

MÉMOIRE POUR L'OBTENTION DU DIPLÔME D'INGENIEUR 2IE AVEC GRADE DE MASTER EN GENIE ELECTRIQUE ET ENERGETIQUE SPÉCIALITÉ : RESEAUX ELECTRIQUES

Présenté et soutenu publiquement le 30/06/2020 par **Zan Omar Gomez N'DAYE (N° 2014 0167)**

Encadrant 2iE : Ing. Sani Mahaman KADRI MOUSSA, Assistant d'enseignement et de recherche au département Génie Electrique Energétique et Industriel. 2iE

Maître de stage : Abou OUATTARA,

Chef de service Etudes de Réseaux, Département Etudes et Travaux de Distribution, SONABEL

Structure d'accueil du stage : Société Nationale d'Electricité du Burkina Faso (SONABEL)

Jury d'évaluation du stage :

Président : Ing. Francis SEMPORE

Membre et correcteur : Ing. Ahmed ZONGO

Promotion [2019/2020]

DEDICACES

Je dédie ce modeste travail comme preuve de respect et de reconnaissance à :

- Mes chers parents, Monsieur N'DAYE Checkna et Madame PARE Fatimata pour leurs soutiens, conseils et encouragements tout au long de ce parcours
- Toute la famille
- Tous mes camarades de classe et de promotion pour l'expérience partagée et les moments agréables passés ensemble.

REMERCIEMENTS

Avant de commencer la présentation de ce travail ;

Un grand remerciement au bon **DIEU** de m'avoir accordé la santé, le courage et la volonté pour rédiger ce présent travail.

Je remercie le Directeur Général de la SONABEL de m'avoir accepté au sein de sa structure et le Directeur Général de 2iE de m'avoir permis de suivre ma formation d'ingénierie dans un cadre conviviale.

Je remercie mon encadreur pédagogique Monsieur Sani Mahaman KADRI MOUSSA pour sa disponibilité, sa compréhension, ses conseils et remarques tout au long de l'élaboration de ce présent mémoire.

Je tiens à exprimer mes vifs remerciements à mon maître de stage Monsieur Abou OUATTARA d'avoir accepté de m'encadrer pour mon projet de fin d'étude, pour son soutien, son accompagnement technique, et conseil durant cette période passée au sein du service études réseau.

Mes remerciements vont à l'endroit des agents des différents départements et services : service conduite réseau, département études et projet d'investissement, particulièrement au service maintenance réseau pour leurs assistances et explications. Cela m'a été d'une grande utilité.

Mes remerciements s'adressent à tout le corps administratif et professoral de 2iE particulièrement à celui du département Génie électrique, énergétique et industriel pour l'accompagnement pédagogique.

Je profite de l'occasion pour remercier toutes les personnes qui ont contribué de près ou de loin à la réalisation de ce projet de fin d'étude.

RESUME

Ce présent mémoire porte sur l'analyse des défaillances sur les départs HTA du réseau de distribution 15 kV du poste source de OUAGA 2. Il vise à répertorier toutes les défaillances entrainant l'arrêt de fourniture en électricité et de proposer des solutions techniques pour améliorer la fiabilité des ouvrages HTA.

Pour mener à bien l'analyse, une collecte de données de l'année 2018 à 2019 a été effectué. Le rapport d'interruption sur indicent a permis d'identifier les départs aériens critiques. Le rapport de dépannage a permis d'identifier certaines origines des incidents qui sont entre autres les conditions atmosphériques, les élagages insuffisants et les accidents de travaux. Le bilan des défaillances de l'année 2018 à 2019 a montré une amélioration de la qualité de service à hauteur de 15,78% pouvant s'expliquer par un suivi particulier des départs de distribution, et aussi que les défaillances matérielles sont responsables des incidents avec une proportion de 67%.

Deux outils d'aide au diagnostic tels que la méthode PARETO et l'analyse AMDEC (Analyse des modes de défaillances, de leurs effets et de leurs criticités) ont été utilisés. En appliquant la méthode PARETO sur l'ensemble des ouvrages, les défaillances matérielles ont été classées en 3 groupes de priorité (Zone A, Zone B, Zone C) et ainsi les ouvrages de la Zone A occupant 73% des défaillances matérielles ont été mis en évidence. L'analyse AMDEC a permis d'évaluer l'impact des dysfonctionnements des ouvrages de la Zone A sur la continuité de fourniture en énergie et identifier les causes de défaillances sur lesquelles il faut agir pour assurer un certain niveau de sureté de fonctionnement.

A l'issue de cette étude, des solutions d'amélioration de la fiabilité des ouvrages HTA et d'investissements stratégiques sont proposées en vue d'éviter les déclenchements fréquents pour défaillance et assurer une bonne qualité de service.

Mots Clés:

- 1 Analyse
- 2 Défaillance
- 3 Fiabilité
- 4 Incident
- 5 Maintenance
- 6 Ouvrage HTA

ABSTRACT

This report is about three-phase starts default analysis in 15 kV high voltage distribution network from the power source plant OUAGA 2. It aims to list all the failures leading to the interruption of electricity supply and to propose technical solutions to improve the reliability of high voltage facilities.

For this purpose, a data collection from 2018 to 2019 was conducted. The outage report on mishap allow us to identify critical air three-phase starts. The defaults report allow us to identify some of the origins of mishaps due to weather conditions, insufficient pruning and work accidents. The report of failures from 2018 to 2019 showed a 15.78% improvement in the service quality, which can be explained by a particular follow-up of the three-phase starts high voltage distribution, and determine that material failures are responsible for the mishaps with a percentage of 67%.

Two help-tools for default diagnosing namely the PARETO method and the AMDEC (Failure modes and effects analysis) were used. By applying the PARETO method on all facilities, the material failures were classified into 3 priority groups (A Area, B Area, C Area) and thus the Area A facilities occupying 73% of material failures were identified. The AMDEC analysis assessed the impact of the dysfunctions of the A Area facilities on the continuity of energy supply and identified the causes of failures that require action to ensure a certain level of the operating safety.

At the end of this study, solutions to improve the reliability of high voltage facilities and strategic investments are proposed in order to avoid frequent breakings caused by defaults and ensure a better quality of service.

Key words:

- 1 Analysis
- 2 Default
- 3 Reliability
- 4 Mishap
- 5 Maintenance
- 6 high voltage facility

LISTE DES ABRÉVIATIONS

2iE : Institut Internationale d'Ingénierie de l'Eau et de l'Environnement

ARSE : Autorité de Régulation du Sous-secteur de l'Electricité

BT : Basse Tension

DDO : Distillate Diesel-Oil

DDA : Dispositif de Détection de Défaut Aérien

DDS : Dispositif de Détection de Défaut Souterrain

ERDF : Electricité Réseau Distribution France

END : Energie Non Distribuée

FCFA : Francs CFA

GWh : Gigawatt-heure

HFO : Heavy Fuel Oil

HTA : Haute Tension catégorie A

HTB : Haute Tension catégorie B

IACM : Interrupteur Aérien à Commande Manuelle

IAT : Interrupteur Aérien Télécommandé

JDB : Jeu de barre

kWh : Kilowatt-heure

kV : Kilovolt

MW : Mégawatt

MVA : Mégavolt – Ampère

SONABEL : Société Nationale d'Electricité du Burkina Faso

SOMMAIRE

DEDICACES	i
REMERCIEMENTS	ii
RESUME	iii
ABSTRACT	
LISTE DES ABRÉVIATIONS	
SOMMAIRE	vi
LISTE DES TABLEAUX	viii
LISTE DES FIGURES	ix
I. INTRODUCTION GENERALE	1
I.1 Introduction aux études de suretés de fonctionnement	1
I.2 Contexte d'étude	2
I.3 Objectif général	3
I.4 Objectifs spécifiques	3
I.5 Résultats attendus	3
I.6 Méthodologie	3
I.7 Organisation du mémoire	4
I.8 Présentation de la SONABEL	4
II. DESCRIPTION DES RÉSEAUX DE DISTRIBUTION _	6
II.1 Structure générale du réseau électrique	6
II.2 Les réseaux de distribution HTA	7
II.3 Composition d'un départ de distribution HTA	8
II.4 Mode de distribution HTA	8
II.4.1 Schéma en simple dérivation (une alimentation)	9
II.4.2 Structure en boucle ou coupure d'artère	9
II.4.3 Structure maillée	
II.4.4 Structure double dérivation	10
II 5 Réseau de distribution 15 kV du poste de OHAGA 2	11

III. SURETE DE FONCTIONNEMENT DES RESEAUX ELECTRIQUES	14
III.1 Terminologie de la sureté de fonctionnement	14
III.2 Maintenance des réseaux de distributions électriques	15
III.3 Les défaillances des réseaux de distributions	17
III.3.1 Origine des incidents	18
III.3.2 Classification des interruptions sur incident	19
III.3.3 Mode de défaillance de certains composants	20
III.3.4 Caractérisation des défauts	21
III.3.5 Système de protection contre les défauts	23
III.3.6 Cycle de réenclenchement d'un disjoncteur de départ	24
III.3.7 Effet et impact des défaillances	25
III.4 Gestion du réseau en situation d'incident	26
III.4.1 Méthode de recherche de défauts	26
III.4.2 Les détecteurs de défauts	28
IV. MATERIELS ET METHODES	29
IV.1 Description des données	29
IV.2 Outils d'analyse	29
V. RESULTATS ET DISCUSSIONS	32
V.1 Répartition des défaillances	33
V.2 Evolution des défaillances de 2018 à 2019	36
V.3 Analyse des incidents par départ HTA	38
V.4 Classification des défaillances des ouvrages HTA	39
V.5 Analyse AMDEC	41
V.6 Propositions d'amélioration de la fiabilité des ouvrages HTA	46
V.6.1 Propositions pour la ZONE A	49
V.6.2 Propositions pour la ZONE B	50
V.6.3 Propositions pour la ZONE C	51
VI. CONCLUSION ET PERSPECTIVES	52
VII. BIBLIOGRAPHIE	i
VIII. LISTE DES ANNEXES	iii

LISTE DES TABLEAUX

TABLEAU 1 : Type de défauts de certains composants	20
TABLEAU 2 : Exemple de critère d'évaluation de la criticité	32
TABLEAU 3 : Répartition des origines des défaillances de l'année 2018 à 2019	33
TABLEAU 4 : Point sur les défaillances survenues sur le réseau souterrain	37
TABLEAU 5 : Résultats de l'outil Pareto	40
TABLEAU 6 : Grille d'évaluation de la criticité dans le contexte d'étude	43
TABLEAU 7: Tableau AMDEC sur les isolateurs	43
TABLEAU 8: Tableau AMDEC sur les boites de jonction	44
TABLEAU 9 : Tableau AMDEC sur les conducteurs aériens	44
TABLEAU 10 : Tableau AMDEC sur les câbles souterrains	45
TABLEAU 11: Propositions de solutions pour la zone A	49
TABLEAU 12 : Propositions de solutions pour la zone B	50

LISTE DES FIGURES

FIGURE	1 : Bilan des incidents et END par poste à l'année 2018	2
FIGURE	2 : Résumé de la méthodologie	3
FIGURE	3 : Organigramme du département études et travaux de distribution	5
FIGURE	4 : Structure d'un réseau électrique	6
FIGURE	5 : type de réseau par niveau de tension	7
FIGURE	6 : Schéma unifilaire de la structure d'un départ HTA	7
FIGURE	7 : Distribution HTA en coupure d'artère	9
FIGURE	8 : Distribution HTA en structure maillée	. 10
FIGURE	9 : Distribution HTA en double dérivation	. 11
FIGURE	10 : Schéma du réseau de répartition de la ville de Ouagadougou	. 12
FIGURE	11 : Tracé du réseau de distribution 15 kV de Ouagadougou	. 13
FIGURE	12 : Les différents types de maintenance	. 15
FIGURE	13 : Les objectifs de la maintenance	. 16
FIGURE	14: Courbe de la variation du taux de défaillance	. 19
FIGURE	15 : Quelques incidents rencontrés sur les départs 15 kV de Ouagadougou	. 21
FIGURE	16 : Les types de défaut en fonction du nombre de conducteur	. 22
FIGURE	17 : Schéma récapitulatif des défauts occasionnés par les incidents	. 23
FIGURE	18 : Chaine de protection d'un départ HTA	. 24
FIGURE	19 : Cycle de réenclenchement d'un disjoncteur de départ	. 25
FIGURE	20 : Les détecteurs de défauts	. 29
FIGURE	21 : Répartition des défaillances par origine à l'année 2018	. 33
FIGURE	22 : Répartition des défaillances matérielles par type d'ouvrage	. 34
FIGURE	23 : Répartition des défaillances par origine à l'année 2019	. 34
FIGURE	24 : Répartition des défaillances matérielles par type d'ouvrage	. 35
FIGURE	25 : Graphe sur l'évolution des origines des défaillances de 2018 à 2019	. 36
FIGURE	26 : Bilan global de la répartition des défaillances par origine	. 37
FIGURE	27 : Graphe des incidents par départ HTA	. 38
FIGURE	28 : Diagramme de Pareto des pannes	. 40
FIGURE	29 : Analyse fonctionnelle de la zone A	. 42
FIGURE	30 : Illustration des travaux de maintenance à la SONABEL	. 47
FIGURE	31 : Graphe de la fonction fiabilité	. 48

I. INTRODUCTION GENERALE

I.1 Introduction aux études de suretés de fonctionnement

Au début des années 80, la compagnie ERDF partant des analyses de performance du système électrique a montré que le réseau HTA engendrait à lui seul 70 % de la défaillance totale sur le réseau de distribution, les ouvrages aériens étant majoritairement responsables de la situation [1]. Les utilisateurs devenant de plus en plus sensibles aux défaillances du réseau, les gestionnaires de réseau électrique ont pour tâche d'évaluer la fiabilité de leurs réseaux afin de mettre en place des orientations efficaces d'exploitation et de maintenance. Une étude sur la sûreté de fonctionnement est généralement établie pour réduire les impacts indésirables en vue de mettre en œuvre des politiques d'amélioration de la qualité de fourniture d'électricité. Cette étude englobe la connaissance des défaillances, leurs évaluations, leur prévision et leur maîtrise. L'analyse de sécurité des réseaux électriques consiste à sélectionner rapidement dans un ensemble d'incidents possibles dans le réseau ceux pouvant provoquer des contraintes de continuité de fourniture d'électricité [2].

La sûreté de fonctionnement est comme une discipline multi outils :

- Méthode d'analyse des risques
- Méthodes de calculs prévisionnels de la sûreté de fonctionnement de systèmes
- Outils logiciels dédiés à la sûreté
- Constitution de bases de données statistiques sur la fiabilité des composants

I.2 Contexte d'étude

L'électricité favorise l'épanouissement de la population et représente un puissant vecteur de développement d'un pays. La SONABEL qui est la structure en charge de la production, du transport et de la distribution de l'énergie électrique au Burkina Faso fait face à un certain nombre d'incidents sur son réseau de distribution 15 kV qui dégradent progressivement sa qualité de service. Les conséquences de ces incidents se manifestent par des coupures longues subit par les clients et une augmentation de l'énergie non distribuée. Pour la SONABEL, ces incidents contribuent à la dégradation des ouvrages HTA, engendrent des couts d'indisponibilité (FCFA/kWh non distribué) et des couts de maintenances élevés. Ils constituent également une perte pour l'économie nationale. A partir des constats fait à l'année 2018, il ressort que la maitrise des défaillances sur le réseau de de distribution 15 kV du poste Ouaga 2 fait partie des priorités car il a comptabilisé 147 incidents avec un total d'énergie non distribuée estimé à 671 539 kWh (figure 1) [3]. Dans le souci d'éviter les désagréments occasionnés par les défaillances et de faire fonctionner le réseau de distribution électrique dans de bonnes conditions, la SONABEL s'assure continuellement de la bonne mis en œuvre des stratégies de fiabilisation des ouvrages HTA. Ce présent mémoire porte sur l'analyse des défaillances du réseau de distribution 15 kV du poste de Ouaga 2 en vue de proposer des solutions techniques pour améliorer la fiabilité des ouvrages HTA

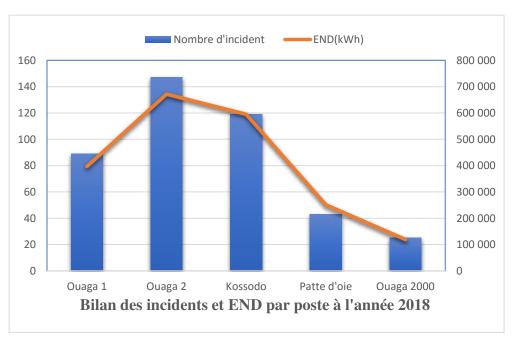


FIGURE 1 : Bilan des incidents et END par poste à l'année 2018

I.3 Objectif général

Ce travail a pour but de réaliser une analyse des défaillances et de proposer des solutions techniques de fiabilisation des ouvrages HTA du réseau de distribution 15 kV du poste de Ouaga 2.

I.4 Objectifs spécifiques

De façon spécifique, il s'agit :

- D'identifier les origines de ces défaillances
- D'analyser l'évolution de ces défaillances
- De remédier aux problèmes de défaillances

I.5 Résultats attendus

Pour la zone d'étude les résultats suivants sont attendus :

- Mis en place d'une donnée statistique de référence sur les défaillances
- Une bonne connaissance des origines de ces défaillances
- Une bonne capacité de résolution de ces défaillances

I.6 Méthodologie

Nous avons tout d'abord effectué une recherche bibliographique en vue de prendre connaissance sur le concept de sureté de fonctionnement des réseaux HTA et mettre en place un plan d'étude adapté. La collecte de données de l'année 2018 et 2019 (rapport de dépannage et rapport d'interruption sur incident) relative au sujet traité a permis de mener l'analyse. Pour l'élaboration du présent document nous avons utilisés les logiciels tels que Auto-Cad (pour les schémas électriques) et 2 outils d'aide au diagnostic comme la méthode Pareto et l'analyse AMDEC dont nous ferons leurs descriptions dans la suite du document. Nous finirons par proposer des solutions à envisager pour améliorer la fiabilité des ouvrages HTA.

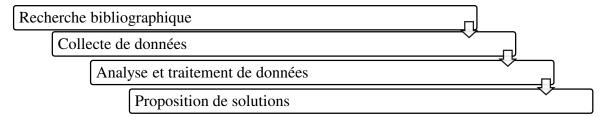


FIGURE 2 : Résumé de la méthodologie

I.7 Organisation du mémoire

Le présent mémoire comprend 6 chapitres. A la suite du Chapitre 1 « Introduction générale » nous aurons :

Chapitre 2 « Description des réseaux de distribution »

Chapitre 3 « Sureté de fonctionnement des réseaux électriques »

Chapitre 4 « Matériels et méthodes »

Chapitre 5 « Résultats et discussions »

Chapitre 6 « Conclusion et perspectives »

L8 Présentation de la SONABEL

Historique

La Société Nationale d'Electricité du Burkina (SONABEL) est une Société d'Etat depuis le 14 avril 1995. Son capital qui était de 46 milliards de francs CFA est passé à 63 308 270 000 de francs CFA depuis le 15 juillet 2013. Elle a son siège social à OUAGADOUGOU.

En 1976, la SONABEL était un Etablissement Public à Caractère Industriel et Commercial (EPIC). Elle a connu de nombreuses transformations tant au niveau de sa structure financière (capital) que de sa dénomination. Elle fut appelée successivement Energie de l'Afrique Occidentale Française (ENERGIE AOF), ensuite Société Africaine d'Electricité (SAFELEC), puis Société Voltaïque d'Electricité (VOLTELEC).

Etat actuel

L'électrification du pays est une des missions de la SONABEL. Un tel pari demande de la part de la SONABEL, des investissements à planifier dans le temps, pour satisfaire la demande d'énergie électrique dans les centres existants et l'électrification de nouveaux centres. La SONABEL a mis en place plusieurs projets, notamment le programme national d'électrification, qui se fera à travers la construction de différentes lignes de transport d'énergie et des postes de transformation de cette dernière. Depuis le 15 juillet 2013, le capital de la SONABEL est estimé à 63 308 270 000 de francs CFA. De nos jours son effectif est estimé à plus de 2000 fonctionnaires. L'organigramme de la SONABEL est disponible à l'annexe 1. [4]

Département études et travaux de distribution

Le stage s'est déroulé dans le département études et travaux de distribution. Les débuts de mon stage étaient la prise de connaissance des travaux effectués dans quelques divisions de la SONABEL. Une très grande partie de mon stage s'est déroulé dans le département étude et travaux de distribution plus précisément dans le service étude réseau.

