W	1	15	15									
TD R1	TABLEA	U DIVISIONNAIRE R1 ANCIEN BAT	IMENT									0,8	23 384	4 677	28 061
		Circuit brasseur											·		
BR	Ancien Bâtiment R1	Service administration et patrimoine	Brasseur d'air (ventilateur) 60 w	1	60	60	1	1	60	1	60				
		Circuit climatissation													
CL1	Ancien Bâtiment R1	Service administration et patrimoine	Climatiseur fenêtre LG 1.5 CV	1	1 104	1 104	1	1	1 104						
CL2	Ancien Bâtiment R1	Service logistique	Climatiseur Split 1.5 CV	1	1 104	1 104	1	1	1 104						
CL3	Ancien Bâtiment R1	Sécretariat DAGP	Climatiseur Split 1.5 CV	1	1 104	1 104	1	1	1 104						
CL4	Ancien Bâtiment R1	Chef de service DAGP	Climatiseur Split 1.5 CV	1	1 104	1 104	1	1	1 104						
CL5	Ancien Bâtiment R1	Direction commerciale (DCC ANNEXE)	Climatiseur Split 2 CV	1	1 472	1 472	1	1	1 472	1	23 552				
CL6	Ancien Bâtiment R1	Secretariat Direction commerciale et de la clientèle	Climatiseur Split 2 CV	1	1 472	1 472	1	1	1 472		23 332				
CL7	Ancien Bâtiment R1	Directeur commerciale et de la clientèle	Climatiseur Split 2 CV	1	1 472	1 472	1	1	1 472						
CL8	Ancien Bâtiment R1	Bureau 036	Climatiseur Split 3 CV	1	2 208	2 208	1	1	2 208						
	Ancien Bâtiment R1	Directeur commerciale et de la clientèle	Réglette mono 1.20m led 15W	1	15	15									

	Ancien Bâtiment R1	Directeur commerciale et de la clientèle	Réglette duo 1.20 m led 15 w	4	30	120									
TD R2	TABLEA	AU DIVISIONNAIRE R2 ANCIEN BAT	IMENT									0,8	18 181	3 636	21 817
		Circuit climatisation R+2													
CL1	Ancien Bâtiment R2	Service Comptabilité	Climatiseur Split Airwell 1.5CV	1	1 104	1 104	1	1	1 104						
CL2	Ancien Bâtiment R2	Division analyse de comptes	Climatiseur Split Airwell 3CV	1	1 104	1 104	1	1	1 104	-					
CL3	Ancien Bâtiment R2	Section comptable DRN	Climatiseur Split Airwell 3CV	1	1 104	1 104	1	1	1 104						
CL4	Ancien Bâtiment R2	Chef direction distribution	Climatiseur Split LG 1.5 CV	2	1 472	2 944	1	1	2 944						
CL5	Ancien Bâtiment R2	Section comptabilité immobilisation	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1	1	1 104						
CL6	Ancien Bâtiment R2	Service Contrôle Financier	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1	1	1 104	1	16 928				
CL7	Ancien Bâtiment R2	Secretariat direction de la distribution	Climatiseur Split LG 2 CV	1	1 104	1 104	1	1	1 104						
CL8	Ancien Bâtiment R2	Chef de département de distribution	Climatiseur Split LG 3 CV	1	1 104	1 104	1	1	1 104						
CL9	Ancien Bâtiment R2	Section comptable DRN	Climatiseur Split LG 3 CV	1	1 104	1 104	1	1	1 104						
CL10	Ancien Bâtiment R2	Département contrôle de gestion	Climatiseur Split Sharp 1.5 CV	1	1 104	1 104	1	1	1 104						
	Ancien Bâtiment R2	Division analyse de comptes	Réglette DUO 1.2m 36W	2	90	180									

	Ancien Bâtiment R2	Service Comptabilité	Réglette mono 0.6m 20W	1	27	27									
	Ancien Bâtiment R2	Couloir	Réglette mono 0.6m Led 9W	1	9	9									
	Ancien Bâtiment R2	Département contrôle de gestion	Réglette mono 1.20m 36W	1	45	45									
	Ancien Bâtiment R2	Section comptabilité immobilisation	Réglette duo 1.20 m led 15 w	2	30	60									
TD R3	TABLEA	U DIVISIONNAIRE R3 ANCIEN BAT	IMENT									0,8	18 547	3 709	22 257
		Circuit climatisseur R+3													
CL1	Ancien Bâtiment R3	Bureau Chef DAP	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1	1	1 104						
CL2	Ancien Bâtiment R3	Chef service affaire sociale et relation de travail	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1	1	1 104						
CL3	Ancien Bâtiment R3	Gestion des conflits de travail et rémunération	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1	1	1 104						
CL4	Ancien Bâtiment R3	Santé et œuvre sociale	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1	1	1 104		22.404				
CL5	Ancien Bâtiment R3	Section rémunération	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1	1	1 104	1	23 184				
CL6	Ancien Bâtiment R3	Secretariat DRH	Climatiseur Split LG 2 CV	1	1 472	1 472	1	1	1 472						
CL7	Ancien Bâtiment R3	Direction DRH	Climatiseur Split LG 2 CV	1	1 472	1 472	1	1	1 472						
CL8	Ancien Bâtiment R3	Section rémunération	Climatiseur Split LG 2 CV	1	1 472	1 472	1	1	1 472						
CL9	Ancien Bâtiment R3	Santé et œuvre sociale	Climatiseur Split LG 3 CV	3	2 208	6 624	1	1	6 624						
	Ancien Bâtiment R3	Couloir	Réglette mono 1.20m led 15W	2	15	30									

