

ETUDE TECHNIQUE DETAILLEE POUR LA REHABILITATION DU BARRAGE DE YAONGO, COMMUNE DE DARGO, PROVINCE DU NAMENTENGA, BURKINA FASO

MEMOIRE POUR L'OBTENTION DU DIPLÔME D'INGENIEUR 2IE AVEC GRADE DE MASTER EN INGENIERIE DE L'EAU ET DE L'ENVIRONNEMENT

OPTION: Génie Civil et Hydraulique

Présenté et soutenu publiquement le 08 juillet 2019 par

Younoussa GAMSORE N° 20100958

Travaux dirigés par :

M. Moussa LO: Enseignant à 2iE

ET

M. Fouta DERA: Ingénieur du Génie civil, Directeur technique de CETRI

Jury d'évaluation du stage :

Président: Dr Dial NIANG

Membres et correcteurs : Dr FOWE TAZEN

Mr Célestin OVONO MEZUI

Promotion [2018/2019]

DEDICACES

Je dédie ce mémoire à tous ceux qui de près ou de loin ont contribué à faire de moi l'Homme que je suis aujourd'hui.

REMERCIEMENTS

Nos remerciements vont à l'endroit de tous ceux qui, d'une manière ou d'une autre ont contribué au bon déroulement de cette formation. Plus particulièrement à :

- ❖ L'Institut International d'Ingénierie de l'Eau et de L'environnement (2IE) pour la qualité de la formation qui nous a été donnée durant tout notre cursus ;
- ❖ Mon Directeur de Mémoire Mr LO Moussa, enseignant à 2iE, pour son assistance, sa disponibilité et tous les conseils prodigués tout au long de ce présent mémoire ;
- Mr DAMIBA Hervé Désiré, Gérant du cabinet d'étude CETRI, pour nous avoir donné l'opportunité d'effectuer notre stage dans sa structure;
- ❖ Mr DERA, Directeur Technique du cabinet CETRI et mon maitre de stage, pour avoir mis à notre disposition les éléments nécessaires à l'élaboration du mémoire ;
- ❖ Docteur Dial NIANG pour sa disponibilité et ses orientations ;
- ❖ Mr COULIBALY Gnenekanhan pour sa disponibilité et ses remarques ;
- Mr KABORE Ousmane pour ses multiples conseils et recommandations pour l'élaboration du mémoire;
- Mr SAWADOGO M. Hilaire pour son soutien et ses orientations lors de l'élaboration du mémoire;
- ❖ Mr OUEDRAOGO Moumouni pour sa disponibilité, sa présence et ses conseils ;
- ❖ Tous nos amis et camarades de 2iE;
- ❖ Tous le corps professoral de 2iE en particulier ceux qui ont contribué à notre formation ;
- ❖ A l'ensemble du personnel de CETRI, pour l'accueil et le soutien témoigné à notre égard.

RESUME

L'atteinte de la sécurité alimentaire des pays sahéliens à faible ressources naturelles comme le Burkina Faso passe par la mise en œuvre de projets et programmes dans les domaines de l'agriculture et de l'élevage. C'est dans ce cadre que l'Etat Burkinabè et ses partenaires ont mis en place le Projet de Valorisation Agricole des petits Barrages (ProValAB). L'atteinte des objectifs de ce projet passe par la réhabilitation de cinq (05) petits barrages dont le barrage de Yaongo dans la commune de Dargo. Le présent mémoire s'inscrit dans ce cadre. Il traite de l'étude technique détaillée pour la réhabilitation de ce barrage.

La démarche méthodologique part de l'état des lieux (diagnostic) et l'analyse des études de bases, ensuite l'actualisation des études hydrologiques et de la retenue et enfin les études de dimensionnement des ouvrages constitutifs du barrage.

Les caractéristiques actuelles font état d'une digue en terre homogène de 482 m de long calée à la cote 300 m, un déversoir radier de 211 m de longueur calé à la cote 298,25 m et une cuvette de 1 142 140 m³ de volume. Les ouvrages qui feront l'objet de réhabilitation sont principalement le talus aval de la digue, le déversoir et le bassin de dissipation. Le déversoir passera d'un type radier à un type poids à profil trapézoïdal.

Les résultats indiquent que la retenue se trouve à l'exutoire d'un bassin versant de 633,38 km². Après réhabilitation, le volume du barrage passe à **1 524 636 m³**. La digue aura une longueur de 443 m. Cette retenue servira essentiellement à irriguer 15 ha de terre aménagée et à abreuver des animaux. Le déversoir passera à une longueur de 250 m. Le débit de crue de projet de 346,09 m³/s est évacué à travers un bassin de dissipation de type II long de 4 m. Le coût de la réhabilitation est de **878 443 998 F** CFA TTC.

Mots clés:

- 1. Barrage de Yaongo
- 2. Déversoir trapézoïdal
- 3. Réhabilitation
- 4. Dargo
- 5. Burkina Faso

ABSTRACT

The way to reach food security in the Sahel countries with low natural resources such as Burkina Faso, goes through the implementation of projects and programs in agriculture and breeding domain. That is the way that the Burkinabe State and its partners have set up the Small Dams Agricultural Valorization Project (ProValAB). Reach the objectives of this project goes through the rehabilitation of five (05) small dams including the Yaongo Dam in the commune of Dargo. This memo goes into this framework. It deals with the detailed technical study for this dam rehabilitation.

The methodological approach starts from the inventory of fixtures and the basic studies analysis, next the actualization of hydrological studies and water retention and finally the dam structure construction studies.

Current characteristics show a homogeneous earth dike 482 m length at 300 m altitude, the spillway has a 211 m of length at 298.25 m altitude and a volume of 1,142,140 m³. The structures to be rehabilitated are mainly the downstream slope of the dike, the spillway and the dissipation pond. The Spillway will be change from an apron type to a trapezoidal concrete weight type.

The results indicate that the dam is located at the outlet of a 633.38 km² catchment area with a volume of **1,524,635.91 m³**. After the rehabilitation, the dike length will be 443 m. This dam will deserve mainly a 15 ha of irrigated perimeter and animals. The spillway length will be about 250 m. The project water flow is about 346.09 m³/s. It is evacuated through a dissipation pond of type II which length is 4 m. The cost of the rehabilitation is **878 443 998** F CFA including tax.

Keywords:

- 1. Yaongo dam
- 2. Trapezoidal spillway
- 3. Rehabilitation
- 4. Dargo
- 5. Burkina Faso

LISTE DES ABREVIATIONS

APD Avant-Projet Détaillé

BUNEE Bureau National des Evaluations Environnementales

BNDT Base Nationale de Données Topographiques

CIEH Comité Interafricain d'Etudes Hydrauliques

CIGB Comité International des Grands Barrages

DPEA Direction Provinciale de l'Eau et de l'Assainissement

DPRAH Direction Provinciale des Ressources Animales et Halieutiques

FAO Organisation des Nations Unies pour l'Alimentation et l'Agriculture

GPS Global Positioning System

HYFRAN Hydrological Frequency Analysis

IGB Institut de la Géographie du Burkina

MCD Mission De Contrôle

NIES Notice d'impact Environnementale et Sociale

ORSTOM Office de la Recherche Scientifique et Technique Outre-Mer

PAPANAM Projet d'Action de Production et d'Accompagnement dans la province

du Namentenga

PCD Plan Communal de Développement

PEN Plan d'Eau Normal

PHE Plus Hautes Eaux

PGES Plan de Gestion Environnementale et Sociale

ProValAB Projet de Valorisation Agricole des petits Barrages

RN Route Nationale

RR Route Régionale

SOGREAH Société Grenobloise d'Etudes et d'Applications Hydrauliques

UBT Unité de Bétail Tropical

USBR United States Bureau of Reclamation

TABLE DES MATIERES

DEDICACE	S	i
REMERCIE	MENTS	ii
RESUME		iii
ABSTRACT	`	iv
LISTE DES	ABREVIATIONS	v
TABLE DES	S MATIERES	vi
LISTE DES	TABLEAUX	ix
	FIGURES	
LISTE DES	GRAPHIQUES	xi
	HNIQUE DU BARRAGE DE YAONGO	
INTRODUC	TION	1
PRESENTA	TION DE LA STRUCTURE D'ACCUEIL	2
I. PRESE	NTATION DE L'ETUDE	4
I.1. Les	objectifs de l'étude	4
I.2. Prés	sentation de la zone d'étude	4
I.2.1.	Localisation et accès au site	4
I.2.2.	Présentation du barrage	5
I.2.3.	Climat	
I.2.4.	Hydrographie	6
I.2.5.	Sols et végétation	6
I.2.6.	Contexte géologique	7
I.2.7.	Situation démographique	7
II. MATER	RIELS ET METHODES	8
II.1. Mat	tériels	8
II.2. Mét	thodes	10
II.2.1.	Recherche documentaire	10
II.2.2.	Visite de site et la collecte des données	10
II.2.3.	Etude diagnostique du barrage	10
II.2.4.	Etude hydrologique	10
II.2.4.1.	Les caractéristiques du bassin versant	10
II.2.4.2.	L'analyse statistique des pluies	15
II.2.4.3.	Calcul des crues	16

II.	.2.5. E	Etude de la retenue	18
II.	.2.5.1.	Evaluation des besoins en eau	18
II.	.2.5.2.	Evaluation des pertes en eau	19
II.	.2.5.3.	Evaluation des dépôts solides	19
II.	.2.5.4.	Evaluation des apports liquides	20
II.	.2.5.5.	Calcul du volume de la retenue	21
II.	.2.5.6.	Simulation de l'utilisation de la retenue	21
II.	.2.6. C	Conception et dimensionnement des ouvrages du barrage	23
II.	.2.6.1.	Choix du type de barrage	23
II.	.2.6.2.	La digue du barrage	23
II.	.2.6.3.	L'évacuateur de crue	25
II.	.2.6.4.	Le mur bajoyer	28
II.	.2.6.5.	La digue de protection	29
II.	.2.6.6.	L'ouvrage de prise	30
II.	.2.6.7.	Coût de la réhabilitation	30
II.3.	Synth	èse des études de bases	31
II.	.3.1. E	Etudes géotechniques	31
II.	.3.2. E	Etude socio-économique	32
II.	.3.3. N	Notice d'impact environnementale et sociale (NIES)	33
III.	RESUL	TATS ET DISCUSSIONS	35
III.1	. Etu	de diagnostique du barrage	35
III	I.1.1.	Etat actuel du barrage	35
III	I.1.1.1.	La cuvette du barrage	35
III	I.1.1.2.	Etat de la digue	35
III	I.1.1.3.	Etat de l'évacuateur de crue	36
III	I.1.1.4.	Etat des ouvrages annexes	39
III	I.1.2.	Causes probable des dégradations	41
III	I.1.3.1.	La digue	41
III	I.1.3.2.	L'évacuateur de crue	41
III	I.1.3.3.	Les terres à l'aval du bassin de dissipation	41
III.2	. Etu	des hydrologiques	42
III	I.2.1.	Caractérisation du bassin versant	42
III	I.2.2.	Analyse statistiques des pluies	43

ETUDE TECHNIQUE DETAILLEE POUR LA REHABILITATION DU BARARRAGE DE YAONGO COMMUNE DE DARGO, PROVINCE DU NAMENTENGA, BURKINA FASO

III.2.3.	Détermination des crues	45
III.3. Esti	imation et exploitation de la retenue	47
III.3.1.	Evaluation des besoins en eau	47
III.3.2.	Estimation des pertes en eau	47
III.3.3.	Evaluation des dépôts solides	47
III.3.4.	Evaluation du volume de la retenue	47
III.3.5.	Calculs des apports liquides	48
III.3.6.	Simulation de l'utilisation de la retenue	49
III.4. Vér	ification de la conception des ouvrages existants	51
III.4.1.	Vérification de la conception de la digue	51
III.4.2.	Vérification de la conception de l'évacuateur de crue	51
III.4.3.	Crue de rupture du barrage	51
III.5. Pro	position de réhabilitation des ouvrages existants du barrage	52
III.5.1.	Réhabilitation de la digue du barrage	52
III.5.2.	Réhabilitation de l'évacuateur de crue	54
III.5.3.	Dimensionnement du bassin de dissipation	55
III.5.4.	Dimensionnement du mur bajoyer	56
III.5.5.	Réhabilitation de la digue de protection	57
III.5.6.	Réhabilitation de l'ouvrage de prise	58
CONCLUSION	N ET RECOMMANDATIONS	59
Bibliographie		60
ANNEXES		61

LISTE DES TABLEAUX

Tableau 1 : Classes d'infiltrabilité des sols	13
Tableau 3 : Classification des pentes des bassins versant (ORSTOM)	13
Tableau 3 : Conditions de stabilité du déversoir	27
Tableau 4 : Conditions de stabilité externe du mur Bajoyer	29
Tableau 5 : Conditions de stabilité interne du mur Bajoyer	29
Tableau 7 : Superficies cultivées et rendements des principales cultures en 2012	32
Tableau 8 : Production maraichères en 2012	32
Tableau 9 : Effectif du cheptel commercialisé entre 2010 et 2012	33
Tableau 9 : Caractéristiques du bassin versant	43
Tableau 10 : Valeurs caractéristiques des pluies annuelles	44
Tableau 11 : Valeurs caractéristiques des pluies maximales journalières annuelles	45
Tableau 12 : Calcul de la crue de projet	45
Tableau 13 : Besoins en eau par campagne	47
Tableau 16 : Caractéristiques de la cuvette du barrage	47
Tableau 17 : Calcul des apports liquides	48
Tableau 16 : Vérification de la largeur en crête	51
Tableau 17 : Caractéristiques de la digue	52
Tableau 18 : Travaux de réhabilitation et de protection de la digue	52
Tableau 19 : Stabilité du déversoir	54
Tableau 20 : Caractéristiques du déversoir	55
Tableau 21 : Caractéristiques du bassin de dissipation et du chenal d'évacuation	55
Tableau 22 : Caractéristiques géométriques du mur Bajoyer	56
Tableau 23 : Stabilité externe du mur Bajoyer	57
Tableau 24 : Stabilité interne du mur Bajoyer	57
Tableau 25 : Caractéristiques de la digue de protection	58

LISTE DES FIGURES

Figure 1 : Organigramme de CETRI	3
Figure 2 : Carte de situation de la zone d'étude	5
Figure 3 : Présentation du barrage de Yaongo	<i>6</i>
Figure 4 : Dégradations de la digue du barrage	36
Figure 5 : Dégradation du déversoir	38
Figure 6 : Dégradations du bassin de dissipation et des enrochements	39
Figure 7 : Dégradations des ouvrages annexes du barrage	40
Figure 8 : Carte du bassin versant du barrage de Yaongo	42
Figure 9 : Cercle de glissement le plus défavorable	53

LISTE DES GRAPHIQUES

Graphe 1 : Histogramme des pluies moyennes de la station de Boulsa (1980-2015)	44
Graphe 2 : Hydrogramme de crue du projet	46
Graphe 3 : Simulation de la retenue	49

FICHE TECHNIQUE DU BARRAGE DE YAONGO

1 : Localisation

Région : Centre Nord

Province: Namentenga

Commune : Dargo Village : Yaongo

Coordonnées: longitude: 00° 16' 19,09'' Ouest; Latitude: 12° 36' 55,84'' Nord

Désignation	Unité	Caractéristiques actuelles	Caractéristiques après réhabilitation
2: Bassin versant			
Superficie	Km²	-	633,80
Périmètre	km	-	164,28
Pluie moyenne annuelle (1980-2015)	mm	-	671
Crue décennale	m ³ /s	-	144,21
Crue de projet	m ³ /s	-	346,09
Apports liquides en année moyenne	m^3	-	19 014 000
3 : Digue			
Туре	-	Terre homogène	Terre homogène
Longueur totale avec déversoir	m	693	693
Largeur en crête	m	3,00	3,50
Cote calage	m	300,00	300,00
Pente talus amont	-	1V / 2H	1V / 2H
Pente talus aval	-	1V / 2H	1V / 2H
4: Retenue			
Cote Plan d'Eau Normale (PEN)	m	298,25	298,50
Superficie du plan d'eau au PEN	ha	140,13	165,65
Capacité au PEN	m^3	1 142 410	1 524 636
5 : Evacuateur de crue			
Туре	-	Radier	Poids à profil trapézoïdal

ETUDE TECHNIQUE DETAILLEE POUR LA REHABILITATION DU BARARRAGE DE YAONGO COMMUNE DE DARGO, PROVINCE DU NAMENTENGA, BURKINA FASO

Nature du matériau	_	Béton cyclopéen et terre homogène sous radier	Béton cyclopéen
Charge au-dessus du seuil	m	-	0,8
Longueur hydraulique	m	211	250
Cote de calage	m	298,25	298,50
Débit évacué	m ³ /s	-	323,09
Longueur bassin de dissipation	m	4,00	4,00
Profondeur bassin de dissipation	m	1,00	1,00
6 : Ouvrage de prise/vidange			
Diamètre de la conduite	mm	300	300
Longueur de la conduite	m	24	24
Diamètre du robinet vanne	mm	300	300
Cote de fond bac amont	m	295,8	295,8
Cote de fond bac aval	m	295,7	295,7

INTRODUCTION

Le Burkina Faso, pays sahélien et enclavé au cœur de l'Afrique de l'Ouest, est soumis à une pluviométrie généralement faible et mal répartie dans le temps et dans l'espace. De ce fait, la problématique de la satisfaction des besoins en eau a toujours été d'actualité et cela s'est accentuée avec la croissance démographique. Le caractère social et économique de la ressource apparaît nettement d'autant plus que l'agriculture et l'élevage constituent les piliers du développement économique et social du pays. Pour faire face à cette situation, le pays a entrepris depuis les années 60 des campagnes de construction de retenues d'eau. Aujourd'hui 47 % de ces retenues sont fortement dégradées (DGRE, 2011).

Pour résoudre ces anomalies et assurer la pérennité des barrages dans le but d'améliorer durablement la sécurité alimentaire, l'Etat avec la collaboration et l'appui de l'Agence Suédoise de la coopération au Développement International (ASDI), à travers des projets tel que le Projet de Valorisation Agricole des petits Barrages (ProValAB) prévoit la réhabilitation de barrages et la réalisation d'aménagements hydroagricoles. C'est dans ce cadre que s'inscrit le présent mémoire intitulé : « Etude technique détaillée pour la réhabilitation du barrage de Yaongo, Commune de Dargo, Province du Namentenga, Burkina Faso ».

Pour traiter le sujet, nous allons tout d'abord présenter la zone et les objectifs de l'étude, ensuite les matériels et méthodes que nous avons utilisés dans cette étude, puis nous présenterons les résultats obtenus et les discussions de ceux-ci. Nous finirons par la présentation des notes de calculs, des pièces dessinées et de l'estimation du coût du projet.

PRESENTATION DE LA STRUCTURE D'ACCUEIL

Fondé en juillet 1999, le Cabinet d'Etudes Techniques et de Recherche en Ingénierie en abrégé CETRI était au départ une entreprise individuelle qui a évolué en une Entreprise à responsabilité limité (SARL). Elle œuvre dans le domaine des prestations intellectuelles et de maîtrise d'œuvre et a pour mission principale, la valorisation de ses services dans ses domaines d'intervention. Le bureau d'études CETRI intervient dans les domaines tels que l'eau, les infrastructures et l'environnement et ses prestations vont des études préliminaires et de faisabilité à l'élaboration des dossiers d'appel d'offres en passant par les études d'avant-projet sommaires, les études techniques détaillées et d'exécution. Il assure également des missions de pilotage, de maîtrise d'ouvrage déléguée, de contrôle et supervision de travaux, d'assistance technique ou d'expertise.

Il comprend un personnel permanent et contractuel, compétent et expérimenté, qui intervient à toutes les étapes de conception et de mise en œuvre des projets de développement.

Objectifs

Les principaux objectifs du cabinet CETRI sont :

- ♣ Définir et valoriser les grandes lignes de recherche en matière d'Hydraulique, de Génie civil, de Génie rural, de Socio-économie, d'Environnement et de Formations ;
- Satisfaire et fidéliser ses partenaires au travail à travers la recherche de la qualité de ses services;
- ♣ Assurer la promotion des actions pour le bien-être du Personnel ;
- Conquérir le Marché extérieur dans ses aires de prédilection.

***** Organisation

La structuration de CETRI reflète son caractère multisectoriel tant d'un point de vue de la variété de ses domaines d'intervention, que d'un point de vue institutionnel et administratif. Le cabinet CETRI comprend :

- ♣ Une Direction Générale ;
- ♣ Une Direction Administrative et financière ;
- ♣ Une Direction Technique ;
- Une Direction du Développement et de la Gestion des Projets ;
- ♣ Une Direction des ressources Humaines, de l'Audit interne et du Management Qualité ;

♣ Un Pool de Cabinets d'assistance.

La Figure 1 présente l'organigramme de CETRI.

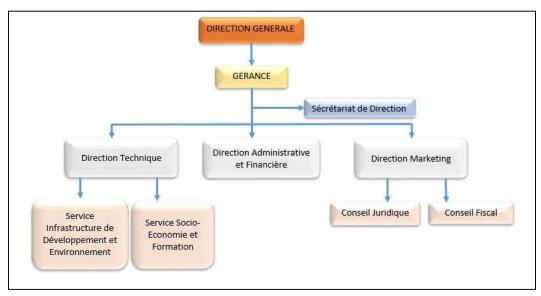


Figure 1 : Organigramme de CETRI

I. PRESENTATION DE L'ETUDE

I.1. Les objectifs de l'étude

L'objectif général de l'étude est de réaliser une étude technique détaillée pour la réhabilitation du barrage de Yaongo. Il s'agit spécifiquement de :

- Faire l'état des lieux (diagnostic) du barrage ;
- Présenter une synthèse des études de bases ;
- Proposer des solutions techniques pour la réhabilitation des ouvrages du barrage ;
- Elaborer une note de calcul détaillée et les plans d'exécution des différents ouvrages réhabilités du barrage ;
- Etablir un devis quantitatif et estimatif pour la réhabilitation du barrage.

I.2. Présentation de la zone d'étude

I.2.1. Localisation et accès au site

Le site du barrage est situé dans le village de Yaongo dans la commune de Dargo, Province du Namentenga, Région du Centre-Nord au Burkina Faso. Le village est situé à une quinzaine de kilomètres du département de Dargo. L'accès au site se fait à partir de Ouagadougou sur la RN4 sur 106 km jusqu'à Zorgho, puis de la RR1 jusqu'à Boulsa sur 54 km. Ensuite à partir de Boulsa sur la RR2 jusqu'à Dargo sur 34 km, et enfin de Dargo a Yaongo sur 15 km. Soit un total de 209 km à partir de Ouagadougou. La Figure 2 présente la carte de situation du village de la zone d'étude. Les coordonnées géographiques du site du barrage relevé au GPS sont suivantes : Longitude 00° 16' 19,09'' Ouest, Latitude 12° 36' 55,84'' Nord.

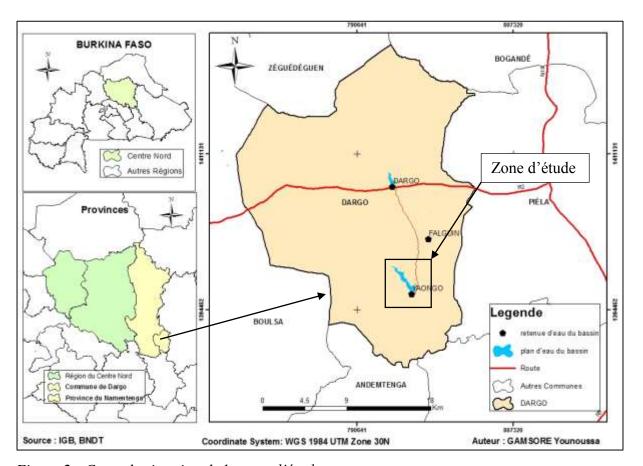


Figure 2 : Carte de situation de la zone d'étude

I.2.2. Présentation du barrage

Le barrage de Yaongo est un petit barrage dont la construction a été initiée par le Projet d'Action de Production et d'Accompagnement dans la province du Namentenga (PAPANAM). Les études de réalisation du barrage ont été effectuées en 1999, elles ont été effectuées en parallèle avec les études d'aménagement hydro-agricoles du périmètre irrigué situé à l'aval du barrage (SAHEL CONSULT, 1999). Sa construction est intervenue en 2002 avec comme capacité près de 1 895 000 m³. Il faut noter que le barrage a été réhabilité en 2013. En 2017, une partie du déversoir a été détruite suite à une forte pluie dans la localité. Malgré la mobilisation des populations à plusieurs reprises afin de réparer les dégâts, le barrage présente aujourd'hui des dégradations majeures. Le barrage est présenté à la Figure 3.

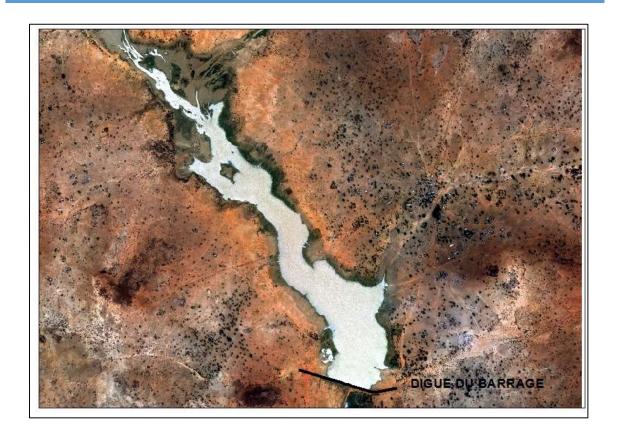


Figure 3 : Présentation du barrage de Yaongo

I.2.3. Climat

Le climat est de type sahélien caractérisé par une faible pluviométrie avec une saison des pluies courte d'environ quatre (04) mois (Juin à Septembre) et une longue saison sèche d'environ huit (08) mois (Octobre à Mai). A l'instar des pays sahéliens, l'évaporation est très importante dans cette zone. La pluviométrie annuelle varie entre 350 et 980 mm (PCD, 2014-2018).