Le département études et travaux de distribution fait partie de la direction de distribution, Ce département est composé du :

- Service travaux de renforcement et d'extension (STRE)
- Service central du système d'information géographique (SCSIG)
- Service études de réseaux (SER)

La figure suivante présente l'organigramme de ce département :

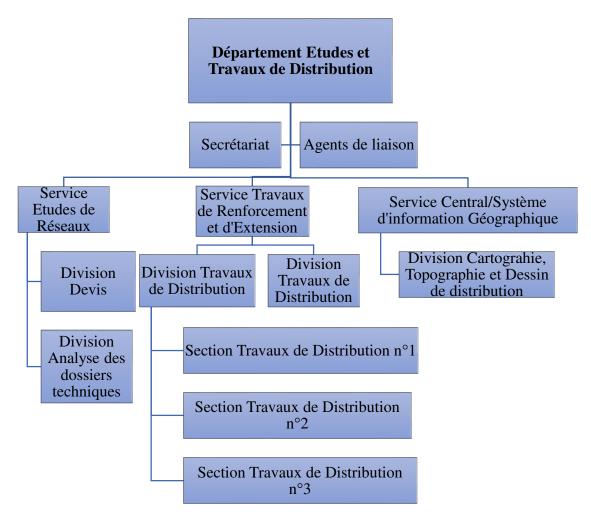


FIGURE 3 : Organigramme du département études et travaux de distribution

II. DESCRIPTION DES RÉSEAUX DE DISTRIBUTION

II.1 Structure générale du réseau électrique

Le système électrique est un ensemble d'infrastructures énergétiques permettant d'acheminer l'énergie électrique des centres de production vers les consommateurs. Du point de vue physique, le réseau électrique est organisé en différents niveaux de tension : le réseau de transport et de répartition, auxquels sont connectés les grands groupes de production, et le réseau de distribution alimentant la plupart des consommateurs. Le réseau électrique est structuré en plusieurs niveaux (visible sur la figure 4) assurant des fonctions spécifiques propres, et caractérisés par des tensions adaptées à ces fonctions.

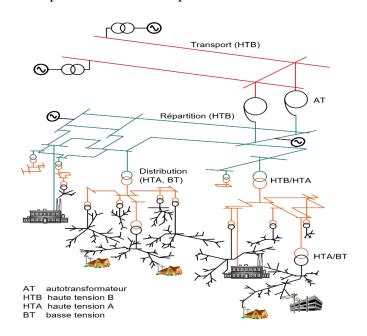


FIGURE 4 : Structure d'un réseau électrique

On distingue:

Les réseaux de transport :

Les réseaux de transport assurent l'alimentation de l'ensemble du territoire, grâce à des transits de puissances importants sur des distances atteignant cent ou plusieurs centaines de kilomètres.

Les réseaux de répartition :

Les réseaux de répartition fournissent la puissance aux réseaux de distribution, mais ne peuvent la transiter que sur de petites distances limitées à quelques dizaines de kilomètres.

Les réseaux de distribution :

Les réseaux de distribution ont pour fonction de fournir aux réseaux d'utilisation et industrielles de la puissance dont ils ont besoin.

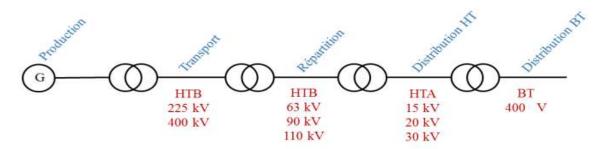


FIGURE 5 : Type de réseau par niveau de tension

II.2 Les réseaux de distribution HTA

Description

Les réseaux de distribution ont comme point de départ les postes sources. Ils comportent des transformateurs HTB/HTA à partir desquels la HTA est distribuée en triphasé sans neutre et entre 5 et 33 kV (souvent 20kV). Des automatismes à l'intérieur réseau du poste source sont mis en place pour permettre de secourir le jeu de barres HTA du poste source en cas de perte d'un transformateur HTB/HTA ou d'une alimentation HTB si le poste source en comporte plusieurs. Le réseau HTA assure la liaison entre le jeu de barres HTA des postes sources et les postes de livraison (postes privés utilisateurs et postes HTA/BT de distribution publique). Il est constitué de lignes aériennes, de câbles souterrains et d'organes de manœuvre HTA télécommandés ou manuels permettant le tronçonnement du réseau.

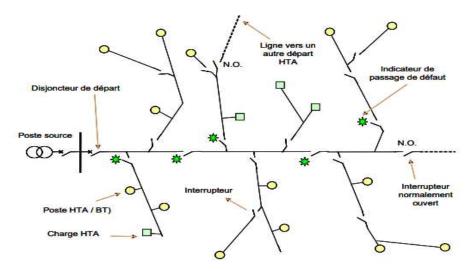


FIGURE 6 : Schéma unifilaire de la structure d'un départ HTA

Les réseaux HTA ruraux se caractérisent par une structure avec beaucoup d'arborescences, du fait de la dispersion des zones de consommation et, pour la plupart, des lignes aériennes. A l'inverse, les réseaux HTA urbains ont une structure peu arborescente et sont constitués en général par des câbles souterrains. La longueur totale d'un départ HTA est comprise entre 10 km et 30 km (pour des réseaux ruraux).

II.3 Composition d'un départ de distribution HTA

On distingue:

- Le disjoncteur de tête du départ à réenclenchement automatique : son rôle est de déclencher sur les défauts du départ
- Les lignes triphasées : l'artère principale et les artères secondaires.
- Les interrupteurs : lors d'une défaillance sur un composant du réseau, ils permettent d'isoler la partie comportant le composant en défaut pour effectuer la maintenance. Plusieurs types d'interrupteurs peuvent être employés comme les IACM ou les Interrupteurs Aériens Télécommandés (IAT).
- Les Disjoncteurs Réenclencheurs de Réseau (DRR): placés sur des lignes du départ, ils permettent, lors d'un défaut en aval, d'isoler la partie avale sans que la partie amont subisse de coupure. Ils sont surtout employés sur les départs HTA urbains pour améliorer la continuité de l'énergie distribuée.
- Les lignes secours : composés d'un interrupteur normalement ouvert et d'une ligne raccordée à un autre départ HTA (du même poste HTB/HTA ou d'un autre), ils servent à réalimenter des zones du départ non alimentées lors d'opérations de maintenance.
- Les Indicateurs de Passage de Défaut (IPD) ou détecteurs de défaut : placés au niveau des organes de coupure, ils indiquent, lors d'un défaut, le passage ou non d'un courant de court-circuit. Leur rôle est d'aider à la localisation du défaut sur le réseau. [5]

II.4 Mode de distribution HTA

Le choix des modes de distribution de l'électricité de par le monde dépend de deux principaux critères : un critère géographique et humain (étendue du territoire, répartition de la population et les puissances à desservir entre autres).

Les réseaux étaient en grande majorité construits avec des lignes aériennes. Mais des contraintes liées à l'esthétique, à la fiabilité et à l'encombrement ont poussé au développement des câbles souterrains. Selon les besoins de continuité de service et de contraintes de coût on réalise des schémas en antenne ou simple dérivation, en boucle ou coupure d'artère, en double dérivation.

II.4.1 Schéma en simple dérivation (une alimentation)

Le raccordement dit simple dérivation (ou Simple alimentation ou antenne) est préconisé lorsque les exigences de continuité d'alimentation sont faibles. Il est principalement utilisé dans les zones rurales, en réseau aérien. Le poste de livraison est raccordé au réseau public de distribution au moyen d'une seule canalisation. Il est équipé d'un interrupteur et d'un dispositif de protection HTA, qui protège le réseau des défauts provenant de l'installation de l'utilisateur consommateur. Ce mode est économique mais son inconvénient est qu'en cas de défaut sur un tronçon de câble ou dans un poste, les utilisateurs sont privés d'alimentation le temps de la réparation.

II.4.2 Structure en boucle ou coupure d'artère

Le réseau est réalisé à partir d'une seule ligne d'alimentation qui relie tous les postes de distribution et qui constitue une boucle ouverte comprenant un point d'ouverture. Tous les postes de distribution ou de livraison sont équipés de deux points d'ouverture, reliés en même temps à la ligne d'alimentation. En cas de défaut sur une partie du réseau ou sur la boucle, les postes qui sont privés d'électricité vont être alimentés par l'autre côté de la boucle grâce à la fermeture de son point d'ouverture. Le réseau en coupure d'artère est utilisé en milieu urbain et surtout en souterrain. [6]

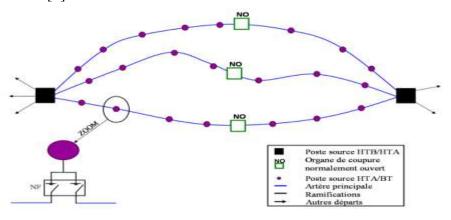


FIGURE 7 : Distribution HTA en coupure d'artère

Avantages : il assure une très bonne continuité de service

L'inconvénient majeur : il est coûteux

II.4.3 Structure maillée

Une variante de l'architecture en coupure d'artère est la structure maillée. Elle diffère par la présence d'un grand nombre de boucle fermée par des conducteurs reliant les postes sources HTB/HTA entre eux, les charges et les connexions intermédiaires. L'existence de nombreuses connexions entre les lignes dans le réseau apporte une grande sécurité d'alimentation mais rend le cout de construction de type d'architecture très élevé. [6]

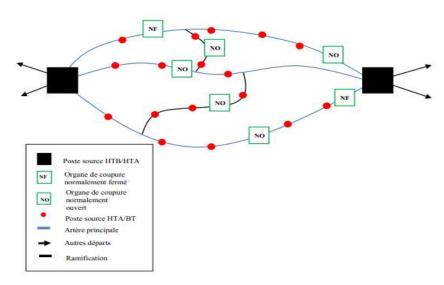


FIGURE 8 : Distribution HTA en structure maillée

II.4.4 Structure double dérivation

Chaque client relié à 2 postes source différents. Il y a permutation automatique en cas de défaut sur l'un des postes sources utilisée dans les grandes agglomérations pour les « grands consommateurs. Le poste de livraison est desservi par deux câbles posés en parallèle, l'un de fonctionnement normal et l'autre de secours.

Il est équipé:

• De deux interrupteurs, d'un permutateur à manque de tension, qui autorise le basculement automatique de l'alimentation du poste, du câble de fonctionnement normal en défaut sur le câble de secours, D'un dispositif de protection HTA, qui protège le réseau des défauts provenant de l'installation de l'utilisateur de l'énergie.[7]

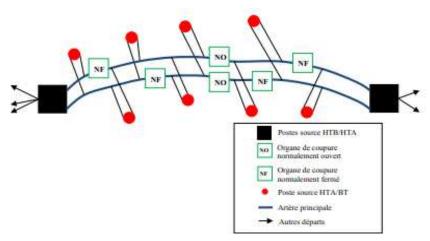


FIGURE 9 : Distribution HTA en double dérivation

Avantage : il assure une très bonne continuité de service

Inconvénient : Cout élevé

II.5 Réseau de distribution 15 kV du poste de OUAGA 2

Description du poste de OUAGA 2

Le poste de Ouaga 2 mis en évidence par la couleur jaune dans la figure suivante (schéma de répartition de la ville de Ouagadougou) est composée de trois (03) groupes de 5,2 MW chacun, de deux (02) groupes de 8 MW chacun et d'un (01) groupe de 3,2 MW.

Le combustible utilisé par l'ensemble des groupes est principalement le HFO et secondairement le DDO à l'exception de celui de 3,2 MW qui utilise exclusivement du DDO. Ces groupes injectent leurs puissances sur 2 JDB 15 kV à travers 2 transformateurs de 15 MVA chacun. La cellule arrivée du poste 90/15 alimente le jeu de barre 2. Le couplage entre les 2 JDB 15 kV est assuré par un disjoncteur afin d'assurer la continuité de service. Cette centrale est connectée par une liaison 33 kV au poste de Kossodo. Elle est également connectée par une liaison 90 kV au poste de Zagtouli et au poste de Ouaga 1. La puissance nominale de la centrale est de 35,08 MW et celle exploitable de 23,3 MW. Le schéma ci-après montre un aperçu du réseau de répartition de la ville de Ouagadougou :

- Le vert représente le réseau de répartition 33 kV
- Le marron représente la liaison 90 kV
- Le rouge représente l'interconnexion avec la cote d'ivoire
- Le bleu représente le réseau de distribution 15 kV

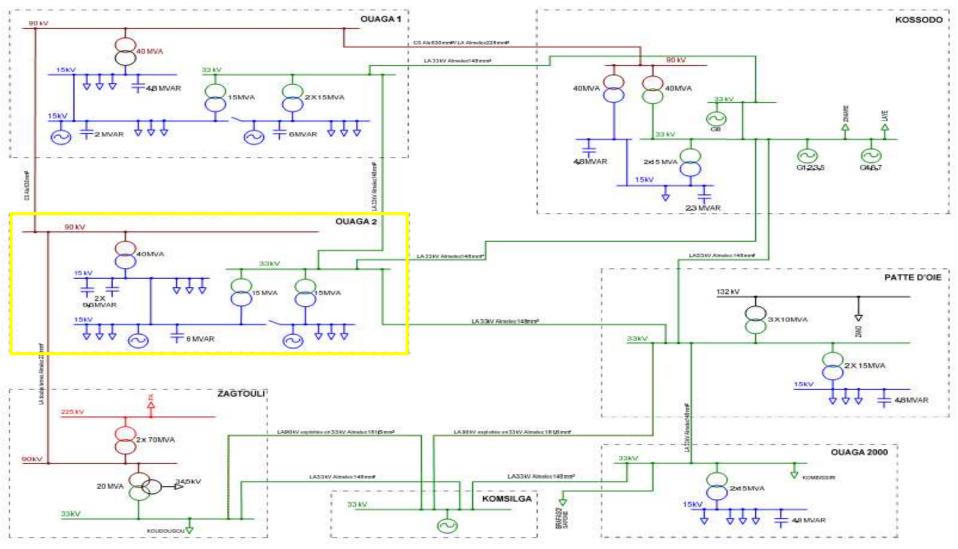


FIGURE 10 : Schéma du réseau de répartition de la ville de Ouagadougou

Le réseau de répartition de la ville de Ouagadougou est composé du poste 90/33/15 kV de Kossodo, du poste 90/33/15 kV de Ouaga 1, du poste 90/33/15 kV de la centrale thermique de Ouaga 2, du poste 90/33 kV de la centrale thermique de Komsilga, du poste 33/15 kV de Ouaga 2000, du poste 132/33/15 kV de Patte d'Oie, du poste 225/90/33/34,5 kV de Zagtouli.

Le réseau de distribution 15 kV du poste de Ouaga 2

Le réseau HTA 15 kV est composé de 11 départs alimentant au total 375 postes (15kV/0,4 kV) dont 137 postes en cabines et 238 postes ariens de type H61. Ils représentent plus de 220 kilomètres de lignes avec une topologie en coupure d'artère car la majorité des consommateurs raccordés sur ces départs sont en milieu urbain. Cette configuration en coupure d'artère favorise le secours en cas d'incident. Le tracé de ces départs est mis en évidence en couleur rouge dans la figure suivante. Les autres informations sur la zone d'étude sont disponibles à l'annexe 2 et 3.

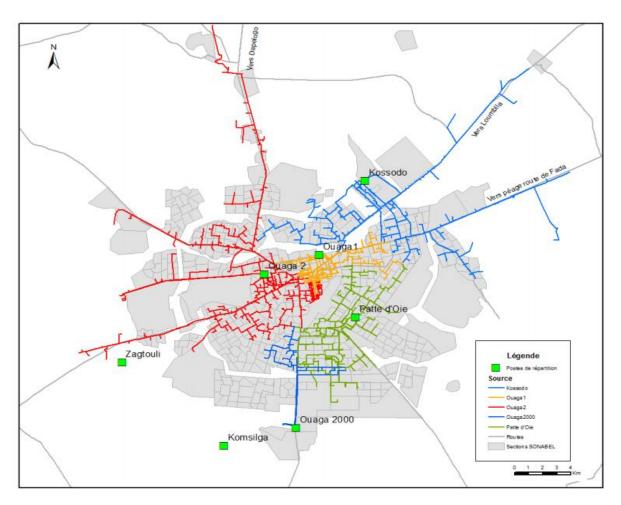


FIGURE 11 : Tracé du réseau de distribution 15 kV de Ouagadougou

III. SURETE DE FONCTIONNEMENT DES RESEAUX ELECTRIQUES

III.1 Terminologie de la sureté de fonctionnement

Au sens large, la sûreté de fonctionnement est définie comme étant la science des défaillances incluant leur connaissance, leur évaluation, leur prévision, leur mesure et leur maîtrise. Au sens strict, la sûreté de fonctionnement est vue comme la notion qui mesure la qualité du service délivrée par un système. Dans le cas d'un système électrique, elle représente la qualité du produit électricité.

Fiabilité : Probabilité pour qu'une entité accomplisse une fonction requise, dans des conditions données, pendant un intervalle de temps donné [t1, t2]. Généralement t1=0. On note R(t) la fiabilité.

Disponibilité : Probabilité pour qu'une entité soit en état d'accomplir une fonction requise dans des conditions données à un instant donné « t », en supposant que la fourniture des moyens extérieurs nécessaires est assurée. Elle est notée D(t).

L'indisponibilité : Probabilité que l'entité ne fonctionne pas à l'instant « t ».

Maintenabilité : Probabilité pour qu'une opération donnée de maintenance active puisse être effectuée pendant un intervalle de temps donné [t1, t2]. On définit avec les mêmes hypothèses que pour R(t) la maintenabilité M(t).

Sécurité: Probabilité d'éviter un événement dont les conséquences sont dangereuses. Cette définition est à distinguer de celle communément utilisée dans les études des réseaux électriques : capacité à survivre à des perturbations liées à des pertes d'ouvrage, sans interruption du service au consommateur.

Maintenance : c'est une fonction qui a pour but d'assurer une disponibilité maximale des équipements de production et de leurs accessoires à un cout optimal dans les conditions de qualité, de sécurité, et de protection de l'environnement. [8]

III.2 Maintenance des réseaux de distributions électriques

La maintenance des réseaux de distributions s'articule sur 4 grands axes :

- Maintenance des réseaux aériens
- Maintenance des postes sources
- Maintenance des réseaux souterrains
- Maintenance des postes HTA/BT

Selon la norme NF X 60-000, il existe deux principales familles de maintenance que l'on peut repérer sur la figure suivante : la maintenance corrective et la maintenance préventive.

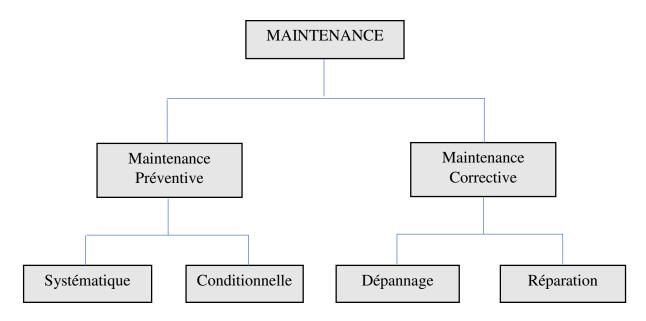


FIGURE 12 : Les différents types de maintenance

Maintenance préventive : Maintenance effectuée à intervalles prédéterminés ou selon des critères prescrits et destinée à réduire la probabilité de défaillance ou la dégradation du fonctionnement d'une entité. Elle est dite systématique lorsqu'elle est effectuée selon un échéancier et conditionnelle lorsqu'elle s'établie en fonction de l'état de l'équipement.

Maintenance corrective (Curative ou palliative) : Maintenance effectuée dès l'apparition de la panne et destinée à mettre une entité dans un état lui permettant d'accomplir une fonction requise. Compte tenu de l'objectif, une action de dépannage peut s'accommoder de résultats provisoires (maintenance palliative). La réparation correspond à une action définitive du dépannage. On parle dans ce cas de maintenance curative. [9]

Les objectifs de la maintenance

Il s'agit de réunir les demandes de performance, de fiabilité et économiques tout en respectant les contraintes sur le système et les consommateurs. Plusieurs facteurs sont identifiés comme raison pour laquelle le système doit être maintenu tels qu'un bon niveau de disponibilité ; un vieillissement plus tardif du système ; des investissements plus tardifs ; une bonne connaissance du système ; une compétence élevée du personnel ; une réponse aux changements environnementaux.

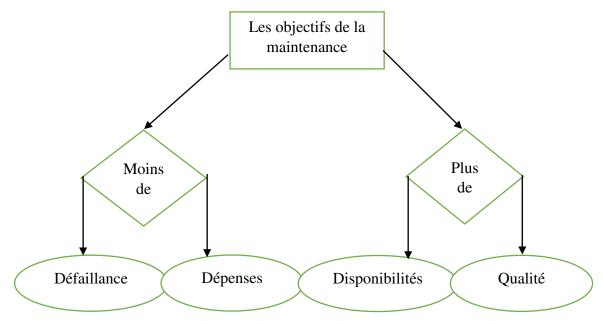


FIGURE 13: Les objectifs de la maintenance

Qualité de service

La qualité de l'électricité s'identifie à la qualité de la tension, plus précisément par l'absence de déviation d'une source de tension parfaitement sinusoïdale (fréquence et amplitude constante). En tenant compte de cette définition, les interruptions d'électricité sont un problème de qualité de tension, du fait qu'elles représentent une réduction de son amplitude à zéro. Ces interruptions ayant une conséquence sur la qualité de service.