TGS NB	TABLEAU (GENERAL SECONDAIRE NOUVEAU I	_	_	_	_	_	_	_	_	_	_	_	220 393	
TD RDC	TABLEAU	DIVISIONNAIRE RDC NOUVEAU BA	ATIMENT									0,8	48 135	9 627	57 762
NB		CIRCUIT BRASSEUR													
	Nouveau Bâtiment RDC	Salle d'attente	Brasseur d'air	1	85	85									
BR	Nouveau Bâtiment RDC	Secrétariat informatique	Brasseur d'air (ventilateur) 50 w	1	50	50	1	1	185	1	185				
	Nouveau Bâtiment RDC	Salle d'attente	Extracteur d'air	1	50	50									
	C	CIRCUIT CLIMATISSEUR													
CL1	Nouveau Bâtiment RDC	Local serveur	Climatiseur armoire frigorifique de 4380 W	1	4 380	4 380	1	1	4 380						
CL2	Nouveau Bâtiment RDC	Local serveur	Climatiseur armoire frigorifique de 4380 W	1	4 380	4 380	1	1	4 380						
CL3	Nouveau Bâtiment RDC	Local onduleur	Climatiseur armoire frigorifique de 4380 W	1	4 380	4 380	1	1	4 380						
CL4	Nouveau Bâtiment RDC	Bureau infirmier	Climatiseur fenêtre	1	1 300	1 300	1	1	1 300	1	45 640				
CL5	Nouveau Bâtiment RDC	Bureau médecin	Climatiseur fenêtre	1	1 300	1 300	1	1	1 300						
CL6	Nouveau Bâtiment RDC	Salle d'attente	Climatiseur fenêtre	1	1 300	1 300	1	1	1 300						
CL7	Nouveau Bâtiment RDC	Local serveur	Climatiseur fenêtre 3.5 CV	1	3 000	3 000	1	1	3 000						
CL8	Nouveau Bâtiment RDC	Local serveur	Climatiseur fenêtre 3.5 CV	1	3 000	3 000	1	1	3 000						
CL9	Nouveau Bâtiment RDC	Local serveur	Climatiseur fenêtre 3.5 CV	1	3 000	3 000	1	1	3 000						
CL10	Nouveau Bâtiment RDC	Local serveur	Climatiseur fenêtre 3.5 CV	1	3 000	3 000	1	1	3 000						

TD R1 NB	TABLEA	U DIVISIONNAIRE R1 NOUVEAU BA	TIMENT									0,8	41 227	8 245	49 472
		CIRCUIT BRASSEUR												•	
BR	Nouveau Bâtiment R1	Secrétariat annexe DFC	Brasseur d'air	1	85	85	1	1	85	1	85				
		circuit climatisseur													
CL1	Nouveau Bâtiment R1	Bureau direction des finances	Climatiseur 3 cv	1	2 500	2 500	1	1	2 500						
CL2	Nouveau Bâtiment R1	Chef de service trésorerie	Climatiseur fenêtre 1.5 CV	1	1 300	1 300	1	1	1 300						
CL3	Nouveau Bâtiment R1	Saisie trésorerie	Climatiseur Slit LG 1.5 cv	1	1 300	1 300	1	1	1 300						
CL4	Nouveau Bâtiment R1	Caisse siège	Climatiseur Slit LG 1.5 cv	1	1 300	1 300	1	1	1 300						
CL5	Nouveau Bâtiment R1	Bureau comptabilité générale	Climatiseur Split 1.5 CV	1	1 300	1 300	1	1	1 300						
CL6	Nouveau Bâtiment R1	Bureau comptabilité générale	Climatiseur Split 1.5 CV	1	1 300	1 300	1	1	1 300	1	39 900				
CL7	Nouveau Bâtiment R1	Secrétariat annexe DFC	Climatiseur split 3 CV	1	2 500	2 500	1	1	2 500						
CL8	Nouveau Bâtiment R1	Etude finance	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL9	Nouveau Bâtiment R1	Division fourniture	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL10	Nouveau Bâtiment R1	Division trésorerie	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL11	Nouveau Bâtiment R1	Secrétariat departement comptable et finance	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL12	Nouveau Bâtiment R1	Chef département des finances	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						

	Nouveau Bâtiment R1	Toilette	Réglette mono 0.6m 20W	2	20	40									
TD R2 NB	TABLEA	U DIVISIONNAIRE R2 NOUVEAU BA	TIMENT									0,8	24 227	4 845	29 072
	(CIRCUIT CLIMATISSEUR													
CL1	Nouveau Bâtiment R2	Secrétariat DEPI annexe	Climatiseur fenêtre 1.5 CV	1	1 300	1 300	1	1	1 300						
CL2	Nouveau Bâtiment R2	2º bureau Service étude électrique	Climatiseur split 1.5 CV	1	1 300	1 300	1	1	1 300						
CL3	Nouveau Bâtiment R2	Chef section banque CCP	Climatiseur split 1.5 CV	1	1 300	1 300	1	1	1 300						
CL4	Nouveau Bâtiment R2	Departement des marchés	Climatiseur split 1.5 Cv	1	1 300	1 300	1	1	1 300						
CL5	Nouveau Bâtiment R2	Service étude électrique	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL6	Nouveau Bâtiment R2	DIPI	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL7	Nouveau Bâtiment R2	Chef département suivi projet	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300		24 400			0,80	
CL8	Nouveau Bâtiment R2	2 ^{eme} bureau des marchés	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300	1	21 100				
CL9	Nouveau Bâtiment R2	Service fiscalité	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL10	Nouveau Bâtiment R2	Bureau de service d'etude mecanique et hydraulique	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL11	Nouveau Bâtiment R2	Service comptabilite analitique	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL12	Nouveau Bâtiment R2	Ingénierie de suivi de projets	Climatiseur Split LG 2 CV	1	1 700	1 700	1	1	1 700						
	Nouveau Bâtiment R2	Toilette homme+Dame	globe	4	40	160									
TD R3 NB	TABLEA									0,8	27 411	5 482	32 894		

	Nouveau Bâtiment R3	Toilette homme + dames	Globe	4	40	160									
TD R4 NB	TABLEAU	U DIVISIONNAIRE R4 NOUVEAU BA	TIMENT									0,8	37 872	7 574	45 446
		CIRCUIT BRASSEUR													
BR	Nouveau Bâtiment R4	Magasin assistante de direction	Brasseur d'air	1	85	85	1	1	85	1	85				
		CIRCUIT CLIMATISSEU	R												
CL1	Nouveau Bâtiment R4	Bureau 100 département juridique	Climatiseur fenêtre	1	1 300	1 300	1	1	1 300						
CL2	Nouveau Bâtiment R4	Section courrier	Climatiseur fenêtre LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL3	Nouveau Bâtiment R4	Service communication	Climatiseur fenêtre LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL4	Nouveau Bâtiment R4	Assistante de direction	Climatiseur Split 2 CV	1	1 700	1 700	1	1	1 700						
CL5	Nouveau Bâtiment R4	Salle de réunion	Climatiseur Split Airwell 1.5CV	1	1 300	1 300	1	1	1 300	1	35 400				
CL6	Nouveau Bâtiment R4	Salle de réunion	Climatiseur Split Airwell 1.5CV	1	1 300	1 300	1	1	1 300	1	35 100				
CL7	Nouveau Bâtiment R4	Bureau directeur	Climatiseur Split Airwell 1.5CV	1	1 300	1 300	1	1	1 300						
CL8	Nouveau Bâtiment R4	Département juridique	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL9	Nouveau Bâtiment R4	Assistante du SG +salle d'attente	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						
CL10	Nouveau Bâtiment R4	Assistante du SG +salle d'attente	Climatiseur Split LG 1.5 CV	1	1 300	1 300	1	1	1 300						

