

ETUDES TECHNIQUES POUR LA REHABILITATION DU BARRAGE DE LA, DANS LA COMMUNE RURALE DE SOURGOU (PROVINCE DU BOULKIEMDE, REGION DU CENTRE-OUEST), BURKINA FASO.

MEMOIRE POUR L'OBTENTION DU DIPLOME D'INGENIEUR 2IE AVEC GRADE DE **MASTER**

SPECIALITE : GENIE CIVIL ET HYDRAULIQUE OPTION : INFRASTRUCTURES ET RESEAUX HYDRAULIQUES

Présenté et soutenu publiquement le 30 janvier 2021 par :

Wendkouni Nina ILBOUDO (20150185)

Directeur de mémoire : Moussa LO, Enseignant, Département Génie Civil BTP 2iE.

Maître de stage : Laouapan Ousseni Kepian DRABO, Ingénieur du génie rural et Coordonnateur du PRBA.

Structure d'accueil du stage : Projet de Réhabilitation de Barrages et d'Aménagements de périmètres irrigués et de bas-fonds (PRBA)

Jury d'évaluation du mémoire :

Président: Dr. Babacar LEYE

Membres et correcteurs : M. Gnenakantanhan COULIBALY

M. Romeal PANGA

Promotion [2019/2020]

DEDICACES

Je dédie ce modeste travail à toute ma famille et à mes amis qui m'ont soutenue et encouragée durant ces années d'études en signe de ma vive reconnaissance. Puisse le tout Puissant vous donner santé, bonheur, longue vie.

REMERCIEMENTS

J'aimerais ici exprimer ma reconnaissance et mes sincères remerciements à tous ceux qui de près ou de loin, ont contribué à l'aboutissement de ce travail et de ma formation. Il s'agit plus particulièrement de :

- ♣ Mes enseignants et tout le corps professoral de l'Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE) pour la qualité de la formation ;
- Mon directeur de mémoire, Monsieur Moussa LO, pour m'avoir aidé dans la recherche de ce stage et également pour sa disponibilité et ses conseils.
- ➡ Mon encadreur, Monsieur Laouapan Ousseni Kepian DRABO, Coordonnateur du Projet de Réhabilitation de Barrages et d'Aménagements de périmètres irrigués et de bas-fonds (PRBA) pour m'avoir accepté dans sa structure et pour sa patience, sa rigueur et sa disponibilité malgré un calendrier chargé.
- Tout le personnel de la Direction Générale des Infrastructures Hydrauliques (DGIH) pour l'accueil, les conseils et les explications qui ont guidé notre travail;
- → Tous les étudiants de 2iE avec qui j'ai eu une parfaite collaboration durant mon parcours estudiantin ;
- ♣ Ma famille pour le soutien constant et les encouragements ;
- La Direction de Développement et de la Coopération Suisse (DDC) pour le soutien financier dont j'ai bénéficié au cours de ma formation ;
- → Tout le personnel du Centre de Développement pour Enfants (CDE BF351) ainsi que les amis pour le soutien constant.
- → Mes collègues stagiaires de la DGIH pour les explications, conseils et surtout pour les encouragements.
- ♣ La famille CISSE BARRY pour leur soutien.

RESUME

La présente étude porte sur la réhabilitation du barrage de LA, situé dans la province du Boulkiemdé au Burkina Faso. Les études de base (études géotechnique, diagnostique et hydrologique) font ressortir que le barrage de LA, a été construit en 1987 et est constitué d'une digue homogène de longueur 581 m, d'un déversoir latéral naturel de longueur hydraulique 100 m, d'un ouvrage de prise, d'un mur bajoyer et d'une diguette de protection en rive gauche. Les talus de la digue sont érodés et recouverts d'une végétation moyennement dense. Les causes probables de cette dégradation sont le manque d'entretien et la raideur des pentes des talus (1H/1V sur talus aval). Afin de pérenniser l'ouvrage, nous proposons une reconstruction de la digue du barrage avec des pentes de talus amont et aval de 2,5H/1V et 2H/1V, la réalisation d'une diguette de protection en rive droite, la correction de l'ensemble du tapis d'enrochement du chenal et la reconstruction de l'ouvrage de prise. L'ouvrage reconstruit permettra de stocker 3 395 000 m³ d'eau au plan d'eau normal. Les apports évalués à 3 282 362 m³ en année décennale sèche suffiront donc pour remplir la cuvette à 97 %. La morphologie du terrain nous impose à conserver la côte de calage de la digue (niveau fini de crête : 280 m). En considérant cette côte, la revanche libre restante est de 50 cm. Nous proposons donc la mise en place d'un mur parapet de hauteur 50 cm pour renforcer la sécurité hydrologique de l'ouvrage. Un filtre de sable horizontal d'épaisseur 50 cm sera placé au pied aval de la digue afin de collecter les eaux d'infiltration dans le massif et de les évacuer à l'aval. La conduite de l'ouvrage de prise combiné à l'ouvrage de vidange sera en fonte de diamètre nominal 300 mm et permettra l'irrigation d'un périmètre de 20 ha en aval du barrage La réhabilitation du barrage contribuera donc à l'amélioration des conditions de vie de la population de la commune de Sourgou. Cependant, quelques impacts négatifs tels que la pollution de l'environnement par l'utilisation des pesticides ont été relevés. Des mesures d'atténuations ont donc été proposées afin de réduire leur ampleur. Le coût de réhabilitation du barrage y compris le coût de ces atténuations est estimé à 386 256 037 F CFA TTC.

Mots clés

- 1- Barrage
- 2- Déversoir naturel
- 3- Digue
- 4- LA
- 5- Réhabilitation

ABSTRACT

The present study concerns the rehabilitation of LA dam, located in the province of Boulkiemdé, Burkina Faso. Built in 1987, baseline studies (geotechnical, diagnostic and hydrological studies) show that the dam is composed of an homogeneous dike of 581 m, a natural lateral spillway of 100 m, an intake structure, a bank wall and a protection dike on the left bank. The embankments of the dike are eroded and covered with medium dense vegetation. The probable causes of this degradation are the lack of maintenance and the steepness of the slopes of the embankments (1H/1V on the downstream slope). In order to perpetuate the structure, we propose a reconstruction of the dam dike with upstream and downstream slopes of 2.5H/1V and 2H/1V, the construction of a protective dike on the right bank, the correction of the entire riprap mat of the channel and the reconstruction of the intake structure. The reconstructed structure will make it possible to store 3,395,000 m3 of water at the normal water level. The inflows estimated at 3,282,362 m3 in the decennial dry period will therefore be sufficient to fill the basin to 97%. The morphology of the land requires us to preserve the dike's wedge rib (finished crest level: 280 m). Considering that level, the remaining free height is 50 cm. We therefore propose the installation of a 50 cm high parapet wall to reinforce the hydrological safety of the structure. A horizontal sand filter 50 cm thick will be placed at the downstream foot of the dike in order to collect infiltration water in the massif and evacuate it downstream. The intake and discharge pipes will be made of cast iron with a nominal diameter of 300 mm and will enable the irrigation of a 20 ha perimeter downstream of the dam. The rehabilitation of the dam will therefore contribute to the improvement of the living conditions of the population of the Sourgou commune. However, some negative impacts such as environmental pollution through the use of pesticides have been noted. Attenuation measures have therefore been proposed in order to reduce their negative impacts. The cost of rehabilitation of the dam including the cost of those attenuation measures is estimated at 386,256,037 F CFA all taxes included.