I.2.4. Hydrographie

Le réseau hydrographique du bassin versant du barrage de Yaongo est composé d'un cours d'eau principal (la Sirba) long de 50 km environ. Il coule en direction de l'Est sur 25 km avant de s'infléchir et de prendre la direction du Sud-Est. Le barrage de Dargo est érigé sur un des affluents de celui-ci (IGB). Le barrage de Yaongo est érigé sur ce cours d'eau principal qui traverse le village. Les détails sont présentés sur la carte du bassin versant à la Figure 8.

I.2.5. Sols et végétation

Les sols de la partie Nord du bassin est constitué de sols peu évolués associé à des lithosols sur cuirasse ferrugineuse. Dans sa partie Sud, nous avons des sols à sesquioxydes associés à des sols peu évolués hydromorphes sur matériau gravillonnaire (IGB). Le village de Yaongo se trouve entièrement dans cette partie sud.

Au regard de la classification de la FAO, nous avons des sols ferrugineux lessivés plus ou moins gravillonnaire, les vertisols et les sols bruns sur roche basaltique.

La végétation est constituée en grande partie par la savane arbustive et la steppe. Elle est majoritairement constituée de zone de cultures pluviales.

I.2.6. Contexte géologique

La géologie du site est essentiellement constituée de granites à biotites du précambrien C tout comme le bassin entier. Dans la partie Est, on rencontre des biotites amphiboles alors que tout le reste est constitué de biotites parfois muscovites (SAHEL CONSULT, 1999).

I.2.7. Situation démographique

La population de la commune rurale de Dargo est estimée à 29 266 habitants selon le Recensement Général de la Population et de l'Habitation de 2006. Cette population est constituée de 52 % de femmes. Plus spécifiquement, la commune de Yaongo comptait en 2006 près de 2 816 habitants (PCD, 2014-2018). Cette population est estimée de nos jours à 3982 habitants.

II. MATERIELS ET METHODES

II.1. Matériels

Le matériel utilisé pour le traitement des données dans le cadre de cette étude est diversifié en fonction du résultat attendu. Les éléments constitutifs sont les suivants :

❖ Appareil photo, GPS et décamètre

L'appareil photo a été utilisé pour les prises de vue des différents ouvrages, lors de la visite terrain dans le cadre de l'étude diagnostique. Le GPS a permis de lever les coordonnées de certains points caractéristiques de la digue et des ouvrages du barrage, tandis que le décamètre a servi pour les différentes mesures de distance sur le terrain.

❖ Google Earth, Global Mapper et ArcGis

Le logiciel Google Earth a permis d'obtenir des images satellitaires du barrage et des éléments environnants. La délimitation du bassin versant a été réalisée avec le logiciel Global Mapper V.18, cela a permis de déterminer les caractéristiques du bassin versant et de son réseau hydrographique. Les différentes cartes ont été faites avec ArcGis 10.3.1.

❖ CLIMWAT et CROPWAT

L'application CLIMWAT 2.0 a permis d'obtenir les données climatiques de la zone d'étude pendant que CROPWAT 8.0 a quant à elle permis d'obtenir les paramètres de calculs des besoins en eau des cultures.

❖ AutoCad et COVADIS

Les différents plans des ouvrages ont été réalisés avec AutoCad 2016. COVADIS 2013 a été utilisé pour l'analyse topographique du site et le tracé des différents profils.

Geoslope et CYPE

La stabilité des pentes des talus de la digue du barrage a été vérifiée avec Geoslope V.2012. Le mur Bajoyer a été vérifié avec le logiciel CYPE V.2014.

\(\text{HYFRAN, Excel, Word.} \)

Les différents calculs entrant dans le cadre de cette étude de réhabilitation ont été faits avec des programmes élaborés sous Excel. Le logiciel HYFRAN a permis de vérifier l'analyse statistique des pluies de la zone d'étude qui a été fait sous Excel. La rédaction du document a été réalisée avec Word.

Les données utilisées dans le cadre de cette étude sont les suivantes :

ETUDE TECHNIQUE DETAILLEE POUR LA REHABILITATION DU BARARRAGE DE YAONGO COMMUNE DE DARGO, PROVINCE DU NAMENTENGA, BURKINA FASO

- Les résultats de l'étude topographique réalisée par le bureau d'étude ;
- Les résultats de l'étude géotechnique réalisée par le bureau d'étude ;
- Les résultats de l'étude environnementale réalisée par le bureau d'étude ;
- Les résultats de l'étude socio-économique réalisée par le bureau d'étude ;
- Les données pluviométriques de la station de Boulsa pour l'analyse statistique.

II.2. Méthodes

La démarche adoptée pour réaliser cette étude de réhabilitation est la suivante :

II.2.1. Recherche documentaire

Cette étape a consisté d'abord à rechercher des informations (documents physiques et numériques) sur l'historique du barrage de Yaongo. Ainsi nous avons obtenu le rapport d'étude géotechnique pour la réalisation du barrage et le rapport de l'étude d'aménagement du périmètre à l'aval du barrage. Ensuite une revue documentaire sur les études APD de réalisation et de réhabilitation de barrages et de leurs ouvrages annexes.

II.2.2. Visite de site et la collecte des données

La visite de site a permis d'avoir un regard complet sur le barrage à travers les prises de vues, la description et l'analyse des différentes dégradations observées. Cela a permis de faire un état des lieux (diagnostic) de ce barrage. Cette visite a été le moment de confirmer la localisation et l'accès au site du projet.

La collecte de données a consisté à récolter les données pluviométriques de la station de Boulsa et les résultats d'études de base (études topographiques, géotechniques, environnementales et socio-économiques). Les données sur les sols, la végétation, la géologie et l'occupation des terres ont été prises dans la base de données BNDT de l'IGB version 2012.

II.2.3. Etude diagnostique du barrage

Cette étape a consisté à faire l'état des lieux du barrage et de tous les ouvrages existants à travers l'identification des parties dégradées, leurs descriptions et la recherche des causes probables de ces éventuelles dégradations. Cela a été fait à partir des prises de vues et l'analyse sur le terrain des différents ouvrages.

II.2.4. Etude hydrologique

L'étude hydrologique a consisté à déterminer les caractéristiques du bassin versant, faire l'analyse statistique des pluies et calculer la crue de projet et celle de rupture. Cette étude a été faite en raison de l'indisponibilité de celle effectuée lors de la construction du barrage et du fait que les données pluviométriques ont évolués depuis lors.

II.2.4.1. Les caractéristiques du bassin versant

Le bassin versant en une section droite d'un cours d'eau est défini comme la totalité de la surface topographique drainée par ce cours d'eau et ses affluents à l'amont de ladite section (KARAMBIRI, 2008). La surface, le périmètre, les cotes maximale et minimale, la longueur du réseau hydrographique, la pente moyenne ont été déterminés à partir de la délimitation de ce bassin sur Global Mapper.

Les autres caractéristiques sont les suivantes :

\Delta L'indice de compacité

Il correspond au rapport du périmètre à celui d'un cercle de même superficie (FAO 54, 1996). Il est donné par l'équation 1 :

$$I_{comp} = 0.282 * \frac{P}{\sqrt{S}} \qquad (Eq. 1)$$

Où P est le périmètre du bassin versant en km et S est la superficie de ce bassin en km².

❖ La longueur et la largeur du rectangle équivalent

Ce sont la longueur (L) et la largeur (l) d'un rectangle ayant la même surface et le même périmètre que le bassin versant (KARAMBIRI, 2008). Elles sont données par les équations 2 et 3 :

$$L = \frac{P + \sqrt{P^2 - 16 * S}}{4} \quad (Eq. 2) \quad et \quad l = \frac{S}{L} \quad (Eq. 3)$$

Où, L et l sont exprimée en km;

P est le périmètre du bassin versant en km et S est la superficie de ce bassin en km².

\Lambda L'indice global de pente

Indice caractérisant le relief d'un bassin (FAO 54, 1996). Il est défini par l'équation 4 :

$$I_g = \frac{D}{I_c} \qquad (Eq. 4)$$

Où, *D* représente la dénivelée, exprimée en mètres, séparent les altitudes ayant approximativement 5% et 95% de la surface du bassin au-dessus d'elles, ces altitudes sont déterminées sur la courbe hypsométrique ;

L est la longueur du rectangle équivalent, exprimée en km;

Ig est exprimée en m/km.

Pour les bassins dont la longueur du rectangle équivalent est très différente de la longueur du talweg le plus long (le cas de notre bassin), il serait préférable d'utiliser la largeur du rectangle équivalent dans le calcul de l'indice global de pente (FAO 54, 1996).

La courbe hypsométrique est une courbe qui donne le pourcentage de la surface du bassin située d'une hauteur H en fonction de cette altitude H (KARAMBIRI, 2008). Elle présente une vue globale de la pente du bassin.

***** La dénivelée spécifique

Elle s'exprime en mètres et est indépendante, en théorie, de l'aire du bassin (FAO 54, 1996). Elle est donnée par l'équation 5 :

$$Ds = I_g * \sqrt{S} \qquad (Eq. 5)$$

Où, Ds en mètres ;

Ig est en m/km et S en km².

On peut distinguer différentes classes de relief en fonction de Ds (FAO 54, 1996):

- Relief faible : Ds > 50 m;

- Relief modéré : 50 m < Ds < 100 m ;

- Relief fort: 100 m < Ds.

La densité de drainage

C'est le rapport à la superficie du bassin versant, de la longueur totale des cours d'eau de tous ordre (FAO 54, 1996). La formule est l'équation 6 :

$$D_d = \frac{\sum l_i}{S} \qquad (Eq. 7)$$

Où, $\sum l_i$ est la longueur totale du réseau hydrographique en km et S est en km².

❖ Infiltrabilité des sols

C'est l'aptitude d'un terrain à l'infiltration. Les éléments déterminants de l'infiltrabilité sont les caractères d'état de la surface qui intègrent le couvert végétal, la surface du sol et les organisations pédologiques superficielles ayant subi des transformations sous l'effet des facteurs météorologiques, fauniques ou anthropiques (FAO 54, 1996).

Une classification qualitative de l'infiltrabilité a été effectuée par Rodier. Elle comprend six classes. Cette classification est donnée au Tableau 1.

Tableau 1 : Classes d'infiltrabilité des sols

Classe d'infiltrabilité	Caractéristiques
TI	Bassin rigoureusement imperméable
Ι	Bassin imperméable
RI	Bassin relativement imperméable
P	Bassin perméable
TP	Bassin très perméable

Source: Crues et apports (Bulletin FAO 54)

Classification des pentes

La pente moyenne du bassin versant est la pente du cours d'eau principal après avoir éliminé les 20% de la partie supérieur et les 20% de la partie inferieur du bassin (DURAND, 1996). L'ORSTOM (Office de la Recherche Scientifique et Technique Outre-Mer) a défini six classes de pentes. Cette classification est donnée au Tableau 2 ci-dessous.

Tableau 2 : Classification des pentes des bassins versant (ORSTOM)

Classes de pente	Caractéristiques
R1	Pentes très faibles, inférieur à 1 à 2‰
R2	Pentes faibles, inférieur à 5‰
R3	Pentes modérées comprises entre 5‰ et 1%
R4	Pentes assez fortes : longitudinales entre 1 et 2%, transversales supérieur à 2 %
R5	Pentes fortes : longitudinales entre 2 et 5 %, transversales entre 8 et 20%
R6	Pentes très fortes : longitudinales supérieur à 5%

Source: Petits barrages pour l'équipement rural en Afrique.

***** Les sols

A l'échelle continentale, les sols mis en place à partir des altérations entre la surface et la roche saine se différencient en fonction principalement de la pluviométrie annuelle (FAO 54, 1996). Ainsi selon la classification de la FAO, on distingue du nord au sud, les formations suivantes :

- Au-dessous de l'isohyète 400 mm, les sols ferrugineux peu lessivés sableux sur dunes ou les sols bruns rouges subarides ;

- Entre 1000 et 400 mm, les sols ferrugineux lessivés plus ou moins gravillonnaires, les vertisols et les sols bruns sur roche basaltique ;
- Au-delà de 1000 mm, les sols ferrallitiques désaturés plus ou moins gravillonnaires, vertisols et sols bruns sur roches basaltiques.

\Delta Le régime hydrologique

Le sahel Africain peut être subdivisé en quatre (04) régimes hydrologiques différents. Ils sont étroitement associés aux régimes climatiques rencontrés dans cette région (FAO 54, 1996). Ce sont :

- Le régime désertique, au nord de l'isohyète 100 mm;
- Le régime subdésertique, entre les isohyètes 100 et 300 mm;
- Le régime sahélien, entre les isohyètes 300 et 750 mm;
- Le régime tropical sec entre les isohyètes 750 et 1000 mm.

II.2.4.2. L'analyse statistique des pluies

L'analyse statistique des pluies a été réalisée avec Excel et vérifiée avec HYFRAN. Les données de pluies annuelles ont été analysées avec la loi normale et les données de pluies maximales journalières annuelles ont été analysées avec la loi de Gumbel. Les données utilisées sont celle de la station de Boulsa qui est la station météorologique la plus proche de notre zone d'étude. Cette analyse nous a permis de déterminer les valeurs caractéristiques des pluies (quantiles) à des périodes de retour définies (décennales, centennales...).

Analyse des pluies annuelles

La loi normale ou loi de Gauss est caractérisée par une fonction de répartition ou probabilité au non dépassement donnée par l'équation 7 :

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{\frac{-u^2}{2}} du \qquad (Eq. 7)$$

Avec $u = \frac{x - \bar{x}}{s}$ la variable réduite de Gauss, \bar{x} est la Moyenne et s est l'Ecart Type.

Les quantiles sont calculés par la formule suivante : $x_p = \bar{x} + u_p * s$

Avec x_p le quantile à la probabilité p et u_p la variable réduite à la probabilité p.

❖ Analyse des pluies maximales journalières annuelles

La loi de Gumbel est caractérisée par une fonction de répartition qui n'utilise que les fréquences au non dépassement, donnée par l'équation 8 :

$$F(x) = e^{-e-u} (Eq. 8)$$

Avec $u = -\ln[-\ln(F(x))]$ la variable réduite de Gumbel.

L'ajustement est réalisé avec la méthode des moments dont les paramètres sont :

$$\frac{1}{a} = 0.780 * s \text{ et } x_0 = \bar{x} - \frac{0.577}{a}$$

Où, \bar{x} est la Moyenne et s est l'Ecart Type. Ainsi les quantiles sont calculés par la formule suivante :

$$x_p = \frac{u_p}{a} + x_0$$

Avec x_p le quantile à la probabilité p et u_p la variable réduite à la probabilité p.

II.2.4.3. Calcul des crues

Calcul de la crue de fréquence décennale

La crue décennale peut être définie comme étant la crue provoquée par une pluie décennale (hauteur de pluie de précipitation égalée ou dépassée en moyenne une fois par décennie), toutes les autres conditions étant celles observées le plus fréquemment lors de fortes averses (FAO 54, 1996). Le calcul de cette crue revient à calculer le débit de pointe décennal qui correspond au ruissellement superficiel de cette crue. Les méthodes utilisées pour le calcul de cette crue ont été la méthode ORSTOM et la méthode CIEH (Comité Interafricain d'Etudes Hydrauliques) car le bassin versant de notre Barrage n'est pas jaugé.

■ La méthode ORSTOM

Cette méthode est aussi connue sous le nom de la méthode Rodier pour le calcul de crue décennale. Elle s'applique à des bassins dont la superficie se situe entre quelques dizaines d'hectares et plus de 1500 km² (FAO 54, 1996).

Dans cette méthode, le débit de crue décennale est calculé par l'équation 9 :

$$Qr_{10} = A * P_{10} * Kr_{10} * \alpha_{10} * {}^{S}/_{Tb_{10}}$$
 (Eq. 9)

Avec, A le coefficient d'abattement ;

 P_{10} la hauteur de pluie journalière décennale ;

 Kr_{10} le coefficient de ruissellement correspondant à la crue décennale ;

 α_{10} le coefficient de pointe correspondant à la crue décennale ;

S la superficie du bassin versant ;

 Tb_{10} le temps de base correspondant à la crue décennale.

Le débit maximal total Q_{10} est obtenu en fonction de la région et de l'indice de l'infiltrabilité par les équations 10 et 11 :

En région sahélienne :

- pour un indice d'infiltrabilité I : $Q_{10} = 1.03 * Qr_{10}$ (Eq. 10);
- pour un indice d'infiltrabilité P : $Q_{10} = 1,06 * Qr_{10}$ (Eq. 11)

■ La méthode CIEH

C'est une méthode statistique basée sur 162 bassins versants dont l'origine vient essentiellement du recueil de Dubreuil (1972) sur les bassins expérimentaux. La formulation retenue pour retrouver l'expression du débit de pointe Q_{10} (équation 12) est basée sur un schéma de régression multiple et se présente sous la forme (FAO 54, 1996) :

$$Q_{10} = a * S^s * \bar{P}_{qn}^p * I_q^i * Kr_{10}^k * Dd^d$$
 (Eq. 12)

Où: a, s, p, i, k, d sont des coefficients à déterminer;

S est la surface du bassin en km², Ig est l'indice global de pente en m/km;

 $\bar{P}an$ est la pluie moyenne annuelle en mm et Kr_{10} est le coefficient de ruissellement décennal :

Dd est la densité de drainage en km $^{-1}$. La liste des paramètres à inclure n'est pas limitative.

Les valeurs des coefficients sont données dans les notes de calculs en ANNEXES 1.1 à la page 77. Le débit de crue décennal a été obtenu en prenant la valeur maximale des débits calculés par les méthodes ORSTOM et CIEH pour tenir compte de la sécurité de l'ouvrage.

\Delta La crue de projet

Il s'agit ici d'accroitre la marge de sécurité des ouvrages en majorant la crue décennale par un coefficient multiplicateur (FAO 54, 1996). La valeur de ce coefficient varie entre 2,4 et 2,6. Nous avons donc utilisé la valeur de C=2,4 pour la détermination de la crue de projet afin de tenir compte de la sécurité de l'ouvrage.

\Delta L'hydrogramme de crue

Les temps de montée et les temps de base qui ont été calculés précédemment (calcul de la crue par la méthode ORSTOM) peuvent être considérés comme typique des crues exceptionnelles (COMPAORE, 1996). Le schéma de l'hydrogramme de crue que nous avons adopté est alors celui de GRESILLON, HERTER et LAHAYE. Le changement de pente de la décrue s'effectue en point où le débit Q dont la valeur est définie par l'équation 13 (DURAND et al, 1999) :

$$\frac{Q}{Q_{projet}} = \frac{2}{\alpha_{10}} * \frac{T_{b10} - \alpha_{10} * T_{m10}}{T_{b10} - 2 * T_{m10}}$$
 (Eq. 13)

Où Q_{projet} est le débit de crue du projet, T_{m10} est le temps de montée décennal ;

 T_{b10} est le temps de base décennal et α_{10} est le coefficient de pointe décennal.

La crue de rupture

Selon le Comité International des Grands Barrages (CIGB), la crue de rupture d'un barrage peut être approchée par l'équation 14 :

$$Q_{rup} = 2 * L_{deversoir} * (R_t + 0.2)^{1.5} + 0.15 * L_{digue}$$
 (Eq. 14)

Avec $L_{\text{deversoir}}$ la longueur du déversoir, R_{t} la revanche totale et L_{digue} la longueur de la digue.

II.2.5. Etude de la retenue

La construction d'un barrage répond à l'objectif de constituer une réserve d'eau pour satisfaire plusieurs besoins en eau. Aussi, pour concevoir et gérer correctement une retenue, il faut aussi tenir compte des diverses pertes d'eau (infiltrations, évaporations et dépôts solides) inhérentes au site même (LO, 2016). Pour la satisfaction des besoins sus cités, il faut aussi tenir compte des apports liquides. Etudier la retenue a donc consisté à évaluer les besoins en eau, les pertes, les apports liquides et de faire une conclusion concernant la satisfaction des besoins.

II.2.5.1. Evaluation des besoins en eau

Il ressort des études socio-économiques que les besoins en eau sont d'ordre agricoles, pastorales et humaines.

***** Besoins agricoles

Il s'agit des besoins en eau des cultures pour l'irrigation. Exprimés en terme de besoins brutes (B_b), les besoins en eau des cultures ont été évalués par l'équation 15 :

$$B_b = \frac{B_n}{E_a} \qquad (Eq. 15)$$

Avec

$$B_n = K_c * ETP - P_e \text{ et}$$
 $\begin{cases} P_e = P \text{ si } P < 20 \text{ mm} \\ P_e = 0.8 * P \text{ si } P \ge 20 \text{ mm} \end{cases}$

Où, P est la pluviométrie moyenne mensuelle en mm et P_e est la pluie efficace en mm ;

 K_c est le coefficient cultural caractéristique de la culture et de son stade de développement végétatif ;

ETP évapotranspiration potentielle moyenne mensuelle en mm;

 E_a est l'efficience du réseau et B_n besoins nets en mm ou en m³/ha.

Nous avons effectué un assolement des spéculations afin d'obtenir une plus grande précision de ces besoins en eau. Le mois de décembre a été retenu comme période de début de la campagne. La campagne agricole s'étant de Décembre à Avril, soit cinq (05) mois.

***** Besoins pastoraux

En Afrique subsaharienne, on décompte le bétail en UBT (Unité de Bétail Tropical). Un (01) bovin équivaut à un (01) UBT, de même que cinq (05) caprins et cinq (ovins). Dans le cas où on doit tenir compte d'un bétail transhumant, on peut considérer qu'un animal ne peut s'abreuver à une réserve que s'il pâture à moins de 10 km du barrage soit 30000 ha concentrique à la retenue. En zone sahélienne, la densité de bétail est d'une (01) bête pour 5 ha soit 6000 bêtes au total (LO, 2016). Les besoins en eau pastoraux ont donc été évalués en tenant compte

de cette hypothèse ci-dessus en plus de la population animale donnée par le PCD 2014-2018 de la commune de Dargo.

Les besoins en eau de divers animaux en divers situations sont donnés en ANNEXES 1.2 à la page 82.

& Besoins humains

Les besoins humains sont ici dans le sens des activités sociales (ménages, confections des briques pour les habitations, etc...). Ces besoins sont ceux de la population du village Yaongo et environnant. Ils ont été estimés à 15 litres par jour par habitant.

II.2.5.2. Evaluation des pertes en eau

Pertes par infiltration

Dans le cas général, les pertes d'eau par infiltration dans la cuvette ou au travers de la digue sont limitées et on peut les estimer à une tranche d'eau de l'ordre de 10 % de la hauteur utile de la réserve (KARAMBIRI & GUEYE, 2006). On s'accorde sur des valeurs d'infiltration de 1 à 3 mm/j en moyenne (LO, 2016). La valeur moyenne de 1 mm/j a été considérée en raison de l'état d'ensablement du barrage par les dépôts solides depuis sa construction.

❖ Pertes par évaporation

Les pertes par évaporation ont été calculées en utilisant le bac de classe « A ». B POUYAUD de l'ORSTOM a, dans ses travaux de recherche, trouvé une relation entre l'évaporation d'une retenue et l'évaporation du bac de classe « A » (LO, 2016). Cette relation est donnée par l'équation 16 :

$$E_{ret} = 1,664 * (E_{bacA})^{0,602}$$
 (Eq. 16)

Où, E_{ret} est l'évaporation au niveau de la retenue en mm/j;

 E_{bacA} est l'évaporation au niveau du bac de classe « A » en mm/j.

Les données d'évaporation utilisées ont été celle de la station synoptique de Ouagadougou.

II.2.5.3. Evaluation des dépôts solides

L'eau qui se dépose sur les bassins versants entraine avec elle des matériaux solides qu'elle arrache tout au long de son parcours. Ces matériaux se déposent dès que la vitesse de l'eau devient inferieur à un certain seuil. La grandeur associée à la quantification des dépôts solides est la dégradation spécifique exprimée en m³/km²/an (DURAND et al, 1999). La dégradation spécifique (D) peut être déterminée par les équations 17, 18 et 19 :

La formule de GOTTSCHALK

$$D = 260 * S^{-0,1} (Eq. 17)$$

Où, D est la dégradation spécifique en m³/km²/an;

S est la superficie du bassin versant.

La formule de GRESILLON (CIEH-EIER)

$$D = 700 * \left(\frac{P}{500}\right)^{-2,2} * S^{-0,1} \qquad (Eq. 18)$$

Où, D est la dégradation spécifique en m³/km²/an;

P est la pluviométrie moyenne annuelle en mm;

S est la superficie du bassin versant en km².

La formule de KARAMBIRI

$$D = 137 * \left(\frac{P}{700}\right)^{-2,02} * S^{-0,05} * [0,25 + 1,13 * (h+r)]^{1,15}$$
 (Eq. 19)

Où, D est la dégradation spécifique en m³/km²/an

P est la pluviométrie moyenne annuelle en mm, S est la superficie du bassin versant en km²;

h est un paramètre anthropique et r est un paramètre morphologique.

Dans le cadre de cette étude, la quantité de dépôts solides a été calculée avec la formule de KARAMBIRI parce que la valeur obtenue avec cette formule est très proche de la valeur moyenne des trois formules.

Le volume annuel des dépôts solides est donné par l'équation 20 :

$$V = D * S \qquad (Eq. 20)$$

Où, V est le volume de dépôts solides en m³, D est la dégradation spécifique en m³/km²/an et S est la surface du bassin versant en km².