L11	Nouveau Bâtiment R4	Escalier + Toilette	GLOBE	8	40	320	1	1	320						
TD ARCH NB	H TABLEAU DIVISIONNAIRE ARCHIVE NOUVEAU BATIMENT		BATIMENT									0,8	4 789	958	5 746
	c	CIRCUIT CLIMATISSEUR													
CL1	Salle des archives	Salle archive	Climatiseur Split Samsung 3 CV	1	2 500	2 500	1	1	2 500	1	2 500				
CL2	Salle des archives	Salle archive	Climatiseur Split Samsung 3 CV	1	2 500	2 500	1	1	2 500	1	2 500				
		CIRCUIT PRISES													
PC	Salle des archives	Salle archive	Prise de courant 2 pôles	4	2 816	11 264	0,20	0,33	732	0,80	586				
		CIRCUIT LUMINAIRES													
L1	Salle des archives	Escalier	Globe	6	40	240	1	1	240						
L2	Salle des archives	Escalier	Globe	6	40	240	1	1	40	1	400				
L3	Salle des archives	Salle archive	Réglette mono 1.20m led 15W	8	15	120	1	1	120						

ANNEXE II : BILAN ENERGETIQUE ET ANALYSE DE LA FACTURATION

ANNEXE II-1: Climatisation

SOUS LIEUX	LIEUX	DESIGNATION	QTE	QTE PU			PS DE MENT (h)/ jour	ENER	GIE Wh	ENERGIE Wh(k=0	
						HPT	HPL	HPT	HPL	НРТ	HPL
Nouveau Bâtiment	Local ascenseur 2	Climatiseur split de 1,5CV	1	1 104	1 104	1,50	1,50	1 656,00	1 656,00	1 324,80	1 324,80
Nouveau Bâtiment	Local ascenseur 2	Climatiseur split de 1,5CV	1	1 104	1 104	1,50	1,50	1 656,00	1 656,00	1 324,80	1 324,80
4	Couloir Guichet	Climatiseur armoire frigorifique de 7600 W	1	7 600	7 600	1,00	1,00	7 600,00	7 600,00	5 320,00	6 080,00
Ancien Bâtiment RDC	Accueil	Climatiseur armoire frigorifique de 7600 W	1	7 600	7 600	1,00	1,00	7 600,00	7 600,00	5 320,00	6 080,00
Ancien Bâtiment RDC	Accueil	Climatiseur armoire frigorifique de 7600 W	1	7 600	7 600	1,00	1,00	7 600,00	7 600,00	5 320,00	6 080,00
Ancien Bâtiment RDC	Accueil	Climatiseur armoire frigorifique de 7600 W	1	7 600	7 600	1,00	1,00	7 600,00	7 600,00	5 320,00	6 080,00
Ancien Bâtiment RDC	Chef Groupe Guichet siège	Climatiseur fenêtre LG 1.5 CV	1	1 104	1 104	1,00	3,00	1 104,00	3 312,00	883,20	2 649,60
Ancien Bâtiment RDC	Call center et dépannage	Climatiseur Split 1.5 CV	1	1 104	1 104	1,00	3,00	1 104,00	3 312,00	883,20	2 649,60
Ancien Bâtiment RDC	Call center et dépannage	Climatiseur Split 1.5 CV	1	1 104	1 104	1,00	3,00	1 104,00	3 312,00	883,20	2 649,60
Ancien Bâtiment RDC	Call center et dépannage	Climatiseur Split 1.5 CV	1	1 104	1 104	1,00	3,00	1 104,00	3 312,00	883,20	2 649,60

Total Energie rectifiée (Wh)											64,00
	Total		150		247 924					263 046,40	555417,60
Nouveau Bâtiment R5	Salle archive	Climatiseur Split Samsung 3 CV	2	2 208	4 416	1,00	3,00	4 416,00	13 248,00	3 532,80	10 598,40
Nouveau Bâtiment R4	Bureau directeur	Climatiseur Split Sharp 3 CV	1	2 208	2 208	1,00	3,00	2 208,00	6 624,00	1 766,40	5 299,20
Nouveau Bâtiment R4	Bureau conseiller Technique	Climatiseur Split Sharp 2 CV	1	1 472	1 472	1,00	3,00	1 472,00	4 416,00	1 177,60	3 532,80
Nouveau Bâtiment R4	Secrétariat de direction	Climatiseur Split Sharp 2 CV	1	1 472	1 472	1,00	3,00	1 472,00	4 416,00	1 177,60	3 532,80
Nouveau Bâtiment R4	Salle de réunion	Climatiseur Split Samsung 3 CV	1	2 208	2 208	1,00	3,00	2 208,00	6 624,00	1 766,40	5 299,20
Nouveau Bâtiment R4	Secrétariat département juridique	Climatiseur Split LG 3 CV	1	2 208	2 208	1,00	3,00	2 208,00	6 624,00	1 766,40	5 299,20
Nouveau Bâtiment R4	Bureau secrétariat général	Climatiseur Split LG 2 CV	1	1 472	1 472	1,00	3,00	1 472,00	4 416,00	1 177,60	3 532,80
Nouveau Bâtiment R4	Bureau agent de liaison	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1,00	3,00	1 104,00	3 312,00	883,20	2 649,60
Nouveau Bâtiment R4	Service conseiller technique	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1,00	3,00	1 104,00	3 312,00	883,20	2 649,60
Nouveau Bâtiment R4	Chef de département budget et contrôle de gestion	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1,00	3,00	1 104,00	3 312,00	883,20	2 649,60
Nouveau Bâtiment R4	Chef de département communication et archive	Climatiseur Split LG 1.5 CV	1	1 104	1 104	1,00	3,00	1 104,00	3 312,00	883,20	2 649,60
Ancien Bâtiment RDC	Couloir Guichet	Climatiseur Split 3 CV	1	2 208	2 208	1,00	1,00	2 208,00	2 208,00	1 766,40	1 766,40
Ancien Bâtiment RDC	Couloir Guichet	Climatiseur Split 3 CV	1	2 208	2 208	1,00	1,00	2 208,00	2 208,00	1 766,40	1 766,40