Key words

- 1- Dam
- 2- Natural spillway
- 3- Dike
- 4- LA
- 5- Rehabilitation

LISTE DES SIGLES ET ABREVIATIONS

2iE : Institut International d'Ingénierie de l'Eau et de l'Environnement

AGETEER Agence d'Exécution des Travaux Eau et Equipement Rural

BNDT : Base Nationale de Données Topographiques

CFGB Comité Français des Grands Barrages

CETRI Cabinet d'Etudes Techniques et de Recherche en Ingenierie

CIEH : Comité Interafricain d'Etudes Hydrauliques

CO₂ Dioxyde de Carbone

DGIH : Direction Générale des Infrastructures Hydrauliques

DPAAH . Direction Provinciale de l'Agriculture et des Aménagements

Hydrauliques

DPRAH : Direction Provinciale des Ressources Animales et Halieutiques

EIER : Ecole Inter-Etats d'Ingénieurs de l'Equipement Rural

FAO : Food and Agriculture Organization of the United Nations

GPS : Global Positioning System

IRD : Institut de Recherche pour le Développement

MST : Maladies Sexuellement Transmissibles

NIES : Notice d'Impact Environnemental et Social

ONBAH : Office National des Barrages et des Aménagements Hydro- Agricoles

ORSTOM : Office de la Recherche Scientifique et Technique Outre-Mer

PAFASP : Programme d'Appui aux Filières Agro-Sylvo-Pastorales

PCD : Plan Communal de Développement

PEN : Plan d'Eau Normal

PGES : Plan de Gestion Environnementale et Sociale

PHE : Plus Hautes Eaux

PRBA : Projet de Réhabilitation et d'Aménagement de Périmètres et de Bas-

fonds

RGPH : Recensement Général de la Population et de l'Habitat

SIG : Système d'Information Géographique

USCS : Unified Soil Classification System

FICHE TECHNIQUE DU BARRAGE DE LA

	Caractéristiques	
Désignation	Avant réhabilitation	Après réhabilitation
I. Localisation	Tenuomeuron	
Commune	Sourgou	
Province	Boulkiemdé	
Région	Centre-Ouest	
Coordonnées	X = 574453,61	Y = 1335244,72
Village	LA	
II. Bassin Versant		
Superficie (Km²)	218,82	
Périmètre (Km)	79,69	
Débit de la crue décennale (m ³ /s)	63,485	
Crue Projet (m3/s)	240	
Pluie annuelle (année moyenne)	775	
Apports liquide en année décennale sèche (m³)	3 282 362	
Apports solides (m ³ /an)	14 730	
III. Retenue		
Côte au PEN (m)	278,50	278.50
Capacité au PEN (m ³)	3 395 000	3 395 000
Superficie inondée au PEN (m ²)	2 740 000	2 740 000
IV. Digue principale	<u> </u>	
Туре	Digue en terre	Digue en terre
Côte moyenne de calage (m)	280,00	280,00
Hauteur maximale (m)	5,00	5,00
Largeur en crête (m)	3,5	3,5
Pente talus amont et aval	2H/1V et 1H/1V	2,5H/1V et 2H/1V
Longueur totale (m)		581

	Caractéristiques		
Désignation	Avant réhabilitation	Après réh	abilitation
Protection talus amont et aval	Perré sec	Perré sec	
Mur parapet	Néant	Projection d'un mur parapet	
Côte du Mur Parapet		280,50	
V Diguette de protection			
Туре	Digue (rive gauche)	Digue rive gauche à conserver	Digue rive droite
Côte moyenne de calage (m)			279.75
Largeur moyenne en crête (m)	3	3	3
Pente talus amont et aval	2H/1V	2H/1V	2H/1V
Longueur totale de chaque digue(m)	20	20	20
Protection talus amont et aval	Perré maçonné sur 10 m et perré sec sur	Perré maçonné sur 10 m et perré sec	Perré maçonné
	10 m.	sur 10 m.	
Protection talus aval	Perré sec	Perré sec	Perré sec
VI Déversoir			
Nombre	1	1(à conserver)	
Position	Latérale gauche	Latérale gauche	
Туре	Muret	Muret	
Côte de calage seuil (m)	278,50	278,50	
Longueur du seuil (m)	100	100	
Largeur en crête (cm)	30	30	
Constitution	Gros béton	Gros béton	
Débit (m3/s)		240	
Type bassin de dissipation	Néant	Néant	
Longueur du bassin	Néant	Néant	
Largeur du bassin	Néant	Néant	
Protection aval en enrochement	Tapis d'enrochements	Renforcement en ga	bions en aval

	Caractéristiques		
Désignation	Avant réhabilitation	Après réhabilitation	
VII Ouvrage de prise			
Nombre	1	1	
Position	Rive droite	Rive droite	
Type de commande	Commande aval	Commande aval	
Nature de la conduite	Fonte	Fonte	
Diamètre de la conduite (mm)	300	300	
Côte amont (m)	275,89	275.89	
Côte aval (m)	275,55	275.55	

SOMMAIRE

DEDICACES	i
REMERCIEMENTS	ii
RESUME	iii
ABSTRACT	iv
LISTE DES SIGLES ET ABREVIATIONS	v
FICHE TECHNIQUE DU BARRAGE DE LA	vi
Sommaire	ix
Liste des tableaux	xii
Liste des figures	xiii
Liste des photos	xiii
INTRODUCTION	1
I. PRESENTATION DU PROJET PRBA ET DE LA ZONE D'ETUDE	3
I.1 Présentation du projet PRBA et de ses objectifs	3
I.1.1 Objectif global du projet	3
I.1.2 Objectifs spécifiques du projet	3
I.2 Présentation des objectifs du stage	3
I.2.1 Objectif général du stage	3
I.2.2 Objectifs spécifiques du stage	3
I.3 Présentation de la zone d'étude	4
I.3.1 Localisation et accès au site du projet	4
I.3.2 Caractéristiques physiques et naturelles	5
II. MATERIEL ET METHODES	8
II.1 Matériels	8
II.2 Collecte des données et méthodologie de traitement	8
II.2.1 Recherche documentaire	8
II.2.2 Etude diagnostique et état des lieux	8
II.2.3 Etude géotechnique	8
II.2.4 Etude topographique	9
II.2.5 Etude hydrologique	9
II.2.6 Evaluation des besoins	21
II.2.7 Courbe d'exploitation de la retenue	
II.3 Vérification de la capacité des ouvrages	23

II.3.	.1	Vérification de la capacité du déversoir	23
II.3.	.2	Vérification de la revanche libre restante	23
II.4	So	lutions de réhabilitation du barrage	24
II.5	Di	mensionnement des ouvrages proposés	24
II.5.	.1	Dimensionnement de la digue	24
II.5.	.2	Conception et dimensionnement des ouvrages annexes	25
II.6	Et	ude d'impact environnemental et social	26
II.7	De	evis quantitatif et estimatif des travaux	27
III. RE	ESUI	TATS ET DISCUSSIONS	28
III.1	Sy	nthèse des études diagnostiques	28
III.1	1.1	Historique du barrage	28
III.1	1.2	Etat des lieux	28
III.1	1.3	Causes probables des dégradations	32
III.1	1.4	Utilisation actuelle du plan d'eau	32
III.2	Sy	nthèse des études géotechniques	32
III.2	2.1	Fondation de la digue existante	32
III.2	2.2	Matériaux de la digue existante	32
III.2	2.3	Zone d'emprunt	
		-	33
III.2	Ra	Zone d'emprunt	33
III.2 III.3	Ra Sy	Zone d'emprunt	33 33
III.2 III.3 III.4 III.5	Ra Sy Sy	Zone d'emprunt	33 33
III.2 III.3 III.4 III.5	Ra Sy Sy 5.2	Zone d'emprunt	33 34 34 37
III.2 III.3 III.4 III.5	Sy Sy 5.2 5.3	Zone d'emprunt	33 34 34 37
III.2 III.3 III.4 III.5 III.5	Ra Sy Sy 5.2 5.3	Zone d'emprunt	33 34 34 37 41 42
III.2 III.3 III.4 III.5 III.5 III.5	Ra Sy Sy 5.2 5.3 5.4 5.5	Zone d'emprunt ppel des études géotechniques antérieures nthèse des études topographiques nthèse des études hydrologiques Caracteristiques du bassin versant Détermination de la crue de projet Estimation des apports liquides	33 34 34 37 41 42
III.2 III.3 III.4 III.5 III.5 III.5	Sy Sy 5.2 5.3 5.4 5.5 Co	Zone d'emprunt ppel des études géotechniques antérieures nthèse des études topographiques nthèse des études hydrologiques Caracteristiques du bassin versant Détermination de la crue de projet Estimation des apports liquides Estimation des dépôts solides	33 34 34 37 41 42 43
III.2 III.3 III.4 III.5 III.5 III.5 III.5 III.6	Sy Sy 5.2 5.3 5.4 5.5 Co	Zone d'emprunt ppel des études géotechniques antérieures nthèse des études topographiques nthèse des études hydrologiques Caracteristiques du bassin versant Détermination de la crue de projet Estimation des apports liquides Estimation des dépôts solides purbe d'exploitation de la retenue.	33 34 34 37 41 42 43 43
III.2 III.3 III.4 III.5 III.5 III.5 III.5 III.6 III.7	Ra Sy Sy 5.2 5.3 5.4 5.5 Co Vé	Zone d'emprunt	33 34 34 37 41 42 43 45
III.2 III.3 III.4 III.5 III.5 III.5 III.5 III.6 III.7	Ra Sy Sy 5.2 5.3 5.4 5.5 Ve 7.1	Zone d'emprunt	33 34 34 37 41 42 43 45 45
III.2 III.3 III.4 III.5 III.5 III.5 III.6 III.7 III.7	Ra Sy Sy 5.2 5.3 5.4 5.5 Vé 7.1 7.2	Zone d'emprunt	33 34 34 37 41 42 43 45 45 46
III.2 III.3 III.4 III.5 III.5 III.5 III.6 III.7 III.7 III.7 III.8	Ra Sy Sy 5.2 5.3 5.4 5.5 Co Vé 7.1 7.2 So Di	Zone d'emprunt	333434374142434545454647
III.2 III.3 III.4 III.5 III.5 III.5 III.6 III.7 III.7 III.7 III.8 III.9	Ra Sy Sy 5.2 5.3 5.4 5.5 Co Vé 7.1 7.2 So Di	Zone d'emprunt	33343437414243454545464647