II.2.5.4. Evaluation des apports liquides

Les apports liquides ont été évalués par la méthode Rodier. Cette méthode consiste à identifier, dans le catalogue des bassins-type, celui ou ceux ayant les caractéristiques les plus voisins du

bassin étudié pour estimer ainsi l'écoulement annuel de ce dernier. Les bassins types sont sélectionnés en fonction du régime hydrologique, de la superficie du bassin, des caractéristiques du sol et de la physiographie du bassin (FAO 54, 1996). Le volume d'écoulement annuel associé à un quantile a été calculé par l'équation 21 :

$$Ve_{quantile} = Ke_{quantile} * P_{quantile} * S * 10^3$$
 (Eq. 21)

Où, $Ve_{quantile}$ est le volume écoulé associé au quantile en m³;

 $P_{quantile}$ est la pluviométrie moyenne associée au quantile en mm;

 $Ke_{quantile}$ est le coefficient d'écoulement annuel en % associé au quantile (déterminé en fonction du bassin type);

S est la superficie du bassin versant en km².

II.2.5.5. Calcul du volume de la retenue

De l'analyse des résultats de l'étude topographique, nous avons tracé la courbe hauteur volume et la courbe hauteur surface du barrage. Le volume du barrage peut être évalué à partir de l'équation 22 :

$$V_{n,n+1} = \left(\frac{S_n + S_{n+1}}{2}\right) * h$$
 (Eq. 22)

Où, $V_{n,n+1}$ est le volume partiel entre deux surfaces consécutives (correspondant à deux cotes consécutives)

 S_n est la surface correspondante à la cote n en m^2 et S_{n+1} est la surface correspondante à la cote n+1 en m^2 ;

h est la dénivelée entre la cote n et la cote n+1.

Le volume de la retenue à une cote donnée est obtenu en faisant la somme des volumes partiels jusqu'à cette cote.

II.2.5.6. Simulation de l'utilisation de la retenue

La simulation de l'utilisation de la retenue a été réalisée à partir de la courbe hauteur volume du barrage. Le tracé a consisté, partant de la date de la retenue pleine, à retrancher les divers besoins ou pertes correspondants à un intervalle de temps choisi (un mois par exemple). En opérant ainsi de proche en proche on détermine la période pendant laquelle on peut utiliser l'eau de la retenue et les ajustements éventuels (LO, 2016). Il permet d'optimiser la gestion de la retenue.

Promotion 2018/2019

II.2.6. Conception et dimensionnement des ouvrages du barrage

Cette étape a consisté au dimensionnement des ouvrages constitutifs du barrage au regard des résultats de l'étude diagnostique et des résultats de l'étude géotechnique.

II.2.6.1. Choix du type de barrage

Le barrage existant est en terre homogène et la disponibilité des matériaux argileux (études géotechnique) nous permet de le conserver pendant la réhabilitation.

II.2.6.2. La digue du barrage

Au regard des résultats de l'étude diagnostique et des vérifications de la conception de la digue, une réhabilitation s'impose et les travaux de celle-ci concernent surtout la crête entière, le talus aval en entier et le talus amont en rive droite. Les éléments de dimensionnement sont les suivants :

❖ La hauteur de la digue

La hauteur de la digue (du barrage) a été calculée par l'équation 23 :

$$H_{dique} = H_{PEN} + h + R \qquad (Eq. 23)$$

Où, H_{digue} est la hauteur de la digue (m) et h est la charge au-dessus du déversoir (m);

 H_{PEN} est la hauteur du plan d'eau normal (m) et R est la revanche (m).

La revanche a été calculée par l'équation 23 :

$$R = 0.75 * h_v + \frac{V^2}{2a}$$

$$V = \frac{3}{2} + \frac{2}{3} * h_v$$
 (Formule de GAILLARD)

$$h_v = \frac{1}{2} + \frac{1}{3} * \sqrt{f}$$
 (Formule de MALLET PACQUANT)

Où, R est la revanche en m ; V est la vitesse des vagues en m/s ; h_v est la hauteur des vagues ; f est la plus longue distance entre la cuvette et l'axe de la digue en km (Fetch) ; g est l'accélération de la pesanteur en m/s².

La largeur en crête

La largeur en crête a été calculée avec les équations 24 et 25 :

$$l_c = 1,65 * \sqrt{H_{digue}}$$
 (Eq. 24) (Formule de KNAPPEN)

$$l_c = 1.1 * \sqrt{H_{digue}} + 1 \quad (Eq. 25)$$
 (Formule de PREECE)

Où, l_c est la largeur en crête (m) et H_{digue} est la hauteur de la digue (m).

Stabilité des pentes

Les pentes des talus ont été retenues en fonction la vérification de la stabilité de celles-ci. Cette vérification a été réalisée avec Geoslope. Néanmoins pour le predimensionnement, les pentes ont été définies en fonction de la hauteur du barrage. Le tableau fourni en ANNEXES 1.3 à la page 88 proposé dans *Technique des Petits Barrages en Afrique Sahélienne et Equatorienne*, donne les fruits indicatifs des talus des barrages stables.

***** Etanchéité de la digue

Les perrés maçonnés sur le talus amont de la digue assurent la fonction d'étanchéité pour celleci, néanmoins un drain placé sous le talus aval pour tenir compte des éventuelles fuites à travers la digue. Le tapis drainant est la solution traditionnellement adoptée pour assurer le drainage d'un remblai homogène. Ce tapis drainant une longueur telle que $\frac{1}{4}*l_f \leq L_d \leq \frac{1}{3}*l_f$ (DURAND et al, 1999). Nous avons donc un massif homogène avec drain horizontal. Ce cas de figure est régi par le système d'équation 26 :

$$\begin{cases} y_0 = [H_r^2 + d^2]^{\frac{1}{2}} - d \\ X = l_f - l_d \\ d = X - 0.7 * b \end{cases}$$
 (Eq. 26)

Où, H_r est la hauteur déversante (m), l_f est la largeur de fond de la digue (m); l_d est la longueur du drain (m).

L'épaisseur du drain peut être calculé par l'équation 27 et 28 :

$$e = 2 * \sqrt{\frac{q * l_d}{K_d}}$$
 (Eq. 27) avec $q = K_r * y_0$ (Eq. 28)

Où, e est l'épaisseur du drain (m), K_d est la perméabilité du drain en m²/s ; q est le débit de fuite en m³/s, K_r est la perméabilité du remblai homogène ;

II.2.6.3. L'évacuateur de crue

Dans cette partie, nous nous sommes intéressés à l'évacuation de la crue de projet calculée dans l'étude hydrologique. En effet même si un barrage retient les écoulements, il doit aussi conserver la capacité d'évacuer les crues exceptionnelles (DURAND et al, 1999). L'évacuateur de crue sera constitué d'un déversoir, d'un bassin de dissipation, d'enrochements pour la protection aval du bassin et d'un chenal d'évacuation. Une image d'ensemble d'un déversoir et bassin de dissipation est présenté en ANNEXES 1.5 à la page 97.

* Le déversoir

Nous avons considéré deux types de déversoirs à savoir le déversoir radier (cas actuel du barrage) et le déversoir poids pour leurs grands nombres au Burkina Faso et la maîtrise de leurs constructions au niveau national. Ces deux types de déversoirs sont présentés en ANNEXES 1.4 à la page 93.

Choix du type de déversoir

Des résultats de l'étude diagnostique du barrage, il ressort que le remblai compacté (sous le béton du déversoir) est dégradé. En effet l'érosion régressive de celui-ci avec départ de matériaux observée dans cette partie représente une menace pour l'ouvrage entier. Ainsi deux cas de figure se présentent pour la réhabilitation du déversoir :

- Une réhabilitation du déversoir en place (type radier) à partir d'une reprise du compactage du remblai tout entier avec reprise des plots dégradés ;
- Un remplacement du déversoir radier par un déversoir poids à section trapézoïdale.

Le choix s'est porté sur le deuxième cas à savoir le déversoir poids à section trapézoïdale pour les raisons suivantes :

- Bien qu'il peut exiger d'importante quantité de béton, il a la particularité d'être entièrement en béton ce qui écarte les dégradations liées à l'érosion du remblai du déversoir radier et les dispositions difficiles de construction de ce dernier ;
- Aussi le fait que la digue reçoive des charges des véhicules fragilise sa résistance et cela se ressent le plus sur la partie déversante. Chose qui explique que malgré une réhabilitation réalisée en 2013 (six ans aujourd'hui), le déversoir et le bassin de dissipation sont en mauvais état.

Le dimensionnement du déversoir poids passera par un laminage de la crue de projet. En effet, tenir compte de l'effet de laminage permet de réduire la longueur du déversoir sans augmenter le risque de submersion du barrage (LO, 2016).

Laminage de la crue

La méthode utilisée pour le laminage de la crue a été celle du « X_0 » encore appelée méthode EIER-CIEH dans laquelle l'effet de laminage peut être évalué sous la forme d'un coefficient β tel que (équation 29) :

$$\beta = \frac{Q_{cmax}}{Q_{e\,max}} \qquad (Eq. 29)$$

Où, Q_{cmax} est le débit maximum et Q_{emax} est le débit maximum évacué.

La valeur de β est fonction de $\log_{10}x_0$ avec x_0 calculé par l'équation 30. Elle est lue sur un tableau donné dans les notes de calculs en ANNEXES 1.1 à la page 77.

Avec
$$x_0 = \frac{m^2 * g * L_1^2 * Q_{c max} * t_m^3}{s^3} \qquad (Eq. 30)$$

Où, L_I est la longueur approchée de déversoir (m) $L_1 = \frac{Q_{cmax}}{m*h*\sqrt{2*g*h}}$

h est la charge maximum sur le seuil, S est la surface du plan d'eau, g = 9.81 m/s²; m est le coefficient de débit de l'évacuateur, t_m est le temps de montée (s);

Q_{cmax} est le débit de pointe de la crue (m³/s).

Le principe consiste à calculer les paramètres L, β et x_0 par itération successive jusqu'à obtenir une valeur convergente de L qui sera retenue comme longueur du déversoir.

• Etude de la stabilité du déversoir

Le déversoir poids est comme un barrage poids, il doit donc pouvoir résister à la poussée de l'eau et être stable vis-à-vis du renversement ainsi que du glissement sur la fondation (stabilité externe). Il doit également vérifier la stabilité interne du massif (DURAND et al, 1999). Les conditions de stabilité du déversoir sont données dans le Tableau 3.

Tableau 3 : Conditions de stabilité du déversoir

Désignation	Condition de stabilité		
	$F_{sg} = \frac{W - U}{P_t + P_e} * \tan \varphi \ge 1.2$		
	F_{sg} est le facteur de sécurité vis-à-vis du glissement ;		
Stabilité au	W est le poids propre du déversoir ;		
glissement	U est force des pressions interstitielles ;		
	P_t est la poussée des terres ;		
	P_e est la poussée de l'eau ;		
	φ est l'angle de frottement interne du matériau		
	$F_{Sr} = \frac{M_{/B}(W - U)}{M_{/B}(P_t + P_e)} \ge 1,5$		
Stabilité au	F_{sr} est le facteur de sécurité vis-à-vis du renversement		
renversement	$M_{/B}(W-U)$ est le moment des forces stabilisantes ;		
	$M_{/B}(P_t + P_e)$ est le moment des forces renversantes.		
G. 1.11.7	$\sigma_{max} \leq \sigma_{lim,beton}$		
Stabilité vis- à-vis de la	$\sigma_{lim,beton} = 0.3 * f_{c28}$ et $\sigma_{max} = \frac{(W-U)}{b} * \left(1 + \frac{6* e }{b}\right)$		
rupture	σ_{max} est la contrainte maximale de l'ouvrage ;		
_	$\sigma_{lim,beton}$ est la contrainte limite du béton utilisé.		
Stabilité vis-	$ e \le \frac{b}{6}$ avec $e = X_{Gouv} + Y_{Gouv} * \left(\frac{P_t + P_e}{W - U}\right) - \frac{b}{2}$		
à-vis de la	(X_{Gouv}, Y_{Gouv}) sont les coordonnées du centre de gravité du déversoir;		
fissuration	e est l'excentricité et b est la base du déversoir (trapézoïdal)		

Dans le souci d'optimiser la quantité de béton, le calcul des paramètres du tableau est fait en fonction d'un angle α qui représente l'inclinaison du talus aval. Optimiser la quantité de béton revient alors à considérer la plus faible valeur de cet angle qui permet de vérifier les stabilité externe et interne de l'ouvrage.

***** Le bassin de dissipation

Notre choix s'est porté sur les bassins à ressaut car ils font partie des plus employés dans notre contexte selon COMPAORE (1996). Ces bassins sont caractérisés par le nombre de Froude et la vitesse d'entrée de l'eau. Pour le dimensionnement des éléments constitutifs de ce bassin,

nous avons utilisé les abaques proposés par GRESILLON et LAHAYE dans l'ouvrage Techniques de Petits Barrages en Afriques Sahélienne et Equatoriale.

Le nombre de Froude est calculé par l'équation 31 :

$$F = \frac{V}{\sqrt{g * y_1}} \qquad (Eq.31)$$

Où, V est la vitesse d'entrée du ressaut (m/s) et y_I est le tirant d'eau à l'entrée du ressaut. V et y_I sont liés par la formule de GRESILLON (équation 32) :

$$\begin{cases} V = \sqrt{2g\left(0.9 * \left(H + h + \frac{{V_0}^2}{2g}\right) - y_1\right)} \\ y_1 = \frac{Q}{L' * V} \end{cases}$$
 (Eq. 32)

Où, Q est le débit laminé (m³/s), L' est la longueur du déversoir (m);

H est la hauteur du déversoir et h est la lame d'eau au-dessus du seuil.

❖ Le chenal d'évacuation

Pour le dimensionnement du chenal, la formule utilisée a été celle de Manning Strickler (équation 33) :

$$Q = K_s * S * R_H^{2/3} * \sqrt{I} \qquad (Eq. 33)$$

Où, Q est le débit en m³/s, K_s est le coefficient de rugosité de Strickler;

 R_H est le rayon hydraulique (m), I est la pente du chenal;

S est la surface mouillée et P le périmètre mouillé.

❖ Protection aval du bassin

La méthode de dimensionnement utilisée a été celle recommandée par SOGREAH à travers des abaques donnant le diamètre des enrochements en fonction de la vitesse à l'aval du seuil. Ces abaques sont présentés en ANNEXES 1.1.

II.2.6.4. Le mur bajoyer

Nous avons procédé à un prédimensionnement de l'ouvrage à travers un abaque (ANNEXES 1.1 à la page 99). Les éléments de vérification de la stabilité externe sont donnés dans le Tableau 4. Le dimensionnement de l'ouvrage a été réalisé sur le logiciel CYPE. La vérification de la stabilité interne a été faite en comparant les aciers obtenus aux aciers forfaitaires (conditions de non fragilité du béton) donné au Tableau 5.

Tableau 4 : Conditions de stabilité externe du mur Bajoyer

Désignation	Condition de stabilité				
	$F_{sg} = \frac{C' * B + \sum F_V * \tan \delta}{\sum F_H} \ge 1,5$				
	F_{sg} est le facteur de sécurité vis-à-vis du glissement ;				
Stabilité vis-à-vis	$\sum F_V$ est la somme des forces verticales ;				
du glissement	$\sum F_H$ est la somme des forces horizontales ;				
	C' est la cohésion du sol en contact avec la base;				
	B est la base du mur;				
	δ est l'oblicité de la résultante des forces.				
	$F_{Sr} = \frac{M_S}{M_R} \ge 1.5$				
Stabilité vis-à-vis	F_{sr} est le facteur de sécurité vis-à-vis du renversement				
du renversement	M_S est le moment des forces stabilisantes ;				
	M_R est le moment des forces renversantes.				
Stabilité du sol de	$ e \le \frac{B}{4}$ avec $e = \frac{B}{2} - \frac{M_S - M_R}{\sum F_V}$				
fondation	e est l'excentricité et B est la base du mur				

Tableau 5 : Conditions de stabilité interne du mur Bajoyer

Désignation	Conditions de stabilité
Vérification des aciers horizontaux en face arrière	$A_h \ge 0.10e_1$
Vérification des aciers horizontaux en face avant	$A_h \ge 0.075e_1$
Vérification des aciers verticaux en face arrière	$A_v \ge 0,10e_1$
Vérification des aciers de répartition du patin	$A_r \ge 0,10e_2$
Vérification des aciers de répartition du talon	$A_r \ge 0,10e_2$

II.2.6.5. La digue de protection

Cette digue est réalisée pour la protection de l'aménagement hydroagricole qui se trouve à l'aval du barrage en rive gauche. Elle sert également de passage pour les petits véhicules et les cyclomoteurs. Elle est dimensionnée comme la digue du barrage.

II.2.6.6. L'ouvrage de prise

Dans notre cas, l'ouvrage de prise aura un double rôle. Il s'agit de prise d'eau pour l'irrigation du périmètre à l'aval et d'ouvrage de vidange du réservoir. La cote de la prise a été calée à partir des résultats de la simulation de l'utilisation du barrage et de manière à satisfaire les besoins en eau. Le diamètre de la prise a été calculé par la formule de Torricelli (équation 34) :

$$D^{2} = \frac{4 * Q}{c * \pi * \sqrt{2gH}}$$
 (Eq. 34)

Avec D diamètre de la conduite en mm;

Q est le débit en tête du réseau d'irrigation en m³/s;

c est le coefficient de Torricelli ;

H est la charge au-dessus de la prise.

II.2.6.7. Coût de la réhabilitation

Le coût de cette réhabilitation a été estimé à partir du métré des différents travaux qui nous a permis de faire le devis quantitatif. Les différents prix obtenus auprès du bureau d'étude ont été utilisé pour faire le devis estimatif. Le détail des calculs est présenté en ANNEXES 3 à la page 108.

II.3. Synthèse des études de bases

II.3.1. Etudes géotechniques

❖ Sol de fondation sous la digue

Le long de l'axe de la digue, quatre (04) sondages de 0,50 m ont été effectués sur la digue dont deux sur la crête et deux sur le talus aval. Les caractéristiques du sol de fondation sont les suivantes :

- Suite à de la terre plus ou moins meuble en surface, nous avons du sable argileux jaunâtre ;
- Au niveau du lit mineur, le sol est essentiellement constitué de sable argileuse blanchâtre en surface et d'argile peu plastique à forte compacité en profondeur.
- En rive droite, nous avons du sable argileux jaunâtre suivi de sable argileux blanchâtre.

La digue du barrage ne présente aucune fuite d'eau apparente à l'aval, chose qui prouve que l'étanchéité assurée par les perrés maçonnés en amont fonctionne normalement.

Sol de fondation sous le déversoir

Un sondage de 2,40 m a été effectué sur le talus aval du déversoir. Ce sondage a révélé qu'il y a une présence de fuite d'eau au niveau du remblai sous le déversoir. Il a dont e été proposé de :

- Procéder à l'enlèvement du béton du déversoir, colmater les parties érodées du corps du déversoir :
- Réaliser un clef aval tout le long du déversoir afin d'arrêter les fuites d'eau ;
- De reprendre entièrement le déversoir.

❖ Zone d'emprunt de matériaux

Des zones d'emprunt de matériaux pour la réhabilitation du barrage ont été identifiés comme suit :

- Une zone d'emprunt latéritiques a été identifié à 3,8 km de la digue du barrage à 250 m de la route Yaongo-Dargo avec une superficie de 100 m sur 100 m d'épaisseur exploitable de 65 cm. Ses coordonnées GPS sont 30P 0797208 / 1399503;
- Une zone d'emprunt argileuse qui se situe dans la cuvette à partir de 150 m du déversoir sur une superficie de 200 m sur 300 m d'épaisseur exploitable de 50 à 70 cm
- Du sable qui se situe à environ 1,50 km en amont de la digue dans une grande ravine ;
- Du gravier latéritique roulé tout au bord d'une colline située à 4,50 km à l'est du barrage ;

- Des moellons latéritiques qui se trouvent sur des collines situées à 1,2 km en aval du barrage.

II.3.2. Etude socio-économique

& L'agriculture

L'agriculture de la commune de Dargo est caractérisée par une prédominance de l'agriculture familiale avec un faible niveau d'équipement et d'utilisation d'intrants (engrais, semences améliorée et pesticides). C'est une agriculture à forte dominance pluviale. L'agriculture irriguée est présente seulement au niveau des aménagements hydroagricoles réalisés autour des retenues d'eau de Dargo et de Yaongo. Cette agriculture présente des rendements faibles qui plongent chaque année les ménages dans une situation d'insécurité alimentaire. Les spéculations produites dans la commune sont le mil, le sorgho, le maïs, le riz, l'arachide, le sésame et le voandzou pour la saison pluviale. Pour les aménagements hydroagricoles on rencontre le riz, la tomate, l'oignon, le chou, l'aubergine ...etc. les Tableau 6 et Tableau 7 ci-dessous présentent respectivement la production céréalière et la production maraichère en 2012.

Tableau 6 : Superficies cultivées et rendements des principales cultures en 2012

Cultures	Mil	Sorgho	Maïs	Riz pluvial	Riz irrigué	Niébé	Arachide	sésame
Superficie (ha)	1500	2300	490	500	35	1500	1400	100
Rendement (t/ha)	1	1,5	3	2	3,5	1,2	2	1
Production (t)	1500	3450	1500	1000	122,5	1800	2800	100

Source: PCD 2014-2018 de la commune de Dargo

Tableau 7 : Production maraichères en 2012

Cultures	Chou	Tomate	Oignons	Aubergine	Autres
Superficie (ha)	3,5	38	8	0,75	2,5
Rendement (t/ha)	30	17,5	14	8	1
Production (t)	105	665	112	6	2,5

Source: PCD 2014-2018 de la commune de Dargo

L'élevage

L'élevage demeure la seconde activité économique après l'agriculture. C'est un élevage généralement extensif. Le bétail sur pied est commercialisé sur le marché de bétail de Yaongo qui représente un point de collecte et acheminé et commercialisé sur le marché de Pouytenga. Le Tableau 8 ci-après présente l'effectif du cheptel commercialisé de 2010 à 2012.

Tableau 8 : Effectif du cheptel commercialisé entre 2010 et 2012

Année	Espèces vendues					
Timee	Bovins	Ovins	Caprins	volaille		
2010	963	2934	3801	24321		
2011	1099	3825	2542	19910		
2012	1410	3112	3845	25674		
Total	3472	9871	10188	69905		

Source: PCD 2014-2018 de la commune de Dargo

II.3.3. Notice d'impact environnementale et sociale (NIES)

La réalisation des travaux de réhabilitation du barrage affectera des éléments de l'environnement qui sont entre autre le sol, les ressources en eau, la végétation (faune, flore), l'air et les populations riveraines.

Impacts négatifs

Les impacts négatifs les plus significatifs des travaux sont les suivants :

- La pollution de l'aire à travers la poussière et les gaz d'échappement des engins ;
- La détérioration du couvert végétal par la coupe d'arbres dans l'emprise du projet ;
- La détérioration du sol à travers l'érosion et le tassement du sol tout le long du trajet des engins ;
- Les nuisances sonores provoquées par les engins ;
- La destruction des biens privés et des habitations situés dans l'emprise du projet ;
- La pollution de l'eau du barrage par les hydrocarbures et les matières en suspensions ;
- Perturbation de la circulation par le déplacement des engins.

En terme de réponse à ces impacts négatifs, des mesures d'atténuation ont été identifiées et analysées. Elles seront données dans le plan de gestion environnemental en ANNEXES 2 à la page 102.

❖ Impacts positifs

La réalisation du projet aura des impacts positifs qui sont les suivants :

- L'intensification de la production agricole;
- L'accroissement des revenus des producteurs ;
- La contribution à la sécurité alimentaire ;
- La création d'emploi;
- L'amélioration des conditions de vies des populations de la zone du projet.

Composante du plan de gestion environnementale et sociale

Pour tenir compte des impacts négatifs et réduire leurs impacts sur l'environnement, le plan de gestion s'articule sur trois axes à savoir :

- Des mesures d'atténuations, de compensations et de bonification des impacts du projet ;
- Un programme de surveillance environnemental;
- Un plan de suivi environnemental.

Ce plan est présenté en ANNEXES 2 à la page 102.

III. RESULTATS ET DISCUSSIONS

III.1. Etude diagnostique du barrage

III.1.1. Etat actuel du barrage

L'état du barrage a été apprécié à travers la visite du site. Elle a permis d'apprécier l'état physique du barrage et des ouvrages annexes. Elle a aussi permis de constater l'ampleur des dégâts sur le barrage.

III.1.1.1. La cuvette du barrage

A la date du 30 mars 2019, il y avait toujours de l'eau dans le barrage. La partie de la cuvette au droit de la digue est assez nue (absence d'arbres) de façon générale. Sur les berges, on rencontre quelques arbustes et des ravines bien marquées qui peuvent entrainer des départs important de matériaux solides vers la cuvette du barrage. La cuvette n'est pas utilisée comme zone d'emprunt pour les usages de la population.

III.1.1.2. Etat de la digue

Nous avons en place une digue routière en terre homogène d'une largeur en crête de 3 mètres et d'une longueur de 693 mètres (avec déversoir).

❖ Couronnement du remblai

La crête du remblai des rives gauche et droite présente des affaissements et de légères dépressions par endroits avec un pendage moins marqué. Nous avons constaté une absence de murets de crête sur toute la digue. Le couronnement ne présente pas de fissures. La jonction entre le couronnement et le parement amont en rive droite présente quelques anomalies caractérisées par une désolidarisation entre les perrés maçonnés et le remblai.

! Le parement amont

Le parement amont est protégé en perrés maçonnés sur les rives gauche et droite. Il est en place et en bon état dans son ensemble. Néanmoins on remarque la présence de quelques arbustes en rive gauche.