ANNEXE II-2 : Eclairage

SOUS LIEUX	LIEUX	DESIGNATION	QTE	<u>PU</u>	P T (W)	TEMF FONCTIONNE	PS DE MENT (h)/ jour	ENER	GIE Wh	ENERGIE Wh(k=0	
						HPT	HPL	HPT	HPL	HPT	HPL
Nouveau Bâtiment	Local ascenseur 2	Réglette duo 1,20 / 36W	2	90	180	1,50	1,50	270,00	270,00	243,00	243,00
Nouveau Bâtiment	Local ascenseur 2	Réglette duo 1,20 / 36W	2	90	180	1,50	1,50	270,00	270,00	243,00	243,00
Ancien Bâtiment RDC	Couloir RDC	Réglette DUO 0.6m 20W	2	54	108	4,00	4,00	432,00	432,00	388,80	388,80
Ancien Bâtiment RDC	Couloir RDC	Réglette DUO 0.6m Led 9W	2	18	36	4,00	4,00	144,00	144,00	129,60	129,60
Ancien Bâtiment RDC	Guichet (ancien Eclipse , nouveau cash power	Réglette DUO 1.20 m 15W	1	30	30	4,00	4,00	120,00	120,00	108,00	108,00
Ancien Bâtiment RDC	Guichet 9	Réglette duo 1.20 m led 15 W	1	30	30	4,00	4,00	120,00	120,00	108,00	108,00
Ancien Bâtiment RDC	Accueil	Réglette duo 1.20 m led 15 W	3	30	90	4,00	4,00	360,00	360,00	324,00	324,00
Ancien Bâtiment RDC	Guichet abonnement	Réglette duo 1.20 m led 15 w	1	30	30	4,00	4,00	120,00	120,00	108,00	108,00
Ancien Bâtiment RDC	Guichet7	Réglette DUO 1.20m 36W	1	90	90	4,00	4,00	360,00	360,00	324,00	324,00
Ancien Bâtiment RDC	Couloir Guichet	Réglette DUO 1.20m 36W	2	90	180	4,00	4,00	720,00	720,00	648,00	648,00
Ancien Bâtiment R2	Couloir	Réglette mono 0.6m Led 9W	1	9	9	8,00	8,00	72,00	72,00	72,00	72,00
Ancien Bâtiment R3	Couloir	Réglette mono 0.6m 20W	1	27	27	8,00	8,00	216,00	216,00	216,00	216,00

Ancien Bâtiment R3	Couloir	Réglette mono 1.20m led 15W	2	15	30	8,00	8,00	240,00	240,00	240,00	240,00
Ancien Bâtiment R3	Couloir	Réglette mono 1.20m led 15W	2	15	30	8,00	8,00	240,00	240,00	240,00	240,00
Nouveau Bâtiment RDC	Couloir RDC	Reglette 0.60 ; 9 w led	18	9	162	8,00	8,00	1 296,00	1 296,00	1 296,00	1 296,00
Nouveau Bâtiment R1	Couloir	Réglette DUO 0.6m 20W	9	54	486	8,00	8,00	3 888,00	3 888,00	3 888,00	3 888,00
Nouveau Bâtiment R1	Couloir	Réglette DUO 0.6m Led 9W	5	18	90	8,00	8,00	720,00	720,00	720,00	720,00
Nouveau Bâtiment R2	Couloir	Réglette DUO 0.6m Led 9W	12	18	216	8,00	8,00	1 728,00	1 728,00	1 728,00	1 728,00
Nouveau Bâtiment R3	Couloir	Réglette DUO 0.6m 20W	9	54	486	8,00	8,00	3 888,00	3 888,00	3 888,00	3 888,00
Nouveau Bâtiment R3	Couloir	Réglette DUO 0.6m Led 9W	12	18	216	8,00	8,00	1 728,00	1 728,00	1 728,00	1 728,00
Nouveau Bâtiment R4	Cage escalier	Globe	21	40	840	8,00	8,00	6 720,00	6 720,00	6 720,00	6 720,00
Nouveau Bâtiment R4	Couloir	Réglette DUO 0.6m Led 9W	3	18	54	8,00	8,00	432,00	432,00	432,00	432,00
	Total	·	112		3 150		•			25 200,00	25 200,00
	Total Energie rectifiée (Wh)										,00

ANNEXE III : FACTURE ELECTRIQUE SONABEL 2018

	FACTURE ELECTRICITE SONABEL										
	Tarif type E1 non industriel Moyenne tension										
	SONABEL SIEGE : OUAGADOUGOU Police : 121120 MEMOIRE : 12000										
N°	PERIODE	ANNEE	TYPE	MAXIEUR(kW)	HORAIRE	ENERGIE REACTIF kVARh	ENERGIE ACTIVE CONSOMMEE (kWh) HPL	ENERGIE ACTIVE CONSOMMEE (kWh) HPT	ENERGIE TOTALE kWh	MONTANT (FCFA)	
							Pleine	Pointe	Totale	(1 0171)	
1	10	2018	N	235	688	19 909	30 510	21 430	51 940	5 193 152	
2	9	2018	N	226	906	20 938	30 675	22 107	52 782	5 329 107	
3	8	2018	N	247	566	22 291	33 040	23 931	56 971	5 705 111	
4	7	2018	R	309	694	27 067	38 457	28 084	66 541	6 715 611	
5	6	2018	V	309	694	27 067	38 457	28 084	66 541	8 623 423	
6	5	2018	N	309	694	27 067	38 457	28 084	66 541	8 623 423	
7	4	2018	R	250	569	32 445	43 941	33 970	77 911	7 871 865	
8	3	2018	N	250	569	32 445	43 941	33 970	77 911	9 779 677	
9	2	2018	V	250	569	32 445	43 941	33 970	77 911	9 779 677	
10	1	2018	N	350	564	32 253	44 057	33 602	77 659	8 034 941	
11	12	2018	N	358	1085	33 311	44 774	33 361	78 135	8 148 042	
12	11	2018	N	292	681	25 940	31 889	24 619	56 508	5 742 475	

ANNEXE IV : DETAIL DE L'ANALYSEUR DE RESEAU

Date:	Heure:	PT(W)	EpT(Wh)
15/10/2018	13:30:00	193 242,02	4 294,27
16/10/2018	08:00:00	191 687,75	1 342 949,47
16/10/2018	16:00:00	168 893,87	3 007 707,44
17/10/2018	08:00:00	229 905,11	3 899 553,45