III.10 Dispositif de suivi et de maintenance	50
III.10.1 Dispositif de suivi du barrage	50
III.10.2 Dispositif de surveillance et d'entretien	51
III.10.3 Ressources en eau pour les travaux et construction de batardeaux	51
III.11 Notice d'impact environnemental et social	51
III.12 Devis estimatif des travaux	54
IV. CONCLUSION ET RECOMMANDATIONS	55
V. BIBLIOGRAPHIE	56
VI. ANNEXE	57

LISTE DES TABLEAUX

Tableau 1 : Caractéristiques des données climatologiques	10
Tableau 2 : Tableau de détermination de la période de retour (CFGB, 2002)	13
Tableau 3 : Paramètres de équations utilisées pour la méthode CIEH	16
Tableau 4 : Calcul de l'infiltration dans la digue	25
Tableau 5 : Résultats de l'ajustement des pluies de la station de Thiou Koudougou	37
Tableau 6 : Principaux paramètres du bassin versant	40
Tableau 7 : Classe de climat, de relief et d'infiltrabilité du bassin	41
Tableau 8 : Résultats du calcul des crues (m³/s) du bassin de LA	41
Tableau 9 : Récapitulatif des apports liquides de Rodier et de Coutagne	42
Tableau 10 : Apports liquides du bassin de LA	42
Tableau 11 : Résultats de l'estimation de la dégradation spécifique	43
Tableau 12 : Résultats de l'évaluation des apports solides	43
Tableau 13 : Récapitulatif des pertes et besoins	44
Tableau 14 : Vérification du dimensionnement hydraulique du seuil	45
Tableau 15 : Résultats de la matrice d'identification des impacts	52
Tableau 16 : Matrice d'évaluation de FECTEAU	53
Tableau 17 : Coût de la réhabilitation du barrage de LA	54

LISTE DES FIGURES

Figure 1 : Carte de la localisation du site du projet5
Figure 2 : Courbe Hauteur -Volume et Hauteur -Surface de la retenue de LA34
Figure 3 : Délimitation du bassin versant
Figure 4 : Répartition annuelle de la pluviométrie
Figure 5 : Carte des sols du bassin versant au site de LA
Figure 6 : Géologie du bassin versant au site de LA
Figure 7 : Courbe hypsométrique
Figure 8 : Courbe d'exploitation de la retenue
LISTE DES PHOTOS Photo 1 : Des affaissements sur la crête de la digue entrainant une stagnation des eaux (Source :
AGETEER, 2017)
Photo 2 : Erosion du talus amont (Source : AGETEER, 2017)
Photo 3 : Aperçu du seuil déversant (Source : AGETEER, 2017)
Photo 4 : Protection avale du seuil dégradé en rive gauche (Source : AGETEER, 2017) 30
Photo 5 : Protection avale du seuil en bon état en rive droite (Source : AGETEER, 2017) 30
Photo 6 : Diguette de protection en rive gauche en bon état (Source : AGETEER, 2017) 31
Photo 7 : Aperçu de l'état de la vanne (vétuste) (Source : AGETEER, 2017)31
Photo 8 : Aperçu de la station de pompage du PAFASP (Source : AGETEER, 2017) 31

INTRODUCTION

Situé dans la boucle du Niger, en Afrique de l'Ouest, le Burkina Faso possède un climat de type soudano sahélien caractérisé par des variations pluviométriques considérables allant d'une moyenne de 300 mm au Nord à plus de 1000 mm au sud avec une saison pluvieuse de courte durée s'étalant sur moins de 4 mois au Nord. C'est un pays très majoritairement agricole. Entre 80 et 85 % (BURKINA FASO, 2018) des burkinabé travaillent dans le secteur primaire, constitué par l'agriculture et l'élevage, pour subvenir à leurs besoins. Mais la faible pluviométrie, que connait le pays, rend cette partie de la population très pauvre et fragile. Pour résoudre les problèmes liés à la disponibilité de l'eau, l'Etat burkinabé, depuis les années 1970, a entrepris un vaste programme de mobilisation et de valorisation de la ressource en eau par la construction de barrages. Grâce à ce programme, de nombreux barrages parmi lesquels le barrage de LA, ont été construit au profit des populations de la province du Boulkiemdé. Le barrage de LA, situé dans la commune de Sourgou, a été construit en 1987. Ce barrage, parmi tant d'autres, connait actuellement des dégradations qui pourraient entrainer à la longue un arrêt des activités des populations ce qui conduirait inévitablement à des crises alimentaires vu que la demande devient de plus en plus forte (le taux de croissance démographique du pays est d'environ 3,1 % par an (Institut national de la statistique et de la démographie (INSD), 2015) et que les hauteurs pluviométriques ne font que décroitre. En effet, selon les projections des études du programme national d'adaptation à la variabilité et aux changements climatiques de 2007, les précipitations devraient diminuer de 7,3 % (Ministère de l'environnement et du cadre de vie 2007) en 2050. Afin de contrer cette situation, l'Etat a lancé à nouveau le Projet de Réhabilitation de Barrages et d'Aménagement de périmètres et de bas-fonds dans les provinces du Boulkiemdé, du Ziro, du Sanguié et des Balé (PRBA). Au Boulkiemdé, les prévisions portent sur la réhabilitation de 04 barrages et l'aménagement de 80 ha de périmètres irrigués au niveau des dits barrages (20 ha par barrage), pour la riziculture en hivernage et le maraichage en contre saison dans les villages de Doulou, Boulpon, LA et Goumogo. Afin d'apporter des solutions aux problèmes de dégradation des barrages, les études préalables sont nécessaires pour bien évaluer les besoins en termes de travaux et assurer leur bonne planification et une bonne estimation des coûts des travaux. Ainsi pour chaque site, des études de réhabilitations ont donc été lancées. Notre travail porte principalement sur les études de réhabilitation du barrage de LA d'où le thème intitulé : « ETUDES TECHNIQUES POUR LA REHABILITATION DU BARRAGE DE LA, DANS LA COMMUNE RURALE DE SOURGOU (PROVINCE DU

BOULKIEMDE, REGION DU CENTRE-OUEST), BURKINA FASO ». Il s'agira pour nous dans ce travail de faire un état de lieux des ouvrages existants, de définir les causes probables de leurs dégradations et de proposer des solutions de réhabilitations concrètes. Pour cela, des analyses ont été faites sur les données de base issues de la recherche documentaire, des investigations diagnostiques, géotechniques et topographiques réalisées.