***** Le parement aval

Le parement aval n'est pas protégé dans son ensemble. Seulement le bloc technique est protégée en perré maçonné. En rive droite, on constate des dégradations moyennement prononcées. Par contre en rive gauche, les dégradations sont très prononcées avec des profondeurs allant jusqu'à 25 cm. Ces dégradations sont caractérisées par la présence de griffes d'érosions, de ravines au

pied du talus et d'arbustes sur le parement. Il n'existe pas de zone humide sur le parement. Le fossé de pied n'est pas visible.

L'état des dégradations observées sur toute la digue sont présentées à la Figure 4.

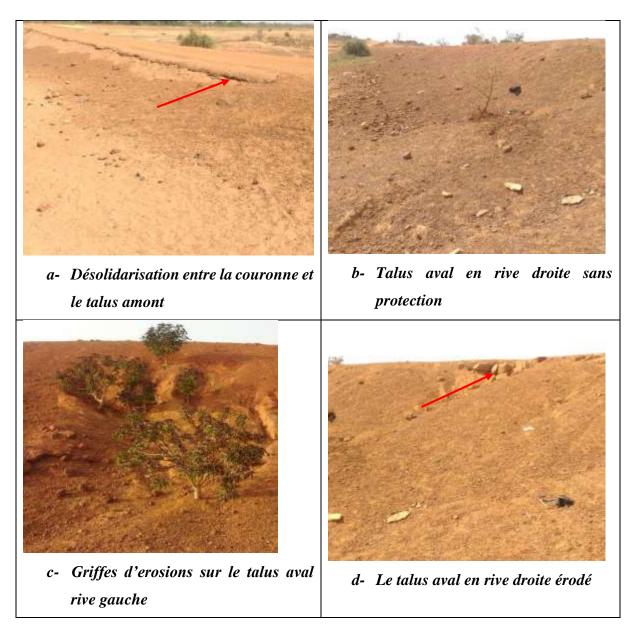


Figure 4 : Dégradations de la digue du barrage

III.1.1.3. Etat de l'évacuateur de crue

L'évacuateur de crue est un déversoir de type radier long de 211 m, fondé sur du remblai compacté avec dalle en béton armé sur la crête et sur les talus amont et aval (constitué de plots alternés). La jonction entre la digue et le déversoir est faite par une rampe en béton armé longue de 10 mètres de part et d'autres. Les joints du déversoir sont en béton bitumineux.

***** Etat des plots

Les plots de la crête présentent des légers affaissements et des fissures par endroits. Néanmoins sur la partie terminale de la crête, on remarque un décrochement entre deux plots. Les joints de la crête présentent des dégradations moyennes.

Au niveau du talus aval, la deuxième moitié présente des dégradations bien marquées. En effet, elles sont caractérisées par des affouillements au niveau du remblai sous la dalle avec des départs de matériaux, des fissures, l'affleurement des armatures par endroit et le décrochement de certains plots par rapport aux autres. Dans cette partie, les joints sont pour la plupart en bon état sauf à des endroits bien déterminés (les parties de décrochement).

***** Le mur bajover

Le mur bajoyer est en bon état. Le bloc technique en rive droite est aussi en bon état. Mais en rive gauche, la dégradation du talus aval non protégé affecte légèrement le bloc technique.

! Le bassin de dissipation

Le bassin de dissipation est un bassin de type II avec une longueur de 4 m et un seuil terminal de 1 m. Il a été réalisé en béton cyclopéen avec des plots de 10 m en moyenne. Il présente des dégradations très avancées sur près de 162 mètres (16 plots) avec des plots cassés. Dans cette partie, le remblai sous le bassin présente des affouillements avec des départs de matériaux. De plus les blocs chicanes sont presque tous arrachés.

❖ Les enrochements à l'aval du bassin de dissipation

Les enrochements à l'aval du bassin de dissipation sont composés de moellons latéritiques. On remarque des départs de moellons latéritiques à travers la dégradation de certaines grilles. Les murets de blocage qui contiennent les enrochements sont dégradés par endroits. On remarque un affaissement du remblai sous les enrochements.

L'état des dégradations observées sur l'évacuateur de crue et le bassin de dissipation sont données respectivement dans les Figure 5 et Figure 6.

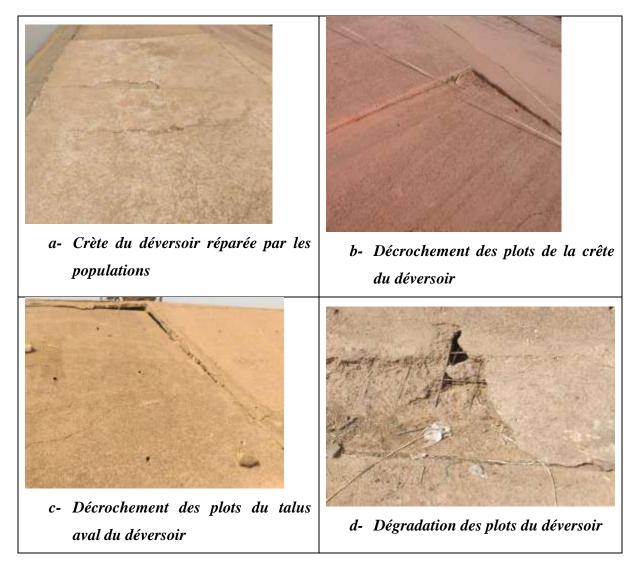


Figure 5 : Dégradation du déversoir

Figure 6 : Dégradations du bassin de dissipation et des enrochements

III.1.1.4. Etat des ouvrages annexes

❖ Protection aval et chenal d'évacuation

La protection aval est assurée en rive droite par des enrochements sur une longueur totale d'environ 76 m. On remarque une cassure après les 30 premiers mètres.

En rive gauche, la protection est assurée par une digue de protection tout le long du périmètre irrigué situé en aval rive gauche du barrage. Au droit de l'évacuateur de crue, la digue est protégée par des perrés maçonnés. On y observe une dégradation prononcée sur une dizaine de mètres. Cette digue présente des dépressions sur la crête et des griffes d'érosions sur les talus qui ne sont pas protégés.

\Delta L'ouvrage de prise

L'ouvrage de prise est constitué d'un bac amont, d'une conduite en fonte de 300 mm de diamètre et d'un bac aval équipé d'un robinet vanne. Elle présente des fuites d'eau à la jonction avec le canal d'amené du périmètre irrigué.

La Figure 7 présentent les dégradations observées au niveau des ouvrages externes du barrage.

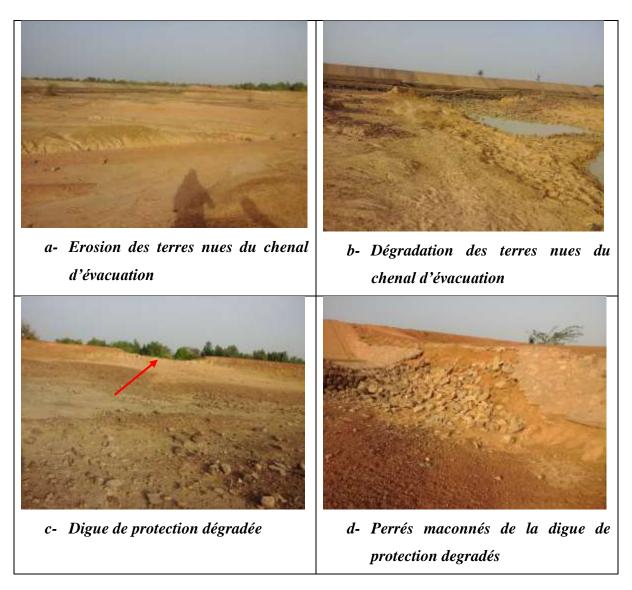


Figure 7 : Dégradations des ouvrages annexes du barrage

III.1.2. Causes probable des dégradations

Les causes de la dégradation des ouvrages du barrage peuvent être d'une part un manque de rigueur technique lors de la mise en œuvre et d'autres part le manque d'entretien.

III.1.2.1. La digue

Les dégradations majeures de la digue se trouvent au niveau du parement aval. La protection du talus aval est faite pour lutter contre les eaux de ruissellement qui pourraient causer des ravinements au niveau de celui-ci (DURAND et al, 1999). La présence de griffes d'érosion et de ravinement au niveau du talus se justifie donc par l'absence de cette protection.

III.1.2.2. L'évacuateur de crue

Les dégradations majeures de l'évacuateur de crue se situent au niveau du bassin de dissipation et du parement aval du déversoir. Les affaissements et les décrochements observés sur le parement aval et la crête du déversoir peuvent s'expliquer par un mauvais compactage du remblai. Le passage des véhicules sur celui-ci peut aussi être la cause de ces dégradations. Tous ces éléments pourraient provoquer une érosion régressive comme il a été constaté sous le déversoir, chose qui pourrait fragiliser la stabilité de la structure. Cette situation explique la désolidarisation des moellons et leur dispersion ainsi que les affouillements observés.

III.1.2.3. Les terres à l'aval du bassin de dissipation

Les ravinements constatés sur les terres à l'aval du bassin de dissipation peuvent s'expliquer par la cassure observée sur les moellons de protection placés en rive droite et la destruction du bassin de dissipation.

Au regard du diagnostic du barrage et de ses ouvrages annexes, une réhabilitation des ouvrages défectueux s'impose. Néanmoins les solutions à apporter seront fonction des résultats de l'étude géotechnique. Elle se feront soit par la reprise totale (ou remplacement) de certains ouvrages, soit par de simples retouches pour d'autres.

III.2. Etudes hydrologiques

III.2.1. Caractérisation du bassin versant

La carte du bassin versant du barrage de Yaongo est présentée à la Figure 8.

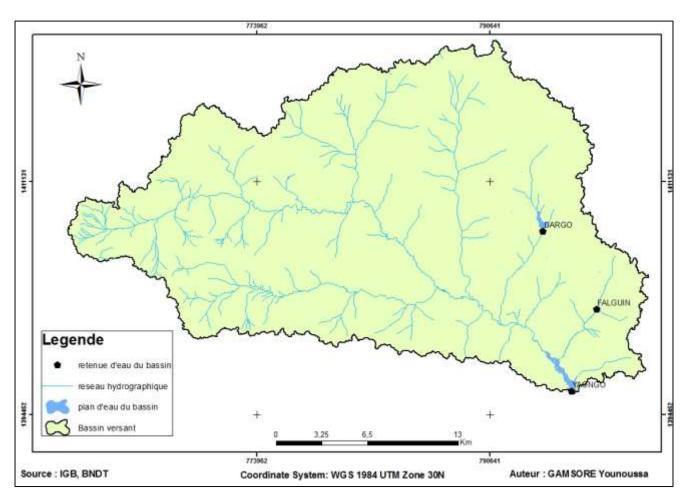
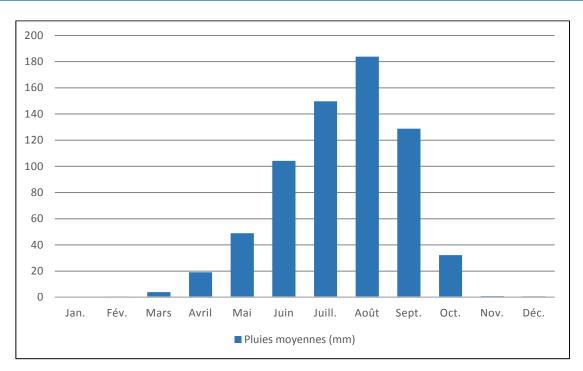


Figure 8 : Carte du bassin versant du barrage de Yaongo

Les caractéristiques physiques et morphologiques du bassin versant sont données dans le Tableau 9. Les détails des calculs sont présentés dans les notes de calculs en ANNEXES 1.1 à la page 64.


Tableau 9 : Caractéristiques du bassin versant

Paramètres	Unité	Valeurs
Superficie	km²	633,80
Périmètre	km	164,28
Pente moyenne	%	3,47
Altitude max	m	363
Altitude min	m	269
Longueur du réseau	km	330,00
Longueur cours d'eau principal	km	47,54
Indice de compacité	-	1,84
Longueur du rectangle équivalent	km	73,52
Largeur du rectangle équivalent	m	8,62
Indice global de pente	m/km	0,57
Pente transversale moyenne	m/km	8,98
Indice global de pente corrigée	m/km	4,84
Dénivelée Spécifique	m	121,92
Densité de drainage	-	0,52
Relief	-	Fort
Classe d'infiltrabilité	-	RI
Hydrographie	-	Dendidrique
Classes de pentes	-	R2
Régime hydrologique	-	Régime sahélien

III.2.2. Analyse statistiques des pluies

Distribution des pluies moyennes mensuelles

La distribution des pluies moyennes mensuelles de la station pluviométrique de Boulsa de 1980 à 2015 montre que l'essentiel des apports pluviométriques est enregistré de Mai à Septembre, ce qui représente environ 92 % de ces apports. Cette distribution est présentée dans le Graphe 1.

Graphe 1 : Histogramme des pluies moyennes de la station de Boulsa (1980-2015)

Analyse des pluies annuelles

L'ajustement à la loi normale des pluies moyennes annuelles donne les résultats qui sont résumés dans le Tableau 10. Le détail des calculs est présenté dans les notes de calculs en ANNEXES 1.1 à la page 66.

Tableau 10 : Valeurs caractéristiques des pluies annuelles

Périodes sèches		Période de	Périodes humides		
Fréquences	Pluies moyenne (mm)	retour (ans)	Fréquences	Pluies moyennes (mm)	
0,001	224,7	1000	0,999	1117,3	
0,01	335	100	0,99	1007	
0,02	374	50	0,98	967,6	
0,05	433,5	20	0,95	908,5	
0,1	485,9	10	0,9	856,1	
0,5	671	moyenne	0,5	671	

Analyse des pluies maximales journalières annuelles

Les résultats de l'ajustement à la loi de Gumbel des pluies maximales journalières sont résumés dans le Tableau 11. Le détail des calculs est présenté dans les notes de calculs en ANNEXES 1.1 à la page 69.

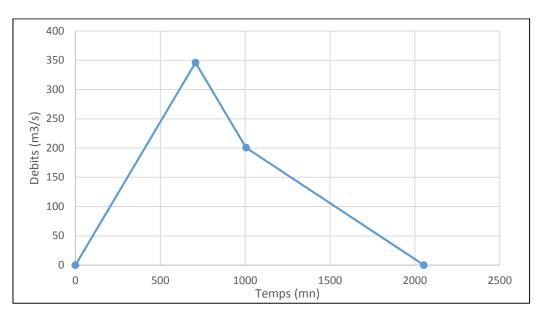
Tableau 11 : Valeurs caractéristiques des pluies maximales journalières annuelles

Périodes sèches		Période de	Périodes humides		
Fréquences	Pluies moyennes (mm)	retour (ans)	Fréquences	Pluies moyennes (mm)	
0,01	2	100	0,99	189,4	
0,02	7	50	0,98	168	
0,05	15,1	20	0,95	139,5	
0,1	23,2	10	0,9	117,5	
0,5	59,9	moyenne	0,5	59,9	

III.2.3. Détermination des crues

Crue de projet

Le Tableau 12 donne les résultats du calcul de la crue de projet. Les détails des calculs sont présentés dans les notes de calculs en ANNEXES 1.1 à la page 73.


Tableau 12 : Calcul de la crue de projet

Débit (m³/s)	Méthode ORSTOM	Méthode CIEH	Débit de pointe	Coefficient majorateur	Débit projet
	Q10	Q10	Q10	С	Qp
	144,21	134,37	144,37	2,4	346,09

La crue de rupture obtenue est de 1449,34 m³/s.

\Delta Hydrogramme de crue

La courbe de l'hydrogramme de la crue du projet est présentée dans le Graphe 2. Les paramètres de tracé de cette courbe sont présentés dans les notes de calculs en ANNEXES 1.1 à la page 75.

Graphe 2 : Hydrogramme de crue du projet

III.3. Estimation et exploitation de la retenue

III.3.1. Evaluation des besoins en eau

Le résultat des calculs des besoins en eau agricoles, pastoraux et humaines (ménages) est confiné dans le Tableau 13. Les détails des calculs sont présentés dans les notes de calculs en ANNEXES 1.2 à la page 79.

Tableau 13 : Besoins en eau par campagne

Désignation	Unité	Valeur
Besoins agricoles	m^3	254 459,65
Besoins pastoraux	m ³	75 540,74
Besoins humains	m ³	19 019,12

III.3.2. Estimation des pertes en eau

Les pertes totales en eau (infiltration et évaporation) dans la cuvette pendant la campagne sont estimées à **1385,86 mm** soit un volume de **1 183 294, 20 m³**. Le détail des calculs est présenté dans les notes de calculs en ANNEXES 1.2 à la page 82.

III.3.3. Evaluation des dépôts solides

Le volume des dépôts solides donne une valeur de **99 971,03 m³/ans**. Le volume représente chaque année une perte de capacité du barrage. Cette situation montre un état d'ensablement conséquent. Nous proposerons donc des actions pour réduire ces dépôts solides. Le détail des calculs est présenté dans les notes de calculs en ANNEXES 1.2 à la page 83.

III.3.4. Evaluation du volume de la retenue

A travers le traitement des résultats de l'étude topographique de la retenue, nous obtenons des volumes en fonction des altitudes. La courbe hauteur volume et la courbe hauteur surface ainsi obtenues sont présentées dans les notes de calculs en ANNEXES 1.2 à la page 84. Le Tableau 14 ci-dessous donne les caractéristiques de la cuvette au plan d'eau normal (PEN).

Tableau 14 : Caractéristiques de la cuvette du barrage

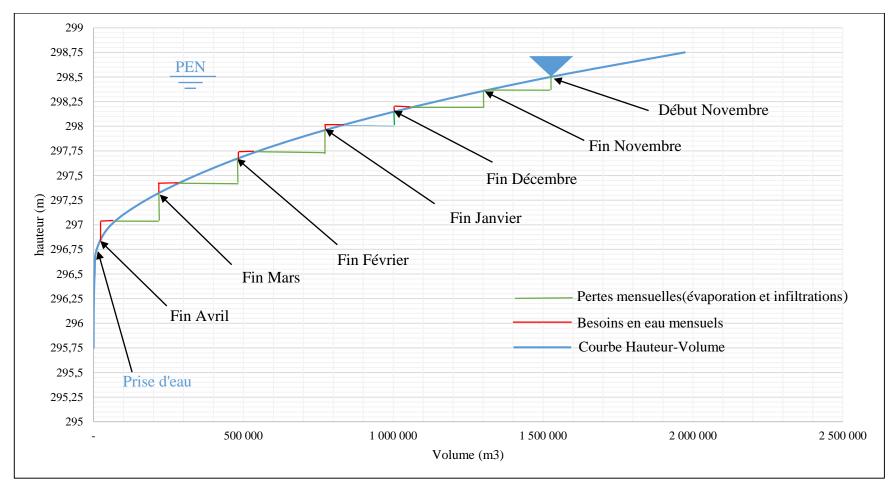
Désignation	Unité	Valeurs
Cote du PEN	m	298,50
Volume de la retenue au PEN	m^3	1 524 635,91
Surface du plan d'eau au PEN	ha	165,65

III.3.5. Calculs des apports liquides

Selon sa situation géographique et ses caractéristiques, le bassin versant du barrage de Yaongo correspond au bassin type de Boulsa à Niégha (Classification de Rodier) dont les caractéristiques sont les suivantes :

 $S = 1010 \text{ km}^2$; Ds = 49 m; $Dd = 1.1 \text{ km/km}^2$; Pmed = 775 mm; Kmed = 3.9 %.

Les résultats du calcul des apports liquides en fonction des périodes de retour sont résumés dans le Tableau 15 ci-dessous. Le détail des calculs est donné dans les notes de calculs en ANNEXES 1.2 à la page 83.


Tableau 15: Calcul des apports liquides

Période de retour	lame d'eau (mm)	Ke (%)	Apport liquides (m³)
Année décennale humide	60	7,01%	38 028 000
Année moyenne	30	4,47%	19 014 000
Année décennale sèche	10	2,06%	6 338 000
Année cinquantennale sèche	4,6	1,23%	2 915 480
Année centennale sèche	3,3	0,98%	2 091 540

Il ressort que le volume des apports liquides en année décennale sèche qui est de 6 338 000 m³ est supérieur à la capacité de stockage du barrage qui est de 1 524 636 m³. La disponibilité de l'eau pour le barrage est donc assurée.

III.3.6. Simulation de l'utilisation de la retenue

La simulation à travers la courbe d'exploitation de la retenue a donné les résultats qui sont présentés au Graphe 3.

Graphe 3 : Simulation de la retenue

ETUDE TECHNIQUE DETAILLEE POUR LA REHABILITATION DU BARARRAGE DE YAONGO COMMUNE DE DARGO, PROVINCE DU NAMENTENGA, BURKINA FASO

De la simulation de l'utilisation de la retenue, il ressort qu'au début de la campagne (début décembre), le volume d'eau est estimé à 1 524 635,91 m³. Le barrage dont la capacité diminue au fur et à mesure du temps sous l'effet des pertes totales (besoins en eau, infiltrations et évaporations) se retrouve avec un volume de 927,54 m³ en fin Mai (fin de campagne). A cette période, l'eau est à la cote de 296,81 m. Il se trouve que ce niveau est supérieur à la cote de la prise d'eau qui est de 296,75 m, ce qui montre que l'eau sera disponible pour satisfaire les besoins tant que le remplissage du barrage sera effectif.

Le détail des calculs est présenté dans les notes de calculs en ANNEXES 1.2 à la page 85.

III.4. Vérification de la conception des ouvrages existants

III.4.1. Vérification de la conception de la digue

! Les pentes des talus

Les pentes des talus amont et aval sont de l'ordre de 1V/2H. Cette valeur est en adéquation avec la recommandation de J.M. DURRAND dans *Techniques des petits barrages en Afrique occidentale et équatoriale*, car ici la hauteur totale du barrage est inférieure à 5 m (barrage en terre homogène).

❖ La largeur en crête

Tableau 16 : Vérification de la largeur en crête

Largeur en crête (m)	Formule de PREECE	Formule de KNAPPEN	Valeur mesurée
	3,50	3,33	3,00

La largeur en crête n'est pas respectée. Il faudrait donc à la réhabilitation veiller au respect de celle-ci.

III.4.2. Vérification de la conception de l'évacuateur de crue

La longueur actuelle du déversoir est de 211 m environ. Avec cette valeur, la charge au-dessus du seuil obtenu est de 1,03 m, ce qui est supérieur à la valeur admissible pour ce type de déversoir qui est de compris entre 0,7 et 0,9 m (LO, 2016). La longueur du déversoir devra donc être revue à la hausse.

III.4.3. Crue de rupture du barrage

La crue de rupture du barrage est estimée à **1468 m³/s**. Cette valeur est largement supérieure à la crue de projet.

III.5. Proposition de réhabilitation des ouvrages existants du barrage

III.5.1. Réhabilitation de la digue du barrage

Caractéristiques de la digue

Le Tableau 17 donne les caractéristiques retenues pour la réhabilitation de la digue.

Tableau 17 : Caractéristiques de la digue

Désignation	Valeur
Cote de la digue (m)	300,00
Hauteur de la digue (m)	4,5
Longueur de la digue (sans déversoir) (m)	482
Largeur en crête de la digue (m)	3,5
Largeur de la fondation de la digue (m)	21,4
Revanche libre (m)	0,90
Pentes des talus amont et aval	1V / 2H

Le détail des calculs est présenté dans les notes de calculs en ANNEXES 1.3 à la page 86.

***** Travaux de réhabilitation et de protection de la digue

Les travaux réhabilitation et de protection de la digue obtenus sont les propositions de solutions tirées de l'analyse de l'étude diagnostic. ils sont présentés dans le Tableau 18.

Tableau 18 : Travaux de réhabilitation et de protection de la digue

Désignation	Travaux à réaliser
Le talus amont	 Le maçonnage des perrés existants sera renforcé en rive gauche et repris totalement en rive droite. La reprise du butée de pied sur toute la longueur en enrochements de 1,5 m de largeur en gueule et 0,5 m de profondeur.
La crête	 Un décapage de 10 cm sera fait sur la crête et celle-ci sera rechargée par une couche d'argile compacté de 10 cm La protection de la crête se fera par une couche de 20 cm de graveleux latéritiques. La crête aura une pente de 3% vers l'amont. A l'amont de la crête, il sera réalisé un muret de crête de 0,50 m x 0,50 m encré dans la digue de 0,50 m.

	- A l'aval de la crête, il sera réalisé un muret de crête de 0,50 m x			
	1,00 m encré dans la digue de 0,50 m.			
	- Le dessouchage des arbustes présents sur les talus			
	- Le taillage et rechargement des talus avec des matériaux argileux			
	compactée tout en corrigeant les pentes			
	- La réalisation de perré maçonné au niveau du bloc technique.			
	- La protection du talus aval par une couche d'enrocheme			
Le talus aval	latéritiques de 20 cm d'épaisseur soigneusement posée sur une			
couche de pose de grave latéritique de 10 cm d'épaisseur				
	- La réalisation d'un tapis drainant de 10 cm d'épaisseur et 9 m			
longueur.				
	- La réalisation de butée de pied en enrochements de 1,5 m de			
	largeur en gueule et 0,5 m de profondeur au pied aval.			

La réalisation de ces travaux sera facilité grâce aux différentes zones d'emprunts comme décrite dans la synthèse de l'étude géotechnique.

Stabilité des pentes

La vérification de la stabilité des pentes donne un facteur de sécurité Fs = 2,60 avec 1V/2H comme valeurs de pente des talus amont et aval. La Figure 9 présente le cercle de glissement le plus défavorable des pentes de la digue du barrage.