ANNEXE V: BILAN DES INVESTISSEMENTS

Annexe V.1 : Eclairage

DESIGNATION	COÛT UNITAIRE (FCFA)	COÛT TOTAL (FCFA)
LED 1,2m mono	8 000	240 000
LED 1,2m duo	15 500	2 712 500
LED 0,6m mono	5 000	115 000
LED 0,6m duo	9 500	237 500
Main d'œuvre	5 000	1 265 000
Divers	330 50	00
TOTAL (FCFA)	4 900 5	500

<u>Annexe V.2</u>: Climatisation

DESIGNATION	COÛT UNITAIRE (FCFA)	COÛT TOTAL (FCFA)
Climatiseur split 1,5cv	521 325	34 407 450
Climatiseur split 2cv	609 000	12 180 000
Climatiseur split 3cv	729 750	24 811 500
Main d'œuvre	35 000	4 200 000
Divers	4 500	000
TOTAL (FCFA)		80 098 950

Annexe V.3: PV

DESIGNATION	UNITE	QUANTITE	COÛT UNITAIRE (FCFA)	COÛT TOTAL (FCFA)
Plaque solaire	unité	64	318 160	20 362 240
Onduleur réseau	unité	8	806 880	6 455 040
Parafoudre DC	unité	8	98 400	787 200
Parafoudre AC	unité	8	98 400	787 200
Disjoncteur DC	unité	8	52 480	419 840
Disjoncteur AC	unité	8	65 600	524 800
Câbles 2*4mm2(5m)	m	5		9 053
Câbles 2*2,5mm2(15m)	m	15		19 680
Câbles 2*35mm2(5m)	m	5	5 045	25 223
Main d'œuvre	unité		7 34	47 569
Divers	unité			2 939 028
		TOTAL 1		39 676 873
		MATERIEL INFOR	MATIQUE	
SOLAR LOG	unité	1		395 273
Ordinateur fixe	unité	1	20 000	20 000
		TOTAL 2		415 273
		GENIE CIV	/IL	
Support panneaux PV	unité	64	4 000	256 000
Béton et maçonnerie	unité			1 000 000
		TOTAL 3		1 256 000
TOTAL (FCFA)			41 348 145	

FOFANA Dgide Ivonne [2018/2019] Mémoire de fin de cycle-Master Génie Energétique 80

<u>Annexe V.4</u>: Batteries de compensation

DESIGNATION	COÛT UNITAIRE (FCFA)	COÛT TOTAL (FCFA)
Batterie de compensation	2 489 000	2 489 000
Main d'œuvre	622 250	622 250
Divers	248 900	248 900
TOTAL (FCFA)	3 360 150	

ANNEXE VI : DIAGNOSTIC DETAILLE DES INSTALLATIONS ELECTRIQUES

DISIGNATION	INSUFFISANCE MAJEURES CONSTATEES	SOLUTIONS PRECONISEES	REFFERENCES
			NORMATIVE
	Les principales anomalies relevées dans le poste sont : - Manque d'entretien (Equipements poussiéreux, toiles d'araignées, trace d'huile sur la partie supérieure du transformateur, etc.) - Pas de chemin de Câble entre le transformateur et le sectionneur occasionnant un poids sur les bornes de	- Faire un entretien général du poste (dépoussiérer, nettoyer, enlever les traces d'huile, vérifier tous les serrages, etc.). Effectuer une maintenance périodique du poste.	NF C 13-100
	serrage - Vis de maintien de la tête du câble n°2 du transformateur inclinée (risque de mauvais contact) - Les roues du support du transformateur ne sont pas en état de calle (risque de déplacement du transformateur);	 Curer le bac de rétention du diélectrique et mettre une grille en métal déployé (maille 6,2x2; fil 0,3x0,75) avec des cailloux; Fixer les câbles BT entre le transformateur et le sectionneur sur un chemin de câbles pour atténuer le poids du câble sur les bornes du sectionneur. Cette opération nécessiterait le remplacement du câble; 	NF C 15-100 NF C 15-106

Poste transformateur

- Absence de DGPT2 pour la protection en cas de surpression à l'intérieur du transformateur
- Bruit normal du transformateur
- Le poste ne dispose d'aucun fusible HTA de rechange
- Une lampe défectueuse de l'éclairage
- Plusieurs trous de passage des câbles ne sont pas bouchés (risques d'intrusion des reptiles et des rongeurs)
- Des fissures sont visibles sur le poste. Le mur côté cellule HTA s'effrite sérieusement à toucher de main ;
- Manque de plusieurs matériels de sécurité (gants isolants HT, tabouret, torche, extincteur), affichage réglementaire de sécurité illisible et perche électrique posée à même le sol;
- Présence d'une quantité importante de terre (dépôt de poussière) dans le bac de rétention du diélectrique du transformateur ;
- Mauvaise aération du poste (persiennes permanemment fermées, fenêtres d'aération obstruées favorisant une élévation de la température ambiante dans

- Remplacer la lampe défectueuse du local transformateur ;
- Equiper le poste d'un jeu de trois fusibles de rechange HTA;
- Equiper le transformateur de DGPT2 afin d'assurer sa protection contre les surpressions ;
- Réhabiliter le poste transformateur (boucher tous les trous de passage des câbles, et de scellement, réparer les fissures sur les murs et la porte, renforcer l'enduit des murs et rafraîchir la peinture
- Assurer l'étanchéité en bouchant les trous de passage des câbles) ;
- Déplacer les barrettes de terre pour faciliter les mesures;
- Revoir le serrage de la vis de maintien de la tête de câble n°2 du transformateur qui est inclinée.
- Mettre les roues du transformateur en état de calle ;

NF C 61-400

le local variant entre 44 à 50° C entre 9h et 13h (relevés effectués le 27/10/2018)

-Barrettes de terre (coincées entre les cellules HTA et le mur) difficilement accessible pour les mesures ;

INSUFFISANCES MAJEURES CONSTATEES

- Bornes du disjoncteur compact et du sectionneur, non protégées (risques de courts circuits)
- Une grille de raccordement ne dispose pas de couvercle
- Détecteur de fumée défectueux
- Les racines de certains arbres coincent les câbles installés entre le Disjoncteur compact et l'inverseur de sources
- Absence de barrière empêchant le stationnement à l'entrée du poste

- Equiper le poste de matériel de sécurité adéquat (gants isolants HT, tabouret, torche, extincteur CO2) et fixer la perche HTA au mur dans un endroit facilement accessible
- Remplacer l'affiche réglementaire sur le portail du poste ;
- Remplacer le détecteur de fumée
- Ranger les mous de câbles qui trainent au sol et fermer les grilles de dérivation;
- Déraciner les arbres et plantes encombrant la zone de passage des câbles ;

Protéger l'entrée du poste contre les stationnements par une barrière métallique ou en béton.