Après avoir détaillée la méthodologie adoptée pour l'analyse de ces données, nous dégagerons les causes probables des dégradations des ouvrages, puis nous procéderons à des propositions de solutions de réhabilitations et à l'étude de leurs faisabilités. Les solutions techniques retenues serviront enfin de base pour les études d'impact environnemental et l'estimation du coût de la réhabilitation.

I. PRESENTATION DU PROJET PRBA ET DE LA ZONE D'ETUDE.

I.1 Présentation du projet PRBA et de ses objectifs

Dans le cadre de sa politique nationale et en contribution à la lutte contre la pauvreté, l'État Burkinabè a initié et mis en œuvre avec le financement de la Banque Ouest Africaine de Développement (BOAD), le Projet de Réhabilitation de Barrages et d'Aménagement de de périmètres et de bas-fonds dans les provinces du Boulkiemdé, du Ziro, du Sanguié et des Balé (PRBA).). Le projet a débuté en 2012 et son unité de coordination est basée à Koudougou dans la région du centre ouest.

I.1.1 Objectif global du projet

L'objectif global de ce projet est de contribuer à la croissance économique durable du Burkina Faso par la sécurisation et l'amélioration des productions et revenus des producteurs face aux changements climatiques.

I.1.2 Objectifs spécifiques du projet

Les objectifs spécifiques sont : :(i) la réhabilitation de 04 barrages et l'aménagement de 80 ha de périmètres irrigués au niveau des dits barrages (20 ha par barrage), pour la riziculture en hivernage et le maraichage en contre saison dans les villages de Doulou, Boulpon, LA et Goumogo; (ii) l'aménagement de 600 ha de bas-fonds dont la totalité pour la riziculture en hivernage; (iii)l'aménagement de 200 ha pour le maraichage en contre saison; (iv) l'exploitation de 20 ha de jardins maraichers en double culture; (v) la réalisation et la réhabilitation de 60 km de piste d'accès aux sites de production; (vi) la construction 24 magasins de stockage et aires de séchage au niveau des aménagements.

I.2 Présentation des objectifs du stage

I.2.1 Objectif général du stage

L'objectif général du stage est de faire une étude technique détaillée de la réhabilitation du barrage de LA, situé dans la commune rurale de Sourgou, dans la province du Boulkiemdé.

I.2.2 Objectifs spécifiques du stage

Les objectifs spécifiques de l'étude se présentent de la manière suivante :

- Faire l'état des lieux et le diagnostic de l'existant ;
- Faire une synthèse des études de base ;

- Concevoir et dimensionner les ouvrages ;
- Evaluer les impacts environnementaux et sociaux de la réhabilitation du barrage ;
- Évaluer le coût de réhabilitation du barrage.

I.3 Présentation de la zone d'étude

I.3.1 Localisation et accès au site du projet

Le village de LA qui abrite le site du projet est situé à 05 km à l'Ouest du village de Sourgou, chef-lieu de la commune du même nom, et à 15 km au sud de Koudougou, chef-lieu de la province du Boulkiemdé, de la région du Centre-Ouest du Burkina Faso.

Les coordonnées géographiques du site sont les suivantes : Latitude :12°4'27,1''Nord ; Longitude :2°19'19,8 ''Ouest.

L'accès au site de LA se fait à partir de Ouagadougou par l'une ou l'autre des itinéraires suivants :

- ♣ la route nationale n°1 (RN1) en direction de Sabou sur l'axe Ouagadougou-Sabou-Boromo-Bobo-Dioulasso jusqu'à Sabou; à partir de Sabou on emprunte la route nationale n°13 vers le Nord jusqu'à Sourgou sur l'axe Sabou-Koudougou-Yako. A partir de Sourgou situé au PK 10 sur l'axe ci-dessus indiqué, on emprunte à l'ouest la piste rurale qui conduit à LA à 05 km;
- ♣ la route nationale n°1 (RN1) jusqu'au croisement à Sankoinsé avec la route menant jusqu'à Koudougou sur l'axe Sankoinsé-Koudougou. A partir de Koudougou, on emprunte la route nationale n°13 (RN13) jusqu'à Sourgou sur l'axe Koudougou-Sabou-Léo-Frontière du Ghana. A partir de Sourgou situé au PK 15, on emprunte à droite en direction de l'ouest une piste rurale qui mène jusqu'à LA situé à 05 km de Sourgou.
- ♣ En suivant les itinéraires ci-dessus décrits, LA se trouve à 107 km de Ouagadougou par le premier itinéraire, à 125 km par le deuxième.

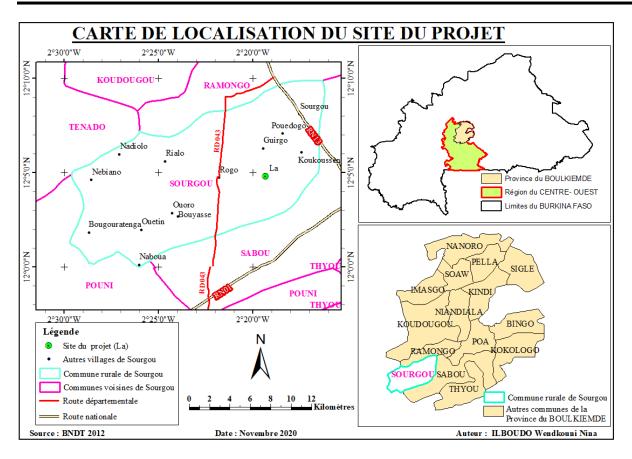


Figure 1 : Carte de la localisation du site du projet

I.3.2 Caractéristiques physiques et naturelles

I.3.2.1 Climat et pluviométrie

Dans la commune de Sourgou, le climat est du type subtropical à deux saisons : (i) une longue saison sèche et froide (octobre à février) puis chaude (mars à mai) ; et (ii) une courte saison pluvieuse, humide (juin à septembre) (b_CETRI et AGECET, 2017). Les précipitations se caractérisent par leur variabilité inter annuelle et spatiale et oscillent entre 600 et 900 mm. Les températures les plus élevées s'observent de mars à mai, les plus basses de décembre à janvier. La moyenne annuelle est de 28°C.

I.3.2.2 Relief et topographie

Les caractéristiques naturelles de la commune de Sourgou sont presque similaires à celles de la région du Centre Ouest. Le relief est plat et est constitué en grande partie d'une pénéplaine peu élevée par rapport au niveau de la mer. De façon spécifique, la commune est composée de deux grands ensembles topographiques :

✓ La plaine, avec une altitude moyenne de 300 m. Elle couvre une superficie de 183 km², représentant 70 % de la superficie de la commune ;

✓ Les bas- fonds qui couvrent 78 km² du foncier communal.

I.3.2.3 Hydrographie

La commune est constituée par un réseau hydrographique relativement dense. Le principal cours d'eau qui traverse la commune d'Est en Ouest sur une longueur de 26 km, appartient au grand bassin du Mouhoun (b_CETRI et AGECET, 2017).

I.3.2.4 Les sols

Le plan communal de développement 2009-2014 de Sourgou révèle que les sols sont généralement peu profonds et peu fertiles. Ce sont notamment les sols tropicaux ferrugineux très lessivés. Ils sont peu évolués d'érosion issus du démantèlement des cuirasses ferrugineuses (sols argilo-sableux, argilo-limoneux). En un mot, des sols hydromorphes sur matériaux argilo sableux associé à des lithosols sur cuirasse. Ils sont caractérisés par une pauvreté en phosphore, en azote et en matière organique. Quatre types de sols se répartissent sur les terres de la commune ce sont :

- les sols gravillonnaires qui occupent généralement les terres hautes. On y produit le sorgho, le mil, les légumineuses ;
- les sols sablonneux se rencontrent dans les zones intermédiaires entre les terres hautes et les bas-fonds. Ils sont aptes à la culture des céréales (sorgho, mil) ;
- les sols argileux se rencontrent dans les zones basses et le long des cours d'eau. Ils sont favorables à la culture du maïs et du sorgho;
- les sols limono argileux ou sols de bas-fonds. Ils sont annuellement enrichis par les limons déposés par les eaux de pluies. On y produit du sorgho, du maïs, du riz, des cultures maraîchères.