A la SONABEL, la qualité de service est appréhendée par quatre indicateurs :

- L'énergie non distribuée
- Le ratio de l'énergie non distribuée sur l'énergie livrée
- Le temps moyen de coupure
- Le nombre de déclenchements généraux (black-out).

La SONABEL, à partir de ces 4 indicateurs fait un point sur la qualité de service rendu sur une période donnée. La notion d'END correspond aux kWh qui auraient été desservis si une coupure n'avait pas eu lieu. Elle peut être calculée pour des coupures fortuites (incident) et pour des coupures programmées (travaux).

III.3 Les défaillances des réseaux de distributions

Dans un système électrique, les réseaux de distributions sont majoritairement responsables des pannes d'électricité. En moyenne sur une période de 5 ans, près de 75 % de toutes les interruptions subies par les abonnées proviennent des troubles du réseau de distribution. Les autres pertes d'approvisionnement découlent des pannes au niveau de la production et du transport [10]. Les principales causes d'interruption de fourniture d'électricité dans un réseau de distribution sont les suivantes : arrêts programmés pour travaux de maintenance, délestage, les indisponibilités non programmés (cas des incidents). Comme déjà mentionné, l'analyse portera sur les incidents.

Quelques définitions

Une défaillance est l'altération ou la cessation de l'aptitude d'un ensemble à accomplir sa ou ses fonctions requises avec les performances définies dans les spécifications techniques. (La norme AFNOR 60010X).

Un défaut : c'est toute perturbation qui engendre des modifications des paramètres électriques d'un ouvrage, il est caractérisé par un phénomène non conforme au fonctionnement normal du réseau et pouvant dans certains cas conduire à un effondrement électrique de celui-ci et la mise en danger de son environnement.

Une panne est l'inaptitude d'un dispositif à accomplir une fonction requise. Dès l'apparition d'un défaut, caractérisée par la cessation du dispositif à accomplir sa fonction, le dispositif sera déclaré en panne.

Incident: il s'agit en général de la coupure d'un départ HTA. Ce départ étant la racine d'un réseau HTA, cette coupure entraine la coupure de plusieurs postes HTA/BT et donc une coupure chez les clients BT raccordés à chacun des postes.

III.3.1 Origine des incidents

Dans notre étude, nous nous focalisons sur les arrêts de fourniture d'électricité pour cause de défaillances, les défaillances affectant la continuité de fourniture sont classées selon 2 origines à savoir les origines externes et internes.

Origine externe

Un défaut peut survenir lors d'un contact d'une phase et un oiseau, un corps étranger ou un engin mécanique, un support accidenté par un véhicule. Un contact accidentel d'un objet métallique avec le conducteur arien lors des travaux à proximité des lignes. La fissuration d'isolateurs en céramiques ou en verre par des débris portés par des vents ou encore des surfaces d'isolateurs avec de forts dépôts de pollution, peuvent entraîner un court-circuit à la terre. Sous l'action du vent, les conducteurs peuvent entrer en contact et entraîner un court-circuit. Les fausses manœuvres au cours des travaux de maintenance. [11]

Les défauts sur les câbles des réseaux souterrains peuvent parfois provenir d'un mauvais confectionnèrent de boîte à câbles, ou d'une mauvaise pose des câbles, Les défauts les plus rencontré sont dû au piochage de câble effectué par les travaux d'autres compagnies. Exemple : les travaux d'aménagement de voies ; travaux d'installation de fibre optiques, travaux de réalisation de caniveaux, travaux de terrassement. [11]

Origines internes

Il s'agit des défaillances intrinsèques aux composants et sont en général causées par :

- Une mauvaise conception du bien (des défauts d'usinage, les dommages dus au transport et au stockage)
- Une mauvaise utilisation du bien (contraintes au-delà des possibilités du composant)
- Des défauts d'entretien
- Usure et le vieillissement des composants

La fiabilité peut être estimée par le taux de défaillance À (t) (exprimé en pannes par heure). Il est présenté par le rapport :

 λ = Nombre de défaillances / Durée d'usage

Ainsi, liée aux risques de défaillance, la vie des équipements se présente en trois phases :

- Phase de jeunesse : λ(t) décroît rapidement. C'est la période de mise en service et de rodage de l'installation. Les défaillances sont dues à des anomalies ou des imperfections de montage. Dans cette phase, seule la maintenance corrective est applicable.
- Phase de maturité : λ(t) est pratiquement constant. C'est la période de vie utile où les défaillances apparaissent sans dégradation préalable visible, pour des causes diverses. Le taux de défaillance est constant ou légèrement croissant, correspondant au rendement optimal de l'équipement. Dans cette phase une maintenance préventive est applicable.
- Phase de vieillesse : λ(t) croît rapidement. Un mode de défaillance prédomine et entraîne une dégradation accélérée : c'est la période d'obsolescence, souvent due à l'usure mécanique, la fatigue, l'érosion ou la corrosion. A un certain point de λ(t) le matériel est hors service.
 Une maintenance préventive conditionnelle peut éventuellement être mise en place. [12]

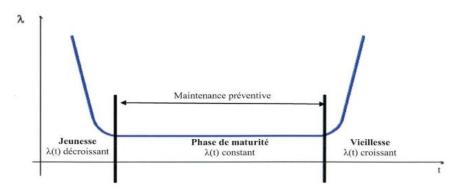


FIGURE 14: Courbe de la variation du taux de défaillance

III.3.2 Classification des interruptions sur incident

Il y a interruption lorsque la valeur de la tension composée est inférieure à 10 % de la tension contractuelle (Uc). En fonction de la durée de ces interruptions, nous pouvons distinguer des :

- Microcoupures (t < 1 s), occasionnées par exemple par un réenclenchement rapide d'un disjoncteur sur un défaut fugitif
- Coupures brèves (1 s < t < 3 min), en général dues à des fonctionnements de protections telles que les réenclenchements lents sur défauts semi-permanents, ou d'automatismes de reprise de service
- Coupures longues (t > 3 min), qui peuvent durer jusqu'à quelques heures, voire plus en cas d'incidents généralisés. [13]

III.3.3 Mode de défaillance de certains composants

Le mode de défaillance est la façon dont un produit, un composant ou un ensemble manifeste une défaillance ou s'écarte de la spécification. Exemple : déformation, vibration, coincement, desserrage, corrosion, fuite. En réseau électrique la conséquence d'un certain nombre de défaillance sur un composant se manifeste par des court-circuits. Les court-circuits concourent à la rupture de la continuité électrique. Le tableau suivant montre les types de défaut occasionnés par certains composants HTA.

TABLEAU 1 : Type de défauts de certains composants

Composants	Type de défaut	
Disjoncteur	Court-circuit permanent	
IACM ou IACT	Ouverture intempestive	
	Défaillance à la sollicitation	
	Défaut fugitif	
Ligne aérienne	Défaut semi-permanent	
	Court-circuit permanent	
Câble souterrain	Court-circuit permanent	
Transformateur HTA/BT		

Commentaire

Les appareils de coupure

- Le contact défectueux sur une ou plusieurs phases d'un organe de coupure peut entrainer des court-circuits permanents
- L'ouverture intempestive d'un disjoncteur du a un mauvais traitement de l'information dans la partie commande.
- La défaillance à la sollicitation du a un blocage mécanique. En cas de blocage en position ouverte d'un disjoncteur, l'alimentation en énergie électrique est arrêtée le long de la ligne.

Transformateur

Un transformateur est un appareil qui est soumis à plusieurs contraintes durant sa période d'utilisation.

- Un transformateur est conçu pour fonctionner sous une certaine densité de courant. Utilisé au-delà de ces capacités il se produit un échauffement. L'échauffement excessif au sein des enroulements du transformateur peut créer un vieillissement accéléré et des défauts électriques.
- L'huile du transformateur perd ces qualités si l'entretien n'est pas bien effectué et entrainer des dysfonctionnements internes.
- Les chocs de foudre de grande ampleur présentent également un facteur pouvant altérer le fonctionnement du transformateur. Les images ci-après montrent quelques exemples d'incident rencontrés sur le réseau de distribution 15 kV de la ville de Ouagadougou :

FIGURE 15 : Quelques incidents rencontrés sur les départs 15 kV de Ouagadougou

III.3.4 Caractérisation des défauts

Nous pouvons caractériser ces défauts en fonction du nombre de conducteurs affectes, de la durée Nous distinguons :

En fonction du nombre de conducteur

Les défauts triphasés : Ce sont les court-circuits entre les trois phases avec ou sans mise à la terre.

Les défauts biphasés : Ce sont les court-circuits entre deux phases ou une phase et le neutre avec ou sans mise à la terre.

Les défauts monophasés : Ce sont des défauts entre une phase et la terre ou une phase et le neutre. Ils génèrent la circulation d'un courant homopolaire. Leur intensité est limitée par la résistance de terre et par la mise à la terre du neutre.

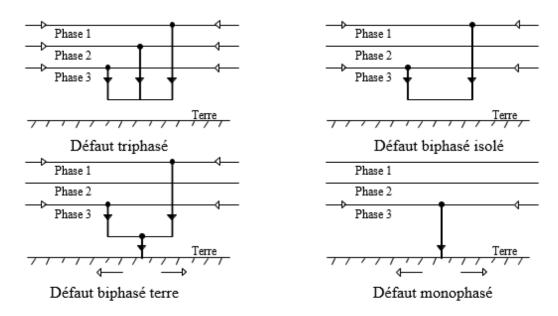


FIGURE 16 : Les types de défaut en fonction du nombre de conducteur

En fonction de la durée

On distingue les:

Défauts auto-extincteurs :

Ils disparaissent naturellement avant le fonctionnement des protections, en une durée inférieure à environ 100 ms.

Défauts fugitifs

Ils nécessitent le fonctionnement des protections et sont éliminés par les automatismes de reprise de service après une ouverture d'environ 0,3 s ou par le disjoncteur shunt. Les réseaux de distribution électriques subissent la plupart part du temps des défauts fugitifs qui sont généralement occasionnés par des phénomènes naturels inattendus tels que les orages, un arbre qui s'approche sous l'effet du vent.

Défauts semi-permanent

Ils nécessitent le fonctionnement des protections et sont éliminés par les automatismes de reprise de service à l'issue du 1er ou du 2ème réenclenchement lent. Exemple : Une branche entre deux conducteurs aériens.

Défauts Permanent

Les composants électriques par leur avarie ou par l'influence des facteurs atmosphériques, environnementaux, travaux et d'exploitation contribuent à l'apparition des incidents HTA. Ils mettent le réseau hors tension et nécessitent l'intervention du personnel d'exploitation, d'abord pour isoler l'équipement défaillant, et ensuite rétablir l'équipement en défaut [14]. Comme exemple nous pouvons cités : rupture de conducteur, Isolateurs cassés ; Conducteur tombé à terre ; Avarie de transformateur ; Support accidenté ; Claquage d'un câble souterrain ; Cellule HT (extrémités de câbles brulés) ; Amorçage de la ligne ; Cosses brulées ; Câbles piochés.

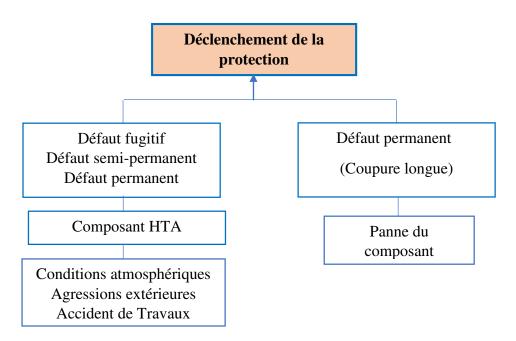


FIGURE 17 : Schéma récapitulatif des défauts occasionnés par les incidents

III.3.5 Système de protection contre les défauts

Un départ HTA dispose d'un équipement de contrôle commande intégrant les protections capables de détecter la grande majorité des courts- circuits.

Une protection se compose d'une chaîne constituée des éléments suivants :

- Capteur de mesure (courant et/ou tension) fournissant les informations de mesure nécessaires à la détection des défauts.
- Relais de protection, chargé de la surveillance permanente de l'état électrique du réseau, jusqu'à l'élaboration des ordres d'élimination des parties défectueuses, et leur commande par le circuit de déclenchement.

 Organe de coupure dont la fonction d'élimination de défaut : disjoncteur, interrupteurfusible, contacteur-fusible.

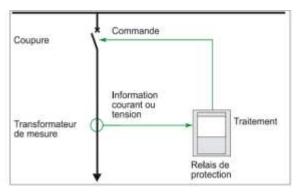


FIGURE 18 : Chaine de protection d'un départ HTA

III.3.6 Cycle de réenclenchement d'un disjoncteur de départ

Un disjoncteur est l'appareil de protection essentiel d'un réseau à haute tension car il est capable d'interrompre un courant de court-circuit et donc d'éviter que le matériel connecté sur le réseau ne soit endommagé.

Cycle rapide

C'est un cycle qui s'exécute automatiquement sur un disjoncteur de poste source ou en tête d'ossature. Ce disjoncteur coupe l'alimentation du réseau en défaut durant environ 300ms

Cycle lent

Ce cycle utilise également un disjoncteur de poste source ou en tête d'ossature. Le temps d'ouverture du disjoncteur est généralement de 15s. Il s'exécute après le cycle rapide (si celuici existe).

Déclenchement définitif

C'est le déclenchement qui intervient à la fin des différents cycles configurés sur le réenclencheur (cycle rapide, 1 ou 2 cycles lents), appelés cycle de réenclenchement. Le disjoncteur reste ouvert jusqu'à l'intervention d'un opérateur. La Figure suivante présente un cycle de réenclenchement avec trois tentatives (le défaut est toujours présent, le disjoncteur s'ouvre). [5]

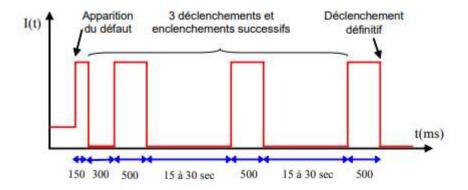


FIGURE 19 : Cycle de réenclenchement d'un disjoncteur de départ

III.3.7 Effet et impact des défaillances

Sur les composants

Les court-circuits perturbent le réseau par le creux de tension qu'il entraine. Au point du défaut se manifeste le plus souvent un arc électrique de forte énergie dont les effets entrainent la destruction du matériels et les liaisons (câblés, lignes) car ils subissent une forte contrainte. La rupture des conducteurs est susceptible de présenter des dangers pour les personnes, les animaux. Les effets occasionnés par les défauts contraints à mettre hors service, par la protection, une partie souvent importante du réseau. Le déclenchement d'une ligne entraînant des reports de charge sur les autres lignes qui deviennent elles-mêmes surchargées et ainsi de suite. Dans certains scenarios un black- out peut apparaitre.

Sur les activités socio-économiques

Les perturbations de réseaux et coupures d'électricité fréquentes entraînent le ralentissement de l'activité économique journalière et impactent sur le quotidien des habitants. Exemple : Arrêt de la chaine de production d'un produit ; arrêt des travaux de services. Les consommateurs se voient obligé dans ces circonstances d'utiliser des groupes de secours.

Le cout financier pour le gestionnaire de réseau

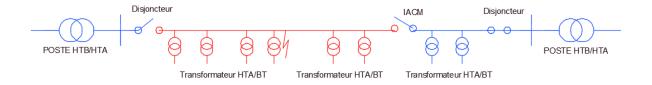
Ces frais se résument en quelques points à savoir les coûts des interventions suite à des pannes, les frais de réparation ou de remplacement des composants défectueux mais aussi les couts d'arrêt de transit d'énergie car les centres de production fonctionnent à perte.

III.4 Gestion du réseau en situation d'incident

Rappel: Un incident est toutes perturbations électriques occasionnant le déclenchement du départ HTA. Ce régime d'incident entraine un arrêt d'alimentation des postes HT/BT raccordés à ce départ, créant ainsi une coupure d'électricité chez les utilisateurs BT.

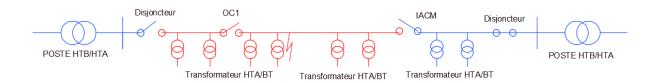
III.4.1 Méthode de recherche de défauts

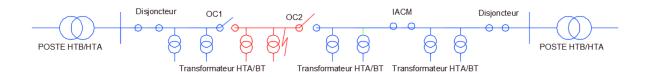
La recherche de défauts est entamée lorsque le disjoncteur du départ déclenche définitivement après plusieurs tentatives de réenclenchement. En général il s'agit de la recherche de défauts permanents. L'interface Homme machine signale la présence de défauts (court-circuit, surcharge, surintensité).

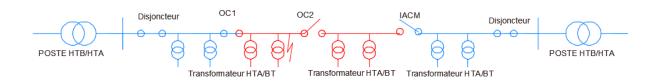

Les agents évaluent approximativement la zone du défaut. Les équipes du service conduite réseaux se rendent sur les lieux et effectuent des manœuvres de localisation et d'isolement du défaut. Les détecteurs de défaut aérien et souterrain contribuent à la localisation rapide du tronçon en défaut. La méthode de recherche est standard aux gestionnaires (annexe 4), il s'agit du type essaie-erreur. Une artère est un ensemble des conducteurs reliant deux sources et un départ est un ensemble de conducteurs reliant une source à un organe de coupure normalement ouvert (cas de la figure suivante avec l'organe nommé IACM).

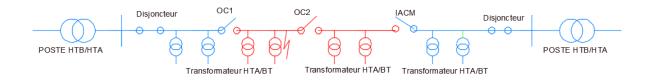
Pour les réseaux aériens

Etape 0 : Le réseau fonctionne normalement avant l'apparition du défaut

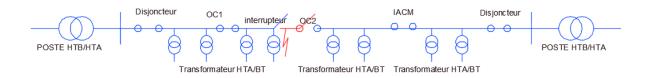

Etape 1 : A l'apparition du défaut sur le départ, le disjoncteur déclenche et tous les postes raccordés sur le même départ HTA sont hors alimentation




Etape 2 : l'équipe de dépannage se rend sur les lieux et procède par dichotomie pour localiser et isoler la zone de défaut, Premièrement on ouvre OC1 (Organe de coupure 1) et on referme le disjoncteur, si le défaut existe sur cette portion du départ le disjoncteur déclenche. Dans le cas contraire les postes situés sur ce tronçon sont alimentés


Etape 3 : Dans la figure suivante, le défaut n'existe pas sur cette section (Disjoncteur et OC1) certains postes sont réalimentés

Etape 4 : la recherche de défaut se poursuit par l'ouverture de OC2 (organe de coupure 2) et fermeture de OC1, le défaut étant situé entre OC1 et OC2 le disjoncteur déclenche et on procède à l'isolement du tronçon


Étape 5 : Isolement du tronçon (OC1 et OC2 ouvert)

Étape 6 : Après avoir localisé le défaut on procède à l'isolement du défaut au niveau de l'organe de coupure le plus proche (interrupteur). Le point de bouclage (IACM) permet la reprise de certains postes.

Etape 7 : Après dépannage on procède à la reconfiguration du système (remise à l'étape 0) [15].

Conclusion : les zones saines en amont du défaut sont alimentées en ouvrant l'organe de coupure en amont du défaut (interrupteur) et en fermant le disjoncteur. Les zones saines en aval du défaut sont alimentées en ouvrant l'organe de coupure en aval du défaut et en fermant le secours.

Les séquences de déconnexion du tronçon en défaut, suivie du rétablissement de l'alimentation peuvent être exécutées manuellement par les opérateurs du réseau ou automatiquement par le biais de fonctions dédiées intégrées dans le système de télé-conduite et de surveillance du réseau. Les opérations manuelles sont généralement longues alors que le rétablissement de l'alimentation automatique peut être exécuté en moins d'une minute par le système de télécommande [11].

Les réseaux souterrains

Les travaux de recherche de défaut souterrain n'ont pas pu être suivis à cause du bref délai passé au service maintenance réseau, néanmoins nous avons pris connaissance des moyens utilisés pour y parvenir. Les câbles étant enterrés, la recherche du défaut commence à partir d'un poste HTA/BT. Des équipements de recherche (mégohmmètre, digiphone) sont aussi utilisés pour localiser le point de défaut.

III.4.2 Les détecteurs de défauts

Des dispositifs de détection de défaut placés sur les lignes HTA émettent des signaux lors d'un défaut et aide grandement l'opérateur à localiser le défaut et ainsi réduire le temps d'indisponibilité. Il s'agit des DDA pour le réseau aérien, pour le réseau souterrain ils sont placés au niveau des postes HTA/BT sous l'appellation DDS.