	Les principales anomalies relevées sur le groupe	Principales recommandations			
Groupe	électrogène sont :	- Renforcer l'isolement du câble 240mm² sortie	NF C 15-401		
électrogène	- La première gaine isolante du câble 1X240mm²	alternateur.			
	est décapée sur les trois phases sortie alternateur (environ	-Réaliser une mise à la terre du neutre.			
	1m des bornes de raccordements de l'alternateur)				
	- Le neutre du groupe électrogène n'est pas mis à				
	la terre				
	Les principales anomalies relevées sur les canalisations	- Supprimer les grilles de dérivation installées dans			
	électriques sont :	le poste et raccorder tous les câbles dans le TGBT	NF C C15-100		
	- Les câbles ne sont pas repérés	- Remplacer le câble d'alimentation de l'Ancien	NF C C12-100		
	- Les mauvaises conditions de pose et la vétusté (plus	Bâtiment			
	de 20 ans) du câble d'alimentation de l'Ancien	- Remplacer les trois (03) câbles qui alimentent le			
	Bâtiment	nouveau bâtiment			
	- Echauffement de certains câbles (ascenseur,	- Ranger et bien fixer tous les câbles installés en			
	Archive au R5, etc.)	apparent dans les goulottes et les chemins de			
	- Les couleurs conventionnelles des conducteurs	câbles			
	électriques ne sont pas totalement respectées. Des	- Repérer l'ensemble des principaux câbles			
Canalisations	conducteurs de couleur vert jaune ou bleu sont	conservés			
électriques e	t utilisés comme conducteurs actifs, ce qui est	- Déposer tous les câbles qui ne sont plus utilisés.			
connexes	formellement interdit;	- Remplacer tous les câbles mal posés, vétustes, ou			
		présentant des risques			

	- Il n'existe pas de séparation rigoureuse des circuits par nature. Plusieurs climatiseurs sont alimentés à partir des prises de courant - Les conditions de pose des principaux câbles d'alimentation sont mauvaises (câbles enterrés sans PVC, ni grillage avertisseur, câbles mal fixés aux murs, mal rangés, câbles posés à même le sol, grilles de dérivation sans couvercle, goulottes sans couvercle, câbles non repérés, etc.) - Les installations électriques intérieures de l'ancien Bâtiment ne sont pas conformes aux normes (pas de séparation des circuits, non-respect des couleurs conventionnelles, goulottes sans couvercle, câbles trainant au sol) - Il n'existe aucun plan d'électricité, certains câbles qui ne sont plus en service ne sont pas déposés	
Appareillage	- Sur les 568 luminaires inventoriés 521 sont en bon - Faire un entretien général des appareils NF C C15-100	
électrique	état et 47 en mauvais état soit un taux de défaillance - Remplacer ou réparer tous les appareils NF C C12-100)
	de 11.085%. 329 luminaires ne sont pas en Led. défectueux, ou vétustes.	

- Sur les 532 prises de courant inventoriées 509 sont en bon état et 23 en mauvais état. 54 prises de courant ne sont pas mises à la terre
- Le rhéostat d'un brasseur d'air de la salle d'attente au RDC du Nouveau Bâtiment est en mauvais état
- Sur les 160 climatiseurs recensés 156 sont en bon état et 4 en mauvais état. Certains climatiseurs sont de l'ancienne génération, énergivore (21 climatiseurs de type fenêtre). Les climatiseurs manquent d'entretien
- Le réseau d'éclairage de sécurité est insuffisant et n'est pas fonctionnel dans les deux (02) immeubles
- Plusieurs bureaux sont mal éclairés (Standard (52 Lux), Bureau DMP (125 Lux), Section Commande (109 Lux), Chef département suivi projet (108 lux), Bureau infirmier (152 lux), Secrétariat informatique (117 lux), etc.). l'éclairement recommandé dans les bureaux est 500 Lux.

- Remplacer les anciens climatiseurs par des climatiseurs de la nouvelle génération disposant d'un Coefficient de Performance supérieur à 3
- Remplacer les prises qui ne disposent pas de broches de terre
- Réhabiliter l'éclairage de sécurité dans les deux (02) immeubles
- Améliorer l'éclairement dans les bureaux mal éclairés

ANNEXE VII: DIMENSIONNEMENT PHOTO VOLTAÏQUE

-Puissance crête (Po)

$$Po(kWc)=Go * S * \eta m$$

$$Go = 1 \text{ kW /m}^2$$

$$S = 111.066 \text{ m}^2$$

$$\eta m = 17.4\%$$

$$Po = 19.33 \text{ kWc}$$

Po: Puissance crête de l'installation (kWc)

G_o: Ensoleillement STC (1 kW/m²)

 $\eta_{\rm m}$: Rendement du module photovoltaïque (%)

S : surface utile

CA	CARACTÉRISTIQUES ÉLECTRIQUES							
CLA	CLASSES DE PUISSANCE 290							
PEF	RFORMANCE MINIMALE AUX CONDITIONS DE TE	ST STANDARI), STC¹ (TOLÉ	RANCE DE PUISSANCE				
	Puissance au MPP¹	P _{MPP}	[W]	290				
_	Courant de court-circuit ¹	I _{sc}	[A]	9,63				
Minimum	Tension à vide ¹	U _{oc}	[V]	39,19				
E E	Courant au MPP	I _{MPP}	[A]	9,07				
	Tension au MPP	\mathbf{U}_{MPP}	[V]	31,96				
	Rendement ¹	η	[%]	≥17,4				

• Configuration du champ

Le choix de l'onduleur se portera sur le type SMA SB 2500TLST-21, qui est un onduleur monophasé

Le nombre d'onduleur (Nond) :

Nond=Puissance installer / Puissance onduleur

Nond=
$$\frac{19325}{2500}$$

Nond
$$= 8$$

Nous avons 8 onduleurs par conséquence nous aurons 8 sous- champs photovoltaïques, donc un onduleur par champ.