I.3.2.5 La végétation

Quant au couvert végétal, il est très arbustif avec quelques endroits arborés. On note un vaste tapis herbacé où sont généralement rencontrés les parcs de Vitelaria paradoxa ou de Parkia biglobosa, etc. A cela s'ajoutent, les jachères, les plantations artificielles et les superficies brûlées. Les jachères sont des formations non forestières sur lesquelles il y'a des arbres isolés dans les champs de cultures traditionnelles (mil, sorgho, par exemple). Les arbres ont été laissés pour la production de fruits (karité, néré) ou fourrage et fertilisant. Il existe des plantations artificielles. Elles sont constituées de plantations collectives et individuelles. On note également la présence d'une strate d'herbacées dans les espaces agricoles dégradés ou laissés en jachères,

et qui constituent les principales aires de pâturage. La végétation de LA, a fortement subi une dégradation suite à la variabilité climatique et à l'action de l'homme à travers la coupe abusive du bois, les feux de brousse et les mauvaises pratiques culturales.

I.3.2.6 Populations et principales activités économiques

I.3.2.6.1 Situation démographique

Selon le Recensement Général de la Population et de l'Habitation (RGPH) en 1996, la commune de Sourgou comptait une population résidente de 11 611 habitants contre 13 709 habitants en 2006, soit un taux de croissance annuelle de 1,81 %. Celle de LA en 2006 était estimée à 2 279 habitants.

I.3.2.6.2 Activités économiques

A Sourgou, la gamme d'activités économiques intègre harmonieusement l'agriculture (cultures pluviales, cultures irriguées) et l'élevage (gestion des troupeaux de reproduction, embouche bovine, embouche ovine, embouche porcine, aviculture) qui constituent les deux principales activités du milieu. Le petit commerce s'avère comme l'activité secondaire la plus pratiquée qui concerne les couches sensibles dont principalement les femmes et les jeunes. La transformation des produits agricoles et forestiers non ligneux et la pêche sont également pratiquées en troisième rang.

II. MATERIEL ET METHODES

II.1 Matériels

Dans le cadre de cette étude un ensemble d'outils a été utilisé. Il s'agit de :

- ✓ Google Earth pour la localisation et l'indication de l'itinéraire du site
- ✓ Hyfran plus pour le traitement statistique des séries de relevés pluviométriques
- ✓ AutoCAD et Covadis pour les différents plans ;
- ✓ GéoSlope pour vérifier la stabilité des pentes des talus ;
- ✓ ArcGis pour délimiter le bassin versant et éditer les différentes cartes ;
- ✓ CropWAT pour la détermination des coefficients culturaux ;
- ✓ Le pack office pour les calculs et la rédaction du rapport.

II.2 Collecte des données et méthodologie de traitement

II.2.1 Recherche documentaire

Plusieurs documents ont été consultés dans le cadre de cette étude. Il s'agit des documents liés :

- aux études antérieures sur le barrage de LA;
- ❖ au dimensionnement et à la réhabilitation des ouvrages ;
- ❖ à la gestion et à l'entretien des barrages

II.2.2 Etude diagnostique et état des lieux

L'étude diagnostique a consisté à une recherche documentaire et à la synthèse des résultats de visite de terrain. La visite de terrain a été conduite par les cabinets d'études CETRI et AGECET et un rapport a été produit (a_CETRI et AGECET, 2017). Dans ce mémoire, une synthèse du rapport est présentée. Cette visite a permis d'identifier et de décrire les dégradations sur les ouvrages du barrage par la méthode de l'observation et de déterminer les différentes causes probables de ces dégradations. L'étude et les propositions techniques pour la réhabilitation du barrage de LA se fondent sur ce rapport.

II.2.3 Etude géotechnique

L'étude géotechnique a été réalisée en 2017 par le Laboratoire des Sols et Bétons-Ingénieurs Conseils pour la détermination des caractéristiques géotechniques des ouvrages du barrage existant et la recherche de zones d'emprunts et des carrières d'agrégats. Elle a été réalisée en deux (02) phases, une phase terrain et une phase laboratoire. La phase terrain a consisté à creuser des puits à ciel ouverts pour identifier le sol de fondation et de la digue existante et à chercher des zones d'emprunts d'argile et de graveleux latéritiques pour les besoins de construction. La phase

laboratoire a permis à l'analyse des échantillons. Pendant cette phase, les essais d'identification (granulométrie, teneur en eau, limites d'Atterberg, Proctor) ont été réalisés.

II.2.4 Etude topographique

Une campagne topographique a été conduite par le bureau d'étude. Les levés topographiques ont concerné la cuvette et la digue du barrage de LA. Les informations recueillies sur le terrain à l'issu de cette campagne ont permis d'élaborer les plans de masse de la cuvette y compris la digue existante. Les courbes de niveau ont été ensuite générés sur Covadis pour l'obtention des surfaces élémentaires correspondantes à des pas de 0,5 m de hauteur pour l'établissement des courbes hauteur-surface et hauteur-volume.

La courbe hauteur-volume dérive du cumul des volumes élémentaires (Vi) compris entre deux courbes de niveau successives. Le volume partiel est obtenu par la relation suivante :

$$V_i = (S_{i-1} + S_i) \frac{\Delta h}{2}$$
 (COMPAORE, 1996)

Avec : V_i : le volume élémentaire entre la côte h_{i-1} et h_i

 S_{i-1} : Surface du plan d'eau correspondant à la courbe i-1, (h_{i-1})

 S_i : Surface du plan d'eau correspondant à la courbe i,(h_i)

 Δh : Dénivelée entre les courbes de niveau h_{i-1} et h_i

Le volume total (V_{total}) de la cuvette est obtenu en faisant la somme des volumes partiels.

II.2.5 Etude hydrologique

Les objectifs recherchés dans cette étude sont principalement l'estimation des crues, des apports liquides et solides afin de s'assurer du remplissage du barrage et de garantir sa sécurité. Ces apports sont fonctions des caractéristiques (géologie, relief, pluviométrie, végétation, sols) du bassin versant. Ainsi, des images satellitaires téléchargées sur le site ALOS (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm) avec une résolution de 30 m ont été traitées sur ArcMap pour la délimitation du bassin versant au site du barrage de LA. Les données BNDT (Base Nationale des Données Topographiques) sur les sols et la géologie ont été également extraites sur ArcMap pour l'établissement des cartes. Ces cartes ont servi à la caractérisation du bassin.

II.2.5.1 Climatologie

La station de Thiou-Koudougou est la seule station localisée dans le bassin versant. Cette station est située dans la province du Boulkiemdé. Les mesures pluviométriques de cette station seront affectées directement à celle du bassin étant donné que plus de deux tiers de la superficie du

bassin versant est localisée dans cette province. Cette station fournit uniquement les informations sur la pluviométrie. Pour cela, nous avons eu recours aux données climatiques (température, vitesse du vent, évapotranspiration) de la station synoptique de Ouagadougou qui est la plus proche de la zone d'étude. Ces paramètres entrent dans l'évaluation des besoins agricoles et l'estimation des pertes par évaporation dans la retenue. Les données climatologiques décrivant la zone de projet, collectées sont résumées dans les tableaux ciaprès :

Tableau 1 : Caractéristiques des données climatologiques

Station de Thiou-Koudougou			
Données	Taille de l'échantillon (années)	Début	Fin
Pluie mensuelle (mm)	40	1977	2016
Pluie maximale journalière	40	1977	2016

Station de Ouagadougou			
Données	Taille de l'échantillon (années)	Début	Fin
Evaporation BAC A	10	2007	2016
Evapotranspiration potentielle	10	2007	2016
Température maximale	10	2007	2016
Température minimale	10	2007	2016
Vitesse du vent	10	2007	2016

II.2.5.1.1 Ajustement de la pluviométrie

L'analyse fréquentielle consiste à l'étude des évènements passés d'un processus hydrologique afin de déterminer leur probabilité d'occurrence dans le futur. Il s'agit donc d'une projection dans le futur à partir des évènements du passé. Dans ce travail, le processus étudié est la pluviométrie. Les pluies moyennes annuelles ont été ajustées par la loi de Gauss et les pluies maximales journalières par la loi de Gumbel avec un intervalle de confiance de 95 % grâce au logiciel HYPHRAN PLUS.