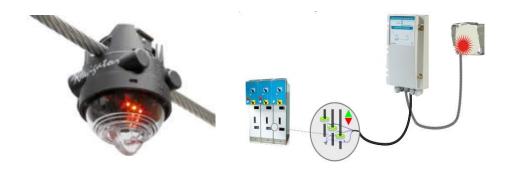


FIGURE 20 : Les détecteurs de défauts

IV. MATERIELS ET METHODES

IV.1 Description des données

Rapport de dépannage des années 2018-2019

C'est le rapport faisant ressortir les défaillances survenues sur les différents départs HTA et les différents travaux de dépannage effectués pour les années 2018 et 2019. Ces informations permettront de mettre en place des données statistiques sur les défaillances dudit réseau de distribution, de faire un suivi de l'évolution de ces défaillances de l'année 2018 à l'année 2019.

Synthèse annuelle d'interruption sur incident 2018-2019

C'est le rapport faisant ressortir le bilan d'interruption sur incident pour chaque départ HTA et les énergies non distribuées correspondantes pour les années 2018 et 2019. Ces informations permettront d'identifier les départs comptabilisant plus d'interruptions sur incident en vue d'apporter nos analyses et de faire une appréciation sur l'évolution de la qualité de service de l'année 2018 à l'année 2019 (Annexe 5).

IV.2 Outils d'analyse

Dans cette partie, une description de chaque outil utilisé effectuée, puis les finalités pour lesquels ils ont été utilisés seront précisées.

Loi de Pareto

Historique

Wilfredo Pareto ingénieur italien, sociologue, économiste, (1848-1923), né à Paris, a montré grâce à un graphique que 80 % des richesses étaient détenues par 20 % de la population. Il a introduit le concept d'efficacité Pareto et a aidé à développer le domaine de la microéconomie Il en a déduit la règle des 85-15 ou 80-20 qui peut s'appliquer à divers domaines.

Description de la méthode

Le **diagramme de Pareto** est un graphique représentant l'importance de différentes causes d'un phénomène. Ce diagramme permet de mettre en évidence les causes les plus importantes sur le nombre total d'effet et ainsi de prendre des mesures ciblées pour améliorer une situation. Dans le domaine de la maintenance la loi de Pareto est perçue comme un outil d'aide à la décision.

Etape de construction du diagramme de Pareto

Ce diagramme se présente sous la forme d'une série de colonnes triées par ordre décroissant. Elles sont généralement accompagnées d'une courbe des valeurs cumulées de toutes les colonnes [16]. Ce diagramme est construit en plusieurs étapes :

- ✓ Recueillir les données
- ✓ Placer les valeurs dans un tableau
- ✓ Trier les valeurs par ordre décroissant
- ✓ Calculer les pourcentages cumulés
- ✓ Établir le graphique

Cette méthode fut utilisée pour mettre en évidence les défaillances matérielles par groupe de priorité et identifier les ouvrages HTA nécessitant des actions de maintenance à court terme

Méthode AMDEC

Historique

L'AMDEC (Analyse des modes de défaillances, de leurs effets et de leur criticité) ou FMEA (Failure modes and effects analysis) trouve son origine dans les années 1950. Elle consistait à dresser la liste des composants d'un produit et à cumuler des informations sur les modes de défaillance, leur fréquence et leurs conséquences. Utilisée exclusivement aux USA et au Japon

pour atteindre les objectifs de fiabilité et de sécurité des produits de haute technicité (armement,

avionique, spatial).

Description de la méthode

L'AMDEC permet d'identifier et de hiérarchiser les modes potentiels de défaillance

susceptibles de se produire sur un équipement, d'évaluer leurs impacts sur la sureté de

fonctionnement. Quand toutes ces informations sont réunies, une grille est dressée pour déduire

une valeur de la criticité du mode de défaillance. Si la criticité est jugée non acceptable, il est

alors impératif de définir des actions correctives pour pouvoir corriger la gravité des effets (si

cela est effectivement possible) et de modifier sa fréquence d'apparition. A l'issue de l'analyse

AMDEC, un tableau est conçu spécialement pour le système étudié et préparés en fonction des

objectifs recherchés. [17], [18]

Les étapes de la méthode AMDEC sont les suivantes :

Etape 1 : Analyse fonctionnelle

Les éléments du système doivent être décortiqués. Il s'agit de montrer à qui il sert, de présenter

les fonctions qu'il doit remplir de montrer comment il fonctionne.

Etape 2 : Réaliser l'analyse qualitative des défaillances

Il s'agit de faire une recherche des modes de défaillance des composants et une étude de la

gravité de leurs effets

Étape 3 : Évaluation de la criticité

La criticité permet de quantifier la notion de risque. La cotation de la criticité permet une

hiérarchisation des différentes défaillances et donc de planifier les recherches d'amélioration

en commençant par celles qui ont la criticité la plus élevée.

Criticité = Fréquence × Gravité

Fréquence : fréquence d'apparition du couple mode-cause

Gravité: gravité des conséquences

TABLEAU 2 : Exemple de critère d'évaluation de la criticité

1	Sans dommage : défaillance mineure ne provoquant pas d'arrêt de production et aucune dégradation notable du matériel.	3	Important: défaillance provoquant un arrêt significatif et nécessitant une intervention importante.
2	Moyenne : défaillance provoquant un arrêt de la production et nécessitant une intervention mineure.	4	Catastrophique : défaillance provoquant un arrêt impliquant des problèmes majeurs.
1	Fréquence d'occurrence F: Probabilité d'app	parit	ion d'une cause ou d'une défaillance.
1	Exceptionnelle : la possibilité d'une défaillance est pratiquement inexistante.	3	Certaine: il y a eu traditionnellement des défaillances dans le passé.
2	Rare: une défaillance occasionnelle s'est déjà	4	<u>Très fréquente</u> : il est presque certain que la défaillance se produira souvent

Étape 4 : Définir des actions correctives

Après le classement des différentes modes de défaillances potentielles d'après leurs indices de criticité, il sera question d'entreprendre des actions correctives à mener pour diminuer le coefficient de criticité des défaillances. La partie suivante montre les résultats obtenus après traitement des données collectées.

Le traitement des données recueillies ont donné des résultats qui seront analysé dans la partie ci-après.

V. RESULTATS ET DISCUSSIONS

Hypothèse d'analyse

Le régime d'incident correspond au régime pendant lequel une défaillance sur un composant HTA entraine une indisponibilité du système électrique jusqu'à réparation. Nous partons de l'hypothèse selon laquelle un certain nombre de défaillances sur le réseau peut entrainer un arrêt total du système. La suite de notre travail consistera à répertorier les origines de ces défaillances sur le réseau de distribution durant les années 2018 à 2019. Le traitement des données recueillies ont donné les résultats suivants :

TABLEAU 3 : Répartition des origines des défaillances de l'année 2018 à 2019

Année	Défaillances matérielles	Conditions atmosphérique	Élagage insuffisant	Accident de tiers	Total
2018	227	64	35	11	337
2019	163	49	21	14	247
2018-2019	390	113	56	25	584

V.1 Répartition des défaillances

A l'année 2018

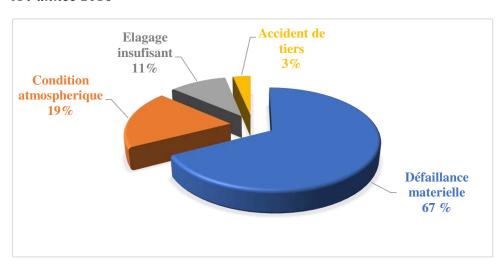


FIGURE 21 : Répartition des défaillances par origine à l'année 2018

Observations

Avec une proportion de 67%, les défaillances matérielles sont les principales causes des incidents HTA en 2018 ; Les conditions atmosphériques en deuxième position avec 19 % et les chutes d'arbres sur les conducteurs représentent 11%.

Le graphe suivant permet d'avoir une idée plus claire sur les défaillances matérielles :

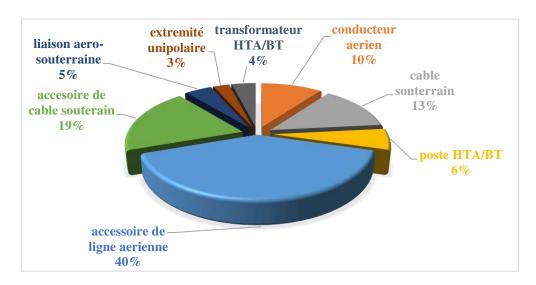


FIGURE 22 : Répartition des défaillances matérielles par type d'ouvrage

Les défaillances matérielles se décomposent de la manière suivante :

50% pour le réseau HTA aérien et leurs accessoires

32% pour les câbles souterrains et leurs accessoires

6% pour les postes HTA/BT

5% pour les liaisons aéro-souterraines

4% pour les transformateurs HTA/BT

Sur 41 défauts souterrains on note 30 comme défaillances matérielles soit 73% et 11 pour accident de tiers soit 27 %.

A l'année 2019

FIGURE 23 : Répartition des défaillances par origine à l'année 2019

Observations

Les défaillances matérielles restent toujours le principal facteur d'interruption de fourniture d'électricité, Ensuite les conditions atmosphériques, la présence d'arbre à proximité des conducteurs et en dernière position les accidents de tiers.

Répartition des défaillances matérielles par type d'ouvrage :

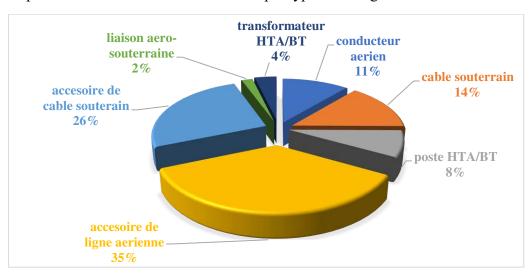


FIGURE 24 : Répartition des défaillances matérielles par type d'ouvrage

Les défaillances matérielles se décomposent de la manière suivante :

- 46 % pour le réseau HTA aérien et ses accessoires
- 40% pour les câbles souterrains et leurs accessoires
- 8% pour les postes HTA/BT
- 2% pour les liaisons aéro-souterraines
- 4 % pour les transformateurs HTA/BT

Sur 37 défauts souterrains on note 23 comme défaillances matérielles soit 52% et 14 pour accident de tiers soit 37%.

V.2 Evolution des défaillances de 2018 à 2019

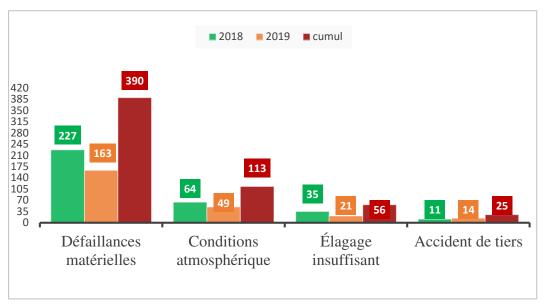


FIGURE 25 : Graphe sur l'évolution des origines des défaillances de 2018 à 2019

Observations

- Les défaillances matérielles au nombre de 227 en 2018 ont baissé de 28,19%
- Les défaillances pour condition atmosphérique ont baissé de 23,44%
- La catégorie élagage insuffisante également en baisse de 40%
- Une hausse de 28% pour les accidents tiers

Le graphe des cumuls indique la problématique selon laquelle le réseau de distribution 15 kV de Ouaga 2 ne fait que subir des défaillances au fils des années. L'enjeu est de pouvoir assurer un niveau de fiabilité permettant une évolution moins rapide des défaillances sur le réseau de distribution. En effet lorsqu'il y a plus de défaillances sur le réseau, la probabilité qu'il y est interruption est élevée et le réseau devient de plus en plus fragile. Au fils du temps la qualité de service devient médiocre si des précautions ne sont pas prises. Il faut donc chercher des moyens permettant d'atténuer ou d'éviter un certain nombre de ces défaillances. A titre indicatif, l'énergie non distribuée pour cause d'incident sur le réseau de distribution Ouaga 2 était de 671 539 kWh en 2018 contre 565 563 kWh en 2019 (annexe 5).

On constate donc une légère amélioration de la qualité de service. Cela s'explique par la baisse des défaillances que l'on a pu observer au cours de l'année 2019.

TABLEAU 4 : Point sur les défaillances survenues sur le réseau souterrain

Année	Défaillance matérielle	Accident de tiers
2019	23	14
2018	30	11
2018 - 2019	53	25
	67,95%	32,05%

Sur 78 défauts souterrains survenus sur ces deux années, les accidents tiers représentent 32.05% tandis que les défaillances matérielles représentent 67.95%. Au Burkina Faso les catastrophes naturelles sont rares, néanmoins les périodes chaudes ne sont pas à négliger car cela peut avoir une influence sur le fonctionnement des câbles souterrains. La figure suivante montre le bilan définitif sur les incidents au cours de la période 2018 à 2019.



FIGURE 26 : Bilan global de la répartition des défaillances par origine

Les analyses montrent que la défectuosité matérielle (67%) représente le premier facteur d'incident sur le réseau de distribution 15 kV du poste Ouaga 2. Bien que les départs 15 kV de Ouaga 2 soient majoritairement aérien on constate qu'il y a autant de pannes en aérien qu'en souterrain. Les pannes au niveau du réseau aérien sont en grande partie dû aux accessoires (isolateurs, attache, cosse, parafoudre, IACM).

V.3 Analyse des incidents par départ HTA

La figure suivante met en évidence les départs comptabilisant plus d'incident au cours des années 2018 et 2019.

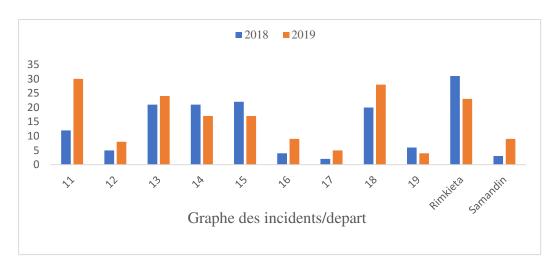


FIGURE 27 : Graphe des incidents par départ HTA

Analyse du graphe

Les départs comptabilisant moins d'incident sur ces 2 années sont respectivement les départs 12, 16, 17, 19 et Samadin. Les départs 13, 14, 15,18, et Riemkieta comptabilisent plus d'incident et reste assez constant au cours de ces deux années. En 2019 le départ 11 comptabilise plus d'incident qu'en 2018. Nous considérons que les départs 13, 14, 15,18, Riemkieta doivent faire l'objet de suivi pour réduire les interruptions fréquentes que l'on observe.

Observation sur les départs devant faire l'objet de suivi

- On remarque que les départs sont majoritairement des départs aériens. Il est probable que certains tronçons de ces départs sont vulnérables aux conditions atmosphériques ou que la politique de maintenance n'est pas adaptée
- Les sections de conducteurs sont réduites comprises entre (54,6 mm² et 75,5 mm²)
- Les départs 13,14, 15,18 sont des anciens départs datant de la création du poste source dans les années 1980. Certains composants de ces départs sont donc vétustes car la durée moyenne des ouvrages HTA est en moyenne 40 ans

- Le départ 13 est le départ qui alimente le centre-ville. Il alimente donc un grand nombre de consommateurs. Les interruptions constatées à ce niveau peuvent être causés par la forte demande.
- D'après une étude récente sur la stabilité statique du réseau de distribution 15 kV du poste Ouaga 2, il a été démontré que le réseau de distribution 15 kV de Ouaga 2 ne pourrait pas tenir de 2017 à 2020 car certaines lignes des départs 18, 13, 14, 15,16 et Riemkieta feront cas d'instabilité du fait de la surcharge. De cette étude il a été proposé de mener des activités de renforcement de ces départs [19].

A partir des observations faites, un conducteur aérien, vieillissant de faible section et surchargé présente des risques d'apparition d'incident. Par la suite, une étude détaillée sera effectuée sur les défaillances grâce aux outils d'aide au diagnostic tels que l'outil PARETO et l'analyse AMDEC.

V.4 Classification des défaillances des ouvrages HTA

Objectifs recherchés

L'application de la méthode Pareto permettra d'optimiser nos actions en ne s'intéressant qu'aux éléments qui sont responsables des problèmes de non-qualité. Cette analyse permettra d'avoir une orientation des stratégies de maintenance et un gain de temps puisque seuls les problèmes majeurs sont résolus. Nous utiliserons la méthode ABC ou diagramme de Pareto en vue de mettre en évidence la majorité des composants responsables des incidents sur le réseau de distribution 15 kV de Ouaga 2. On rappelle que l'analyse est faite sur les années 2018 à 2019. Les résultats sont disponibles dans le tableau suivant :

TABLEAU 5 : Résultats de l'outil Pareto

Composants	Bilan des pannes	Cumul	% cumulé
B.de jonction	86	86	23%
Isolateur	60	146	38%
câble souterrain	53	199	52%
conducteur aérien	41	240	63%
attache défaite	20	260	68%
cosse brulé	17	277	73%
Parafoudre	16	293	77%
Transfo HTA/BT	15	308	81%
liaison aéro-souterraine	15	323	85%
cellule HTA	14	337	88%
support HTA	13	350	92%
Fusibles HTA	11	361	95%
IACM	9	370	97%
Extrémités Unipolaires	6	376	99%
DPA	5	381	100%

A partir du tableau ci-dessus, le diagramme de Pareto a pu être établi :

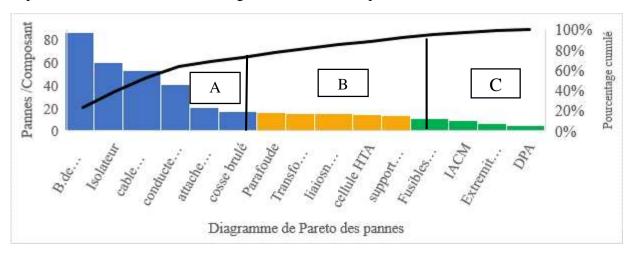


FIGURE 28 : Diagramme de Pareto des pannes

Analyse du de la courbe PARETO

Zone A

Les composants HTA (boite de jonction, isolateur, câble souterrain, conducteur aérien, attache, et cosse) ont une fréquence de pannes élevée et sont responsables de près de 73% des défaillances matérielles. C'est sur ces 6 éléments dont il faut focaliser les efforts en mettant en place des actions correctives. La mise en place d'actions correctives nécessite une analyse approfondie des causes des dysfonctionnements constatés.

Zone B

Les éléments (parafoudre, transformateur HTA/BT, liaison auro-souterraine, cellule HTA, support HTA) représentent 19% des défaillances matérielles. Ce sont des éléments donc qui posent moyennement des soucis de dépannages.

Zone C

Les éléments (fusibles HTA, IACM, extrémités unipolaires, DPA) sont responsables de 8% des défaillances matérielles. Ces éléments tombent rarement en panne. Des actions correctives sont nécessaires pour les éléments de la zone A. Des actions préventives doivent être prises pour la zone B et C (la zone B un peu plus en priorité).

Dans la suite du travail nous ferons une analyse qualitative afin d'identifier les causes des dysfonctionnements sur ces éléments, ce qui permettra de prévenir et réduire leur apparition. Seul la zone A fera l'objet de cette analyse.

V.5 Analyse AMDEC

Objectifs recherchés

La méthode AMDEC méthode fut utilisée pour rechercher de manière exhaustive les différentes défaillances qui peuvent survenir sur un équipement et évaluer les risques qu'elles ont sur le fonctionnement du système électrique. Cela va permettre d'avoir une idée sur les précautions à prendre pour réduire ou éviter (dans la mesure du possible) les effets indésirables de la défaillance et assurer un certain niveau de sureté de fonctionnement.

Conduite du diagnostic

Elle nécessite un grand nombre d'informations recueilli :

- Auprès des agents de terrain qui ont l'expérience sur les manifestations des symptômes
- Dans les documents traitant des défaillances des composants

Analyse fonctionnelle des composants

Boite de jonction : Connexion et liaison des câbles souterrains

Isolateur : Composant permettant d'isoler les conducteurs des masses métalliques (support HTA)

Câbles souterrain : permet le transit de l'énergie électrique

Conducteur Aérien : permet le transit de l'énergie électrique

Attache : permet la fixation mecanique des conducteurs aériens autour des isolateurs

Cosse : c'est un accessoire indispensable pour la connexion des conducteurs generalement rencontré au niveau des liaison aerosouterraines

FIGURE 29 : Analyse fonctionnelle de la zone A

Tableau AMDEC

L'origine de la défaillance est vue comme une cause première de la défaillance. La cause première est celle qui entraine une et/ou des causes secondes. Les causes secondent à leurs tours représentent le mode défaillance. Une défaillance est évaluée en fonction de sa récurrence et sa gravité. Chaque niveau de gravité attribué à un mode de défaillance à une influence sur le transit de l'énergie électrique (déclenchement du disjoncteur de la ligne) et sur le composant.