- Pour un sous-champ
- Le nombre de module (Nm)

$$Nm = \frac{Pcc - ond}{Pmpp}$$

$$Nm = \frac{2500}{290}$$

$$Nm = 8.6$$

$$Nm = 9$$

Ce nombre est provisoire en attendant la vérification entre l'onduleur et le champ photovoltaïque. L'onduleur choisi à une seule entrée.

Art. N°	0201741	0201539	0201018	0201742
Modèle	SMA SB 1300TL-10	SMA SB 1600TL-10	SMA SB 2100TL-10	SMA SB 2500TLST-21
Tension d'entrée (MPP range)	125 - 480 V	155 - 480 V	200 - 480 V	180 - 500 V
Tension en circuit ouvert	600 V	600 V	600 V	750 V
Courant d'entrée max.	11 A	11 A	11 A	15 A
Puissance nominale d'injection	1300 W	1600 W	1950 W	2500 W
Puissance CC max.	1400 W	1700 W	2200 W	2650 W
Tracker MPP	1 pc.	1 pc.	1 pc.	1 pc.
Tension de sortie	180 - 260 V	180 - 260 V	180 - 260 V	180 - 280 V
Facteur de puissance cos phi	1	1	1	1, 0.8 (survolté) - 0.8 (sousvolté)
Fréquence réseau	50 Hz -4.5 Hz, +2.5 Hz	50 Hz -4.5 Hz, +2.5 Hz	50 Hz -4.5 Hz, +2.5 Hz	50, 60 Hz ±5 Hz
Rendement max.	96.0 %	96.0 %	96.0 %	97.0 %
Rendement européen	94.3 %	95.0 %	95.2 %	96.0 %
Auto-consommation de nuit	0.1 W	0.1 W	0.1 W	1.0 W
Température ambiante	-25 à +60 °C	-25 à +60 °C	-25 à +60 °C	-25 à +60 °C
Humidité	IEC 60721-3-4, 4K4H	IEC 60721-3-4, 4K4H	IEC 60721-3-4, 4K4H	0 à 100 %, sans condensation
Evacuation de la chaleur	Convection	Convection	Convection	Convection
Type de protection	IP65	IP65	IP65	IP65
Conception du circuit	Sans transfo, monophasé	Sans transfo, monophasé	Sans transfo, monophasé	Sans transfo, monophasé
Surveillance réseau	Oui	Oui	Oui	Oui
Disjoncteur à courant de défaut	Disjoncteur à courant de défaut selon VDE 0126	Disjoncteur à courant de défaut selon VDE 0126	Disjoncteur à courant de défaut selon VDE 0126	Disjoncteur à courant de défaut selon VDE 0126
Affichage	Ecran LCD	Ecran LCD	Ecran LCD	Ecran graphique LCD
Boîtier	Aluminium	Aluminium	Aluminium	Aluminium
Dimensions (I / H / P)	440 mm / 339 mm / 214 mm	440 mm / 339 mm / 214 mm	440 mm / 339 mm / 214 mm	490 mm / 519 mm / 185 mm
Poids	16 kg	16 kg	16 kg	23 kg
Garantie *	5 ans	5 ans	5 ans	5 ans
Normes	Marquage CE, VDE 0126-1-1, G83/1-1, PPC, AS 4777, EN 50438', C10/11, PPDS, UTE C15-712-1, VDE-AR-N 4105, RD1699	Marquage CE, VDE 0126-1-1, G83/1-1, PPC, AS 4777, EN 50438 ¹ , C10/11, PPDS, UTE C15-712-1, VDE-AR-N 4105, RD1699	Marquage CE, VDE 0126-1-1, G83/1-1, PPC, AS 4777, EN 50438 ¹ , C10/11, PPDS, UTE C15-712-1, VDE-AR-N 4105, RD1699	Marquage CE, VDE 0126-1-1, G83/1-1, C10/11, G59/2, VDE- AR-N 4105

- Nombre de module en séries (Ns)

Vmpp min ond< Ns* Vmpp < Vmpp max ond

 $Vmpp \ min \ ond \ / \ Vmpp < Ns* < Vmpp \ max \ ond \ / \ Vmpp$

$$\frac{180}{31.96}$$
 < Ns < $\frac{500}{31.96}$

5.6< Ns <15.64

Ns * Voc < V max ond

Ns < V max ond /Voc

$$N_S < \frac{750}{39.19}$$

Ns < 19.13

- Le nombre de branche en parallèle (Np)

Np * Icc module < Imax ond

Np< Imax/ Icc module

$$Np < \frac{15}{9.63}$$

Au vu des résultats obtenus nous allons retenir 9 modules en séries et 1 strings par souschamp pour 8 sous-champs.

Soit une puissance totale de 8*1*8*290= 18 560 Wc

- Le nombre optimal de module à installer

La puissance totale à installer dépend de la surface disponible donc le nombre de module à installer doit être bien précis.

Colonne réductrice du	Comparaison entre la	Colonne réductrice	Comparaison entre la
nombre de module en	puissance obtenue et la	du nombre de sous-	puissance obtenue et la
série	puissance demandée	champ	puissance demandée
	kWc		kWc
9* 1 * 8 * 290	20.88>19.325	9* 1 * <mark>7</mark> *290	18.270<19.325
8 * 1 * 8 * 290	18.560<19.35		

Il nous convient de prendre pour un sous-champ 8 modules en série 1 string

Pour un champ nous avons 8 modules et pour tout l'ensemble du système nous avons 64 modules

- Vérification de la puissance à l'entrée de chaque onduleur

Pgen/sous-champ= Nm/sous-champ *Pmodule

Pgen/sous-champ= 8*290

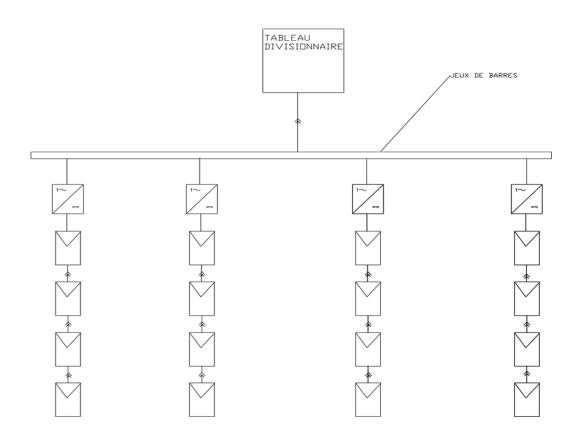
Pgen/sous-champ= 2 320 W

FOFANA Dgide Ivonne [2018/2019] Mémoire de fin de cycle-Master Génie Energétique

Dans les conditions STC nous produirons 2 320 W par sous-champ ce qui est légèrement inférieur à la puissance denrée de l'onduleur (2 500 W).