La loi de Gauss : Elle est basée sur le théorème central limite et s'applique bien à l'étude des modules pluviométriques annuels. Ses fréquences expérimentales sont calculées à partir de la formule de HAZEN. Cette loi se base sur deux paramètres : La moyenne \overline{X} et l'écart-type S.

La loi de Gumbel : Encore appelée lois des extrêmes, elle est adaptée à l'étude des valeurs maximales des phénomènes hydrologiques. Ses fréquences expérimentales sont calculées à partir de la formule de Weibull. Elle se base sur 2 paramètres (xo = paramètre de position et 1/a= paramètre d'échelle) dont les expressions résument de la méthode des moments.

Loi	Fonction de répartition	Estimation des quantiles
	$F(x) = \frac{1}{s\sqrt{2\pi}}e^{-\frac{u^2}{2}}$; $u = \frac{x - \bar{x}}{s}$	$x_{p} = \overline{x} + u_{p} * s$
GAUSS	u : variable centrée réduite	x_p : le quantile a la probabilité p
	\overline{x} et s : respectivement la moyenne et	u_p : Variable réduite à la probabilité p
	l'écart type de la série	
	$F(x) = e^{-e^{-u}}$ avec $u = a(x - x_0)$	$x_p = x_o + \frac{u_p}{a}$
GUMBEL	x_o : paramètre de position	$x_p = x_o + \frac{u_p}{a}$ $u_p = -\ln[-\ln(F(x))]$
	1/a: paramètre d'échelle.	$u_p = -\min[-\min(r(x))]$

II.2.5.2 Caracteristiques du bassin versant

Longueur du rectangle équivalent

C'est la longueur du rectangle ayant la même superficie et le même périmètre que le bassin.

La forme

La forme du bassin versant a une grande influence sur l'écoulement global et surtout sur l'allure de l'hydrogramme résultant d'une pluie donnée. Cette caractéristique est donnée par l'indice de Gravelius qui a proposé en 1914 le coefficient de compacité appelé également coefficient de forme qui correspond au rapport du périmètre du bassin à celui d'un cercle de même superficie.

$$K_G = \frac{P}{2\sqrt{\pi S}} = 0,282 * P * S^{-1/2}$$
 Où $\frac{P = \text{p\'erim\`etre du bassin en Km}}{S = \text{superficie du bassin en Km}^2}$

Remarque : Si K_G est proche de 1, on dit que le bassin est circulaire. Sinon si $K_G > 1$, on dit que le bassin est allongé.

❖ Indice de pente global Ig

Il caractérise le relief d'un bassin versant et est défini comme étant :

$$I_g = \frac{D}{L}$$
 où

D : Dénivelée définie sur la courbe hypsométrique

L : longueur du rectangle équivalent

Lorsque les pentes transversales sont trop différentes (>à 20%) de la pente longitudinale (Ig), on calcule alors un indice global de pente corrigé I_{gcorr} qui sera finalement retenu et qui vaut

$$I_{gcorr} = \frac{(n-1)I_{g} + I_{t}}{n}$$

 I_t : pente transversale moyenne mesurée sur 4 ou 6 lignes de plus grande pente du bassin versant.

n = 2 pour L < 5 km; n = 3 pour 5 < L < 25 km; n = 4pour 25 < L < 50 km; n = 6 pour L > 50 km

Classification du bassin en fonction de la pente longitudinale moyenne

L'ORSTOM (actuellement IRD : Institut de Recherche pour le Développement) définit six classes (FAO 54, 1996):

- → R1 : pente < 0.2% pente extrêmement faible
- + R2 : Pente < 0.5% pente faible
- **→** R3 : 0.5% < P < 1% pente modérée
- → R4: 1 < Pente longitudinale < 2% et pente transversale supérieure à 2%, pente assez forte
- → R5: 2% < Pente longitudinale < 5% et 8% < Pente transversale < 20%, pente forte
- → R6: Pente longitudinale > 5% et Pente transversale > 20%, pente très forte

Dénivelée Spécifique Ds

La dénivelée spécifique, à la différence de l'indice de pente global, permet de comparer des bassins de taille différentes.

 $D_S = I_g \sqrt{S}$

Suivant la valeur de la dénivelée spécifique (Ds), le manuel (FAO 54, 1996) distingue sept (7) types de reliefs à savoir :

- → Ds < 10 m Relief très faible
- + 100 m < Ds < 250 m Relief assez fort
- + 10 m < Ds < 25 m Relief faible
- + 250 m < Ds < 500 m Relief fort

- + 25 m < Ds < 50 m Relief assez faible
- + Ds > 500 m Relief très fort
- → 50 m < Ds < 100 m Relief modéré

❖ Densité de drainage Dd

La densité de drainage est exprimée par le rapport total des cours d'eau à la surface du bassin.

	D _d : Densité de drainage en Km/Km ²
$\mathbf{D_d} = \sum \mathbf{L_i} / \mathbf{S}$ où	$\sum L_i$: Longueur totale des cours d'eau en Km
	S : superficie du bassin en Km ²

❖ Pédologie et classe d'infiltrabilité du bassin versant

Les éléments influençant l'infiltrabilité sont les caractères d'état de surface qui intègrent le couvert végétal, la surface du sol et les organisations pédologiques superficielles ayant subi des transformations sous l'effet des facteurs météorologiques, fauniques ou anthropiques. La classification qualitative adoptée par J RODIER comprend six classes. L'indice placé entre parenthèses correspond à l'ancienne nomenclature utilisée par RODIER et AUVRAY(FAO 54, 1996).

- + (P1 (TI): bassins rigoureusement imperméables, entièrement rocheux ou argileux;
- + (PI): bassin naturel particulièrement imperméable;
- + P2 (I): bassins assez imperméables ou bassins homogènes presque imperméables;
- + P3 (RI): bassins assez imperméables ou bassins homogènes assez peu perméables;
- → P4 (P): bassins assez perméables; sols sableux sans pellicule ou avec un couvert végétal de graminées;
- → P5 (TP) : bassins très perméables, sables éoliens, sables sans pellicules et sans végétation.

II.2.5.3 Détermination de la crue de projet

La crue de projet entre dans la détermination des Plus Hautes Eaux (PHE) et le dimensionnement de l'évacuateur de crues. Elle est définie en fonction de la taille de l'ouvrage et du risque induit. Le choix de la période de retour dépend de l'aléa intrinsèque au barrage et peut être quantifié par le paramètre $H^2\sqrt{V}$. Vis-à-vis de ce critère, le Comité Français des Grands Barrages recommande des périodes de retour fonction de la hauteur (H en m) du barrage et du volume (V en hm³) de la retenue. Ces valeurs sont présentées dans le tableau suivant :

Tableau 2 : Tableau de détermination de la période de retour (CFGB, 2002)

$H^2\sqrt{V}$	<5	5 à 30	30 à 100	100 à 700	>700
Période de retour	100	500	1 000	5 000	10 000
(années)	100	300	1 000	3 000	10 000

La crue du projet sera calculée pour une période de retour de 100 ans au regard de la taille du barrage. La crue centennale sera retenue pour la vérification hydraulique du déversoir.

Le bassin versant de LA, est non jaugé ainsi il n'est pas possible d'avoir une série de mesure de débits journaliers nécessaires pour un ajustement à une loi statistique. Il nous faut exploiter des formules déduites des recherches de certains auteurs, sur les crues sur différents bassins versants. Les méthodes CIEH, ORSTOM et GRADEX décrites dans le manuel (FAO 54, 1996) seront donc utilisées.

II.2.5.3.1 Détermination de la crue décennale

❖ Méthode ORSTOM

Cette méthode est applicable aux bassin versants de superficie allant de quelques dizaines d'hectares à $1\,500~\rm km^2$ située dans une zone sahélienne ou tropicale sèche en fonction de la pluviométrie annuelle. Dans la méthode, le débit de pointe décennal est obtenu par sommation du débit maximal de ruissellement correspondant au ruissellement superficiel de la crue décennale Q_{r10} et du débit dû à l'écoulement retardé Qret10.