Un certain nombre d'information n'étant pas disponible dans l'historique des pannes sur la fréquence des modes de défaillances, la méthode AMDE a été applique. Cette méthode est une variante de la méthode AMDEC, au même titre que l'AMDEC, l'AMDE (analyse des modes de défaillances et leurs effets) est définie comme une méthode d'analyse des risques permettant d'identifier les modes de défaillances en vue d'éliminer ou d'en minimiser ces conséquences [20]. Dans le cadre de notre étude, la criticité C est égale à la gravité (C = G).

Le tableau suivant présente la grille d'évaluation établie dans le contexte d'étude :

TABLEAU 6 : Grille d'évaluation de la criticité dans le contexte d'étude

Niveau de gravité	Définition du niveau	Effet sur le système électrique lorsque la défaillance se produit
1	Défaillance mineure	Risque d'arrêt moins élevé
2	Défaillance moyenne	Risque d'arrêt élevé
3	Défaillance catastrophique	Risque d'arrêt très élevé

L'application de cette démarche nous a permis d'obtenir les tableaux AMDEC (ci-dessous) pour chaque composant rentrant dans le cadre de notre analyse

TABLEAU 7: Tableau AMDEC sur les isolateurs

Origine de la défaillance	Mode de défaillance	Gravité
Influence atmosphérique (Vent, orage, pluie, poussière, foudre)	Isolateur cassé sous l'effet des surtensions atmosphériques échauffement Fort dépôt de pollution	3
Vieillissement	Dégradation naturelle, fissures	2

TABLEAU 8 : Tableau AMDEC sur les boites de jonction

Origine de la défaillance	Mode de défaillance	Gravité
Conditions externes Nature du sol (Sols chimiques, Mouvement de terrain)	Infiltration de parasites (termites)	2
Surcharge	Contrainte thermique Détérioration des jonctions	3
Vieillissement	Corrosion des contacts Echauffement au point de contact	2
Facteur humain (mauvais montage)	Desserrage des points de connexions Mauvais contact	2
Accident de tiers	Déformation, fissures, rupture des contacts	3

TABLEAU 9 : Tableau AMDEC sur les conducteurs aériens

Origine de la défaillance	Mode de défaillance	Gravité
Influence externe et atmosphérique (Orage, pluie, chute d'arbre)	Balancement des conducteurs Augmentation de la flèche	3
Vieillissement	Fragilité face aux aléas climatiques Taux d'incident du tronçon affecté élevé	3
Surcharge	Echauffement excessif Allongement des conducteurs	2
Facteur humain	Fils attache défait Décrochage des conducteurs Court-circuit	3

TABLEAU 10 : Tableau AMDEC sur les câbles souterrains

Origine de la défaillance	Mode de défaillance	Gravité
Conditions externes Nature du sol (Sols chimiques, Mouvement de terrain	Dégradation naturelle du câble Infiltration de corps étranger	2
Surcharge	Sur échauffement Court-circuit Claquage	3
Vieillissement	Usure progressive des propriétés du câble Infiltration de parasites	2
Accident de tiers	Déformation Rupture du câble	3

Analyse des résultats

Suite à l'analyse des risques, on a pu hiérarchiser les éléments selon leurs criticités. On remarque que pour une même cause de défaillance les risques diffèrent. Cela s'explique par le fait que pour une même cause de défaillance, chaque équipement à son dysfonctionnement propre qui peut être plus ou moins dangereux pour le système.

La valeur 3 est celle représentant le seuil de criticité. Les facteurs atteignant le seuil de criticité 3 doivent faire l'objet d'une prise en charge à travers des actions correctives. Ces actions correctives feront partie de la mise en œuvre d'une stratégie de maintenance en réponse aux évènements indésirables. Les événements indésirables dont il est question concernent les dommages occasionnés par la panne et l'arrêt du système électrique. Les niveaux de criticité 2 ne sont pas à négliger car ils sont susceptibles de créer un désagrément à long terme.

Observations

Toutes les défaillances ont une criticité supérieure à 1. Ce qui nous permet de dire qu'en principe tous les facteurs de dysfonctionnement évoqués doivent faire l'objet de préoccupation car ils sont tous néfastes au bon fonctionnement des ouvrages ainsi qu'au système électrique. Il s'agit entre autres des surcharges, du vieillissement, des accidents de tiers, du facteur humain, et de l'influence atmosphérique. En effet, les différents modes de défaillance ont un degré de gravité variable en fonction de l'importance des dommages qu'ils créent et de leurs répercussions sur le système électrique. Exemple : Une surcharge sur les conducteurs aériens est moins dangereuse qu'une surcharge dans un câble souterrain [21]. Certaines modes de défaillances ont une évolution lente et ne mettent pas en danger immédiatement le système mais il est possible de prendre des précautions. Exemple : dégradation et fissures des isolateurs en verre dû au vieillissement.

L'AMDEC est tributaire d'une bonne analyse fonctionnelle et s'avère longue et fastidieuse pour des systèmes complexes. L'application de cet outil a permis d'évaluer l'impact de certaines défaillances sur le système. Il existe d'autres outils d'analyse des risques tels que l'APR (analyse préliminaire des risques) ; HAZOP (hasard and operability study) ; Arbre des défaillances. Chaque méthode présente ses avantages et ses limites.

V.6 Propositions d'amélioration de la fiabilité des ouvrages HTA

Avant d'entamer la partie solution, une brève description des travaux de maintenance effectués à la SONABEL est nécessaire. La SONABEL dispose d'un service de maintenance nommé SMRT (service maintenance réseau et travaux) est le service qui s'assure du bon fonctionnement des ouvrages électriques en réalisant des travaux de maintenance préventive, corrective s'il s'avère nécessaire.

Malgré la courte durée de notre stage dans ce service, une description des travaux réalisés sera effectuée, mais aussi à travers nos analyses, des solutions pour améliorer la stratégie de maintenance seront proposées.

Maintenance Préventive

Il s'agit d'effectuer selon un programme de maintenance bien défini de visiter les lignes aériennes, d'identifier tous anomalies sur un ouvrage susceptible de créer des perturbations sur les réseaux électriques. Cette maintenance est effectuée afin d'éviter l'arrêt du système. Exemple : travaux d'élagage, mesure des intensités sur les lignes, des transformateurs, extraction des corps étrangers, entretien des postes, remplacement des isolateurs dégradés, vérification de l'état des supports. La division thermographie participe également aux travaux de maintenance préventive suivant un planning annuel de visite de ligne. Les agents ont pour tâche de rechercher et détecter sur les lignes aériennes à l'aide d'outils de control les points chauds du réseau (point de contact des composants). En fonction de la valeur de la température indiquée les agents jugent la nécessité d'intervenir sur l'ouvrage en question.

Maintenance corrective

Ce type de maintenance est appliqué lorsqu'il y a arrêt du système électrique sur incident. Il s'agit de dépanner, réparer ou changer définitive les éléments défectueux. Exemple : parafoudre grillées, isolateurs cassés, fusibles grillés, réparation de conducteur, remplacement de transformateurs défectueux, ouverture intempestive d'un disjoncteur.

FIGURE 30 : Illustration des travaux de maintenance à la SONABEL

Insuffisance de la maintenance :

 Une majeure partie des travaux de maintenance en aérien est beaucoup basé sur la maintenance corrective.

- Le manque d'outillage qui ralentisse les travaux de maintenance
- Insuffisance de recyclage des équipements vétustes
- Personnel insuffisant

La ressource humaine du service maintenance doit s'occuper de tout le réseau de distribution de la ville de Ouagadougou. Il se trouve très souvent débordés et par conséquent des reports de travaux sont effectués.

Concept de fiabilité

Le graphique ci-dessous est tiré dans un document parlant de la thématique de la fiabilité. Il s'agit d'un passage qui décrit les actions que l'on peut entreprendre pour accroitre la fiabilité d'un réseau électrique.

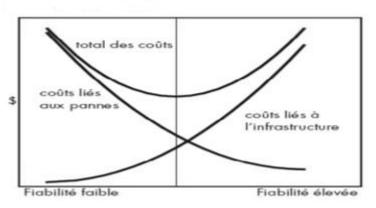


FIGURE 31 : Graphe de la fonction fiabilité

Il est ressorti de cette étude qu'il existe une relation entre les investissements à réaliser et l'atteinte d'un certain niveau de fiabilité. La figure ci-dessus montre qu'une mauvaise fiabilité signifie plus de défaillances et plus de pannes d'électricité. Cela engendre des pertes financières (FCFA/kWh non distribué), des couts de maintenance élevés pour le gestionnaire de réseau, et des retombés économiques et sociales comme mentionnés dans les chapitres précédents. Plus on améliore la fiabilité, plus on tire profit des investissements réalisés, car les pannes deviennent moins fréquentes [10].

La rénovation est un niveau de la fonction de maintenance. Elle englobe les travaux de reconstruction et de modernisation. La reconstruction consiste à une remise en état qui impose le remplacement de pièces vitales par des pièces d'origine ou des pièces neuves équivalentes. La modernisation consiste au remplacement d'équipements, accessoires et appareils, grâce à des perfectionnements techniques n'existant pas sur le bien d'origine, une amélioration de

l'aptitude à l'emploi du bien [9]. En intégrant ces pratiques dans la stratégie de maintenance, on assure la disponibilité de nos ouvrages mais aussi la qualité de service rendu.

A l'issue des résultats obtenus, des difficultés auxquelles la SONABEL est confrontée, et à travers nos diverses recherches sur le concept de fiabilité, il en ressort que plusieurs actions peuvent être mené pour réduire la criticité des défaillances et d'accroitre la fiabilité des ouvrages HTA.

V.6.1 Propositions pour la ZONE A

Les éléments constitutifs de la zone A doivent être traité en priorité. Pour ces éléments, les actions suivantes sont préconisées :

TABLEAU 11: Propositions de solutions pour la zone A

Composants	Actions à envisager	Commentaire
	Répertorier et renforcer	
	l'ensemble des tronçons	
	incidentogène de faibles	Ces suggestions vont
	sections	permettre de réduire la
Conducteur aérien	Procéder à des travaux	vulnérabilité de ces tronçons
	d'enfouissement de certains	face au vieillissement, aux
	tronçons aériens fragile dans	surcharges et aux aléas
	la mesure du possible	climatiques
	Accroitre les travaux	
	d'élagage	
	S'assurer de la bonne mise en	
	œuvre de ces équipements	Ces actions vont réduire les
Cosses et Attaches	(Bon serrage des cosses,	faux contacts et les court-
	des attaches. etc.)	circuits
	Remplacement des isolateurs	Ces isolateurs sont beaucoup
Isolateur	en verre par des isolateurs	plus résistants aux conditions
	composites	externes

	Renforcement des tronçons vieillissants et incidentogène	Cela va permette de résister aux contraintes thermiques dus aux surcharges, au vieillissement
Câble souterrain et accessoires	Surveiller les travaux et sensibiliser les entreprises tierces du respect des alertes (grillage avertisseur en souterrain)	Cela permettra d'éviter les dommages sur les câbles électriques et accessoires souterrains

- ➤ Dans cette politique de gestion des ouvrages il est nécessaire de mettre l'accent sur les départs 13, 14, 15,18, et Riemkieta et disposer d'une base de données sur les tronçons de ligne en contrainte
- Création de départs relayeurs à ceux surchargés

V.6.2 Propositions pour la ZONE B

Les infrastructures constituantes la zone B représente le deuxième groupe des défaillances matérielles. Bien que cela représente que 19% des défaillances matérielles des actions peuvent être effectué pour prévenir les potentiels dysfonctionnements. Les solutions proposées sont les suivant :

TABLEAU 12: Propositions de solutions pour la zone B

Composants	Actions à envisager	Commentaire
Transformateur	Vérifier régulièrement l'état de charge des transformateurs Installer des transformateurs en secours à ceux surchargés	Ces actions permettront de prévenir l'échauffement excessif dû aux surcharges,
Poste HTA/BT	Assurer la régularité des entretiens et effectué des contrôles de terre	les avaries de composants

Support, Parafoudre	Intégrer une bonne gestion des stocks	Cela permettra d'assurer la sécurité des composants et personnes
Liaison aéro-souterraine	Bonne mis en œuvre des cosses	Une meilleure mise en œuvre des cosses permettra de réduire les défaillances au niveau des liaisons aéro- souterraine

V.6.3 Propositions pour la ZONE C

Vu le faible taux de défaillance de ces équipements (fusibles, IACM, extrémités de câbles, DPA), une maintenance corrective peut être appliquée.

Evaluation de l'importance d'une politique de maintenance : Estimation financière

Sur le réseau de distribution 15 kV de OUAGA 2, l'énergie non distribuée pour cause d'incidents à l'année 2018 valait 671 539 kWh, en 2019 elle est estimée à 565 563 kWh. Pour un cout du kWh estimé à 100 FCFA, les pertes financières pour la SONABEL valent 67 153 900 FCFA en 2018, tandis qu'en 2019 elles valent 56 556 300 FCFA. La réduction de 15,78% de l'année 2018 à 2019 s'explique par l'amélioration de la fiabilité à l'année 2019 du a des travaux d'élagage et un suivi particulier de certains départs HTA.

Les solutions proposées vont en effet participer à l'amélioration de la fiabilité du réseau en réduisant le nombre de défaillances. Cela permettra d'éviter les pertes pour la SONABEL et pour l'économie nationale.

VI. CONCLUSION ET PERSPECTIVES

Dans ce présent mémoire, le diagnostic des défaillances sur le réseau de distribution 15 kV du poste de Ouaga 2 au cours des années 2018 et 2019 a été réalisé. L'objectif de cette étude était de proposer des solutions adéquates permettant d'accroître la fiabilité, la disponibilité des ouvrages HTA en vue d'éviter les interruptions fréquentes et les conséquences sociaux-économiques. Au cours de cette étude, les notions et enjeu de sureté de fonctionnement ont été évoqués, et les défaillances auxquelles les gestionnaires de réseau sont confrontés ont été rappelées.

Apres la mise en place de données statistiques sur les défaillances, il est ressorti que le type de défaillance qui pose beaucoup plus problème est la défectuosité matérielle à hauteur de 67%. La baisse de défaillance de l'année 2018 à l'année 2019 pour élagage insuffisant et défaillances matérielles a montré l'importance de la mise en place d'une politique de maintenance car l'énergie non distribuée est passée de 671 539 kWh à 565 563 kWh.

L'outil PARETO quant à lui, a permis de classer les défaillances matérielles en 3 groupes de priorité (zone A, zone B, zone C), La zone A occupant 73% des défaillances matérielles. Par la suite, il fallait pousser les recherches en vue d'apporter des améliorations. C'est ainsi que l'analyse AMDEC a été effectuée sur ces ouvrages jugés critiques (zone A). Bien que fastidieux, cet outil a permis de prendre connaissance des dysfonctionnements auquel un certain nombre d'ouvrage HTA peut être exposé et les répercussions sur le fonctionnement électrique. Dans l'optique de réduire les effets indésirables de ces dysfonctionnements, des solutions techniques à prendre en compte dans la stratégie de fiabilisation des ouvrages HTA ont été proposées. Il a été également préconisé de mettre l'accent sur les départs aériens tels que les départs 13, 14, 15, 18 et Riemkieta car ils comptabilisent plus d'incident durant les années 2018 et 2019. Une étude sur la faisabilité technique et économique est nécessaire pour compléter l'étude.

En perspective, il serait judicieux d'effectuer régulièrement des études de modélisation sur les réseaux de distribution 15 kV pour anticiper l'augmentation des charges et procéder à des travaux de renforcements des ouvrages HTA, de disposer de plus de point de bouclage pour la reprise d'un grand nombre de consommateurs, effectuer plus de maintenance préventive du réseau aérien, procéder à des travaux d'installation de détecteurs de défauts pour la localisation rapide des défauts.

VII. BIBLIOGRAPHIE

[1] « 2575-erdf-description-physique-du-reseau-public.pdf ». Consulté le : 20 mars, 2020. [En ligne]. Disponible sur :

https://eduscol.education.fr/sti/sites/eduscol.education.fr.sti/files/ressources/techniques/2575/2575-erdf-description-physique-du-reseau-public.pdf.

- [2] M. Megdiche, « Sûreté de fonctionnement des réseaux de distribution en présence de production décentralisée », p. 241. Décembre 2004.
- [3] SONABEL « Rapport d'activité Service conduite réseau (SCR) 2018 », p.5, 2018.
- [4] « *SONABEL Présentation* ». http://www.sonabel.bf/index.php/nous-connaitre/presentation (Consulté le 17 mars, 2020).
- [5] C. D. Pham, « Détection et localisation de défauts dans les réseaux de distribution HTA en présence de génération d'énergie dispersée », p. 190. Septembre 2005.
- [6] M.-C. Alvarez-Hérault, « Architectures des réseaux de distribution du futur en présence de production décentralisée », p. 199. Décembre 2009.
- [7] Egor Gladkikh, « *Optimisation de l'architecture des réseaux de distribution d'énergie électrique* », p. 161. Juin 2015. Disponible sur : https://tel.archives-ouvertes.fr/tel-00339260/document
- [8] A. B. Ocnasu, « Evaluation de la sûreté de fonctionnement des réseaux de distribution par la simulation Monte Carlo : application à des stratégies de maintenance optimales », p. 149. Octobre 2008.
- [9] « Les formes de Maintenance ». http://tpmattitude.fr/methodes.html (Consulté le 29 mars, 2020).
- [10] « Réseaux Bayésiens Dynamiques : Application aux réseaux électriques ».

Consulté le : 17 mars, 2020. [En ligne]. Disponible sur :

http://www.univ-usto.dz/theses_en_ligne/doc_num.php?explnum_id=581.

[11] « Quelques aspects pratiques des réseaux de distribution MT — Guide de l'Installation Electrique ».

https://fr.electrical-

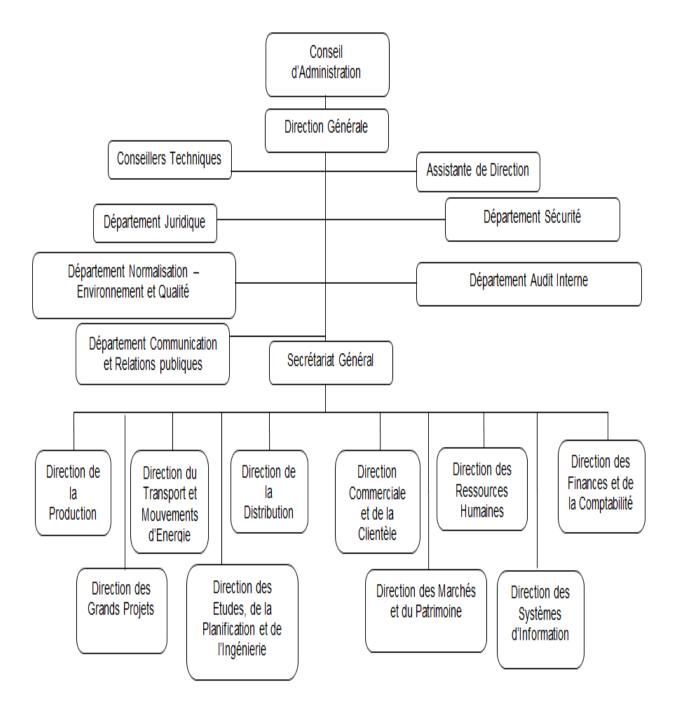
installation.org/frwiki/Quelques aspects pratiques des r%C3%A9seaux de distribution MT (Consulté le 17 mars, 2020).

[12] J. Llaurens, « *Mise en place d'un plan de maintenance préventive sur un site de production pharmaceutique* », p. 159. Février 2011. Disponible sur : https://dumas.ccsd.cnrs.fr/file/index/docid/1059490/filename/2011GRE17006_llaurens_jeremy_1_D_SO.pdf

[13] « Les_coupures_sur_incidents.pdf ». Consulté le : 18 mars, 2020. [En ligne]. Disponible sur :

http://www.srd-energies.fr/sites/default/files/srd-energies/le-reseau-electrique/les coupures sur incidents.pdf.

- [14] « Chapitre II les types de defauts.pdf », p. 19.
- [15] P. Garcia, « Analyse statistique des pannes du réseau HTA », p. 57, 2012.
- [16] « *Diagramme de Pareto : Définition / Méthode / Technique* ». https://commentprogresser.com/outil-pareto.html (Consulté le 21 mars, 2020).
- [17] « Chapitre-5-analyse-des-defaillances-et-aide-au-diagnostic.pdf », p. 16, 2014.
- [18] Admane Rahmouni « Etude AMDEC des machines photovoltaïques et plan de maintenance d'un compresseur », p. 45. Juin 2012.
- [19]: Franklin LOMPO « Etude de la stabilité statique du réseau de distribution 15 kV de la ville de Ouagadougou au poste source de OUAGA 2 : Modélisation avec NEPLAN», p. 117, 2018.
- [20] : BOUKHERISSI Meryem « Analyse des modes de défaillances, de leurs effets et de leurs criticités appliquée à la STEP d'Ain El Houtz », p.182. 2014
- [21] « Liaisons souterraines, aériennes HT | Le blog de Forma TIS ». http://blog.formatis.pro/liaisons-souterraines-aeriennes-ht (Consulté le 13 avril, 2020).
- [22] SONABEL « Projet de renforcement des infrastructures électriques et d'électrification rurale : section 2 description des travaux », p. 163. Janvier 2015.