Ainsi pour tout le système la puissance crête installée fera 18 560 Wc

Vérification du ratio de puissance


RP= P entrée. Ond / P gen. pv

$$RP = \frac{2500}{2320}$$

RP = 1.08

90<RP<110

Schéma Synoptique du système PV

Dimensionnement des dispositifs de protection

- Coté DC
- Disjoncteur

Les Disjoncteurs permettent la protection contre les surintensités et ceux choisis doivent avoir les caractéristiques suivantes :

$$\begin{cases} U_{Dij} \geq 1,15 \ U_{OC \ string} \\ I_{Max-cc-ond} \leq I_{cal-dijoncteur} \end{cases}$$

En connaissant les valeurs de la tension et l'intensité au niveau de chaque string

Uoc-string= 313,52 V

Imax-cc-ond=15 A

Ce qui donne:

$$\begin{cases} U_{Dij} \geq 1.15 * 313.52 = 360.55 \\ 15 \leq I_{cal-dijoncteur} \end{cases}$$

Notre choix se portera sur un de 20A de type CF2000022

- Choix de parafoudre

Pour la protection de notre Onduleur contre les surtensions atmosphériques, nous envisagerons l'installation de parafoudres du côté continue et du coté alternatif. Ils auront pour but de détecter les surtensions et de les diriger vers la terre le plus rapidement possible.

$$U$$
-cc-paraf $\geq U$ -oc-string

$$U$$
-cc-paraf $\geq 313,52 \text{ V}$

Notre choix se portera sur un parafoudre de type OVR PV 40-600C avec une tension max de 670V

- Coté AC
- Disjoncteur

Les disjoncteurs coté AC doivent présenter les caractéristiques suivantes pour être éligibles :

$$\begin{cases} \\ K*\ I_{cal-ond} \leq I_{cal-dijoncteur} \end{cases}$$

K : coefficient donné en fonction du calibre. Pour K=1

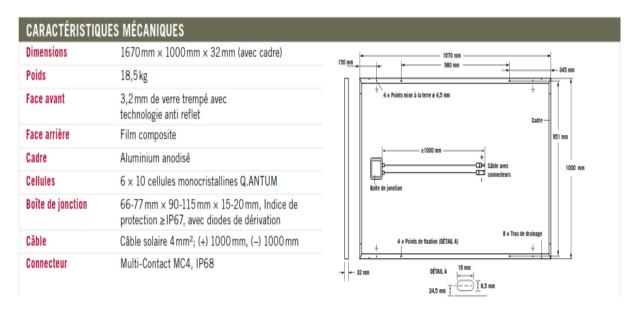
$$\begin{cases} 11,17A \leq I_{cal-dijoncteur} \end{cases}$$

Notre choix se portera sur un disjoncteur de type S802S-B16 de 16A

- Parafoudre

U-ond ≤ U- parafoudre

230V ≤U-parafoudre


Nous avons choisi un parafoudre de type OVR Plus N1 10 275

Puissance	Puissance crête kWc	18,56
	Nombre de module en série	8
	Nombre de string/ sous-champ	1
Champ PV	Nombre de sous-champ	8
	Nombre total de modules 290 Wc-31.96 V	64
	Nombre total d'onduleur SMA-SB2500TLST-21	8
Onduleur SMA-SB	Nombre d'entrée par onduleur	1
	Nombre de parafoudre DC	8
	Nombre de disjoncteur DC	8
Protection DC et AC	Nombre de parafoudre monophasé	8
	Nombre de disjoncteur monophasé	8

Dimensionnement des sections de câble

Des modules à l'onduleur

Les modules sont sortis avec des câbles solaires de 4 mm² nous allons utiliser les mêmes sections de la sortie des modules à l'entrée de l'onduleur

✓ Vérification de la chute de tension

Les onduleurs installés sont des onduleurs string qui seront installés juste à côté de chaque souschamps. La distance maximum entre la sortie des générateurs à l'entrée de l'onduleur sera 5 m.

D'après la norme la chute de tension admissible cote DC est 2%

$$\Delta U$$
-admissible = 31,96*8*0,02

$$\Delta U$$
-admissible =5,11V

$$\Delta U_{DC} = \frac{2*L*I*\rho}{S}$$

$$\Delta U_{DC} = \frac{2*5*15*0,0183}{4}$$

$$\Delta U_{DC} = 0.68 \text{ V}$$

 $\Delta U_{DC} < \Delta U$ -admissible

Sortie onduleur -jeux de bar

A la sortie de chaque onduleur nous avons comme courant d'emploi 11,17 A, ce qui nous amène à choisir des disjoncteurs de calibre 16A.

Selon le tableau ci-dessous nous allons choisir des câbles de 2.5mm² Cu avec un courant admissible de 2

Câble size (mm²) Cu	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300
Courant admissible (A)	13	21	28	36	46	61	81	99	125	160	195	220	250	285	340	395

✓ Vérification de la chute de tension

La chute de tension admissible est de 8%

$$\Delta U$$
-admissible = 230*0,08

$$\Delta U$$
-admissible =18,4 V

$$\Delta U_{AC} = 2 I \left(R \frac{L}{s} cos\rho + XL sin\rho \right)$$

$$\Delta U_{AC} = 2*11,17(0,0225*15/2,5*0,8)$$

$$\Delta U_{AC} = 2,41 \text{ V}$$

 $\Delta U_{AC} < \Delta U$ -admissible

> Jeux de bar - entrée tableau divisionnaire

A la du jeu de bar

$$I_B = I * 8$$

$$I_B = 11,17*8$$

$$I_B = 89,36 A$$

Selon le courant d'emploi nous avons choisi une section de 35mm² Cu avec un courant amissible de 99A.

✓ Vérification de la chute de tension

La chute de tension admissible est de 8%

$$\Delta U$$
-admissible = 230*0,08

$$\Delta U$$
-admissible =18,4 V

$$\Delta U_{AC} = 2 I \left(R \frac{L}{s} cos\rho + XL sin\rho \right)$$

$$\Delta U_{AC} = 2*89,36 (0,0225 * 5/2,5*0,8)$$

$$\Delta U_{AC} = 6,44V$$

 $\Delta U_{AC}\!<\!\Delta U\text{-admissible}$