\checkmark Débit maximal de ruissellement décennal Q_{r10}

$$Q_{r10} = A \times P_{10} \times K_{r10} \times \propto_{10} \times \frac{S}{T_{h10}}$$

Avec:

 Q_{r10} : débit maximal de ruissellement ou débit maximum ruisselé Qr1O en [m³/s]

P₁₀ : hauteur de pluie journalière maximale décennale[(mm];

 K_{r10} : coefficient de ruissellement correspondant à la crue décennale ;

 $\boldsymbol{a_{10}}$: coefficient de pointe correspondant à la crue décennale ;

S : Superficie du bassin [km²]

 T_{b10} : temps de base correspondant à la crue décennale [mn].

Le coefficient d'abattement permet d'avoir la précipitation moyenne sur le bassin donné par l'équation simplifiée de Vuillaume (FAO 54,1196).

$$P_{m10} = A \times P_{10}$$

$$A = 1 - \left[\frac{(161 - 0.042 \times \overline{P_{an}})}{1000} \times \log S \right] \quad \begin{cases} S \text{ [km}^2] : Superficie du bassin versant} \\ \overline{P_{an}} \text{ [mm]} : hauteur moyenne annuelle de pluie} \end{cases}$$

➤ Le coefficient de pointe

Le coefficient de pointe correspondant à la crue décennale \propto_{10} est admis égal à 2,6 quel que soit la superficie du bassin.

✓ Les paramètres K_{r10} , T_{b10} , T_{m10}

Les paramètres coefficient de ruissèlement K_{r10} , temps de base T_{b10} et le temps de montée T_{m10} correspondant à la crue décennale sont obtenus par interpolation des valeurs des tables de l'ORSTOM décrites en fonction de la zone (sahélienne ou tropicale sèche).

✓ Débit dû à l'écoulement retardé Qret10

- → Le débit dû à l'écoulement retardé est défini en fonction de la zone et de l'infiltrabilité du bassin versant (FAO 54, 1996): $Qret_{10} = Qr_{10} * m$
 - > En zone sahélienne :
- → Pour un indice d'infiltrabilité I : m = 0.03
- → Pour un indice d'infiltrabilité P : m = 0.06
 - En zone tropicale sèche :
- ightharpoonup Pour les petits bassins imperméables (jusqu'à quelques dizaines de kilomètres carrés) : m=0.03
- + Pour les petits bassins perméables : m = 0.05
- → Pour les grands bassins imperméables (plusieurs centaines de kilomètres carrés) avec un réseau hydrographique bien marqué : $m \in (1,10 \text{ à } 1,15)$
- + Pour les grands bassins perméables avec des lits suffisamment larges $: m \in (1,15 \text{ à } 1,20)$

❖ La méthode CIEH-EIER

En 1983, Puech et Chabi-Gonni ont proposé une méthode statistique, connue depuis sous le nom de méthode CIEH et basée sur 162 bassins versants dont l'origine vient essentiellement du recueil de Dubreuil (FAO 54, 1996) sur les bassins expérimentaux.

La formulation retenue pour retrouver l'expression du débit de pointe Q10 est basée sur un schéma de régression multiple et se présente sous la forme :

$$Q_{10} = a \times S^{s} \times \overline{P_{an}}^{p} \times I_{g}^{i} \times K_{r10}^{k} \times D_{d}^{d}$$

S [km²]: Superficie du bassin versant

 $I_g[\frac{m}{km}]$: indice global de pente

 $\overline{P_{an}}$ [mm] : hauteur moyenne annuelle de pluie

K_{r10} : coefficient de ruissellement de la pluie décennale

 $D_d[km^{-1}]$: Densité de drainage

a, s, p, i, k et d des coefficients à déterminer

Les équations 39 et 40 ont été retenues pour le calcul des crues décennales avec la méthode CIEH.

Tableau 3 : Paramètres de équations utilisées pour la méthode CIEH

Equations	a	S	I	p	k	d
N°39	0,41	0,425	0	0	0,923	0
N°40	0,254	0,462	0,101	0	0,976	0

II.2.5.3.2 Détermination de la crue de projet par la méthode du Gradex de GUILLOT et DUBAND (GRESILLON, HERTER, et LAHAYE, 1976).

Cette méthode est utilisée en Afrique de l'Ouest et en Afrique centrale pour le calcul de la crue centennale en vue d'une sécurité maximale.

$$Q_{100} = C \times Q_{100}$$

$$Q_{100} = C \times Q_{100}$$

$$P_{10} \text{ [mm]: pluie journalière décennale}$$

$$P_{100} \text{ [mm]: pluie journalière centennale}$$

$$C = 1 + \frac{P_{100} - P_{10}}{P_{10}} \times \frac{{T_{b10}/24}^{0,12}}{K_{r10}}$$

$$T_{b10} \text{ [h]: temps de base}$$

$$K_{r10} : \text{coefficient de ruissellement en fraction}$$

II.2.5.4 Hydrogramme de crues

L'hydrogramme de crue donne l'évolution de la crue en fonction du temps. Il est schématisé en trois tronçons linéaires proposé par GRESILLON, HERTER et LAHAYE et construit à l'aide des temps de base et de montée. Le changement de pente de la décrue s'effectue à un débit Q appelé débit de discontinuité qui se calcule par la relation ci-après à partir de la relation suivante :

$$\frac{Q}{Q_{cmax}} = \frac{2}{\alpha_{10}} \times \frac{T_{b10} - \alpha_{10} \times T_{m10}}{T_{b10} - 2 \times T_{m10}}$$

 \propto_{10} : coefficient de pointe de la crue décennale

T_{b10}: temps de base de la crue décennale

T_{m10}: temps de monté

Q_{cmax}: le débit de projet

Q: débit de rupture de pente de la décrue

II.2.5.5 Laminage des crues

Dimensionner un ouvrage évacuateur de telle manière qu'il puisse laisser passer la pointe de l'hydrogramme de la crue à l'entrée du réservoir de stockage correspond à un surdimensionnement. En effet, le réservoir joue un rôle de « tampon » de sorte que le maximum de débit à l'évacuateur (le débit qui passe à l'évacuateur) est inférieur au maximum de débit de l'hydrogramme (crue à l'entrée dans la retenue).

L'étude du laminage consiste soit à déterminer la côte maximale atteinte par le plan d'eau pendant la crue, les dimensions du déversoir de crue (longueur déversante) étant fixées à priori, soit à déterminer les dimensions de l'évacuateur de crue, la hauteur maximale du plan d'eau au-dessus de l'évacuateur de crue étant fixée à priori. Dans le cadre de cette étude, il s'agira pour nous de calculer la hauteur d'eau au-dessus du déversoir en considérant la longueur actuelle du déversoir.

Pour déterminer l'effet de laminage, nous avons utilisé la méthode EIER-CIEH ou méthode du « X0 » (GRESILLON, HERTER, et LAHAYE, 1976). Il s'agit d'une itération qui se réalise en plusieurs étapes qui permet de trouver la longueur optimale du déversoir.

$L_1 = \frac{Q_{cmax}}{m \times \sqrt{2g} \times h^{3/2}}$	L [m] : longueur approchée du déversoir
$m \times \sqrt{2g} \times h^{3/2}$	S [m ²]: la superficie normale de la retenue
$X_{01} = \frac{m^2 \times g \times L_1^2 \times Q_{cmax} \times T_m^3}{S^3}$	m : coefficient de débit de l 'évacuateur (annexe 3)
$log_{10}X_{01} \rightarrow \beta_1$	T _m [s]: temps de montée des eaux
$Q_{emax} = \beta_1 \times Q_{cmax}$	Q_{cmax} [m ³ /s] : débit de projet
$\beta_1 \times Q_{cmax}$	$Q_{emax} \ [m^3/s]$: débit maximum évacué
$L_2 = \frac{\beta_1 \times Q_{cmax}}{m \times \sqrt{2g} \times h^{3/2}}$	H [m] : charge au-dessus du déversoir
$X_{02} = \frac{m^2 \times g \times L_2^2 \times Q_{cmax} \times T_m^3}{C_3^3}$	g : accélération de la pesanteur
3"	β se lit dans un abaque en fonction de $\log_{10} X_{01}$
$\log_{10} X_{02} \rightarrow \beta_2$	(annexe 3)
$Q_{emax} = \beta_2 \times Q_{cmax}$	
$L_2 = \frac{\beta_2 \times Q_{cmax}}{m \times \sqrt{2g} \times h^{3/2}}$	
Puis on réitère toutes les étapes jusqu'à	

II.2.5.6 Estimation des apports liquides

obtenir une valeur convergente de L.