VIII. LISTE DES ANNEXES

ANNEXE 1 : Organigramme de la SONABEL	iv
ANNEXE 2 : Caractéristiques des départs 15 kV du poste OUAGA 2 [22]	v
ANNEXE 3 : Quelques illustrations sur le poste OUAGA 2 [22]	vi
ANNEXE 4 : Méthodologie générale de recherche de défaut	vii
ANNEXE 5 : Synthèse annuelle des interruptions et END des postes	viii
ANNEXE 6 : Synthèse annuelle des travaux de dépannage 2018	xi
ANNEXE 7 : Synthèse annuelle des travaux de dépannage 2019	XX

ANNEXE 1 : Organigramme de la SONABEL

ANNEXE 2 : Caractéristiques des départs 15 kV du poste OUAGA 2 [22]

	Départ	Nature de	Type	Section	Longueur	Zone								
		l'âme	(aérien/souterrain)	(mm^2)	(km)	desservie								
	11	Aluminium	Souterrain	240	18,86									
		Aluminium	Souterrain	150	9,41	Zone								
	12	Almélec	Aérien	54,6	0,09	industrielle								
						de								
						Gounghin								
		_		Ī										
		Aluminium	Souterrain	95	0,50	Centre-								
	13	Almélec	Aérien	54,6	1,25	ville								
		Almélec	Aérien	75,5	19,28									
		T		T										
		Aluminium	Souterrain	150	1,02	Nonssin,								
	14	Almélec	Aérien	54,6	27,66	Tampouy								
		Almélec	Aérien	75,5	16,52	kilwin								
	15 11 11 150 140													
	15	Aluminium	Souterrain	150	1,48	Pissy								
		Almélec	Aérien	54,6	0,39	Zactouli								
		Almélec	Aérien	75,5	37,53	Secteur 9								
Poste		_		Ī										
OUAGA		Aluminium	Souterrain	150	1,99	Gounghin								
2	16	Almélec	Aérien	54,6	20,66	Pissy								
				,										
	17	Aluminium	Souterrain	240	10,66	Secteur 11								
	18	Almélec	Aérien	54,6	46,18	Tampouy								
	19	Aluminium	Souterrain	150	4,04	Palais de								
						justice								
	Samadin													
	Rimkieta													

ANNEXE 3 : Quelques illustrations sur le poste OUAGA 2 [22]

Figure 1 : Vue d'intérieur du poste OUAGA 2

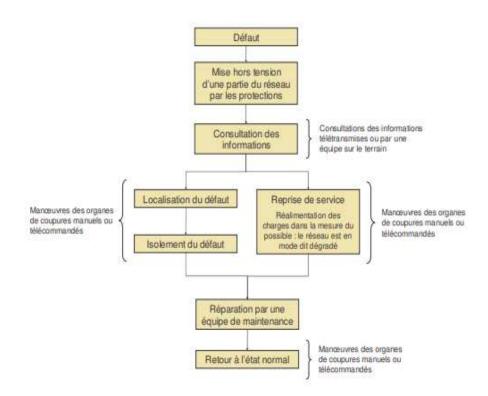


Figure 2 : Vue dun transformateur 33/15 kV du poste OUAGA 2

ANNEXE 4 : Méthodologie générale de recherche de défaut

ANNEXE 5 : Synthèse annuelle des interruptions et END des postes

·							SY	NTHESE	ANNUFI	LLE DES	INTERR	UPTION	S DU CR	CO								
ANNEE 2018 Trimestre 1					Trime		71111021	LEE DEG		stre 3	0 00 0.1		Trime	stre 4		CHIFFRES ANNUELS						
Poste source	Départ	Nb Inc	END	Nb Trx	END	Nb Inc	END	Nb Trx	END	Nb Inc	END	Nb Trx	END	Nb Inc	END	Nb Trx	END	Nb Inc	END(kVh)	Nb Trx	END	
	11	2	7 215	0	0	2	21 195	0	0	5	33 979	0	0	3	9 603	0	0	12	71992	0	0	
	12	0	0	0	0	0	0	0	0	1	4 552	0	0	4	9 681	0	0	5	14 233	0	0	
	13	1	189	0	0	5	5 002	1	4 770	9	11 821	3	5 449	6	8 765	1	652	21	25 777	5	10 871	
	14	8	15 544	1	1789	5	37 290	7	40 203	6	5 046	1	4 535	2	408	3	10 797	21	58 288	12	57 324	
	15	3	18 937	3	10 664	13	167 428	6	69 422	3	4 101	0	0	3	2 443	4	6 104	22	192 909	13	86 190	
Ouaga 2 15KV	16	1	147	0	0	3	18 550	0	0	0	0	2	1687	0	0	1	127	4	18 697	3	1814	
	17	0	0	1	70	0	0	0	0	1	4 958	3	6 992	1	2 797	0	0	2	7 755	4	7 062	
	18	2	16 800	2	2 238	9	136 399	0	0	4	8 632	7	30 156	5	23 197	1	2 651	20	185 028	10	35 045	
	19	2	9 461	0	0	0	0	0	0	0	0	0	0	4	4 849	0	0	6	14 310	0	0	
	Rimkieta	2	7 701	1	3 213	9	38 377	1	18 782	11	17 550	3	8 029	9	16 435	2	10 119	31	80 063	7	40 143	
	Samandin	1	135	1	317	1	1324	0	0	1	1028	3	12 776	0	0	1	1046	3	2 487	5	14 139	
Total																			671 539			
							SY	NTHESE	ANNUE	LLE DES	INTERR	UPTION	S DU CR	CO								
ANNE	E 2019		Trime	stre 1			Trime	stre 2			Trime	stre 3			Trime	stre 4		CHIFFRES ANNUELS				
Poste source	Départ	Nb Inc	END	Nb Trx	END	Nb Inc	END	Nb Trx	END	Nb Inc	END	Nb Trx	END	Nb Inc	END	Nb Trx	END	Nb Inc	END(kWh)	Nb Trx	END	
	11	4	12 433	0	0	5	8 330	0	0	15	56 999	0	0	6	13 803	1	862	30	91565	1	862	
	12	5	15 819	1	4 300	2	10 098	0	0	0	0	0	0	1	4 204	0	0	8	30 121	1	4 300	
	13	7	19 018	2	18 457	3	14 641	0	0	6	16 261	0	0	8	18 003	0	0	24	67 923	2	18 457	
	14	2	315	4	5 704	5	44 474	1	1973	7	1859	1	2 230	3	761	1	1539	17	47 409	7	11 446	
0	15	4	19 624	4	9 663	3	13 738	2	10 639	5	5 780	0	0	5	19 222	4	5 537	17	58 364	10	25 839	
Ouaga 2 15KV	16	4	30 084	0	0	1	132	1	6 330	1	13 655	0	0	3	1299	0	0	9	45 170	1	6 330	
	17	1	1524	1	11	2	27 109	1	7 262	2	7 819	0	0	0	0	0	0	5	36 452	2	7 273	
	18	6	48 288	2	1762	6	25 117	1	1397	7	10 723	2	4 601	9	12 278	3	12 194	28	96 406	8	19 954	
	19	0	0	0	0	0	0	0	0	2	5 577	0	0	2	3 794	0	0	4	9 371	0	0	
	Rimkieta	6	10 853	2	3 355	6	21729	1	4 693	6	5 794	2	11 614	5	23 441	2	2 6 0 4	23	61 817	7	22 266	
	Samandin	1	310	2	1729	5	5 490	1	3 657	1	3 992	0	0	2	11 173	0	0	9	20 965	3	5 386	
Total			L	L	L	L	L		L	l	l]]	<u> </u>	L	L	L	565 563			

Figure 1 : Synthèse des interruptions et END de l'année 2018 et 2019 du poste Ouaga 2

					SYN	IТН	ESE AN	NUE	LLE D	ESI	NTER	RUF	PTIONS	DU	CRCC)					
ANNEE 2018 Trimestre 1							Trimes	stre 2	2	Trimestre 3					Trime	stre	4	CHIFFRES ANNUELS			
Poste source	Départ	Nb Inc	END	Nb Trx	END	Nb Inc	END	Nb Trx	END	Nb Inc	END	Nb Trx	END	Nb Inc	END	Nb Trx	END	Nb Inc	END	Nb Trx	END
	1	3	4 903	1	859	2	23 244	0	0	1	1085	0	0	1	1 420	0	0	7	30 652	1	859
	2	0	0	3	12 3 14	3	11 081	1	1 5 2 6	2	29 498	6	5 104	2	842	1	9 130	7	41 42 1	11	28 0 74
	3	2	2 976	0	0	0	0	0	0	1	4 98 1	0	0	1	1 923	0	0	4	9 880	0	0
	4	1	1 642	0	0	0	0	0	0	2	13 653	0	0	3	24 565	0	0	6	39 860	0	0
Ouaga 1	5	1	3 142	0	0	2	7850	0	0	2	530	0	0	10	69 129	0	0	15	80 65 1	0	0
15 KV	6	0	0	0	0	0	0	0	0	1	20	0	0	5	13 932	0	0	6	13 952	0	0
	7	2	12 187	4	6 270	8	41 728	1	153	5	23 298	2	11 330	5	20 786	3	4 120	20	97 999	10	21873
	8	0	0	0	0	0	0	1	11880	4	12 28 2	4	9 883	6	24 777	0	0	10	37 059	5	21 763
	9	1	82	1	1933	0	0	0	0	1	1 476	0	0	1	811	1	1 70 3	3	2 369	2	3 636
	10	2	3 573	0	0	1	2 76 7	0	0	0	0	0	0	1	39	0	0	4	6 379	0	0
	ZC	3	28 681	0	0	0	0	0	0	0	0	0	0	4	7 492	0	0	7	36 173	0	0
	11	2	7 215	0	0	2	21 195	0	0	5	33 979	0	0	3	9 603	0	0	12	71 99 2	0	0
	12	0	0	0	0	0	0	0	0	1	4 552	0	0	4	9 681	0	0	5	14 233	0	0
	13	1	189	0	0	5	5 00 2	1	4 7 7 0	9	11821	3	5 449	6	8 765	1	652	21	25 777	5	10 8 7 1
	14	8	15 544	1	1 789	5	37 290	7	40 203	6	5 046	1	4 535	2	408	3	10 797	21	58 288	12	57 324
0	15	3	18 937	3	10 664	13	167 428	6	69 422	3	4 10 1	0	0	3	2 443	4	6 10 4	22	192 909	13	86 190
Ouaga 2 15KV	16	1	147	0	0	3	18 5 50	0	0	0	0	2	1 687	0	0	1	127	4	18 69 7	3	1814
	17	0	0	1	70	0	0	0	0	1	4 958	3	6 992	1	2 797	0	0	2	7 755	4	7062
	18	2	16 800	2	2 238	9	136 399	0	0	4	8 632	7	30 156	5	23 197	1	2651	20	185 028	10	35 0 45
	19	2	9 461	0	0	0	0	0	0	0	0	0	0	4	4 849	0	0	6	14 310	0	0
	Rimkie ta	2	7 701	1	3 2 1 3	9	38 377	1	18 782	11	17 550	3	8 029	9	16 435	2	10 1 19	31	80 063	7	40 143
	Samandin	1	135	1	317	1	1 324	0	0	1	1 028	3	12 776	0	0	1	1046	3	2 48 7	5	14 139
	21	7	5 088	2	3 2 2 5	5	60 771	1	26 8 2 1	13	37 714	6	9 774	12	45 887	1	1 334	37	149 460	10	41 154
	22	7	59 158	3	20 4 19	5	20 208	1	2 5 4 5	2	21 247	1	5 228	2	7 248	0	0	16	107 86 1	5	28 192
Vassada	23	2	39 348	1	2886	0	0	2	6 123	4	4067	3	2 878	8	51 085	2	5 022	14	94 500	8	16 909
Kossodo 15 KV	24	10	3 737	3	9 309	10	109 554	2	7 0 43	5	1 346	2	15 850	4	1 000	1	235	29	115 637	8	32 437
15 10	25	5	85 985	2	1 166	3	751	2	7811	1	210	1	157	2	4 958	0	0	11	91904	5	9 134
	26	4	13 900	2	2 0 2 3	5	10 100	3	11 303	1	10 896	5	5 643	2	387	6	15 808	12	35 28 3	16	34 777
	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 2 : Synthèse des interruptions et END à l'année 2018 des postes Ouaga 1, Ouaga 2 et Kossodo

		_														_					
	31	5	15 053	0	0	3	3 719	3	12 064	0	0	4	6 764	2	12 348	0	0	10	31 120	7	18 828
	32	1	62	0	0	3	73 707	3	4 604	2	7 191	1	2 351	1	3 576	1	1 305	7	84 536	5	8 260
	33	2	4 828	0	0	1	11 332	0	0	0	0	1	394	1	8 046	0	0	4	24 206	1	394
	34	0	0	0	0	1	4 611	0	0	0	0	1	170	1	907	0	0	2	5 518	1	170
Pate d'Oie 15kV	35	2	14 258	0	0	1	12 587	2	7 574	1	3 974	2	1 720	1	4 883	2	23 374	5	35 702	6	32 668
	36	0	0	0	0	0	0	1	9 292	0	0	0	0	0	0	0	0	0	0	1	9 292
	37	1	84	0	0	1	24 399	2	17 076	1	4 458	1	116	1	17	2	2 463	4	28 958	5	19 655
	38	0	0	0	0	1	15 360	0	0	6	6 791	1	1 443	1	1 313	0	0	8	23 464	1	1 443
	39	3	17 755	2	2 341	0	0	1	322	0	0	5	7 035	0	0	0	0	3	17 755	8	9 698
	Douane	0	0	1	3 442	1	28 558	1	1 230	0	0	0	0	0	0	0	0	1	28 558	2	4 672
0	Mini - Déf	3	13 156	2	4 241	2	35 230	1	1 421	1	6 000	1	1 530	1	1 807	2	3 684	7	56 193	6	10 876
Oua2000 15 kv	Présidence	1	8 196	0	0	0	0	0	0	4	5 847	1	6 654	1	4 937	0	0	6	18 980	1	6 654
	Secteur 16	0	0	0	0	0	0	0	0	2	2 147	0	0	0	0	1	1 536	2	2 147	1	1 536
	Tingandogo	2	5 334	1	5 777	2	4 878	1	861	1	16 624	1	44	4	15 201	0	0	9	42 037	3	6 682

Figure 3 : Synthèse des interruptions et END à l'année 2018 des postes Pate d'oie et Ouaga 2000

ANNEXE 6 : Synthèse annuelle des travaux de dépannage 2018

Janvier	Fevrier	Mars	Avril	Mai	Juin	Juillet	Aout
Activités Remplacement de jonctions deux boîtes de jonctions 24 kv défetueuses sur la liaison au poste Bourse de travail	Activités Visite du départ : résultat : RAS	Activités Visite de chantier pour le déplacement d'un tronçon de ligne HTA à la station TOTAL de Tampouy	Activités Elagage sur une partie du départ (suite à un bon de dépannage N° 198386)	Activités Visite de chantier pour la période chaude 2018	??????????	Activités Recherche de défaut sur la liaison poste BCEAO et poste E résultat ; retrouvé	Activités Visite du départ pour entretien : résultat ; ??????????????
intervention par la réhabilitation du poste 203 CGP par le relèvement du seuil de la porte pour cause de pénétration d'eau et remblaie de la devanture (apport de : deux camion de terre)	Déconnexion des têtes de câbles sur la cellule défectueuse au poste 666 pour les raccorder sur une auttres cellule	Remplacement de la remontée aéro souterraine au niveau du support pour cause d'incendie accidentel (dont un apport de : 15 m de câble HN 150mm²; 03 Extrémités unipolaire Extérieure 24 kv; 03 Jonction unipolaire 24kv et 04 cosses alu 150mm²:	Reprise de betonnage d'un support suite a un accident	Visite du départ : résultat ; ??????????	Suite de la Visite du départ ; résultat : six isolateurs CT cassés ; deux TR déssérés ; un parafoudre fonctionné ; un isolateur VHT cassé et cinq corps étranger à extraire	Suite avec ouverture de tranchée sur le tronçon en défaut et remplacement du câble	Reconnexion d'un câble BT coupé en pleine portée sur deux portées un alignement dont la réalisation de jonction avec un apport de : deux RPAC; 26 connecteurs CPL 95 et 10 m de câble 3X70+54, mm² alu et reprise des raccordement de plusieurs abonnés à
Recherche de défaut entre poste 6 et poste ONATEL/DILA résultat : ???	Recherche de défaut entre la liaison poste 666 et poste 88 ; résultat : réalisation de deux boîtes de jonctions unipolaires 24 kv		Serrage de la borne BT du transformateur 663 et réparation du DHP	Insertion d'un IACM sur le départ à la cité TANMOIGA)	Remplacement et mutation du transformateur du poste 526 de 250kva à 400 kva-15 kv de marque SACEM	Suite du dépannage avec réalisation de six (06) boîtes de jonctions 24kv	Mutation du transformateur du poste 558 de 400kva à 630 kva de marque SACEM №140025
Suite de dépannage avec la confection d'une jonction unipolaire 24 kv entre poste DILA et poste 06	Rétablissement de la concordance de phases et mise sous tension entre P666 et P88	Suite des travaux de la réalisation des fouilles	defaut cable pioché	Entre P90/15kv Ouaga II déplacement du départ de ouaga II au poste source 90/15 kv apport de : un jeu de EUI 24 kv ; trois cosses bi-métal 240mm² ; un jeu de JUP 24 kv.	Visite de chantier pour voir un support qui menance de tomber	Suite et fin de dépannage avec essai diélectrique du nouveau câble du départ et raccordement	Mutation du transformateur du poste 521 de 100kva à 160 kva de marque SACEM N°139941 de 2017

Figure 1 : Travaux de dépannage de Janvier à Aout

Réhabilitation du poste 211 cambriolé au niveau du neutre -transfo du TUR dont un apport de : quatre mètres de câbles U-1000 240 mm² alu et deux cosses cu-étamé 240 mm²	Visite du départ ; résultat : trois isolateurs composites ; un corps étranger à extraire et un arbre à abattre	Repport des travaux suite au manque de gaz pour les soudeurs	Remplacement 5 d'isolateurs cassés sur un troncon de ligne	Sortie P90/15kv ouverture d'un regard pou jonction et sablage suivit de fermeture de tranchées	Changement de prise du transformateur pour palier aux chûtes de tensions)	Suite et fin avec la fermeture de tranchée entre poste BCEAO et poste E	Préparation d'un future : chantier
Néttoyage du poste cabine 203 et réhabilitation des MALT avec apport de : quatre griffes-bloc et un cosse BE2	remplacement d'isolateurs cassés par des isolateurs composites	Suite de chantier de déplacement de quatre supports à TAMPOUY à la	Remplacement du transformateur du poste 493 de 160kva/15kv	Entretien par le remplacement d'isolateurs cassés par un isolateur composite et un isolateur VHT.	Reprise d'une phase brûlée à la station SHELL sur le départ	Recherche de défaut entre poste BCEAO et poste E résultat : défaut	Entretien du départ (I
	Remplacement de trois isolateurs composites ; et un corps étranger à extraire et un arbre à abattre	Préparation de chantier de déplacement de la ligne HT	Suite du renforcement d'un tronçon de ligne HT à partir du P66	Elagage sur une partie du départ suite à l'interpelation de la direction générale	Visite du poste 130 suivant un bon de dépannage suite à un appel (Apport de : 02 cosses		du départ .
Néttoyage du poste Répartition NB: un arbre à abattre	Grattage et serrage de bornes au poste 116 suite à un accident à la section BK (NB: support à implanter à la section BK pour la mise en conformité)	Visite du départ : résultat ; ??????????????	Jonctionnement de phases HT coupé par Homopolaire avec un apport de : 04 m de câblette almelec 54 mm²	Néttoyage du poste cabine 471 et réhabilitation des MALT avec apport de : deux griffes-bloc A3 et un cosse BE2	Mutation du transformateur du poste 728 de 100 à 160 kva N°139933 marque SACEM		I I
Néttoyage du poste 24 NB: infiltration d'eau par le toît	Entretien par élagage sur un tronçon de la ligne	Visite du départ pour un bon de dépannage à Tampouy	Elagage sur une partie du départ au poste du centre Spirituel PAAM YOONDO (un arbre épineux grimpant	Néttoyage du poste cabine 52;474;107 et 83 et réhabilitation des MALT	Remplacement du transformateur du poste 310 de 160 kva transfix en 160kva sacem N°139948 de 2017	l .	
Néttoyage du poste cabine 05 et réhabilitation des MALT avec apport de Réalisation d'une boîte de jonction 24kv sur la liaison poste Camp Guillaume et	Suite de l'entretien par élagage	Réception des fouilles pour la construction des postes sur Reprise d'un conducteur coupé en pleine portée avec un apport	Visite de chantier pour le renforcement d'un tronçon de Visite du départ pour la réception des travaux	Dépannage d'un conducteur tombé face à l'ONEA avec un SHUNTAGE d'un FOA brûlé et un DHP de type 6 dont le mécanisme	Mutation du transformateur du poste 525 de 400 à 630 kva Reprise de phases rompue	Suite de recherche de défaut avec la réalisation Recherche de défaut résultat : défaut trouvé	Recherche de défaut : résultat : Réparation d'un Reprise de deux phases : coupées coupées en
Recherche de défaut sur le départ avec l'ouverture de tranchée ; résultat : défaut retrouvé	sur un tronçon	Elagage sur un tronçon du départ ,,,,,,,,	Reprise de phases rompue avec extraction de corps etrangers	Reprise de SHUNTAGE des trois FOA	Support accidenté a redresser et renforcement des trois phases par cinq DPA et réparation de l'IACM de tête	Réalisation d'une boîte de jonction unipolaire 24kv entre la liaison poste BCEAO et poste E	Néttoyage des postes 122;558 et 705