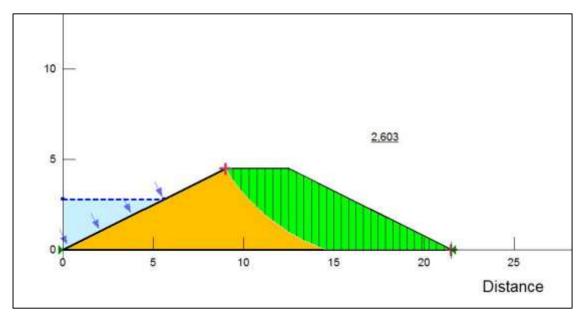


Figure 9 : Cercle de glissement le plus défavorable

III.5.2. Réhabilitation de l'évacuateur de crue

A Résultat du laminage

Le laminage de la crue de projet a permis de retenir les caractéristiques suivantes pour l'évacuateur de crue :

- La longueur déversante est de 250 m;
- La lame d'eau déversante est de 0,80 m;
- Le débit maximal évacué est de 312,87 m³/s.

Le détail des calculs est présenté dans les notes de calculs en ANNEXES 1.1 à la page 79.

Stabilité du déversoir

Les résultats de l'étude de la stabilité du déversoir sont donnés dans le Tableau 19. Le détail des calculs est présenté dans les notes de calculs en ANNEXES 1.4 à la page 89.

Tableau 19 : Stabilité du déversoir

Désignation	Unité	Valeur			
Stabilité vis-à-vis du glissement					
Angle d'inclinaison de la partie aval du déversoir	degré	45			
Somme des forces horizontales	kN/ml	92,27			
Somme des forces verticales	kN/ml	361,88			
Coefficient de sécurité au glissement	-	1,30 > 1,20			
Stabilité vis-à-vis du renversement	<u> </u>				
Somme des moments stabilisant	kN.m	385,27			
Somme des moments renversant	kN.m	157,42			
Coefficient de sécurité au renversement	-	2,45 > 1,5			
Stabilité vis-à-vis de la rupture					
Contrainte maximale du déversoir	kN/m²	81,17			
Contrainte limite admissible du béton	kN/m²	4600			
Comparaison des contraintes	-	$\sigma_{max} \leq \sigma_{lim,beton}$			
Stabilité vis-à-vis de la fissuration					
L'excentricité	m	0,49			
B/6	m	0,73			
Comparaison des valeurs	-	$ e \leq b/6$			

Nous remarquons que les conditions de stabilités sont vérifiées, cela implique que la sécurité entière de l'ouvrage sera assurée.

Caractéristiques du déversoir

Les caractéristiques du déversoir obtenue sont résumés dans le Tableau 20.

Tableau 20 : Caractéristiques du déversoir

Désignation	Unité	Valeur
Type de déversoir	-	Déversoir Poids à profil trapézoïdal
Cote de la crête du déversoir	M	298,50
Hauteur totale du déversoir	M	3,8
Lame d'eau au-dessus du déversoir	M	0,80
Longueur du seuil déversant	M	250
Largeur en crête du déversoir	M	1,00
Largeur de fond du déversoir	M	4,40
Profondeur de la partie encrée	M	1,00

III.5.3. Dimensionnement du bassin de dissipation

Les caractéristiques du bassin de dissipation ainsi que du chenal d'évacuation sont résumés dans le Tableau 21. Le détail des calculs est présenté dans les notes de calculs en ANNEXES 1.5 à la page 93.

Tableau 21 : Caractéristiques du bassin de dissipation et du chenal d'évacuation

Désignation	Unité	valeur			
Bassin de dissipation					
Débit évacué par le déversoir	m ³ /s	312,87			
Lame d'eau déversante	m	0,80			
Enfoncement du bassin	m	1,00			
Tirant d'eau avant le ressaut	m	0,14			
Vitesse d'eau à l'entrée du bassin	m/s	8,98			
Nombre de Froude	-	6,6			
Bassin type retenu	Bassin USB	Bassin USBR de type II en béton cyclopéen			
Tirant d'eau conjugué	m	1,37			
Longueur du bassin de dissipation	m	4			

Désignation	Unité	valeur		
Hauteur du seuil terminal	m	0,50		
Hauteur des blocs de chicane	m	0,30		
Hauteur des blocs de chute	m	0,15		
Distance entre les blocs de chicane	m	0,20		
Distance entre les blocs de chute	m	0,15		
Chenal d'évacuation				
Pente longitudinale	%	0,3		
Pente des talus	-	1V/2H		
Profondeur	m	0,50		
Largeur au plafond	m	250		

III.5.4. Dimensionnement du mur bajoyer

***** Caractéristiques géométriques

Les caractéristiques géométriques retenues du bajoyer sont donnés dans le Tableau 22.

Tableau 22 : Caractéristiques géométriques du mur Bajoyer

Désignation	Unité	Valeur
Hauteur maximale du bajoyer	m	4,50
Profondeur d'encrage du mur	m	1,00
Epaisseur du voile à la base	m	0,40
Epaisseur du sommet du voile	m	0,20
Epaisseur de la semelle	m	0,40
Largeur de la semelle	m	4,00
Largeur du patin	m	0,65
Largeur du talon	m	2,95

Stabilité du mur bajoyer

Les résultats de l'étude de la stabilité externe et interne du mur bajoyer sont résumés respectivement dans les Tableau 23 et Tableau 24. Le détail des calculs est présenté dans les notes de calculs en ANNEXES 1.5 à la page 99.

Tableau 23 : Stabilité externe du mur Bajoyer

Désignation	Unité	Valeur
Stabilité vis-à-vis du glissement	<u> </u>	
Somme des forces horizontales	kN/ml	62,26
Somme des forces verticales	kN/ml	338,19
Coefficient de sécurité au glissement	-	3,78 > 1,50
Stabilité vis-à-vis du renversement	1	
Somme des moments stabilisant	kN.m	748,47
Somme des moments renversant	kN.m	107,50
Coefficient de sécurité au renversement	-	6,96 > 1,50
Stabilité du sol de fondation	1	
L'excentricité	m	0,10
B/4	m	1,00
Comparaison des valeurs	-	e < B/4

Tableau 24 : Stabilité interne du mur Bajoyer

Désignation	Unité	Valeur	Conditions de non fragilité	Choix des aciers
Vérification des aciers horizontaux en face arrière	cm²/ml	4,52	4	4 HA 12 esp 25
Vérification des aciers horizontaux en face avant	cm²/ml	4,52	3	4 HA 12 esp 25
Vérification des aciers verticaux en face arrière	cm²/ml	6,79	4	6 HA 12 esp 15
Vérification des aciers verticaux en face avant	cm²/ml	4,52	4	4 HA 12 esp 25
Vérification des aciers de répartition du patin	cm²/ml	4,52	4	4 HA 12 esp 20
Vérification des aciers de répartition du talon	cm²/ml	4,52	4	4 HA 12 esp 20

Nous remarquons que conditions de stabilité externes et internes du mur bajoyer sont vérifiées.

L'ouvrage ainsi dimensionné pourra assurer sa fonction de mur de soutènement.

III.5.5. Réhabilitation de la digue de protection

Les caractéristiques retenues pour la réhabilitation de la digue de protection sont présentées dans le Tableau 25.

Tableau 25 : Caractéristiques de la digue de protection

Désignation	Caractéristique
Type de digue	Digue en terre homogène
Cote de la crête (m)	297,50
Longueur de la digue (km)	1,00
Largeur en crête (m)	3
Pente des talus amont / aval	1V/2H
Protection du talus amont	Perré maçonné sur 20 m et graveleux latéritiques sur la suite
Protection du talus aval	Graveleux latéritique
Protection de la crête	Grave latéritique

III.5.6. Réhabilitation de l'ouvrage de prise

La cote de calage de la prise d'eau a été maintenue à **296,75 m**. soit une hauteur d'eau au-dessus de la prise de 2,50 m au-dessus de l'ouvrage. Ce qui donne un volume mort de **1 524 459,01 m**³ pour mener à terme la campagne agricole pour les 15 ha de terre aménagée.

Les éléments retenus pour la réhabilitation de l'ouvrage de prise sont :

- La reprise du bac amont en béton armé de 1.50 m x 1.50 m muni d'une grille amovible,
- Le remplacement de la vanne actuelle par un robinet vanne de diamètre DN 300. Les autres équipements ont été maintenus ;
- Réhabilitation du regard aval abritant le robinet vanne ;
- Une purge de la conduite d'alimentation sera faite pour assurer un bon fonctionnement de l'ouvrage.

CONCLUSION ET RECOMMANDATIONS

Le présent projet portant sur l'étude technique de réhabilitation du barrage de Yaongo fait partie d'un programme de réhabilitation de cinq (05) barrages au profit du ProValAB, qui a comme finalité entre autre d'améliorer durablement la sécurité alimentaire et nutritionnelle des ménages et d'accroitre leurs revenus. La réhabilitation de ce barrage vise essentiellement la satisfaction des besoins en eau pastoraux de la localité et d'un périmètre irrigué de 15 ha.

Il ressort de cette étude que l'ouvrage réhabilité permettra de stocker 1 524 635,91 m³ d'eau à travers la rehausse de la cote du déversoir de 0,25 m, chose qui est en mesure de satisfaire les différents besoins en eau. Cependant les dépôts solides peuvent représenter une menace pour le barrage et par conséquents pour les activités économiques et sociales dépendants de celui-ci.

Aussi dans le contexte de variabilité climatique dans lequel nous sommes, marqué par soit des périodes sèches soit des pluies à fortes intensités, les ouvrages du barrage pourraient connaître de sérieuses sollicitations qui pourraient présenter un danger pour le bon fonctionnement de ceux-ci.

Pour faire face à ces problèmes sus-cités, nous recommandons les actions suivantes :

- Le respect des règles de l'art lors de la mise en œuvre des ouvrages ;
- La réalisation d'ouvrages de conservation des sols au niveau des versants présentant des zones de ravinements (foyer de transport des matières solides);
- La réalisation de digues filtrantes pour freiner le transport des matériaux solides ;
- La mise en place d'un comité formel de gestion et d'entretien régulier du barrage.

Le coût des travaux de réhabilitation du barrage est estimé à huit cent soixante-dix-huit millions quatre cent quarante-trois mille neuf cent quatre-vingt-dix-huit (878 443 998) Francs CFA TTC

Bibliographie

AC3E. (2012). Rapport d'étude Diagnostic du barrage de Koubri. Burkina Faso.

CETRI. (2019). Rapport d'éTude géotechnique du barrage de Yaongo. Burkina Faso

COMPAORE. (1996). Cours des barrages, 2eme edition. EIER

DURAND. (1996). Petits barrages pour l'equipement rural en Afrique. 282 pages.

- DURAND, ROYET, MERIAUX (1999). *Techniques des pétits barrages en Afrique Sahélienne et équatoriale*. 401 pages.
- FAO 54. (1996). Crues et apports : Manuel pour l'estimation des crues décenales et apports annuels pour les petits bassins versants non jaugés de l'Afrique sahélienne et tropicale seche. 244 pages.
- KARAMBIRI. (2008). Cours d'Hydrologie, Master II, Infrastructures et réseaux hydrauliques, Institut 2IE
- KARAMBIRI, GUEYE. (2006). Cours de barrage Master II, Infrastructures et réseaux hydrauliques. Institut 2IE.
- LO. (2016). Cours de Barrage Licence III, Genie-Civil et Hydrauliques. Institut 2IE.
- PCD. (2014-2018). Plan communale de developpement de la commune de Dargo. 107 pages.
- SAHEL CONSULT. (1999). Rapport d'étude d'amenagement à l'aval du barrage de Yaongo. Brukina Faso.
- SAHEL CONSULT. (1999). Rapport d'étude géotechnique de barrage de Yaongo. Burkina Faso.

ETUDE TECHNIQUE DETAILLEE POUR LA REHABILITATION DU BARARRAGE DE YAONGO COMMUNE DE DARGO, PROVINCE DU NAMENTENGA, BURKINA FASO

ANNEXES

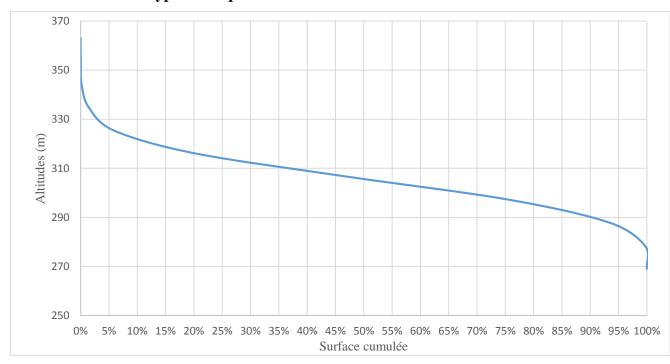
ANNEXES 1.	NOTES DE CALCULS	62
ANNEXES 1.1.	Etudes hydrologiques	62
ANNEXES 1.2.	Etudes de la retenue	79
ANNEXES 1.3.	Calculs de la digue du barrage	86
ANNEXES 1.4.	Calculs du déversoir	88
ANNEXES 1.5.	Les ouvrages annexes	93
ANNEXES 2.	PLAN DE GESTION ENVIRONNEMENTALE ET SOCIALE	101
ANNEXES 3.	DEVIS ESTIMATIF ET QUANTITATIF	109
ANNEXES 4	LES PIECES GRAPHIOLIES	115

ANNEXES 1. NOTES DE CALCULS

ANNEXES 1.1. Etudes hydrologiques

1. Calcul des caractéristiques du bassin versant

***** Caractéristiques physiques


Paramètres	Formules	Résultats
Surface S (km²)		633,80
Périmètre (km)		164,28
Pente moyenne (%)		3,47
Altitude max (m)		363
Altitude min (m)		269
Longueur du réseau ∑Li (km)		330,00
Longueur cours d'eau principal (km)		47,54
Indice de compacité Icomp	$0,282 * P/\sqrt{S}$	1,84
Longueur du rectangle équivalent L (km)	$\frac{P + \sqrt{P^2 - 16 * S}}{4}$	73,52
Largeur du rectangle équivalent (km)	$\frac{P}{2}-L$	8,62
Indice global de pente Ig (m/km)	$\frac{Atl(5\%) - Alt(95\%)}{L}$	0,57
Pente transversale moyenne IT (m/km)		8,98
Indice global de pente largeur du rectangle équivalent (m/km)	$\frac{Atl(5\%) - Alt(95\%)}{l}$	4,84
Dénivelée Spécifique Ds (m)	$Ig*\sqrt{S}$	121,92
Densité de drainage Dd	$\frac{\sum Li}{S}$	0,52

Les paramètres de tracé de la courbe hypsométrique

Altitude (m)	Surface partielle (km²)	La surface en %
269	633,80	100%
278,4	631,78	99,7%
287,8	592,37	93%
297,2	479,25	76%
306,6	298,10	47%
316	128,92	20%
325,4	37,13	6%
334,8	9,13	1%
344,2	1,11	0%
353,6	0,14	0%
363	0,00	0%
Cote spécific	327,2 m	
Cote spécifiq	ue H95%	285,5 m

Source: Global mapper

Courbe hypsométrique du bassin versant

***** Les pentes transversales

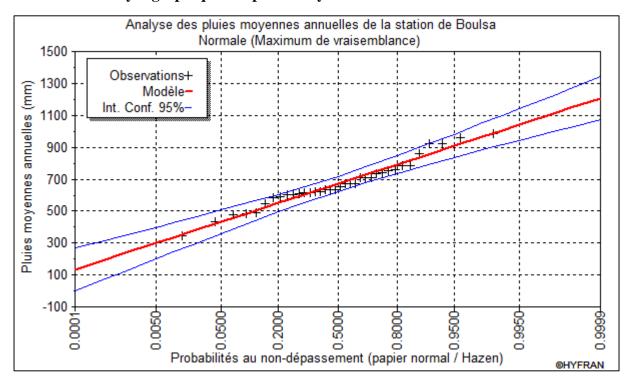
Pentes	Valeurs (m/km)
IT1	4,70
IT2	6,89
IT3	7,56
IT4	16,77
IT moyen	8,98

2. Analyse statistiques des pluies

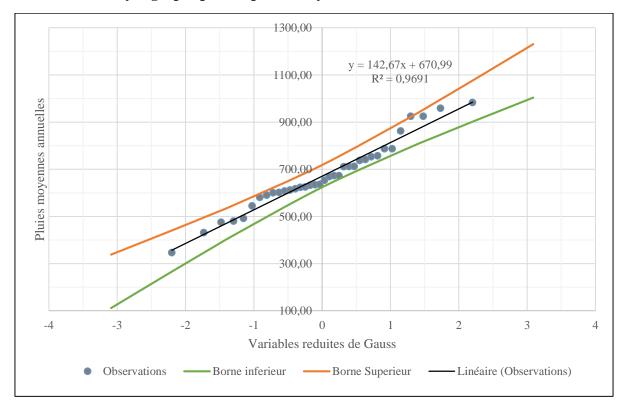
Calcul des variables réduites de Gauss pour les pluies moyennes annuelles

Pluies annuelles	Valeurs ordonnées	Rang	Fréquences	variables réduites
623,8	346,50	1	0,01388889	-2,20041058
757,1	431,60	2	0,04166667	-1,7316644
601,9	475,50	3	0,06944444	-1,47994139
590,4	480,70	4	0,09722222	-1,29754293
581	492,00	5	0,125	-1,15034938
480,7	544,60	6	0,15277778	-1,02459239
634,4	581,00	7	0,18055556	-0,91324993
712	590,40	8	0,20833333	-0,8122178
753,1	600,40	9	0,23611111	-0,71886805
668,9	601,90	10	0,26388889	-0,63140189
492	607,80	11	0,29166667	-0,54852228
712,2	612,20	12	0,31944444	-0,46925288
653,2	617,30	13	0,34722222	-0,39283081
600,4	623,80	14	0,375	-0,31863936
958,6	624,70	15	0,40277778	-0,24616365
632,4	632,40	16	0,43055556	-0,17495994
636,8	634,40	17	0,45833333	-0,10463346
431,6	636,80	18	0,48611111	-0,03482132
617,3	653,20	19	0,51388889	0,03482132
612,2	668,90	20	0,54166667	0,10463346
346,5	673,30	21	0,56944444	0,17495994
475,5	673,30	22	0,59722222	0,24616365
607,8	711,00	23	0,625	0,31863936
544,6	712,00	24	0,65277778	0,39283081
983,6	712,20	25	0,68055556	0,46925288
924,9	737,50	26	0,70833333	0,54852228

Pluies annuelles	Valeurs ordonnées	Rang	Fréquences	variables réduites
673,3	741,80	27	0,73611111	0,63140189
786,9	753,10	28	0,76388889	0,71886805
924,9	757,10	29	0,79166667	0,8122178
673,3	786,90	30	0,81944444	0,91324993
786,9	786,90	31	0,84722222	1,02459239
862,5	862,50	32	0,875	1,15034938
711	924,90	33	0,90277778	1,29754293
741,8	924,90	34	0,93055556	1,47994139
737,5	958,60	35	0,95833333	1,7316644
624,7	983,60	36	0,98611111	2,20041058


***** Calcul des quantiles pour les pluies moyennes annuelles

Période de retour	Fréquences	variables réduite	Quantiles Xp	Bornes inférieures	Bornes supérieures
Millénaire humide	0,999	3,0902323	1117,26	1003,90	1230,62
Centennale humide	0,99	2,3263479	1006,95	916,13	1097,76
Cinquantenale humide	0,98	2,0537489	967,58	884,40	1050,76
Vingtennale humide	0,95	1,6448536	908,53	836,17	980,89
Décennale humide	0,9	1,2815516	856,06	792,40	919,73
Année moyenne	0,5	0	670,99	623,82	718,17
Décennale sèche	0,1	-1,2815516	485,92	422,26	549,58
Vingtennale sèche	0,05	-1,6448536	433,45	361,09	505,81
Cinquantennale sèche	0,02	-2,0537489	374,40	291,23	457,58
Centennale sèche	0,01	-2,3263478	335,04	244,22	425,85
Millénaire sèche	0,001	-3,0902323	224,72	111,36	338,09


* Résultats obtenues HYFRAN

Périodes de retour	Fréquences	Quantiles	borne inferieur	borne supérieur
10000	0,9999	1210	1070	1340
2000	0,9995	1150	1030	1270
1000	0,999	1120	1000	1230
200	0,995	1040	944	1140
100	0,99	1010	915	1100
50	0,98	968	884	1050
20	0,95	909	836	982
10	0,9	856	792	920
5	0,8	793	737	848
3	0,6667	733	684	783
2	0,5	671	624	718
1,4286	0,3	595	545	646
1,25	0,2	549	494	605
1,1111	0,1	486	422	550
1,0526	0,05	433	360	506
1,0204	0,02	374	290	458
1,0101	0,01	335	243	427
1,005	0,005	299	200	398
1,001	0,001	225	110	339
1,0005	0,0005	196	74,8	317

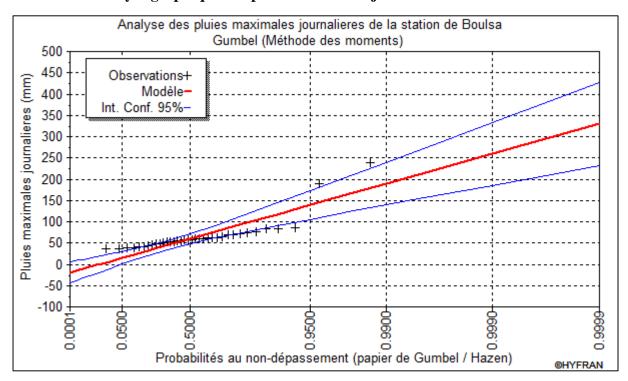
Analyse graphique des pluies moyennes annuelles avec HYFRAN

❖ Analyse graphique des pluies moyennes annuelles avec EXCELL

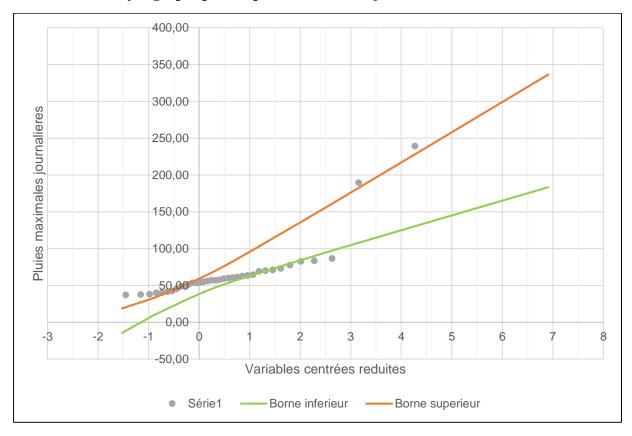
❖ Calcul des variables réduites de Gumbel pour les pluies maximales journalières

Pluies max journalières	Valeurs ordonnés	Rang	Fréquences	Variables réduites
64,6	37,20	1	0,01388889	-1,45317376
57,8	37,5	2	0,04166667	-1,15626901
53,5	38,00	3	0,06944444	-0,98103981
62,6	40,00	4	0,09722222	-0,84619267
41,2	40,20	5	0,125	-0,73209937
57	41,20	6	0,15277778	-0,63061776
59	42,40	7	0,18055556	-0,53749682
73	45,00	8	0,20833333	-0,45019365
55	48,70	9	0,23611111	-0,367038
53,5	49,00	10	0,26388889	-0,28685208
51	51,00	11	0,29166667	-0,20875548
82,5	53,50	12	0,31944444	-0,13205572
59,9	53,50	13	0,34722222	-0,0561821
48,7	54,10	14	0,375	0,01935689
77,5	55,00	15	0,40277778	0,09500291
40	56,00	16	0,43055556	0,17116928
70	56,80	17	0,45833333	0,2482581
37,5	57,00	18	0,48611111	0,32667511
49	57,80	19	0,51388889	0,40684375
42,4	59,00	20	0,54166667	0,48921993
37,2	59,90	21	0,56944444	0,57430861
40,2	60,70	22	0,59722222	0,66268393
56	61,20	23	0,625	0,75501486
45	62,60	24	0,65277778	0,8520995
38	63,50	25	0,68055556	0,95491249
69	64,60	26	0,70833333	1,06467333

Pluies max journalières	Valeurs ordonnés	Rang	Fréquences	Variables réduites
189,5	69,00	27	0,73611111	1,18294803
71	70,00	28	0,76388889	1,31180699
56,8	71,00	29	0,79166667	1,45408145
83,5	73,00	30	0,81944444	1,61380405
239,4	77,50	31	0,84722222	1,79701975
60,7	82,50	32	0,875	2,01341868
61,2	83,50	33	0,90277778	2,28005238
86,5	86,50	34	0,93055556	2,63145729
54,1	189,50	35	0,95833333	3,15684949
63,5	239,40	36	0,98611111	4,26968115


* Calcul des quantiles pour les pluies maximales journalières

Période de retour	Fréquence	Variable réduite	Quantile Xp	k	Borne inferieur	Borne supérieur
Millénaire humide	0,999	6,907255	259,91	4,937598	183,36	336,46
Centennale humide	0,99	4,600149	189,35	3,138056	137,03	241,67
Cinquantennale humide	0,98	3,901939	168,00	2,593452	122,95	213,05
Vingtennale humide	0,95	2,970195	139,50	1,866692	104,06	174,95
Décennale humide	0,9	2,250367	117,49	1,305226	89,33	145,65
Année moyenne	0,5	0,366513	59,88	-0,164179	48,26	71,49
Décennale sèche	0,1	-0,834032	23,16	-1,100605	11,60	34,72
Vingtennale sèche	0,05	-1,097189	15,11	-1,305867	1,82	28,41


* Résultats obtenues HYFRAN

Périodes de retour	Fréquences	Quantiles	borne inferieur	borne supérieur
10000	0,9999	330	232	428
2000	0,9995	281	200	362
1000	0,999	260	186	334
200	0,995	211	153	268
100	0,99	189	139	240
50	0,98	168	125	211
20	0,95	139	106	173
10	0,9	117	90,7	144
5	0,8	94,5	74,7	114
3	0,6667	76,3	61,3	91,2
2	0,5	59,9	48,1	71,6
1,4286	0,3	43	32,2	53,8
1,25	0,2	34,1	22,6	45,6
1,1111	0,1	23,2	9,87	36,5
1,0526	0,05	15,1	0,0386	30,2
1,0204	0,02	6,97	-10,2	24,1
1,0101	0,01	1,98	-16,5	20,5
1,005	0,005	-2,3	-22	17,4
1,001	0,001	-10,4	-32,5	11,7
1,0005	0,0005	-13,3	-36,3	9,67
1,0001	0,0001	-19,2	-44	5,59

❖ Analyse graphique des pluies maximales journalières avec HYFRAN

❖ Analyse graphique des pluies maximales journalières avec EXCELL

3. Calcul des crues

❖ Calcul du débit décennal par la méthode ORSTOM

Paramètres	Formules	Résultats		
Coefficient d'abattement A	$1 - \left[\frac{(161 - 0.042 * \bar{P}_{an})}{1000} * logS \right]$	0,63		
Hauteur de pluie journalière décennale P10 (mm)		117,49		
Hauteur de pluie moyenne journalière décennale Pm10 (mm)	$P_{10}*A$	73,77		
Coefficient de ruissèlement Kr 70 pour P= 70 mm pour Igcor= 3m/km	$\frac{a}{(S+b)} + c$	10,75%		
Coefficient de ruissèlement Kr 70 pour P= 70 mm pour Igcor= 7 m/km	$\frac{a}{(S+b)} + c$	14,87%		
Coefficient de ruissèlement Kr 70 pour P= 70 mm	Interpolation entre Igcor= 3 et 7 m/km	12,65%		
Coefficient de ruissèlement Kr100 pour P= 100 mm pour Igcor= 3 m/km	$\frac{a}{(S+b)}+c$	12,38%		
Coefficient de ruissèlement Kr100 pour P= 100 mm pour Igcor= 7 m/km	$\frac{a}{(S+b)}+c$	15,46%		
Coefficient de ruissèlement Kr100 pour P= 100 mm	Interpolation entre Igcor= 3 et 7 m/km	13,80%		
Coefficient de ruissèlement de la crue décennale Kr10	Interpolation entre Kr70 et Kr100	14,47%		
Temps de base décennale Tb10 (mn) pour Igcor= 3 m/km	$250 * S^{0,35} + 300$	2691,24		
Temps de base décennale Tb10 (mn) pour Igcor= 7 m/km	$126 * S^{0,35} + 100$	1305,19		
Temps de base décennale Tb10 (mn)	Interpolation entre Ig =3 et Ig=7	2052,64		
Temps de montée décennale Tm10 (mn) pour Igcor=3 m/km	$100 * S^{0,35} + 75$	1031,50		
Temps de montée décennale Tm10 (mn) pour Igcor=7 m/km	32 * S ^{0,35} +23	329,08		
Temps de montée décennale Tm10 (mn)	Interpolation entre Ig =3 et Ig=7	707,87		

Paramètres	Formules	Résultats
Coefficient de pointe de la crue décennale a10		2,60
lame d'eau ruisselé décennale Lr10 (mm)	$P_{m10} * K_{r10}$	10,67
Volume d'eau ruisselé décennale Vr10 (m3)	$L_{r10} * S(km2) * 10^3$	6765769,26
Débit moyen ruisselé Qmr10 (m3/s)	$V_{r10}/_{T_{b10}}$	54,94
Débit maximum ruisselé Qr10 (m3/s)	$lpha_{10}*Q_{mr10}$	137,34
Coefficient de majoration (m)	infiltrabilité RI	1,05
Débit de pointe Q10 (m3/s)	$Q_{r10}*m$	144,21

❖ Calcul du débit décennal par la méthode CEIH

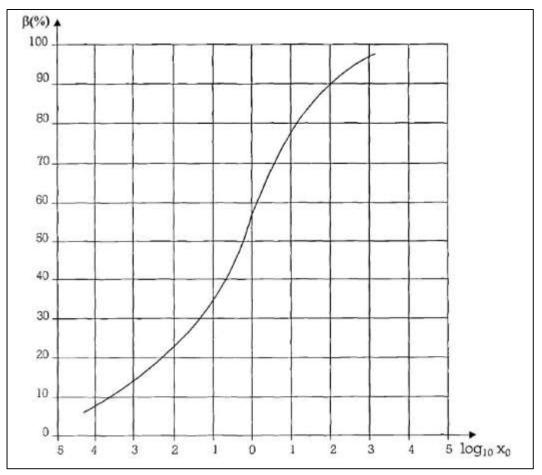
Débit de pointe d	134,37					
Débit Q1 (m3/s)	<u>.</u>	<u>.</u>	<u> </u>	•	•	184,33
Valeurs	0,56	0,619	0,279		0,51	
Paramètres	a	S	i	p	k	d
Classification pa	r rapport à la pos	ition géogra _l	phique (équa	ation	27)	
Débit Q1 (m3/s)	•	·	·	•		79,65
Valeurs	0,254	0,462	0,101		0,976	
Paramètres	a	S	i	p	k	d
Classification pa	r rapport au pays	(équation 40	0)			
Débit Q1 (m3/s)	·	•				139,13
Valeurs	0,0833	0,696	0,953		0,534	
Paramètres	a	S	i	p	k	d
Classification pa	r rapport à la plu	ie annuelle (équation 10))		

Les paramètres de l'hydrogramme de crue

Tb10	Tm10	α	Q/Qmax	Qmax	Q	2Tm10	
2052,64	707,87	2,3	0,58	346,09	200,61	1415,74	

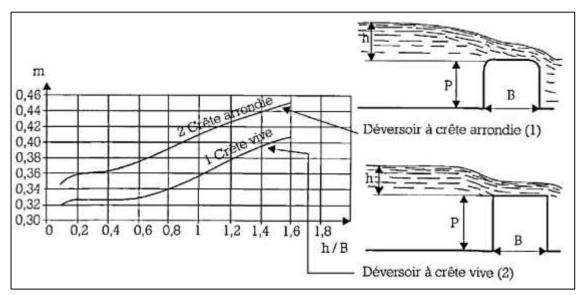
Paramètres de la courbe							
Temps (min)	Débit (m3/s)						
0	0						
707,87	346,09						
1005,44	200,61						
2052,64	0						

a	-0,49
b	692,29


❖ Coefficients de calculs du débit par la méthode CIEH

	Description	Correlation		Constante		Exposants	des paramètres de l'équ	ation 4.1	a altitude	
- 4	I	n	H	*	0	8	lo	Pan PM10	Kr10	Dd
	DECOUPAGE CLI	MATIQUE SAN	S KR10							
	avec S et lg	me) i racon aca	en inche							
	0-400 mm	71	0.760	0.874	2.63	0.624	0.491			
	400-800 mm	128	0.570	0.755	2.03	0.590	0.588			
		87								
- 2	1200-1600 mm	0.7	0.579	0.761	1.33	0.596	0.457			
13	avec S, Ig et Dd	0.56	0/8800	(0715)2120	1021027	2000	7-21000311			2005
	0-400 mm	33	0.629	0.793	2.43	0.583	0.506			0.32
5	400-800 mm	69	0.598	0.773	1.83	0.620	0.618			0.12
5	800-1200 mm	87	0.591	0.769	2.01	0.649	0.066			0.82
	DECOUPAGE CL	MATIQUE AVE	C KR10							
	avec S et Kr10		SERVING.							
7	0-400 mm	66	0.758	0.870	0.553	0.655			0.802	
	400-800 mm	116	0.736	0.858	0.461	0.540			0.941	
	avec S, Ig et Kr10		0.133	0.000	0.401	0.040			0,341	
					0.407	0.745	0.731		0.475	
	0-400 mm	65	0.847	0.920	0.167				0.475	
19	400-800 mm	116	0.806	0.898	0.0833	0.696	0.953		0.534	
	DECOUPAGE PO	UR LA ZONE P	an < 1000	mm						
	Tous les bassins									
11	S, Kr10	180	0.716	0.846	0.410	0.524			0.982	
12	S, Ig, Kr10	176	0.795	0.892	0.095	0.643	0.406		1.038	
1-1-	Longitude < 10° O				Asuritanie)	0.5000	-		100000	
13	S.lq	21	0.569	0.754	1.78	0.567	0.805			
	S. lg. PM10	21	0.581	0.762	55.0	0.462	0.667	-0.652		
	S. lg. Kr10	20	0.722	0.850	0.224	0.540	0.622	4.002	0.767	
	S. Kr10	20	0.645	0.803	0.661	0.375	0.042		0.910	
10	Longitude compris				0.001	v.ard	_		0.910	
144									0.000	
	S, Kr10, PM10	117	0.764	0.874	30.2	0.492	V20050	-0.972	0.948	
18	S, Ig, Kr10	117	0.768	0.868	0.0678	0.661	0.412	100000	1.105	
	Longitude supérier									
	S, PM10	46	0.646	0.804	0.00372	0.605		1.778		
20	S, lg	45	0.645	0.803	2.72	0.626	0.360			
	S. fg. PM10	45	0.679	0.824	0.00638	0.694	0.305	1.411		
	S, Kr10	39	0.77	0.877	0.610	0.523		757NN	0.908	
	S, lg, Kr10	39	0.821	0.906	0.134	0.678	0.374		0.940	
	S. PM10, Kr10	39	0.805	0.897	0.00243	0.608	2014	1 263	0.882	
	DECOUPAGE PA					0.000		1,493	0.002	
				CHATS						
	Afrique de l'Ouest			400	797997	2000			100000	
	S,KR10	295	0.628	0.792	1.41	0.542		773300	0.511	
	S,Kr10,PM10	295	0.654	0.809	146	0.479		-0.969	0.457	
27	S,Kr10,lg	268	0.650	0.806	0.560	0.619	0.279		0.510	
Print.	Afrique centrale	The same	Animators.	esperate 1	11500000	W. Constitution			10127486	
28	S,KR10	50	0.738	0.859	0.521	0.625			0.876	
					100000000000000000000000000000000000000			2 454		
29	S,Kr10,IG,PM10	49	0.815	0.903	893	0.773	0.567	-2.051	0.923	
							0.567	-2.051	0.923	
	S,Kr10.lg	49 49	0.815 0.778	0.882	0.109	0.773		-2.051	0.00	
30	S,Kr10.lg Sénégal + Maurita	49 49	0.778	0.882	0.109	0.771		A-55-1	0.923	
30	S,Kr10,lg Sénégal + Maurita S, PM10	49 49 inie 40	0.778	0.882	0.109 5450000	0.771		-2.630	0 923 0.887	_
30 31 32	S,Kr10,lg Sénégal + Maurita S, PM10 S Kr10	49 49 mie 40 35	0.778 0.563 0.843	0.882 0.750 0.918	0.109 5450000 0.288	0.771 0.215 0.405	0.419	A-55-1	0.923 0.887	
30 31 32	S,Kr10,ig Sénégal + Maurita S, PM10 S Kr10 S Kr10 ig	49 49 inie 40	0.778	0.882	0.109 5450000	0.771		A-55-1	0 923 0.887	
31 32 33	S,Kr10,lg Sénégal + Maurita S, PM10 S Kr10 S Kr10 lg Côte d'Ivoire	49 49 nie 40 35 35	0.778 0.563 0.843 0.851	0.882 0.750 0.918 0.922	0.109 5450000 0.268 0.195	0.771 0.215 0.405 0.471	0.419	A-55-1	0.923 0.887	
30 31 32 33	S,Kr10,lg Sénégal + Maurita S, PM10 S Kr10 S Kr10 lg Côte d'Ivoire S	49 49 49 35 35 37	0.778 0.563 0.843 0.851	0.882 0.750 0.918 0.922 0.844	0.109 5450000 0.288 0.195 4.83	0.771 0.215 0.405 0.471 0.562	0.419	A-55-1	0.923 0.887	
31 32 33 34 35	S,Kr10.lg Sénégal + Maurita S, PM10 S Kr10 S Kr10 lg Côte d'Ivoire S S lg	49 49 40 35 35 35 37 34	0.778 0.563 0.843 0.851 0.713 0.729	0.882 0.750 0.918 0.922 0.844 0.854	0.109 5450000 0.268 0.195 4.83 2.29	0.771 0.215 0.405 0.471 0.562 0.651	0.419	-2.630	0.923 0.887	
31 32 33 34 35 36	S,Kr10.lg Sénégal + Maurita S, PM10 S Kr10 lg Côte d'Ivoire S S lg S, PM10	49 49 49 35 35 37	0.778 0.563 0.843 0.851	0.882 0.750 0.918 0.922 0.844	0.109 5450000 0.288 0.195 4.83	0.771 0.215 0.405 0.471 0.562	0.419	A-55-1	0.923 0.887 1.117 1.045	
31 32 33 34 35 36	S,Kr10.lg Sénégal + Maurita S, PM10 S Kr10 S Kr10 lg Côte d'Ivoire S S lg	49 49 40 35 35 35 37 34	0.778 0.563 0.843 0.851 0.713 0.729	0.882 0.750 0.918 0.922 0.844 0.854	0.109 5450000 0.268 0.195 4.83 2.29	0.771 0.215 0.405 0.471 0.562 0.651	0.419	-2.630	0.923 0.887 1.117 1.046	
31 32 33 34 35 36 37	S,Kr10.lg Sénégal + Maurita S, PM10 S Kr10 lg Côte d'Ivoire S S lg S, PM10	49 49 40 35 35 37 34 36	0.778 0.563 0.843 0.851 0.713 0.729 0.706	0.882 0.750 0.918 0.922 0.844 0.854 0.840	0.109 5450000 0.268 0.195 4.83 2.29 0.000174	0.771 0.215 0.405 0.471 0.562 0.651 0.645	0.419	-2.630	0.923 0.887 1.117 1.045	
31 32 33 34 35 36 37	S.Kr10.lg Sénégal + Maurita S. PM10 S. PM10 S.Kr10 lg Côte d'Ivoire S S lg S. PM10 S. Kr10 S. Kr10 S. Kr10	49 49 40 35 35 35 37 34 36 31	0.778 0.563 0.843 0.851 0.713 0.729 0.706 0.791	0.882 0.750 0.918 0.922 0.844 0.854 0.840 0.889	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.380	0.771 0.215 0.405 0.471 0.562 0.651 0.645 0.586	0.419	-2.630	0.923 0.887 1.117 1.046	
30 31 32 33 34 35 36 37 38	S.Kr10.lg Senegal + Maurita S. PM10 S. Kr10 lg Côte d'Ivoire S. Ig S. PM10 S. Kr10 lg Burkina Faso	49 49 35 35 35 37 34 36 31 28	0.778 0.563 0.843 0.851 0.713 0.729 0.706 0.791 0.787	0.882 0.750 0.918 0.922 0.844 0.854 0.840 0.889 0.887	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.360 0.275	0.771 0.215 0.405 0.471 0.562 0.651 0.645 0.586 0.618	0.419	-2.630	0.923 0.887 1.117 1.045 0.805 0.798	
30 31 32 33 34 35 36 37 38	S,Kr10.lg Sénégal + Maurita S, PM10 S Kr10 lg Côte d'Ivoire S S lg S, PM10 S Kr10 lg Burkina Faso S Kr10 lg	49 49 35 35 35 37 34 36 31 28	0.778 0.563 0.843 0.851 0.713 0.729 0.706 0.791 0.787	0.882 0.750 0.918 0.922 0.844 0.854 0.840 0.889 0.887	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.360 0.275	0.775 0.215 0.405 0.471 0.562 0.651 0.645 0.586 0.618	0.419	-2.630	0.923 0.887 1.117 1.046 0.805 0.798	
30 31 32 33 34 35 36 37 38	S.Kr10.lg Sénégal + Maurita S. PM10 S.Kr10 lg Côte d'Ivoire S S lg S. PM10 S.Kr10 lg Burkina Faso S.Kr10 S.Kr10 lg	49 49 40 35 35 35 36 31 28	0.778 0.563 0.843 0.851 0.713 0.729 0.706 0.791 0.787	0.882 0.750 0.918 0.922 0.844 0.854 0.840 0.889 0.887	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.360 0.275	0.771 0.215 0.405 0.471 0.562 0.651 0.645 0.586 0.618	0.419	-2.630	0.923 0.887 1.117 1.045 0.805 0.798	
30 31 32 33 34 35 36 37 38 39 40	S.Kr10.lg Sénégal + Maurita S.PM10 S.Kr10 S.Kr10 lg Côte d'Ivoire S S lg S.PM10 S.Kr10 S.Kr10 S.Kr10 lg Burkina Faso S.Kr10 lg Burkina Faso + M.	49 49 35 35 35 37 34 36 31 28 61 60 ali + Niger	0.778 0.563 0.843 0.851 0.713 0.729 0.705 0.791 0.787 0.818 0.824	0.882 0.750 0.918 0.922 0.844 0.854 0.840 0.889 0.887	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.380 0.275 0.410 0.254	0.771 0.215 0.405 0.471 0.562 0.651 0.645 0.645 0.618	0.419	-2.630	0.923 0.887 1.117 1.045 0.805 0.798 0.923 0.976	
30 31 32 33 34 35 36 37 38 39 40	S.Kr10.lg S6n6gal + Maurita S. PM10 S. Kr10 S. Kr10 lg Côte d'Ivoire S. lg S. PM10 S. Kr10 lg Burkina Faso S. Kr10 S. Kr10 lg	49 49 40 35 35 35 36 31 28 61 60 all + Niger	0.778 0.563 0.843 0.851 0.713 0.729 0.709 0.709 0.709 0.787 0.818 0.824	0.882 0.750 0.918 0.922 0.844 0.854 0.840 0.869 0.867	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.360 0.275 0.410 0.254	0.771 0.215 0.405 0.471 0.562 0.651 0.645 0.586 0.618 0.425 0.462	0.419 0.239 0.216 0.099 0.101	-2.630	0.923 0.887 1.117 1.045 0.805 0.798 0.923 0.976	
30 31 32 33 34 35 36 37 38 39 40 41 42	S,Kr10.lg S6n6gal + Maurita S, PM10 S,Kr10 lg Côte d'Ivoire S Stg S, PM10 S,Kr10 lg S,Kr10 lg Burkina Faso S,Kr10 lg Burkina Faso + M: S,Kr10 lg	49 49 40 35 35 35 37 34 36 31 28 61 60 all + Niger 137 133	0.778 0.563 0.843 0.851 0.713 0.729 0.706 0.791 0.787 0.618 0.824	0.882 0.750 0.918 0.922 0.844 0.854 0.849 0.887 0.904 0.908	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.360 0.275 0.410 0.254 0.407 0.0912	0.771 0.215 0.405 0.471 0.562 0.645 0.586 0.618 0.425 0.462 0.532 0.643	0.419	-2 830 2 149	0.923 0.887 1.117 1.045 0.805 0.798 0.923 0.976	
30 31 32 33 34 35 36 37 38 39 40 41 42 43	S.Kr10.lg Sénégal + Maurita S. PM10 S.Kr10 lg Côte d'Ivoire S S lg S. PM10 S.Kr10 lg S.Kr10 lg Burkina Faso S.Kr10 lg Burkina Faso + M: S.Kr10 lg Burkina Faso + M: S.Kr10 lg	49 49 40 35 35 36 31 28 61 60 all + Niger 137 133 133	0.778 0.563 0.843 0.851 0.713 0.729 0.708 0.791 0.787 0.618 0.824	0.882 0.750 0.918 0.922 0.844 0.854 0.840 0.889 0.887 0.904 0.908	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.380 0.275 0.410 0.254 0.407 0.0912 35600	0.771 0.215 0.405 0.471 0.562 0.651 0.645 0.586 0.618 0.426 0.462 0.532 0.643 0.342	0.419 0.239 0.216 0.099 0.101	-2 630 2 149 -1 808	0.923 0.887 1.117 1.045 0.805 0.798 0.923 0.976 0.941 1.019	
30 31 32 33 34 35 36 37 38 39 40 41 42 43	S,Kr10.lg S6n6gal + Maurita S, PM10 S,Kr10 lg Côte d'Ivoire S Stg S, PM10 S,Kr10 lg S,Kr10 lg Burkina Faso S,Kr10 lg Burkina Faso + M: S,Kr10 lg	49 49 49 35 35 35 37 34 36 31 28 61 60 ali + Niger 137 133 133	0.778 0.563 0.843 0.851 0.713 0.729 0.706 0.791 0.787 0.818 0.824 0.686 0.755 0.589 0.757	0.882 0.750 0.918 0.922 0.844 0.840 0.869 0.867 0.908	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.380 0.275 0.410 0.254 0.407 0.0912 35600 203	0.771 0.215 0.405 0.471 0.562 0.645 0.586 0.618 0.426 0.462 0.532 0.643 0.342 0.459	0.419 0.239 0.216 0.098 0.101	-2.830 2.149 -1.808 -1.301	0.923 0.887 1.117 1.045 0.805 0.798 0.923 0.976	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	S.Kr10.lg Sénégal + Maurita S. PM10 S.Kr10 lg Côte d'Ivoire S S lg S. PM10 S.Kr10 lg S.Kr10 lg Burkina Faso S.Kr10 lg Burkina Faso + M: S.Kr10 lg Burkina Faso + M: S.Kr10 lg	49 49 40 35 35 36 31 28 61 60 all + Niger 137 133 133	0.778 0.563 0.843 0.851 0.713 0.729 0.708 0.791 0.787 0.618 0.824	0.882 0.750 0.918 0.922 0.844 0.854 0.840 0.889 0.887 0.904 0.908	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.380 0.275 0.410 0.254 0.407 0.0912 35600	0.771 0.215 0.405 0.471 0.562 0.651 0.645 0.586 0.618 0.426 0.462 0.532 0.643 0.342	0.419 0.239 0.216 0.099 0.101	-2 630 2 149 -1 808	0.923 0.887 1.117 1.045 0.805 0.798 0.923 0.976 0.941 1.019	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	S.Kr10.lg Sönögal + Maurita S. PM10 S. Kr10 S. Kr10 lg Côte d'Ivoire S. Sig S. PM10 S.Kr10 lg S. Kr10 lg Burkina Faso S.Kr10 lg Burkina Faso + M: S.Kr10 lg	49 49 49 35 35 35 36 31 28 61 60 ali + Niger 137 133 133 133	0.778 0.563 0.843 0.851 0.713 0.729 0.705 0.791 0.787 0.618 0.824 0.698 0.795 0.599 0.592	0.882 0.750 0.918 0.922 0.844 0.840 0.869 0.867 0.908	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.380 0.275 0.410 0.254 0.407 0.0912 35600 203	0.771 0.215 0.405 0.471 0.562 0.645 0.586 0.618 0.426 0.462 0.532 0.643 0.342 0.459	0.419 0.239 0.216 0.098 0.101	-2.830 2.149 -1.808 -1.301	0.923 0.887 1.117 1.045 0.805 0.798 0.923 0.976 0.941 1.019	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	S,Kr10.lg S6n6gal + Maurita S, PM10 S,Kr10 lg Côte d'Ivoire S S, PM10 S,Kr10 lg S, PM10 S,Kr10 lg Burkina Faso S,Kr10 lg Burkina Faso S,Kr10 lg S,Kr10 PM10 S,Kr10 PM10 S,Kr10 PM10	49 49 49 35 35 35 36 31 28 61 60 ali + Niger 137 133 133 133	0.778 0.563 0.843 0.851 0.713 0.729 0.706 0.791 0.787 0.618 0.824 0.668 0.755 0.589 0.757 0.592 000 mm)	0.882 0.750 0.918 0.922 0.844 0.840 0.869 0.867 0.908	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.380 0.275 0.410 0.254 0.407 0.0912 35600 203	0.771 0.215 0.405 0.471 0.562 0.645 0.586 0.618 0.426 0.462 0.532 0.643 0.342 0.459	0.419 0.239 0.216 0.098 0.101	-2.830 2.149 -1.808 -1.301	0.923 0.887 1.117 1.045 0.805 0.798 0.923 0.976 0.941 1.019	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	S,Kr10.lg S6n6gal + Maurita S, PM10 S,Kr10 lg Côte d'Ivoire S Stg S, PM10 S,Kr10 lg S,Kr10 lg Burkina Faso S,Kr10 lg Burkina Faso + M S,Kr10 lg S,	49 49 35 35 35 37 34 36 31 28 61 60 ali + Niger 137 133 133 133 133	0.778 0.563 0.843 0.851 0.713 0.729 0.705 0.791 0.787 0.618 0.824 0.698 0.795 0.599 0.592	0.882 0.750 0.918 0.922 0.844 0.869 0.867 0.908 0.669 0.767 0.769	0.109 5450000 0.268 0.195 4.83 2.29 0.000174 0.360 0.275 0.410 0.254 0.407 0.0912 35600 203 22400	0.771 0.215 0.405 0.471 0.562 0.645 0.586 0.618 0.425 0.462 0.532 0.643 0.342 0.459 0.363	0.419 0.239 0.216 0.098 0.101 0.399 0.059	-2.830 2.149 -1.808 -1.301	0.923 0.887 1.117 1.045 0.805 0.798 0.923 0.976 0.941 1.019	

Source: Crues et apports (FAO 54)