Figure 2 : Travaux de dépannage de janvier à Aout (suite)

Recherche de défaut sur le départ avec l'ouverture de tranchée ; résultat : défaut retrouvé	sur un tronçon	Elagage sur un tronçon du départ ,,,,,,	Reprise de phases rompue avec extraction de corps etrangers	Reprise de SHUNTAGE des trois FOA brûlés avec une câblette en cuivre au poste ECOBANK Gounghuin	Support accidenté a redresser et renforcement des trois phases par cinq DPA et réparation de l'IACM de tête	Réalisation d'une boîte de jonction unipolaire 24kv entre la liaison poste BCEAO et poste E	Néttoyage des postes { 122;558 et 705
unipolaire 24 kv	sur un tronçon		Préparation de chantier pour le renforcement d'un tronçon de ligne HT	Poste107: reprise des terres des masses et neutre avec apport de trois griffes blocs A3	Entretien du départ : par le remplacement de quatre isolateurs composites ; un isolateur VHT et abattage de six arbres	Recherche de défaut résultat : défaut trouvé entre la liaison poste BCEAO et poste E suivit de réalisation de deux boîtes de jonction	Néttoyage du poste cabine 221 et réhabilitation des MALT avec apport de : trois griffes-bloc A3
Poste DLA-poste SONAPOST Fermeture de tranchées	Suite de l'élagage sur le départ	Visite du poste 247 ; résultat :	Suite de la préparation de chantier pour le renforcement d'un tronçon de ligne HT	Poste 83 : reprise des terres et masses avec apport de deux griffes blocs A5	Réalisation d'une jonction aérienne en pleine portée par des raccords DPA suite à la chûte d'une branche d'arbre	Suite d'ouverture de tranchée sur le départ et réalisations de deux	Déconnexion d'une fouvelle bretelle HTA à a partir du poste 469 à
au poste Immeuble Baoghuin	Remplacement de trois fusibles HTA 43 A 24kv pour cause d'inondation et le relèvement du seuil de la porte au poste 84 (St joseph).	Création d'un poste de 160 kva au poste 247 T2 N°139957 SACEM	Debut du renforcement d'un tronçon de ligne HT à partir du P65	Poste 341: reprise des terres des masses et neutre avec apport de trois griffes blocs A3	Visite de chantier pour voir un support qui menance de tomber	Poste E et poste B : sondage pour recherche de défaut ; résulltat : câble pioché	Visite du départ ; résultat [
Confection de têtes de câbles dont trois extrémités unipolaires intérieures 24kv et apport de trois cosses bi-métal 240mm²	Néttoyage du poste cabine 12 et réhabilitation des MALT NB: infiltration d'eau par le toît	Remplacement d'une extrémité unipolaire extérieure défectueuse avec apport de deux cosse bi-métal dont une de 150 mm² et un autre de 95 mm²	Remplacement du transformateur du poste 97de 630kva/15kv		Remplacement de l'IACM de tête du départ dont un IACM 400A 15kv	Poste E et poste B : Suite de sondage pour recherche de défaut ; résulltat : ???	Travaux de reprise d'un tronçon du départ après travaux
	Néttoyage du poste cabine 116 et réhabilitation des MALT avec apport de : trois griffes bloc et deux cosses BE2	Reprise d'un conducteur coupé avec apport de : 150m de câble alu 75 mm², un jeu de parafoudre	Recherche de défaut résultat : défaut trouvé entre la liaison poste ONEA et la remontée Emmana		Visite de chantier pour voir un support BT qui menance de tomber (signaler par un client)	Poste E et poste B : Suite de sondage pour recherche de défaut ; résulltat : ???	Recherche de défaut sur la route de Pabré , résultat : reprise d'une attache défaite
Raccorder un poste de transformation	Néttoyage des postes cabines 34;22 ;54 ;84 et 666	Préparation de chantier pour entretien du départ	Réalisation d'une boîte de jonction unipolaire 24kv	Elagage sur 6 Portées sur une partie du départ	defaut route pabre reprise e 4 attaches	Poste E et poste B : Suite de sondage pour recherche de défaut ; résulltat : ???	remplacement d'un I transformateur r defectueux :

Figure 3 : Travaux de dépannage de janvier à Aout

<u> </u>	<u> </u>	le	<u> </u>	la			
Reprise d'une attache défaite	NB: infiltration d'eau par le toît	Entretien : dont le remplacement de quatre isolateurs VHT 20 T , deux jeux de parafoudre et trois isolateurs composites.	Raccordement d'une remontée sur le départ	Réparation d'un câble accidenté par incendie au 2ème tronçon du départ dont un apport de : trois jonctions unipolaires 24 kv ; trois cosses 240mm² alu et 207 mêtres de câble HNA 326 -240 mm² 24kv		Réalisation d'une boîte de jonction unipolaire 24kv entre la liaison poste de sectionnement E et Centrale Ouaga 2.	Travaux de depannage d'un IACM
Incendie a remontée aéro souterraine au	concluant	Remplacement d'un para-foudre	Reprise de conducteur HTA tombé et suppression de la portée	Câble pioché	Entretien des postes par des néttoyages P 119 en souffrance	Recherche de défaut : résultat : ???	Isoler un tronçon pour la Création du poste 852 de 100 kva à saaba de marque Transfix
Remplacement de la remontée aéro souterraine au niveau du support pour cause d'incendie accidentel (dont un apport de : 15 m de câble HN 150mm²;		le remplacement de huit isolateurs CT par des isolateurs compositeset un jeu de para foudre	Préparation de chantier pour l'entretien du départ	Recherche de défaut ; résultat : défaut trouvé entre poste 71 et poste Amadé Bangrin à la zone commerciale	Entretien des postes 85 ; 13 ; 51 ; 300 par des néttoyages	Réparation de câbles défectueux entre poste E -poste B avec un apport de : deux jonction	Attache défaite
avarie transformateur		Visite du départ : résultat : un parafoudre à remplacé ; un isolateur VHT cassé ; un isolateur CT cassé et 146 portées à élaguer	Echangeur de l'ouest : liaison P75- P. ONEA réparation d'une extrémité avec tirage d'une portée de 225 mètres de câblette Cu	Câble aéro souterrain en défaut	Entretien des postes par des néttoyages P 360 et réhabilitations des MALT dont : trois griffes blocs A/5	SHUNTAGE d'un FOA brûlé et un DHP de type 6 dont le mécanisme est défaillant et réparer au poste ECOBANK	Entretien de la liaison dont: le remplacement de douze isolateurs CT et raccordement d'un tronçon déconnecté
Câble pioché		Néttoyage du poste cabine 475 et réhabilitation des MALT avec apport de : trois griffes-bloc et un cosse BE2	Liaison P75- P. ONEA recherche de défaut résultat : RAS	Câble aéro souterrain en défaut	Entretien des postes par des néttoyages P 525 et réhabilitations des MALT dont : trois griffes blocs A/6	Amorçage sur l'extrémité de phase N°02 à la remontée du poste 85	Remplacement du transformateur défectueux du poste 628 de 160kva marque SACEM N°128810 de
cosse brulés	Recherche de défaut sur la liaison poste SONAPOST et 666 ; résultat : confection de huit boîtes de jonctions unipolaires 24kv pour remplacer de jonctions	Néttoyage des postes 121;466;135;478 et 555	Remplacement d'une cosse 150mm² alu sur une extrémité en remontée du câble au niveau du stade du 4 Août	Câble aéro souterrain en défaut	Entretien des postes par le néttoyage du P 526 et réhabilitations des MALT	Incendie sur un poste H61	Transformateur H61 de 100 faible au poste 661 et muté
conducteur HTA en defaut	manden poste dentra den et dec,	Réparation par la confection d'une boîte de jonction unipolaire 24 kv suite à un	Fermeture de tranchées à l'échangeur de l'ouest	Rupture de conducteur aerien en pleine portée	Visite de réseau à partir du poste 119 ; résultat : ????	Remplacement d'un boite de jonction cramé	élagage

Figure 4 : Travaux de dépannage de janvier à Aout (suite)

bruit au niveau de la cellule : depannage		Reprise d'un cosse brûlé au niveau du parafoudre dont : un apport d'un cosse alu-cu 95mm² et un DPA	: défaut trouvé entre la liaison poste ONEA et la remontée Emmana		Visite de chantier suite à un bon de dépannage du 16/7/18 N° 210413 ; résultat : un support incliné suite à une tranché des travaux du fibre optique	Debut d'insertion d'un IACM 400 A /24kv et remplacement d'un IACM 400 A /24kv avec apport de douze cosses alu-cu et des houlons.	
Câble souterrain en défaut	Liaison poste SONAPOST -Poste 666 : sondage pour recherche de défaut ; résultat : ???	Remplacement d'un parafoudre d	remplacement de quatorze isolateurs composites 24 kv; deux isolateurs VHT 20 : et	Remplacer le moteur du disjoncteur	Remblayage et renforcement d'un support en voie d'inclinaison suite à une tranchée des travaux de fibres optiques	Réparartion de câble suite à un piochage dont un apport d'une jonction unipolaire 24 kv	transformateur Defec
serrage de la borne BT du transformateur 663 et réparation du DHP	Liaison poste SONAPOST -Poste 666 : suite de sondage pour recherche de défaut ; résultat : Remplacement de six jonctions unipolaires 24kv défectueuses .	Surveillance des travaux d'implantation de supports sur le départ par l'entreprise SOGETEL	Suite de la recherche de défaut avec ouverture de tranchée sur la liaison poste ONEA à la remontée Emmana	Défaut souterrain	Reprise d'une attache défaite au poste TNB à Tampouy	Réhabilitation d'une extrémité sur la remontée de l'IACM station TOTAL zone du bois dont l'apport de : un raccord 34-117 bi-métal et une extrémité unipolaire extérieure 24 kv	dHP defectueux
Raccordement d'un transformateur	Liaison poste SONAPOST -Poste 666 : fermeture de trachée	Suite de dépannage au 1er tronçon du départ avec la confection de six boîte de	Liaison P75- P. ONEA : Réparation par la confection de quatre boîtes de jonctions	Reprise de conducteur HTA tombé et suppression de la portée	Elagage du départ sur 04 portées	Remplacement de 3 isolateurs VHT cassé	Travaux d'élagage
cable en defaut sur un troncon	Recherche de défaut au poste 666	Rupture d'un conducteur HT	Renforcement du départ par HTA/N°1 appuié par (HTA/N°2 et HTA/S1)	Réalisation d'une boîte de jonction unipolaire 24kv	Reprise des ponts à la remontée du poste 13 dont un apport de : deux cosses bi- métal	défectueux et de 3 boîtes de jonction unipolaire 24kv	Câble pioché
Câble souterrain en défaut	Sondage pour recherche de défaut ; résultat; ???	Câble pioché	Entretien des postes : néttoyage des postes 60;97;105;468; et néttoyage	Têtes de câbles brûlées au niveau cellule HT	Mutation du transformateur du poste 389 de 250kva à 630 kva de marque sacem N° 140036	Remise en état d'une double ancrâge herze inclinée par la chute d'un portail	reparation de boite de jonction defectueux
Incendie sur un IACM	Travaux de reconfiguration du rése	Câble pioché	Recherche de défaut ; défaut retrouvé : un pont bretele défaite entrainant sa reprise au support 15/59	Travaux de remplacement d'un transformateur	Réparation d'un câble pioché avec un apport d'une boîte de jonction unipolaire 24 kv	Câble pioché	cable pioché
Conducteur coupé suite un fort vent	depannage par le remplacement de huit isolateurs comoposites 24kv ; un isolateur VHT ; un parafoudre : un corps étranger	Travaux d'élagage	Elagage sur une partie du départ suite à l'interpelation de la direction générale	defaut plein Câble souterrain	Recherche de défaut; résultat : amorçage sur l'extrémité de phase N°02 à la remontée du poste 85	Dépannage d'un para foudre défectueux	Installation d'une chai pour cellule au poste NB: poste inondable)
Support accidenté	Remplacement de trois isolateurs composites ; et un corps étranger à extraire et un arbre à abattre	Rupture d'un conducteur HT	Visite de chantier suite à un bon de dépannage du 13/7/18 N° 210262 ; résultat : un pont a refaire à une remontée sur le support 15/060	élagage tout le long du mur du dispatching (Conducteur)	Poste 85 : reprise d'une extrémité extérieure24kv défectueuse et apport d'un cosse alu 95 mm²	reprise de 3 attaches defaites su	Dépannage non communiqué
conducteur coupé Suite à un orage	élagage	Support accidenté a redresser et renforcement des trois	Préparation de chantier pour renforcement et	Remplacement d'un para-foudre	Visite du départ ; résultat : ???	Remplacement d'un DPA brûlé à coté de l'IAT Pissy	Travaux de raccorde
Incendie cosses brulées au niveau de la remontéé aero- souterraine	Entretien : dont le remplacement de quatre isolateurs VHT 20 T , deux jeux de parafoudre et trois isolateurs composites.	Travaux d'entretien de réseau	Poste 75 : remplacement de deux cellules IM brûlées	Support tombé suite à une tranchée effectuée pour la fibre optique entrainant un apport de : vingt transacteur CPL; cent mètres de câble 4X16mm² alu; six PA 25 et un sac de ciment et bétonnage d'un support BT et remplacement d'une traversée et reprise de 26 clients coupés.NB: dépannage définitif	Elagage sur ??? Portées sur une partie du départ jusqu'au garage OK	Remplacement d'un transformateur defectueux	
lione en defaut	Rupture d'un conducteur HT	Poste FLASH Isolement d'une cellule défectueuse	Poste 99 remplacement d'un cosse brûlé sur des remontées NB:(dépannage définitif)	Visite du départ ; résultat : ???			

Figure 5 : Travaux de dépannage de janvier à Aout

•		-	
Septembre	Octobre	Novembre	Decembre
Activités			
		Activités	Activités
Reprise d'une attache défaite	Réparation d'un câble accidenté par incendie au 2ème tronçon du départ dont un apport de : trois jonctions unipolaires 24 kv; trois cosses 240mm² alu et 207 mètres de câble HNA 326 -240 mm² 24kv	Approfondissement du parcours sur traversée de voie por cause de traveaux de terrassement (chantier AGRECO coté CFP)	Réalisation de deux jonction unipolaire 24kv à la remontée de ouaga II et fermeture de tranchée
/isite du départ: résultat :	Recherche de défaut sur le départ résultat	Pose de buses sur 30 m de tube PVC	Réalisation de deux ionction
???????? [?] ??	: RAS	diamètre 160 et déroulage de 50m de able NFC-223- 3X240mm² alu	unipolaire 24kv à la remontée de ouaga II et fermeture de tranchée
Reprise d'un conducteur coupé avec in manchon de 54mm²	Suite de recherche de défaut sur le départ avec ouverture de tranchée résultat : RAS	Elagage sur la dérivation du poste 470	Visite du départ ; résultat ; ?????
intretien par le remplacement de : six	Suite de recherche de défaut sur le départ	Réalisation d'un jeu de jonction unipolaire 24kv	Suite et fin de la Visite du départ
solateurs VHT 20 ; trois isolateurs	avec ouverture de tranchée résultat :	sur la poste SATOM et poste immeuble BAOGHUIN	résultat ; ?????
Suite de l'élagage du départ	Recherche de défaut sur le départ par l'ouverture de tranchée résultat : RAS	Réparation d'un câble accidenté au poste Immeuble Baoguin dont la confection d'une jonction unipolaire 24 kv	Suivit des raccordements des postes sur portique : P 242 de 400 kva-15kv .
Recherche de défaut avec intervention	Suite de dépannage au 1er tronçon du	cellule du Poste urbanisme	Visite du départ ; pour cause de
sur le transformateur de la BICIA défectueux	départ avec la confection de six boîte de jonction unipolaires 24 kv		construction d'un caniveau en traversée de route affectant la remotée HTA du poste 107
/isite de chantier pour le bétonnage et	Suite de recherche de défaut sur le départ	Elagage sur 23 portées	Sondage au poste 107 pour
reprise d'un tronçon de ligne accidenté	au 1er tronçon résultat : défaut retrouvé avec ouverture de tranchée et confection		déplacer un câble en traversée de route

Figure 6 : Travaux de dépannage de septembre à décembre

r		I	
Déplacement du tronçon de ligne HT accidenté à Gounghuin avec apport de : neufs isolateurs composites ; deux isolateurs CT à jupes ; neufs ballets de scotch ; neufs œillets à rotule ; sept étriers ; deux tiges filetés ; six DPA ;un support HFA 160/12 m	Fin de dépannage avec debut de fermeture des tranchées		Repose de la traversée busée et fermeture de la tranchée au poste 107
Elagage sur quarante trois portées du départ	Suite de fermeture des tranchées	Dépose d'une portion de câble HT sur le départ	Dépose du transformateur de 160kva-15kv du poste 564 du D16 qui devient un poste sur portique et posé sur le poste 388 de saaba en panne
Suite de l'élagage du départ soit :12 portées	Suite et fin de fermeture des tranchées	Reprise d'un câble HT décroché par vent	Elagage sur 06 portées suivant un bon de dépannage
suite de l'élagage du départ soit 24 portées	Néttoyage du poste 570	Dépannage : relèvement d'une phase tombée	Dépose du transformateur de marque TRANSFIX 160 Kva -15kv
Suite de l'élagage du départ samandin	Fermeture des tranchées au poste 570	Reprise 3 attaches défaites	Préparation de chantier pour entretien du réseau HT
Tentative infructueux du DHP de type au poste Watam Kaizer résultat : systhème mécanique détracté NB: DHP à facturer	P 570 : Ouverture de tranchée pour recherche de défaut sur le 1er tronçon ; résultat : réparation du câble dont la confection de deux boîtes de jonction unipolaires 24kv	Mutation de câble au poste 130 de la cellule arrivée et poste 13	Entretien par le remplacement de 04 isolateurs composite et 01 isolateur VHT et le remplacement de quatres attache défaite et élimination et 8 corprs étrangers
Remplacement de trois isolateurs VHT 20Tcassés etla reprise d'une attache défaite.	Suite de recherche de défaut sur le 1er tronçon avec l'ouverture de tranchée	Remplacement du support accidenté +aextraction de 8 corps etranger sur 12 portées	Remplacement du DHP de type 6 au poste Examens et concours
Elagage du départ sur 14 portées	Suite de recherche de défaut sur le 1er tronçon avec l'ouverture de tranchée avec déconnexion et mesure d'isolement pour l'identification du câble en défaut au poste 570	Reparation d'une phase a la masse	Réparation de câble défectueux (jonction défectueux sous caniveau), poste se sectionement-poste PIGF 02 JUP 24kv
Elagage sur le départ	Suite de recherche de défaut sur le 1er tronçon avec l'ouverture de tranchée avec déconnexion et mesure d'isolement pour l'identification du câble en défaut au poste	Elagage sur 22 portées sur le départ	Visite d'une partie du départ

Figure 7 : Travaux de dépannage de de septembre à décembre (suite)

	<u> </u>		ļ
Néttoyage du poste cabine 473 et réhabilitation des MALT avec apport de : trois griffes-bloc A3	Suite de recherche de défaut sur le 1er tronçon avec l'ouverture de tranchée avec déconnexion et mesure d'isolement pour l'identification du câble en défaut au poste	Elagage sur 11 portées sur le départ mauvais temps	Suite de la Visite du départ
Néttoyage du poste cabine 244 et réhabilitation des MALT avec apport de : trois griffes-bloc A3 et deux BE2	Suite de recherche de défaut sur le 1er tronçon avec l'ouverture de tranchée avec déconnexion et mesure d'isolement pour l'identification du câble en défaut au poste 570 résultat : défaut retrouvé	Mutation et remplacement de transformateur 100kVA en 160kVA au P774	plateforme à retablir au P240 Parafoudre fonctionner au Poste CMA DE PISSY -02 VHT cassé après la pharmacie BLMG 01 VHT casser a l'IACM 15005
Néttoyage du poste cabine 40 et réhabilitation des MALT avec apport de : trois griffes-bloc A3 et un BE2	Suite de recherche de défaut sur le 1er tronçon avec l'ouverture de tranchée avec déconnexion et mesure d'isolement pour l'identification du câble en défaut au poste 570	Pose de câble et raccordement sur jeu de barres à Ouaga 2	Remplacement d'un parafoudre defectueux sur le départ au poste 473
Néttoyage des postes 341et 219	Réparation d'un câble défectueux par le remplacement de six jonctions unipolaire 24 kv .	Déconnexion d'un transformateur défectueux au poste sur la route menant au rond-point	
Néttoyage des postes 64 NB: infiltration d'eau par le toît	Fermeture de tranchées	Raccordement des trois phases de la remontée du poste ONEA	
Préparation de chantier de remplacement d'un IACM sur le départ	Recherche de défaut sur la liaison poste 570 et Centrale Ouaga 2 ; résultat : câble défectueux dont la confection de trois boîtes de jonction unipolaire 24kv .	Conducteurs HTA coupés et à terre au poste 99 (devant IBU Pharm ex Cophadis) entrainant la réalisation provisoire de jonctions aériennes par de 12 DPA150 mm³ et 100 m de câble almelec 75 mm³	
Réalisation de fouilles pour le déplacement de l'IACM	Recherche de défaut sur la liaison poste 570 et Centrale Ouaga 2 ; résultat : câble défectueux dont la confection de quatre boîtes de jonction unipolaire 24kv .	Mutation de câble defectueux avec • mutation cellule arrivée avec 4 jonctions a remplacer	

Figure 8 : Travaux de dépannage de de septembre à décembre (suite)

Remplacement d'un support rongé au mur de l'école SAMANDIN B et un IACM 24kv	Poursuite de tranchées	Visite d'un transfo H59 privé	
Dépose d'un support	Poursuite de tranchées	Dépannage (câble coupé) 12 DPA150 mm² 100 m de câble almelec 75 mm²	
Réglage des phases sur le départ	Poursuite de tranchées	Réparation de câble accidenté (piochage), defaut liaision aero-souterraine apport de 6 boites de jonctions	
extraction d'un corps étranger sur les lignes	Pose de 360m de câble NFC 223-3X240 mm³alu et 450 m de grillage avertisseur		
Visite du départ: résultat : ???	Debut de sablage des tranchées		
Remplacement d'un DHP de type 7 défectueux et une commande au poste 108	Debut de déroulage et pose de 670 mètres de câble		
Remplacement d'un transformateur defectueux	Fin avec sablage et fermeture de tranchées		
Remplacement d'un DPA brûlé à coté de l'IAT Pissy	Réalisation de trois jonctions unipolaires 24 kv		
	Confection de têtes de câbles dont trois extrémités unipolaires intérieures 24kv et apport de trois cosses bi-métal 240mm³		

Figure 9 : Travaux de dépannage de de septembre à décembre (suite)

ANNEXE 7 : Synthèse annuelle des travaux de dépannage 2019

Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août
Activités		Activités	Activités				Activités
Approfondissement du parcours sur traversée de voie por cause de traveaux de terrassement (chantier AGRECO coté CFP)	recherche de défaut résultat ; ???	Déplacement d'un support d'arrêt dont l'apport de : 03 DPA; 03 griffes-blocs;03 ensembles d'isolateurs composite ; 01 jeu de para foudre et 03 cosses B2	Dépose d'une portion de câble HT sur le départ	pour le déplacement d'un	Réalisation de deux jonction unipolaire 24kv à la remontée de ouaga II et fermeture de tranchée		Réparation de câble accidenté avec un apport d'une jonction unipolaire 24kv
Pose de buses sur 30 m de tube PVC diamètre 160 et déroulage de 50m de able NFC-223- 3X240mm² alu	tranchée pour dépannage	Dépose d'un tronçon de ligne HT du départ avec son transfert en souterrain (tout le long du mur du CFP sonabel)	Visite du départ : résultat; ?????????	traversée de voie pour la	unipolaire 24kv à la remontée de ouaga II et fermeture de tranchée	1.5	Dépose d'une portion de câble HT sur le départ
Elagage sur la dérivation du poste 470	avec ouverture de tranchée sur la liaison poste Hotel du député et poste Camp guillaume II	parafoudre à la remontée (en face du FESPACO)	Elagage sur une portées	Raccordement des remontées sur le départ et à OUAGA II suivit des fermeture des terres.	•	de câble et son parcours avec ouverture de tranchée	Reprise d'une cosse 34X117 brûlée
	Poste 203 (CGP) réparation de câble accidenté dont l'apport de: une jonction unipolaire 24 kv	dans le quartier St leon)	Remplacement de d'une cellule IM 400A 24kv ; une cellule PM 400a 24kv et reprise d'une extrémité				Recherche de défaut sur la remontée du poste cabine N° ??? : concluant
Réparation d'un câble accidenté au poste Immeuble Baoguin dont la confection d'une jonction unipolaire 24 kv	Recherche de défaut sur la liaison poste Hotel des Députés et poste Camp Guillaume II : résultat : non concluant	Reprise d'une attache défaite	Elagage sur 37 portées	pour le déplacement d'un	postes sur portique : P 242 de 400 kva-15kv .	avec ouverture de tranchée; pose de buses et de câble et confection de 03 jonction unipolaires 24kv et apport de	NB: dépannage provisoire par l'équipe d'astreinte à larlé : (Hien K I Sylvain et Sawadogo Tourimba) Reprise de serrage de la tringlerie et réglage de l'IACM puis reprise de deux attaches défaites suivit de la reprise de serrage sur le DHP au poste 120 apport de quatre brins de conducteur almelec

Figure 1 : Travaux de dépannage de janvier à aout

Elagage sur 23 portées	Fermeture de tranchées sur la liaison poste Hotel des députés et poste camp guillaume		portées	Déconnexion d'un transformateur défectueux au poste 425	Sondage au poste 107 pour déplacer un câble en traversée de route	Jonctionnement d'un câble remplacé sur le tronçon du coté du cimetière dont l'apport d'un jeu de jonction unipolaire 24kv	Travaux d'élagage à l'abonné BW 01 07 00 (Attié IMAD)
	Réhabilitation du poste 30 suite à un vandalisme avec repose de la liaison dont; l'apport de deux cosses bi-métal 240mm²	câble en défaut au poste Avion Civile dont l'apport de : une extrémité unipolaire		de la remontée du poste ONEA	Repose de la traversée busée et fermeture de la tranchée au poste 107	jonctions unipolaires 24kv	Visite du poste 51 pour faire un état critique du local
Dépose d'une portion de câble HT sur le départ	Baoguin pour cause de vandalisme (câbles et comptages)	Visite du parcours pour élagage		Conducteurs HTA coupés et à terre au poste 99 (devant IBU Pharm ex Cophadis) entrainant la réalisation provisoire de jonctions aériennes par de 12 DPA150 mm² et 100 m de câble almelec 75 mm²	Dépose du transformateur de 160kva-15kv du poste 564 du D16 qui devient un poste sur portique et posé sur le poste 388 de saaba en panne		Visite du départ ; résultat ; ?????
Reprise d'un câble HT décroché par vent	Réhabilitation du poste mmeuble Baoguin suite à un vandalisme avec apport de : 01 intérrupteur-sectionneur T4 800 A ;44 m de câble 1x240 mm² _Cu ; 03 tors de 600/5A ; et la	Reprise d'une attache défaite à la remontée du départ		Elagage sur une partie du départ du coté du Camp Sangoulé Lamizana	Elagage sur 06 portées suivant un bon de dépannage	Déplacement d'un support d'arrêt dont l'apport de : 03 DPA; 03 griffes-blocs;03 ensembles d'isolateurs composite ; 01 jeu de para foudre et 03 cosses B2	Ouverture de tranchée et confection d'une boite de jonction unipolaire 24 kv à l'IACM ENAREF suite à un accident sur le câble
Dépannage : relèvement d'une phase tombée	Confection d'une boîte de jonction unipolaire 24kv dans la centrale de Ouaga II	Remplacement du transformateur du poste 46 de 100kva-15kv de marque France transfo avec un transfo ABB 100kva-15kv avec un apport de 7m de câble Cu 4x95 mm²		Visite de poste en défaut au centre PAM YONDO	Dépose du transformateur de marque TRANSFIX 160 Kva -15kv du poste 242 au profit d'un poste sur portique de marque ?????? Kva-15kv	Isolement d'un câble (déposé) en contact accidentel avec un support	Réglage des couteaux de la commande d'un IACM sur D18
Reprise 3 attaches défaites	Visite pour réparation et renforcement des issues et aératons du poste 05 pour cause de vandalisme	Dépannage d'un support accidenté	Remplacement d'un support HT accidenté et mise en place de deux fils sur la bretelle du poste 267	Elagage sur 11 portées sur le départ	Préparation de chantier pour entretien du réseau HT		Dépannage de ????? Sur le départ

Figure 2 : Travaux de dépannage de janvier à aout (suite)

	_						
Mutation de câble au poste 130 de la cellule arrivée e	Réparartion de la porte rouillée du poste CONASUR	Isolement d'un câble (déposé) en contact accidentel avec un support	Remplacement de 2 cosses brûlés du poste 256 de type 7	Remplacement de parafoudre au poste 471	Entretien par le remplacement de 04 isolateurs composite et 01 isolateur VHT et le remplacement de quatres attache défaite et élimination et 8 corprs étrangers		Rhéabilitation du local du poste 119 suivit de la surveillance des travaux
Remplacement du support accidenté +aextraction de		Elagage	Défaut câble BT 4x16	Appuis à HTA/S1 pour réalisation	Remplacement du DHP de type 6	Visite du départ pour	Reprise d'un câble HT décroché par vent
8 corps etranger sur 12 portées	cause de vandalisme (à réhabiliter par le propriétaire	3-3-		de boite de jonction	au poste Examens et concours	reception d'élagage	
Reparation d'une phase a la masse	Réhabilitation des ouvertures du poste 05	Visite de chantier pour vérification du parcours (recherche de buse de traversée), poste 666-poste 88	Visite de clients départ suite à une correspondance diveres des clients du poste 133 de 160 kva- 15kv de marque	remplacement disolateurs cassse 3 isolateurs	Réparation de câble défectueux (jonction défectueux sous caniveau), poste se sectionement- poste PIGF 02 JUP 24kv	Dépannage sur le départ 18 à Kamboinsin (câble coupé)	Dépannage : relèvement d'une phase tombée
Elagage sur 22 portées sur le départ	Réhabilitation de la porte du poste CONASUR	Mutation puis remplacé du transformateur Gec alstom N° 790625 avec un transfo JSB	Réseau HTA et BTA : Déconnexion de la terre par ouverture au	Elagage	Visite d'une partie du départ	Remplacement d'une cosse 34x117	Dépannage de l'IACM du poste EP de l'église de KOLOG-NAABA dont un cosse était brûlé
Elagage sur 11 portées sur le départ mauvais temps	Réhabilitation de la porte du poste BURKINA PATE	Reparation Câble suite a la chutte d'un echaffaudage	Realisation de puits de terre	Visite de chantier pour vérification du parcours (recherche de buse de traversée), poste 666-poste 88	Suite de la Visite du départ		poste 119
Mutation et remplacement de transformateur 100kVA en 160kVA au P774	Réparation d'un câble accidenté au poste Immeuble Baoguin dont la confection d'une jonction unipolaire 24 kv	Elagage sur 23 portées	Fermeture de puits de terre	Mutation puis remplacé du transformateur Gec alstom N° 790625 avec un transfo JSB N° 020611812144 du poste 361	plateforme à retablir au P240 - Parafoudre fonctionner au Poste CMA DE PISSY -02 VHT cassé après la pharmacie BLMG -01 VHT		
Pose de câble et raccordement sur jeu de barres à Ouaga 2	Réhabilitation des aérations du poste 311 (Marien N'GOUABI)	Elagage sur 20 portées	Pose de câble, cofection de tête de câble et approvisionnemet d'une cellule, poste 666-poste CNSS(DRO)		Remplacement d'un parafoudre defectueux sur le départ au poste 473		
Déconnexion d'un transformateur défectueux au poste sur la route menant au rond-point	Réhabilitation et mise en confromité du local du poste 311 (Marien N'GOUABI) pour suite de vandalisme	Elagage sur 17 portées	 		 		

Figure 3 : Travaux de dépannage de janvier à aout (suite)

Déconnexion d'un transformateur défectueux au		Elagage sur 17 portées			
poste sur la route menant au rond-point	confromité du local du poste 311 (Marien N'GOUABI) pour suite			 	
	de vandalisme				1
Raccordement des trois phases de la remontée du	Remplacement des câbles de				
poste ONEA	liaison Transformateur -TUR suite à un vandalisme du poste			 	
	311 (apport de : 24m de câble	i			1
	cuivre 1X240 mm²; 08 cosses étamé 240mm² et 10 rouleau de			 	
	skotch)			 	
Conducteurs HTA coupés et à terre au poste 99 (devant IBU Pharm ex Cophadis) entrainant la	Recherche de défaut et réalisation de boîte de ionction			 	
réalisation provisoire de jonctions aériennes par de				 	
12 DPA150 mm² et 100 m de câble almelec 75 mm²	Guillaume et poste Hotel des	1		 	
	députés			 	
	Recherche de défaut sur la				
Mutation de câble defectueux avec 4 boites de jonct				 	
	Visite du poste 40 pour son				
Remplacement de 02 support accidenté + elegage si	renforcement en urgence des			 	
Visite d'un transfo H59 privé	Réalisation d'un jeu de jonction			<u> </u>	+
	unipolaire 24kv sur la poste			 	
Dépannage (câble coupé) 12 DPA150 mm²	SATOM et poste Immeuble Dépannage sur le départ 12				+
100 m de câble almelec 75 mm²	Poste ancheo-			 	
Réparation de câble accidenté (piochage), defaut	Traveau de réhabilitation et de			<u> </u> 	
liaision aero-souterraine apport de 6 boites de	renforcement des aération du			 	
jonctions	local poste, poste 30	!_	 	! !	
	Réparation de câble défectueux poste Satom			 	
	poste Satom				
	Fermeture de tranchées, poste				
	Satom			 	
	Réparation de câble accidenté,			I 	
	poste 211-poste FASO PLAST			 -	
	1			!	

Figure 4 : Travaux de dépannage de janvier à aout (suite)

Septembre	Octobre	Novembre	Décembre
Activités Recherche de défaut par ouverture de tranchée ; résultat	Activités Mutation du transformateur du poste 705 de 250kva à 630 kva (SACEM N°140045 de 2017)	Activités Recherche de défaut sur la liaison poste BCEAO et poste E résultat ; retrouvé	Activités
Recherche de défaut suite ; par ouverture de tranchée ;	Visite du départ : résultat; ??????	Suite avec ouverture de tranchée sur le tronçon en défaut et remplacement du câble	Poste107: reprise des terres des masses et neutre avec apport de trois griffes blocs A3
Réparation de câble accidenté (piochage)	Mutation du transformateur du poste 707 de 100kva- 15kv à 160kva-15kv de	Suite du dépannage avec réalisation de six (06) boîtes de jonctions 24kv	Poste 83 : reprise des terres et masses avec apport de deux griffes blocs A5
Déplacement d'un support d'arrêt dont l'apport de : 03 DPA; 03 griffes-blocs;03 ensembles d'isolateurs composite ; 01 jeu de para foudre et 03 cosses B2	Remplacement du transformateur du poste 805 de 160kva explosé avec son DHP crâmé NEXANS N°15005023 de 2015 par GECALSTHOM N°162500 160kva-15kv	Suite et fin de dépannage avec essai diélectrique du nouveau câble du départ et raccordement	Poste 341: reprise des terres des masses et neutre avec apport de trois griffes blocs A3
Traversée de canal- rail de larlé réparation d'une ancienne jonction défectueuse par apport de : 02 jonctions unipolaires 24kv	Ouverture de tranchée pour remplacement	Suite et fin avec la fermeture de tranchée entre poste BCEAO et poste E	Remplacement d'un isolateur VHT cassé
		Recherche de défaut entre poste BCEAO et poste E résultat : défaut retrouvé	Visite du départ ; résultat : ???

Figure 5 : Travaux de dépannage de septembre à Décembre (suite)

Réhabilitation du poste mmeuble Baoguin suite à un vandalisme avec apport de : 01 intérrupteur-sectionneur T4 800 A ;44 m de câble		Recherche de défaut entre Ouaga 2 et poste E résultat : défaut non retrouvé	Elagage sur 6 Portées sur une partie du départ
Confection 3 boîte de jonction unipolaire 24kv dans la centrale de Ouaga II Visite pour réparation et renforcement des issues et aératons du poste 05 pour cause de vandalisme	câble defectueau poste à la remonté dont l'apport d'un cosse alu- cu 95x3 suivit de Fermeture de tranchée	Suite de recherche de défaut avec la réalisation de trois boîtes de jonctions 24kv suite à la recherche de défaut entre Recherche de défaut entre poste E et centrale OUAGA II résultat : RAS	Réparation d'un câble accidenté par incendie au 2ème tronçon du départ dont un apport de : trois jonctions unipolaires 24 kv ; trois cosses 240mm² alu et 207 mètres de câble HNA 326 -240 mm² 24kv
Réparartion de la porte rouillée du poste CONASUR	Visite du départ :pour préparer un chantier		Reprise d'une attache défaite
Visite du poste PAPEC pour cause de vandalisme (à réhabiliter par le propriétaire	Renforcement d'un câble dont les brins sont effrités sur 03 portées	Entretien des postes par le néttoyage du P 526 et réhabilitations des MALT	
Réhabilitation des ouvertures du poste 05	Elagage sur 22 portées sur le départ et corps etranger a extraire	Visite de réseau à partir du poste 119 ; résultat : ????	Remplacement de 02 support accidenté +7 corps etrangers sur 14 portées

Figure 6 : Travaux de dépannage de septembre à Décembre (suite)

Réhabilitation de la porte du poste CONASUR	Remplacement du câble 75,5 mm² alu sur 19 portées	Visite de chantier suite à un bon de dépannage du 16/7/18 N° 210413 ; résultat : un support incliné suite à une tranché des travaux du fibre optique	Visite d'un transfo H59 privé
Réhabilitation de la porte du poste BURKINA PATE	Reglage d'un câble de parafoudre en contact avec la herze du poste 470	Remblayage et renforcement d'un support en voie	Visite du départ pour reception d'élagage
Réparation d'un câble accidenté au poste Immeuble Baoguin dont la confection d'une jonction unipolaire 24 kv	Elagage sur la dérivation du poste 470	Reprise d'une attache défaite au poste TNB à Tampouy	
Réhabilitation des aérations du poste 311 (Marien N'GOUABI)	Remplacement du transformateur du poste 805 de 160kva	Elagage du départ sur 04 portées	
	Remplacement du câble 75,5 mm² alu sur 03 portées	Reprise des ponts à la remontée du poste 13 dont un apport de : deux cosses bi- métal	
	Visite d'un support accidenté	Mutation du transformateur du poste 389 de 250kva à 630 kva de marque sacem N° 140036	
	Remplacement du support accidenté	Réparation d'un câble pioché avec un apport d'une boîte de jonction unipolaire 24 kv	
	Reparation d'une phase a la masse	Recherche de défaut; résultat : amorçage sur l'extrémité de phase N°02 à la remontée du poste 85	,

Figure 7 : Travaux de dépannage de septembre à Décembre (suite)

Elagage sur 22 portées sur le départ	Poste 85 : reprise d'une extrémité extérieure24kv défectueuse et apport d'un cosse alu 95 mm²	
Elagage sur 11 portées sur le départ mauvais temps	Visite du départ ; résultat : ???	
transformateur 100kVA	Remplacement de trois fusibles 250A et apport de huit CBSau poste 466 suivit de la reprise du départ 18 en défaut sur un autre départ (NB: une remontée aéro souterraine en dfaut)	
Pose de câble et raccordement sur jeu de barres à Ouaga 2	Elagage sur ??? Portées sur une partie du départ jusqu'au garage OK	
Remplacement de parafoudre au P470	-	

Figure 8 : Travaux de dépannage de septembre à Décembre (suite)