4. Laminage de la crue

* Abaque de lecture de la valeur β pour le laminage

Source : Technique des petits barrages en Afrique sahélienne et équatoriale

Coefficients de débit d'évacuateur de crue

Source : Technique des petits barrages en Afrique sahélienne et équatoriale

Calcul du laminage

L(m)	S(m2)	m	tm(s)	Qcmax(m3/s)	g(m/s2)	X0	log10 X0	Beta	Qemax
311,99	1656532,92	0,35	42472,12	346,09	9,81	682,33	1,89	95%	294,18
265,19	1656532,92	0,35	42472,12	346,09	9,81	492,98	1,68	94,0%	290,72
262,07	1656532,92	0,35	42472,12	346,09	9,81	481,45	1,58	93,0%	287,26
258,95	1656532,92	0,35	42472,12	346,09	9,81	470,06	1,53	92,0%	283,80
255,83	1656532,92	0,35	42472,12	346,09	9,81	458,80	1,50	91,0%	280,34
252,71	1656532,92	0,35	42472,12	346,09	9,81	447,68	1,56	90,5%	278,61
251,15	1656532,92	0,35	42472,12	346,09	9,81	442,17	1,56	90,4%	278,26

* Résultat du laminage

h(m)	L(m)	S(m2)	m	tm(s)	Qcmax(m3/s)	g(m/s2)	X0	log10 X0	В	Qemax
0,80	250,00	1656532,92	0,35	42472,1234	346,09	9,81	438,12	2,64	90%	278,26

L(m)	m	Qe(m3/s)	g(m/s2)	h
250	0,35	278,26	9,81	0,80

ANNEXES 1.2. Etudes de la retenue

1. Calcul des besoins en eau

***** Besoins en eau des cultures

Mois		Décembre		Janvier	Fév	Février		rs	Avril
Nombre d	le jr du mois	31		31	2	8	31		30
ETP journ	nalier (mm/j)	5,22		5,77	6,3	38	7,12		7,38
ETP mens	suel (mm)	161,82	2	178,87	178	,64	220,72		221,4
P (mm)		0,888571	429	0,8	()	0,690625		3,967741935
Pe (mm)		0		0	()	0		0
Assoleme	nt et / ou rotation de spécula	ntion							
Tomate	nombre de jrs	30		31	3	31		5	25
	Kc	0,6		1,15	1,	1,15		0,8	0,8
	ETP période (mm/j)	5,22		5,77	6,3	38	7,12	7,12	7,38
	ETP période (mm)	156,6	j	178,87	197	,78	163,76	35,6	184,5
	ETM période (mm)	93,96)	205,7005	227,	447	188,324	28,48	147,6
	ETM mensuelle (mm)	93,96)	205,7005	227,	447	216,8	304	147,6
Oignons	nombre de jrs	20	10	31	19	12	3		
	Kc	0,7	1,05	1,05	1,05	0,95	0,95		
	ETP période (mm/j)	5,22	5,22	5,77	6,38	6,38	7,12		

	Mois	Décemb	ore	Jan	vier	Févi	rier	Mars	3	Avril
	ETP période (mm)	104,4	52,2	178	8,87	121,22	76,56	21,36		
	ETM période (mm)	73,08	54,81	187,	8135	127,281	72,732	20,292		
	ETM mensuelle (mm)	127,89)	187,	8135	200,013		20,29	2	
Riz	nombre de jrs	30		20	11	31	1	28		30
	Kc	1,2		1,1	1,2	1,	2	1,2		1,05
	ETP périodes (mm/j)	5,22 156,6		5,77	5,77	6,3	38	7,12		7,38
	ETP périodes (mm)			115,4	63,47	197,78		199,36		221,4
	ETM périodes (mm)	187,92	2	126,94	76,164	237,336 237,336		239,23	32	232,47
	ETM mensuelle (mm)	187,92	2	203	,104			239,232		232,47
Calculs	des besoins en eau									
ETM me	ens retenue (mm)	187,92	2	205,	7005	237,	336	239,23	32	232,47
Besoins	net (m3/ha)	187,92	2	205,	7005	237,	336	239,23	32	232,47
Efficience	ce du réseau	0,65		0,	,65	0,6	55	0,65		0,65
Besoins	brutes (m3/ha)	2 891,0)8	3 16	54,62	3 651	1,32	3 680,4	19	3 576,46
Besoins	brutes (m3)	43366,	15	47469,35		54769,85		55207,	38	53646,92
besoin to	otal par campagne									254 459,65

***** Besoins en eau pastorales

Nombre total de bêtes en transhumances	6000
Nombre de Bovins	8900
Nombre de Caprins	13255
Nombre d'ovins	7490,5
Nombre de porcins	357,5
Consommation journalière d'un bovin (l/j)	30
Consommation journalière d'un caprin (l/j)	3,5
Consommation journalière d'un ovin (1/j)	13
Consommation journalière d'un porcin (l/j)	12
Consommation totale journalière (l/j)	415059
Consommation totale journalière (m3/j)	415,059
Consommation totale mensuelle (m3)	12451,77
Consommation totale par campagne (m3)	62 258,85

& Besoins humains

Population en 2006 (habitants)	2816
taux d'accroissement de la population	2,7%
population à l'horizon du projet (habitants)	6967
allocation par jours à la population (l/j)	15
besoins journaliers à l'horizon du projet (m3/j)	104,50

***** Besoins en eau de divers animaux

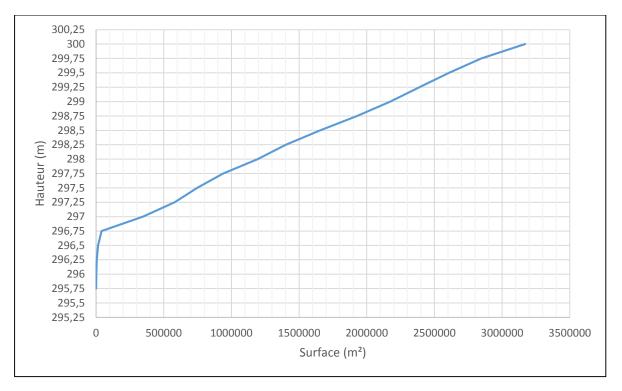
TYPE D'ANIMAL	SITUATION	Consommation (en litres)	Fréquence d'abreuvement
BOVINS	- en ranching	25	1 ou 2 fois / jour
(zėbus ou taurins)	 élevage extensif (conditions normales) 	30 - 40	1 ou 2 fois / jour
20	- avec påturage nocturne	15 - 20	1 ou 2 fois / jour
	 en période de sécheresse 	50 - 60	1 fots tous les 2 jours
PETTTS	- conditions normales	3,5 - 4	
RUMINANTS	(saison sèche)		1 fois / jour
	- en ranching	5	
	- en lactation	5 - 5,5	
CHEVAUX		20 - 30	1 ou 2 fois / jour
ANES		10 - 13	1 fois/jour
PORCS	- jeunes	4	1 ou 2 fois / jour
	- en lactation	18	1677
CHAMEAUX		60 - 80	1 fois tous les 4 à 5 jours
	 après une longue déprivation 	100	ingestion en 15 minutes

Source : Technique des petits barrages en Afrique sahélienne et équatoriale

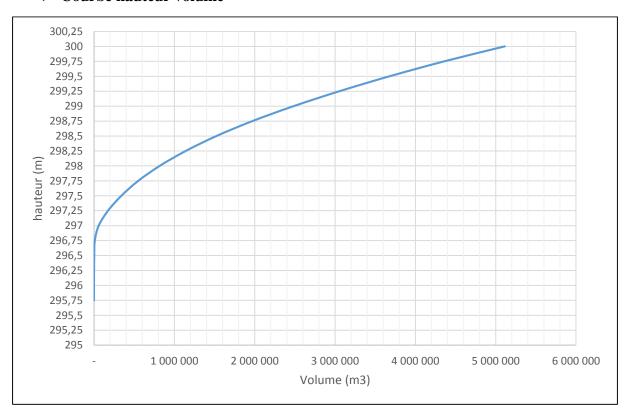
2. Calculs des pertes

Mois	Décembre	Janvier	Février	Mars	Avril	Mai	
Durée (jrs)	31	31	28	31	30	31	
Evaporation bac Ebac (mm/mois)	238	256	275	333	327	317	
Evaporation bac Ebac (mm/jours)	7,68	9,14	8,87	11,10	10,90	10,23	
Evaporation Lac Elac (mm/jours)	5,68	6,30	6,19	7,09	7,01	6,75	
Evaporation mensuelle	176,00	195,44	173,36	219,68	210,28	209,10	
Infiltration journalière (mm/j)	1	1	1	1	1	1	
Infiltration mensuelle (mm/mois)	31	31	28	31	30	31	
Pertes en eau (mm)	207,00	226,44	201,36	250,68	240,28	240,10	
Pertes totale (mm)	Pertes totale (mm)						

3. Evaluation des dépôts solides


Paramètres	Surface (km²)	Pluie annuelle	Dégradation Spécifique	Apports solides annuel
Symbole	S	P_{an}	$D = 137 * \left(\frac{P_{an}}{700}\right)^{-2.2} * S^{-0.05} * [0.25 + 1.13 * (h+r)]^{1.15}$	V = D * S
Résultats	633,8	670,99	157,73	99 971,03

4. Calcul des apports liquides


Périodes de retour	lame d'eau (mm)	Ke (%)	Pluie (mm)	Surface (km²)	Apport liquides (m3)
Symbole	Le	Ke = Le/P	P	S	V = Ke * P * S * 1000
Année décennale humide	60	7,01%	856,06	633,8	38 028 000
Année moyenne	30	4,47%	670,99	633,8	19 014 000
Année décennale sèche	10	2,06%	485,92	633,8	6 338 000
Année Cinquantennale sèche	4,6	1,23%	374,40	633,8	2 915 480
Année centennale sèche	3,3	0,98%	335,04	633,8	2 091 540

5. Evaluation du volume de la retenue

❖ Courbe hauteur surface

***** Courbe hauteur volume

6. Simulation de la retenue

Périodes	Début o	Début de campagne		Pertes (évaporation, infiltration)			Besoins en eau			pagne
Mois	Niveau (mm)	Volume (m ³)	Hauteur d'eau évaporée (mm)	Hauteur d'eau infiltrée (mm)	Volume correspondant (m³)	Volume prélevé (humains) (m³)	Volume consommé (irrigation)	Volume consommé (animaux) (m³)	Volume (m ³)	Niveau (mm)
Décembre	298,50	1 524 635,91	176,00	31	1 208 159,96	3239,52	43 366,15	12866,829	1 148 687,46	298,25
Janvier	298,25	1 148 687,46	195,44	31	854 934,45	3239,52	47469,35	12866,829	791 358,76	297,97
Février	297,97	791 358,76	173,36	28	576 785,28	2926,01	54769,85	11621,652	507 467,77	297,70
Mars	297,70	507 467,77	219,68	31	305 616,20	3239,52	55207,38	12866,829	234 302,47	297,34
Avril	297,34	234 302,47	210,28	30	104 867,03	3135,01	53646,92	12451,77	35 633,32	296,88
Mai	296,88	35 633,32	209,10	31	7 406,58	3 239,52	-	3 239,52	927,54	296,81
									Dépôts solide (mm)	0,07
									Cote finale	296,75

ANNEXES 1.3. Calculs de la digue du barrage

1. Caractéristiques géométriques

A Calcul de la revanche

Paramètre	Accélération de la pesanteur (m/s²)	Fetch (km)	Hauteur des vagues (m)	Vitesse des vagues (m/s)	Revanche (m)
Symbole	g	f	$h_v = \frac{1}{2} + \frac{1}{3} * \sqrt{f}$	$V = \frac{3}{2} + \frac{2}{3} * h_v$	$R = 0.75 * h_v + \frac{V^2}{2g}$
Résultat	9,81	3,30	1,12	2,25	0,78

❖ Hauteur de la digue

Paramètre	Revanche libre (m)	Charge au- dessus du déversoir (m)	Hauteur plan d'eau normal (m)	Hauteur de la digue (m)
Symbole	R	h	H_{PEN}	$H_{digue} = H_{PEN} + h + R$
Résultat	0,8	0,8	2,8	4,50

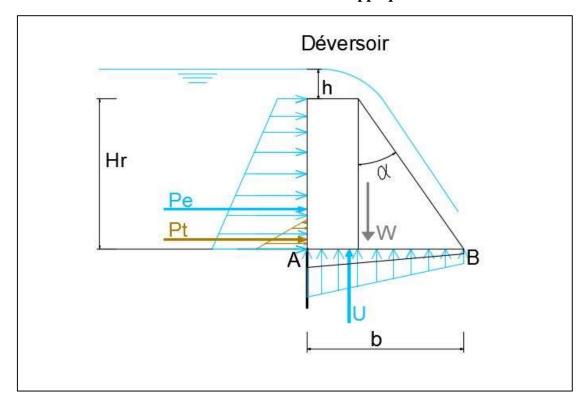
❖ Calcul de la largeur en crête

Hauteur de la digue (m)	Largeur en crête (m) PREECE	largeur en crête (m) KNAPPEN	Largeur en crête choisie (m)	largeur au fond
H_{digue}	$1,65 * \sqrt{H_{digue}}$	$1,1*\sqrt{H_{digue}}+1$	L_c	L_f
4,80	3,50	3,33	3,5	21,44

2. Stabilité des pentes

***** Fruits indicatifs des talus des barrages

Hauteur du barrage	Type du barrage en terre	Fruit des talus		
		Amont	Aval	
Inférieure à 5 m	- Homogène ou à zones	2	2	
5 à 10 m	 Homogènes, granulométrie étendue Homogène, à fort pourcentage d'argile A noyau et recharges grossières 	2,5 2,75 2,25	2,25 2,25 2	
10 å15 m	 Homogène, granulométrie étendue Homogène, à fort pourcentage d'argile A noyau et recharges grossières 	2,75 3 2,5	2 2,5 2,25	


Source : Technique des petits barrages en Afrique sahélienne et équatoriale

ANNEXES 1.4. Calculs du déversoir

\$ Les hypothèses de calculs

Poids volumique du béton cyclopéen (Mpa)	24
Résistance du béton à 28 jrs fc28 (kN/m3)	20
Poids volumique de l'eau (kN/m3)	10
Poids volumique des terres (kN/m3)	18
tan φ	0,33
Hauteur des sédiments hsed (m)	1

* Le Bilan des forces appliquées au déversoir

* Calcul de l'angle α vérifiant la condition de stabilité au glissement

Calcul de l'angle α pour le glissement	$lpha_g$
$\frac{W - U}{Pt + Pe} * \tan \varphi \ge 1.2 \iff \tan \alpha \ge \frac{6H_r^2 - 1.55H_r - 2.286}{4.55H_r^2 + 5.85H_r} \iff \alpha \ge \tan^{-1} \left(\frac{6H_r^2 - 1.55H_r - 2.286}{4.55H_r^2 + 5.85H_r} \right)$	41,7433585

* Calcul de l'angle α vérifiant la condition de stabilité au renversement

Calcul de l'angle α pour le renversement	tanα	α_r
$\frac{M_{/B}(W-U)}{M_{/B}(Pt+Pe)} \ge 1.5 \leftrightarrow \left(\frac{8}{3}H_r^3 + \frac{11}{2}H_r^2\right) * (\tan\alpha)^2 + \left(-\frac{20}{3}H_r^2 + 11H_r\right) * \tan\alpha + \frac{11}{2} - 1.485 + \frac{62}{3}H_r - \frac{27}{4}H_r^2 - \frac{5}{2}H_r^3 \ge 0$	0,78590469	38,16

***** Caractéristiques géométriques retenues

Hauteur total du déversoir	Н	3,8
inclinaison aval choisi	α	45
Base b	$1 + Hr * tan\alpha$	4,39

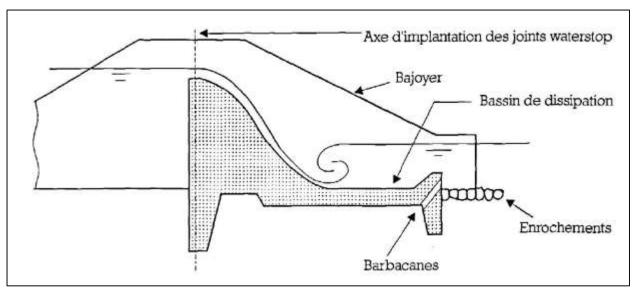
Calcul du facteur de sécurité au glissement

Paramètre	Poids propre (kN/m)	Pressions interstitielles (kN/m)	Poussée des terres (kN/m)	Poussée de l'eau (kN/m)	Facteur de sécurité
Symbole	W	U	Pt	Pe	Fsg
Formule	$24H_r + 22 +$ $(12H_r^2 + 22H_r) * \tan \alpha$	$0.5 * b * (\frac{2}{3} * H_r + 1.2)$	$\frac{1}{2} * \gamma_{sable} * h_{sed} * K_a$	$4,5H_r + 5H_r^2$	$\frac{W-U}{Pt+Pe}*tan\varphi$
Résultat	370,08	8,20	2,97	89,3	1,30

* Calcul du facteur de sécurité au renversement

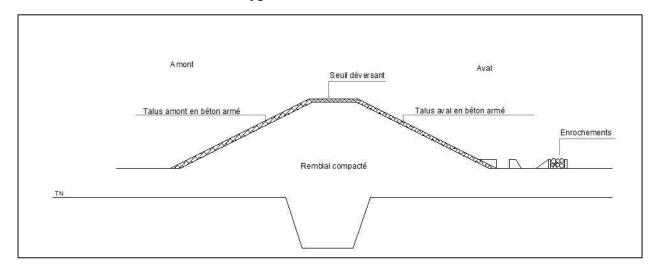
Paramètre	Moment du poids propre/B	Moment des pressions interstitielles / B	Moment de la poussée des terres / B	Moment de la poussée de l'eau / B	Facteur de sécurité
symbole	M/B(W)	M/B(U)	<i>M/B (Pe)</i>	M/B (Pt)	Fsr
Formule	$(6H_r^3 + 10H_r^2) * (\tan \alpha)^2 + (20H_r)$ $* \tan \alpha + 24H_r$ $+ 10$	$\left(\frac{10}{3}H_r^3 + \frac{9}{2}H_r^2\right) * (\tan \alpha)^2 + \left(\frac{20}{3}H_r^2 + 9H_r\right)$ $* \tan \alpha + \frac{10}{3}H_r + \frac{9}{2}$	$\frac{10}{6}H_r^3 + \frac{9}{2}H_r^2$	$\frac{1}{3}*h_{sed}*P_t$	$\frac{M_{/B}(W-U)}{M_{/B}(Pt+Pe)}$
Résultat	650,83	265,56	156,43	0,99	2,45

❖ Vérification de la stabilité vis-à-vis de la fissuration


Paramètre	Abscisse du centre de gravité (m)	Ordonné du centre de gravité	somme des forces stabilisantes	somme des forces renversante s
Symbole	Xgouv	Ygouv	W- U	Pt + Pe
Formule	$\frac{\left(\frac{1}{6}H_r^3 + \frac{1}{3}H_r^2\right)\tan\alpha^2 + \left(\frac{1}{2}H_r^2 + \frac{1}{3}H_r\right)\tan\alpha + \frac{1}{2}H_r + \frac{1}{3}}{\left(\frac{1}{2}H_r^2 + \frac{3}{4}H_r\right)\tan\alpha + H_r + \frac{3}{4}}$	$\frac{\left(\frac{1}{6}H_r^3 + \frac{1}{2}H_r\right)\tan\alpha + \frac{1}{2}H_r^2 + \frac{1}{2}}{\left(\frac{1}{2}H_r^2 + \frac{3}{4}H_r\right)\tan\alpha + H_r + \frac{3}{4}}$	$19H_r + 9 +$ $(9H_r + 7H_r^2) \tan \alpha$	$2,97 + 9H_r + 5H_r^2$
Résultat	1,94	1,47	216,48	109,37

<i>b</i> /6	calcul de l'excentricité	e
$\frac{1}{6}*(1+Hr*tan\alpha)$	$X_{Gouv} + Y_{Gouv} * \left(\frac{Pt + Pe}{W - U}\right) - \frac{b}{2}$	0,49
0,73	conclusion sur la stabilité vis-à-vis de la fissuration	vérifiée

❖ Vérification de la stabilité vis-à-vis de la rupture


Paramètre	Contrainte limite du béton	Contraigne maximale du béton du déversoir	Condition de stabilité
Symbole	$\sigma_{lim,beton}$	σ_{max}	$\sigma_{max} \leq \sigma_{lim, beton}$
Formule	$0,23 * f_{c28}$	$\left(\frac{W-U}{b}\right)*\left(1+\frac{6 e }{b}\right)$	$\left(\frac{W-U}{b}\right) * \left(1 + \frac{6 e }{b}\right) \le 0.23 * f_{c28}$
Résultat	4600	81,18	vérifiée

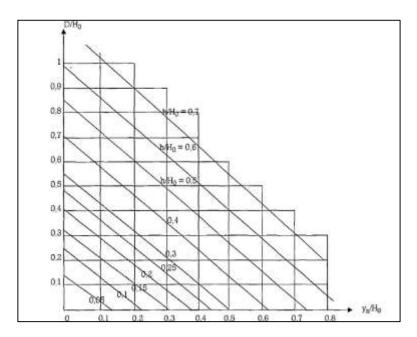
❖ Déversoir à profil Creager

Source : Technique des petits barrages en Afrique sahélienne et équatoriale

***** Déversoir de type radier

ANNEXES 1.5. Les ouvrages annexes

1. Le Bassin de dissipation


❖ Calcul du tirant d'eau à l'aval du bassin

Débit évacué par le déversoir	Longueur du déversoir	Tirant d'eau critique	Coefficient de Manning Strickler	Tirant d'eau à l'aval	Pente du canal d'évacuation	Débit calculé q (m3/s)
Q (m3/s)	L	$y_c = 0.47 * \left(\frac{Q}{L}\right)^{2/3}$	Ks	Yn	I	$\frac{K_{s} * (L * y_{n})^{\frac{5}{3}} * I^{\frac{1}{2}}}{2 * y_{n} + L}$
312,87	250,00	0,55	75	0,49	0,003	312,87

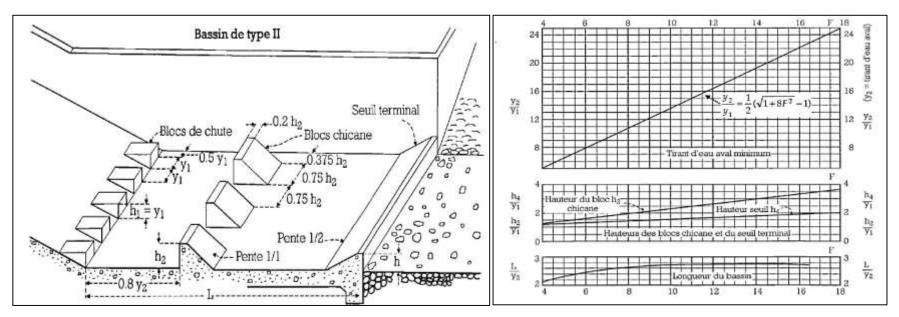
❖ Calcul de la profondeur d'encrage

Hauteur du déversoir hors sol	Rapport Yn/H0	Lame d'eau au- dessus du déversoir	Rapport h/ho	Rapport D/HO	Profondeur d'encrage	Débit linéaire	Hauteur totale du déversoir
ho	Yn/H0	h	h/Ho	D/Ho	D	q	Н
2,8	0,18	0,8	0,28	0,36	1,00	1,25	3,80

❖ Abaque de lecture de D en fonction de h et de Yn

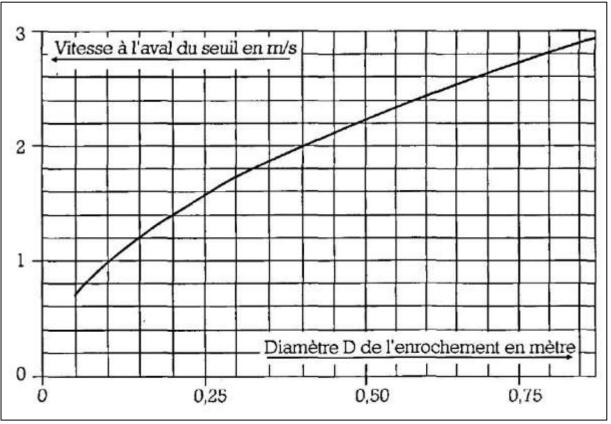
❖ Calcul de la vitesse d'entrée et du tirant d'eau au pied du coursier

Tiran d'eau au pied du coursier	Accélération de la pesanteur	Hauteur totale du déversoir	Lame d'eau au- dessus du déversoir	Vitesse à l'entrée du bassin
yI	g	Н	h	V1
0,14	9,81	3,80	0,8	8,98

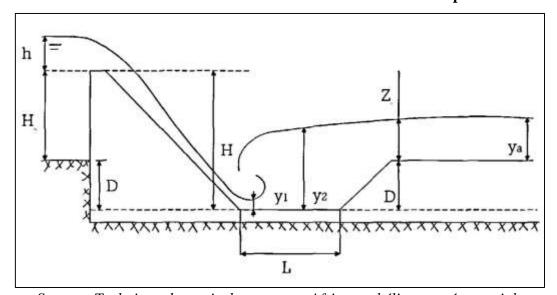

Calcul du nombre de Froude

Tiran d'eau à l'entrée du bassin	Vitesse à l'entrée du bassin	Nombre de Froude
у	V	$\frac{V}{\sqrt{g*y}}$
0,14	8,98	6,6

* Calcul des caractéristiques géométriques du bassin de dissipation

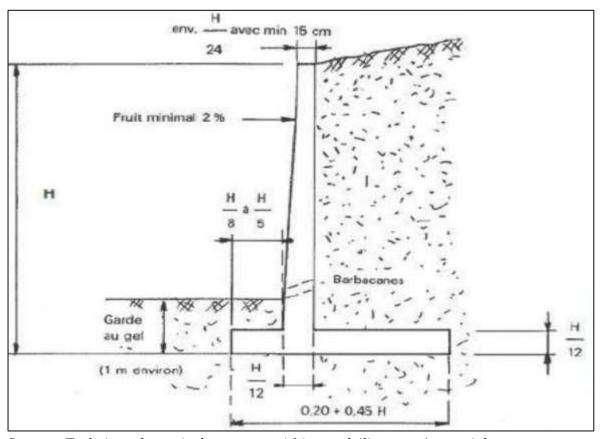

Hauteur blocs o chute	le	Tirant d'eau à l'aval du bassin de dissipation	Rapport h2/y1 (abaque)	Hauteur des blocs de chicanes	Rapport h4/y1 (abaque)	Hauteur du seuil terminal	Rapport L/y2 (abaque)	Largeur du bassin de dissipation
h1		y2	h2/y1	h2	h4/y1	h4	L/y2	L
0,14		1,23	1,75	0,24	1,30	0,20	2,6	3,19

❖ Abaque de lecture des caractéristiques du bassin de dissipation de type II


Source : Technique des petits barrages en Afrique sahélienne et équatoriale

***** Taille des enrochements

Source : Technique des petits barrages en Afrique sahélienne et équatoriale


\$ Ensemble déversoir et bassin de dissipation

Source : Technique des petits barrages en Afrique sahélienne et équatoriale

2. Le mur Bajoyer

***** Eléments de predimensionnement

Source : Technique des petits barrages en Afrique sahélienne et équatoriale

Les hypothèses de calcul

Poids volumique du béton cyclopéen (Mpa)	24
Résistance du béton à 28 jrs fc28 (kN/m3)	20
Poids volumique de l'eau (kN/m3)	10
Poids volumique des terres (kN/m3)	18
tan φ	0,33
φ	18,26
Hauteur de sédiments hsed	1
Surcharge (kN/m2)	10

Prédimensionnement

Hauteur totale Ht (m)	4,5
Hauteur du voile Hv (m)	4,1
Largeur sommet voile e0 (m)	0,2
Largeur à la base voile e1 (m)	0,4
Hauteur de la semelle e2 (m)	0,4
Largeur du patin b1 (m)	0,65
Largeur du Talon b2 (m)	2,95
Largeur de la semelle B (m)	4

❖ Stabilité vis-à-vis du renversement et du glissement

Paramètre	symbole	valeur	Bras de leviers	Moments des forces (kN/m).m
Poids propre (kN/m)	W	67,92	1,48	100,58
Surcharge verticale (kN/m)	Pqv	2,50	2,53	74,49
Poids des terres vert (kN/m)	Pt	225,09	2,47	556,97
Poussée des terres verticale (kN/m)	Pav	15,65	1,05	16,43
Poussée des terres horizontale (kN/m)	Pah	47,41	1,50	71,12
Surcharge horizontale (kN/m)	Pqh	14,85	2,45	36,38
Facteur de sécurité du glissement (Fsg>)	4,43	vérifié		
Facteur de sécurité du renversement (Fsr.	>1,5)		6,96	vérifié

Stabilité du sol de fondation

Paramètre	Symbole	Valeur
Somme force verticale (kN/m)	Fv	338,16
Somme force horizontale (kN/m)	Fh	62,26
Résultante (kN/m)	R	343,84
Excentricité (m)	e	0,10
Quart de la base (m)	B/4	1,00
Obliquité	angle δ	80
Conditions de stabilité	•	vérifiée

ANNEXES 2. PLAN DE GESTION ENVIRONNEMENTALE ET SOCIALE

Grille d'évaluation des impacts

		COMPOSANTES DU MILIEU RECEPTEUR										
	Milieu Physique		Milieu B	iologique			Milieu	ı huma	in			
Source d'impact	Air	Sol	Eaux de surface	Faune	Végétation	Sécurité / Santé	Emploi	Circulation déplacement	Commerce et transport	Agriculture et élevage	Paysage	
Phase de préparation du site et de réhabilitation des ouvrages												
Installation du chantier	N	N	О	О	N	N	P	О	P	О	N	
Déblai et mise en dépôt du tout venant	N	N	О	N	N	N	О	О	О	О	N	
Travaux de réhabilitation de la digue du barrage	N	N	N	О	N	N	P	N	P	О	N	
Travaux de reconstruction du déversoir	N	N	N	О	N	N	P	N	P	О	N	
Transport et circulation liée aux activités de chantier	N	N	О	N	N	N	P	N	P	О	N	
Création et exploitation des emprunts et carrières	N	N	О	N/P	N	N	P	N	0	0	N	
Pose des protections des talus de la digue	N	N	N	N	N	N	P	N	0	О	N	
Travaux de reconstruction de la diguette de protection	N	N	N	0	N	N	P	N	P	N	N	
Présence de main d'œuvre	О	О	N	N	N	N	P	O	P		P	
			Phase	d'exploita	tion de l'e	eau	1	l .	ı	ı	ı	
Entretien des infrastructures de la retenue	N	N	N	О	N	N	P	N	P	N	N	
Exploitation du périmètre irrigué en aval			N	N	P	О	P	О	P	P	P	

Légende : N : Négatif, P : Positif, N/P : Négatif positif, O : Nul ou négligeable

❖ Plan de mise en œuvre des mesures d'atténuations

Milieu	IMPACTS	Mesures d'atténuation /	Responsabilit	és		Indicateur de suivi	Calendrier	
Récepteur		Bonification	Exécution	Surveillance	Suivi	indicated de saivi	d'exécution	
			Milieux b	iophysique				
Air/Micro climat	-Emission de poussière; -Emission de gaz d'échappement (co ₂)	-Arrosage régulier des voies d'accès au chantier et à la traversé des agglomérations ; -visite technique régulier des véhicules et engins du chantier.	Entreprise	-Mission de Contrôle (MDC) - UCP DPEEVCC	Comité de surveillance BUNEE DPEEVCC	-Le chantier et la traversée des agglomérations sont arrosés -Les véhicules et engins sont peu polluants	Début et pendant les travaux	
Sols	-Erosion et tassement du sol; -Pollution par les hydrocarbures;	-Remise en état des zones d'emprunt et de carrières ; -Gestion des déchets solides et liquides	Entreprise	-MDC -Comité de surveillance DPEA DPEEVCC	Comité de surveillance BUNEE DPEEVCC BUNASOLS	les zones d'emprunt sont remises en état ; -existence d'un plan de gestion des déchets de l'entreprise.	Pendant et après les travaux	
Eaux de surface	-Risque de pollution par les matières en suspension et les hydrocarbures ;	-Imposition dans le cahier de charges la propreté des lieux (collecte et élimination des déchets solides et liquides); -Renforcer les capacités du comité local de l'eau (CLE);	Entreprise, exploitant du barrage	MDC Comité de surveillance DPEA DPEEVCC	Comité de surveillance BUNEE DPEEVCC	existence d'un comité de l'eau du barrage ; -existence des pistes d'accès à l'eau du barrage ;	Début, pendant et après les travaux	

	-Risque de pollution de l'eau du barrage par les engrais chimiquesRisque de pollution par le piétinement et les déjections animales	-délimiter un couloir de protection des berges du barrage; - identification des voies d'accès à l'eau du bétail et réalisation des perrés maçonnés au niveau des voies d'accès au barrage.		Mairie		-Un couloir de protection des berges du barrage existe	
Végétatio n	-Destruction du couvert végétal ; -Prolifération des plantes envahissantes	-Plantation de compensation et protection des berges du barrage ; -Reboisement compensatoire dans les zones d'emprunts ;	-Entreprise, -Populations bénéficiaires ;	MDC -Comité de surveillance DPEEVCC		Les arbres sont plantés et entretenu	Pendant et Après travaux
Faune	-Risque de collision; -Destruction de l'habitat faunique; -Risque d'intoxication des animaux et	-Interdiction de prélever la faune par le personnel du chantier pour l'alimentation, -Limitation de vitesse à 30Km/h sur le chantier; -Réglementation de l'abreuvement du bétail;	-Entreprise, -Exploitant du barrage; -DPEEVCC; -DPRAH	MDC -Comité de surveillance DPEEVCC Mairie	BUNEE DPEEVCC	-Les conducteurs circulent à une vitesse réduite. -Les exploitants sont formés et l'utilisation des pesticides est contrôlée;	Pendant et après les travaux

	le bétail par les pesticides lors de l'abreuvage.	bien balisée				-les pistes à bétail existent et son empruntées par le bétail -l'abreuvement du bétail est réglementée dans la zone d'influence du projet.	
			Milieu	humain			
Sécurité / Santé	-Nuisance olfactive, auditif et émission de poussière ; - Développemen t de maladies hydriques (paludisme, bilharzioses) ; -Risque d'accident de travail ou de circulation.	-Interdiction l'accès des chantiers aux populations riveraines surtout les enfants; -Limitation la vitesse à 30 km/h -Installer des balises et panneaux de signalisation aux endroits dangereux; -Doter la main d'œuvre d'équipements de protection individuel (EPI) et veiller à leur utilisation effective; - Arrosage des chantiers et à la traversée des agglomérations	- Entreprises -Prestataires de service; -District sanitaire de la commune	MDC -Comité de surveillance DPEEVCC	- Comité de surveillance BUNEE DPEEVCC -DPEA Mairie	le nombre d'accidents sur les chantiers est faible ou nul -les balises et panneaux de signalisation existent; -le personnel est doté d'équipements de protection individuel (EPI); -les voies d'accès au chantier sont arrosées au moins 2 fois par jours.	Dès le début et pendant les travaux

Populatio n	-Risque de noyade; -Risque de contamination aux IST (VIH/SIDA); - Inondation des concessions à proximité du barrage - Inondation des concessions - Destruction de vergers	-Sensibiliser les populations riveraines sur les risques de noyade; - Mettre en place un comité de gestion du barrage; - mettre en place un comité de gestion des conflits liés à l'utilisation de l'eau du barrage -Sensibilisation les populations et le personnel du chantier sur les IST/SIDA	- Mairie ; -Préfecture, -CVD -DPEA ; -DPRAH -District sanitaire de la commune - Cellule projet	- Comité de suivi ;	Comité de surveillance BUNEE	-le personnel des chantiers et les riverains sont sensibilisés sur l'IST/SIDA; - PV de sensibilisation des riverains sur le risque de noyade -un comité de gestion des conflits est effectif.	Début des travaux, pendant les travaux et Pendant l'exploitation
Circulatio n	-Perturbation de la circulation; -Risque d'accident de circulation	-Opter pour la limitation de vitesse en agglomération et sur le chantier	Entreprise;	MDC -Comité de surveillance	$\mathbf{IM}\mathbf{H}\mathbf{M}$. BUNEF	Le nombre d'accidents de circulation est faible ou nul	Pendant et après travaux
Emploi	-Création d'emplois	Privilégier l'embauche de la main d'œuvre locale ;	-Entreprises -Mairie	MDC -Comité de surveillance ;	Sui vemanee	La main d'œuvre locale est recrutée ;	Dès le début des travaux et

	temporaires ou permanents -Brassage de population, -Intégration, cohésion sociale	Priorité est donnée aux entreprises locales pour la réalisation des travaux.		-Mairie	DPEEVCC -DPRAH	-Les entreprises locales sont impliquées dans les travaux	pendant les travaux
Commerc e, Transport, Artisanat	-Amélioration de l'achat de produits locaux; -Achat des équipements de construction; -Achat de carburant, de pièces de rechange et de nourriture	-Politique pertinente d'appui au secteur agropastoral ; -Améliorer la voie d'accès au site ; -Renforcer les mécanismes de commercialisation.	Ministère chargé des infrastructure s Ministère du commerce	Sulvi	ivianie,	-la politique d'appui au secteur agropastoral et une foire de commerce de agropastoral existent ; -la voie d'accès au site sont en bon état ;	Pendant l'exploitation
Condition s des femmes rurales	-Création d'activés génératrices de revenue -Amélioration des revenus et	-Soutenir les activités féminines qui mériteraient un accompagnement approprié du système de financement décentralisé assurant la promotion des	- Services en charge de la promotion de la femme		Comité de surveillance BUNEE DPEEVCC	Les tâches ménagères sont allégées. Les micro-projets sont réalisés en faveur des femmes rurales.	Pendant l'exploitation

du bien-être de	Activités Génératrices de	-Structures	-DPRAH	
la femme	Revenus (AGR).	de micro-		
rurale		crédits;		
		-Mairie		

* Récapitulatif du cout de mise en œuvre des d'atténuations

	T T •44	0 444	C.U.	TOTAL
Impacts/Actions environnementales	Unité	Quantité	(FCFA)	(FCFA)
Dégradation de la qualité de l'air (arrosage des voies d'accès)	Forfait			2 000 000
Remise en état des emprunts	Forfait			3 000 000
Renforcement technique des exploitants du barrage sur la protection des berges, sur l'impact de l'utilisation des pesticides	Forfait			2 000 000
Renforcement des mécanismes de commercialisation	Forfait			2 000 000
Programme d'appui technique et de vulgarisation agricole et de l'élevage par DPRAH et DPEA	Forfait	3 ans	500.000	1 500 000
Sensibilisation sur les infections sexuellement transmissibles telles que le VIH SIDA	Forfait			2 000 000
Mettre en place un plan d'IEC de prévention sur les maladies hydriques (paludisme, etc.)	Forfait			1 500 000
Former et sensibiliser le personnel sur les risques lié à l'intoxication et aux mesures de sécurité	Forfait			500 000
Appui aux comités de gestion du barrage	Annuel	3 ans	500.000	1 500 000
Soutien aux activités féminines assurant la promotion des Activités Génératrices de Revenus.	Forfait			2.000 000
Reboisement de compensation (zones d'emprunts, protection des berges, plantation d'alignement sur les pistes)	Forfait	3000	2000	6 000 000
Surveillance et suivi environnemental (suivi permanent, la supervision, évaluation).	Forfait	-	7 000 000	7 000 000
Compensation pour les infrastructures publiques (forages)	U	2	9 000 000	18 000 000
Dédommagement des propriétaires de vergers				9 525 000
TOTAL GENERAL				58 525 000

ANNEXES 3. METRE ET DEVIS

❖ Volume de remblais

Profils	Cote TN (m)	Distance partielle (m)	Hauteur digue (m)	Surface partielle (m²)	Volume partiel (m ³)	Volume cumulé (m³)
1	300,00	-	0,10	0,37	-	-
2	299,98	12,77	0,12	0,45	5,23	5,23
3	299,88	23,89	0,22	0,87	15,71	20,94
4	299,70	16,29	0,40	1,72	21,07	42,01
5	299,65	12,76	0,45	1,98	23,61	65,62
6	299,57	22,25	0,53	2,42	48,91	114,53
7	299,75	23,46	0,35	1,47	45,59	160,12
8	299,20	22,40	0,90	4,77	69,89	230,01
9	298,98	22,03	1,12	6,43	123,35	353,37
10	298,63	22,67	1,47	9,47	180,18	533,54
11	298,50	22,13	1,60	10,72	223,37	756,91
12	297,96	14,05	2,14	16,65	192,27	949,18
13	297,69	9,99	2,41	20,05	183,32	1 132,50
14	297,53	7,98	2,57	22,20	168,60	1 301,10
15	297,08	22,61	3,02	28,81	576,73	1 877,83
16	296,62	22,09	3,48	36,40	720,26	2 598,09
17	296,13	22,33	3,97	45,42	913,49	3 511,59
18	295,93	22,25	4,17	49,37	1 054,53	4 566,12
19	295,77	21,97	4,33	52,65	1 120,75	5 686,87
20	295,66	21,96	4,44	54,97	1 181,67	6 868,54
21	295,60	7,26	4,50	56,25	403,72	7 272,26
22	295,58	8,34	4,52	56,68		
23	295,56	22,48	4,54	57,11		
24	295,52	22,83	4,58	57,98		
25	295,50	22,28	4,60	58,42		
26	295,57	22,49	4,53	56,90		
27	295,75	22,87	4,35	53,07		
28	295,95	22,82	4,15	48,97		
29	296,03	22,53	4,07	47,37		

30	296,34	22,63	3,76	41,44		
31	296,59	14,16	3,51	36,93		
32	296,73	7,88	3,37	34,51		
33	297,09	20,95	3,01	28,66		
34	297,29	21,08	2,81	25,63		
35	297,32	0,77	2,78	25,19	19,56	7 291,82
36	298,42	21,38	1,68	11,52	392,45	7 684,27
37	299,52	22,64	0,58	2,70	161,06	7 845,33
38	301,94	21,63	-1,84	0,33	32,81	7 878,14

Décapage de la digue

Profils	Cote TN (m)	Distance partielle (m)	Hauteur de décapage (m)	Largeur de décapage (m)	Surface partielle (m²)	surface cumulée (m²)
			(m)			
1	299,85	-	0,25	2,25	0,00	-
2	299,85	12,77	0,25	4,5	60,34	60,34
3	299,85	23,89	0,25	4,5	112,88	173,22
4	299,85	16,29	0,25	4,5	76,97	250,19
5	299,85	12,76	0,25	4,5	60,29	310,48
6	299,85	22,25	0,25	4,5	105,13	415,61
7	299,85	23,46	0,25	4,5	110,85	526,46
8	299,85	22,40	0,25	4,5	105,84	632,30
9	299,85	22,03	0,25	4,5	104,09	736,39
10	299,85	22,67	0,25	4,5	107,12	843,51
11	299,85	22,13	0,25	4,5	104,56	948,07
12	299,85	14,05	0,25	4,5	66,39	1 014,46
13	299,85	9,99	0,25	4,5	47,20	1 061,66
14	299,85	7,98	0,25	4,5	37,71	1 099,37
15	299,85	22,61	0,25	4,5	106,83	1 206,20
16	299,85	22,09	0,25	4,5	104,38	1 310,57
17	299,85	22,33	0,25	4,5	105,51	1 416,08
18	299,85	22,25	0,25	4,5	105,13	1 521,21
19	299,85	21,97	0,25	4,5	103,81	1 625,02

ETUDE TECHNIQUE DETAILLEE POUR LA REHABILITATION DU BARARRAGE DE YAONGO COMMUNE DE DARGO, PROVINCE DU NAMENTENGA, BURKINA FASO

20	299,85	21,96	0,25	4,5	103,76	1 728,78
21	299,85	7,26	0,25	4,5	34,30	1 763,09
22	298,35	8,34	1,75	7,5		
23	298,35	22,48	1,75	10,5		
24	298,35	22,83	1,75	10,5		
25	298,35	22,28	1,75	10,5		
26	298,35	22,49	1,75	10,5		
27	298,35	22,87	1,75	10,5		
28	298,35	22,82	1,75	10,5		
29	298,35	22,53	1,75	10,5		
30	298,35	22,63	1,75	10,5		
31	298,35	14,16	1,75	10,5		
32	298,35	7,88	1,75	10,5		
33	298,35	20,95	1,75	10,5		
34	298,35	21,08	1,75	10,5		
35	299,85	0,77	0,25	7,5	6,06	1 769,15
36	299,85	21,38	0,25	4,5	101,02	1 870,17
37	299,85	22,64	0,25	4,5	106,97	1 977,14
38	299,85	21,63	0,25	4,5	102,20	2 079,35

Devis quantitatif et estimatif

N°	DESIGNATION	UNITE	QUANTITE	PRIX UNITAIRE	PRIX TOTAL
100	Frais de chantier	l			
101	Amenée et repli du matériel	ff	1,0	45 000 000	45 000 000
102	Installation du chantier	ff	1,0	30 000 000	30 000 000
103	La délimitation de la bande de servitude	ff	1,0	10 000 000	10 000 000
	Sou	s-total 100	0		85 000 000
200	Digue				
201	Abattage et dessouchage des arbres et des arbustes sur les talus y compris toutes sujétions	ff	1,0	50 000	50 000
202	Débroussaillage et nettoyage	ha	1,3	200 000	269 067
203	Déblais provenant du taillage du corps de la digue en dedans dans zone d'effondrement	m^3	2 142,0	500	1 071 000
204	Maçonnerie de moellons pour mur de crête aval	m ³	112,0	15 000	1 680 000
205	Maçonnerie de moellons pour mur parapet	m ³	224,0	15 000	3 360 000
206	Déblai à la main à travers le remblai pour muret de crête aval et mur parapet	m^3	224,0	4 500	1 008 000
207	Déblai de butée de pied amont et drain de pied aval	m^3	353,0	4 000	1 412 000
208	Remblai compactés aux engins(digue)	m ³	4 137,0	7 000	28 959 000
209	Couche de pose talus amont et aval	m ³	21,0	8 000	168 000
210	Perré sec talus aval	m²	104,0	15 000	1 560 000
211	Perré maçonné sur le talus amont	m²	52,0	20 000	1 040 000
212	Enrochement butée de pied amont et drain de pied aval	m ³	353,0	10 000	3 530 000
213	Revêtement latéritique compacté sur crête	m ³	277,0	7 000	1 939 000
	Sou	s-total 200	0		46 046 067
300	Evacuateur de crue				
301	Travaux de nettoyage de l'emprise du déversoir y compris le chenal	m^3	8 362,0	500	4 181 000,0

ETUDE TECHNIQUE DETAILLEE POUR LA REHABILITATION DU BARARRAGE DE YAONGO COMMUNE DE DARGO, PROVINCE DU NAMENTENGA, BURKINA FASO

	, , , , , , , , , , , , , , , , , , ,			l .	
302	Déblai issu du décapage du chenal sur environ 150 ml	m^3	451,0	5 000	2 255 000,0
303	Béton cyclopéen à 250kg/m3	m^3	3 921,0	100 000	392 100 000,0
304	Béton armé à 350kg/m3 coulé à la verticale	m^3	71,0	180 000	12 780 000,0
305	Béton de propreté à 150kg/m3	m^3	21,0	80 000	1 680 000,0
306	Béton ordinaire à 250kg/m3 pour bassin dissipation, blocs de chute, blocs chicanes	m^3	494,0	100 000	49 400 000,0
307	Joints waterstop	ml	434,0	40 000	17 360 000,0
308	Joints bitumineux	ml	263,0	5 000	1 315 000,0
309	Enrochement	m^3	631,0	20 000	12 620 000,0
310	Gabions de blocage	m^3	114,0	30 000	3 420 000,0
311	Tapis filtrant en sable sous bassin et enrochement	m^3	557,0	10 000	5 570 000,0
312	Tubes PVC pour barbacanes DN 50	ml	73,0	3 000	219 000,0
313	Béton de blocage	m^3	55,0	100 000	5 500 000,0
314	Remblai compacté pour diguettes de protection	m^3	14 175,0	5 000	70 875 000,0
315	Couronnement latéritique pour digue de protection	m^3	1 236,0	5 500	6 798 000,0
316	Perré maçonné pour diguette de protection	m²	38,0	15 000	570 000,0
317	Perré sec pour diguettes de protection	m²	706,0	7 500	5 295 000,0
	Sous	s-total 30	0		591 938 000
400	Ouvrages de prise				
401	Béton de propreté à 150kg/m3	m^3	2,0	80 000	160 000,0
402	Béton ordinaire à 250kg/m3	m^3	15,0	100 000	1 500 000,0
403	Béton armé à 350kg/m3	m^3	12,0	180 000	2 160 000,0
404	Perré maçonné	m²	10,0	20 000	200 000,0
405	Enrochement	m^3	2,0	150 000	300 000,0
406	Déblai à la main	m^3	22,0	5 000	110 000,0
407	Déblai provenant de l'excavation de la digue existante pour encrage de l'ouvrage de prise	m^3	6,0	5 000	30 000,0
408	Béton cyclopéen à 250kg/m3 pour escalier de descente	m^3	3,0	100 000	300 000,0

ETUDE TECHNIQUE DETAILLEE POUR LA REHABILITATION DU BARARRAGE DE YAONGO COMMUNE DE DARGO, PROVINCE DU NAMENTENGA, BURKINA FASO

409	Fourniture et pose de conduite en fonte DN 300 y compris béton d'enrobage	ml	35,0	30 000	1 050 000,0
410	Fourniture et pose de Robinetvanne DN 300	U	1,0	2 500 000	2 500 000,0
411	Fourniture et pose de Crépine	U	1,0	250 000	250 000,0
412	Fourniture et pose de Grille métallique pour les bac amont et aval	U	2,0	800 000	1 600 000,0
413	Maçonneries de moellons pour escalier d'accès	m^3	4,0	75 000	300 000,0
414	Echelle de descente dans les bacs	U	2,0	100 000	200 000,0
	Sou	s-total 400)		10 660 000
500	Dispositif d'auscultation du bar	rage			
501	Echelle limnimétriquees	ml	6,0	100 000	600 000,0
502	La délimitation de la bande de servitude	ff	1,0	5 000 000	5 000 000,0
					2 000 000,0
503	Implantation des bornes d'auscultation	U	2,0	100 000	200 000,0
503	_	U ff	2,0	100 000	·
	d'auscultation Matérialisation et implantation des bornes de la PHE	_	1,0		200 000,0
	d'auscultation Matérialisation et implantation des bornes de la PHE	ff s-total 500	1,0		200 000,0
	d'auscultation Matérialisation et implantation des bornes de la PHE Sou	ff s-total 500 eneral H	1,0		200 000,0 5 000 000,0 10 800 000

ANNEXES 4. LES PIECES GRAPHIQUES

- 1. Vue en plan de la cuvette
- 2. Vue en plan de la digue
- 3. Profil en long de la digue
- 4. Profil en travers type de la digue
- 5. Vue en plan de l'ensemble et coupes de la digue et des ouvrages
- 6. Plan de ferraillage du mur bajoyer
- 7. Vue en plan et coupe de l'ouvrage de prise