Le dimensionnement d'un réservoir requiert la connaissance des apports liquides annuels correspondant aux caractéristiques hydrologiques du bassin versant, évitant ainsi un surdimensionnement.

La méthode de Rodier et de Coutagne bien connue et fréquemment employée en Afrique francophone de l'Ouest et du centre seront utilisées pour l'estimation des apports annuels en année moyenne et en année quinquennale et décennale sèche pour s'assurer du remplissage du barrage.

II.2.5.6.1 La méthode Rodier

La **méthode Rodier,** élaborée dans les années 1970, a pour objectif de fournir certaines informations quant aux écoulements annuels de petits bassins versants non jaugées de la zone tropicale sèche ou du Sahel. Elle consiste à identifier, dans le catalogue des bassins-type, celui ou ceux ayant les caractéristiques les plus voisins du bassin étudié pour estimer ainsi

l'écoulement annuel de ce dernier. La recherche du bassin-type se base sur quatre critères ou niveaux de sélection sur lesquels s'est fondée la classification des bassins expérimentés de Rodier. Ces critères décrits dans le manuel (FAO 54, 1996) sont les suivants :

- Le régime hydrologique : (i) le régime désertique, au nord de l'isohyète 100 mm ;(ii) le régime subdésertique, entre les isohyètes 100 et 300 mm ;(iii) le régime sahélien, entre les isohyètes 300 et 750 mm ;(iv) le régime tropical sec, entre les isohyètes 750 et 1000 mm.
- 2. La superficie du bassin
- 3. Les caractéristiques des sols
- 4. La physiographie des bassins

Pour chaque bassin-type, un abaque (annexe 2) est fourni pour la détermination de la lame d'eau écoulée en fonction des fréquences.

Les relations ci-dessous ont servi aux calculs des apports :

$V = K_e \times S \times P$	S [km ²]: superficie du bassin versant
I	P [mm]: pluviométrie annuelle concernée
$K_e = \frac{L_e}{P}$	K _e : coefficient d'écoulement

II.2.5.6.2 Formule de Coutagne

Cette méthode basée sur le calcul du déficit d'écoulement permet de déterminer uniquement le coefficient d'écoulement en année moyenne. Les coefficients d'écoulement en années sèches seront estimés à partir des relations utilisées par l'ONBAH établies par corrélation sur les apports annuels de Coutagne.

Déficit d'écoulement = hauteur d'eau précipitée-hauteur d'eau ruisselée. D=P-Le soit Le=P-D

$K_e(Coutagne) = \frac{P - D}{P}$	$K_{e5} = 0.70 \times K_e$ (KARAMBIRI et NIANG, s. d.)
$D = P \operatorname{si} P < \frac{1}{8\lambda}$	$K_{e10} = 0.50 \times K_e$ (KARAMBIRI et NIANG, s. d.)
82	D [m]: déficit d'écoulement
$D = P - \lambda P^2 \text{ si } P \in \left[\frac{1}{8\lambda}; \frac{1}{2\lambda}\right]$	P [m]: pluviométrie moyenne annuelle
1	K _e : coefficient d'écoulement
$D = 0.20 + 0.035 \overline{T} \text{ si P } > \frac{1}{2\lambda}$	\bar{T} [°C] : température moyenne annuelle
$\lambda = \frac{1}{0.8 + 0.14 \times \overline{T}}$	K _{e5} et K _{e10} : coefficients d'écoulement quinquennal
0,0 + 0,14 ^ 1	et décennal

II.2.5.7 Estimation des pertes

II.2.5.7.1 Pertes par dépôts solides

Quelques formules empiriques usuelles en Afrique de l'Ouest sont utilisées pour quantifier l'érosion au droit de la retenue. Il s'agit de la formule de GOTTSCHALK, de EIER-CIEH et de KARAMBIRI (Moussa LO, 2017) élaborée en grande partie grâce à des recherches réalisées au Burkina Faso.

GOTTSCHALK	Avec:		
$D = 260 \times S^{-0.1}$	D: dégradation spécifique		
	en m ³ /km ² /an.		
EIER-CIEH	S: Superficie du bassin		
2.2	versant en km ²		
$D = 700 \left(\frac{P}{500}\right)^{-2.2} \times S^{-0.1}$	P: Pluie moyenne annuelle		
	en mm;		
KARAMBIRI	h: paramètre anthro		
	r: paramètre morpho		
$D = 137 \left(\frac{P}{700}\right)^{-2,02} \times S^{-0.05} \times [0,25 + 1,13 \times (h+r)]^{1,15}$			
(, 66,			

Le volume des dépôts solides évalués sur 25 ans se calcule de la manière suivante :

$V = D \times S$	V [m ³ /an]: Volume annuel de dépôts solides
V (horizon du projet = $D \times S \times n$	n : durée de vie de l'ouvrage
D [$m^3 \cdot Km^{-2} \cdot an^{-1}$] : dégradation	S [km ²] : superficie du bassin versant
spécifique annuelle	Le volume total des dépôts solides est estimé sur
	une durée de 25 ans.

II.2.5.7.2 Pertes par évaporation

L'évaporation au niveau d'une retenue ou d'une étendue d'eau assez large peut être approchée selon POUYAUD (KARAMBIRI et GUEYE, 2005)par celle d'un bac classe A par la formule suivante :

$$E_{ret}[\text{mm/j}] = 1,664 \times E_{bac}^{0,602}$$
 $E_{bac}[\text{mm/j}] : \text{évaporation Bac classe A}$

II.2.5.7.3 Pertes par infiltration

Les résultats des essais de perméabilité réalisés sur les matériaux de la cuvette lors de la phase construction indiquent une infiltration de **0,147 mm/jour** à 20°C (ONBAH, 1986). Dans la littérature, une valeur de 1 à 3 mm / jour (COMPAORE, 1996) est utilisée au Burkina Faso. Pour tenir compte des valeurs indiquées dans la littérature, nous avons considéré la valeur immédiatement supérieure à la valeur in situ soit une perte de de **1 mm / jour**.

II.2.6 Evaluation des besoins

II.2.6.1 Besoins agricoles

Les prévisions du projet indiquent l'aménagement de 20 ha de périmètres irrigués pour la riziculture en hivernage et le maraichage en contre saison. Les besoins du riz sont donc comblés par la pluie et par conséquent peuvent être négligés excepter dans les cas de poche de sècheresse sévère difficile à prévoir.

Les cultures maraichères retenues sont essentiellement la tomate, chou, oignon, poivron, haricot vert, laitue qui sont des cultures les plus pratiquées dans la province du Boulkiemdé (Ministère de l'Agriculture, de l'Hydraulique et des Ressources et Halieutiques, 2007).

Les besoins de ces cultures sont estimés en fonction de leurs coefficients culturaux et des durées de leurs stades de développements extraits du logiciel CropWAT et du manuel (BOUBE, 2014).

Si P > 75 mm /mois alors	P [mm] = pluviométrie moyenne mensuelle
$Pe(mm) = 0.8P \ sinon \ Pe(mm)$	Pe [mm] =Pluie efficace
= 0.6P (FAO, 2008)	Kc=coefficient cultural de la plante
BN = Kc * ETo - Pe (BOUBE, 2014)	ETo [mm]=Evapotranspiration de référence
$BB = \frac{BN}{e}$	e =efficience du système d'irrigation
$BB = \frac{e}{e}$	BN [mm]=Besoins nets
	BB [mm]=Besoins bruts

II.2.6.2 Besoins pastoraux

Les besoins pastoraux sont estimés à partir du nombre de bétail des villages environnants du barrage. Selon la littérature en absence des données sur le nombre de bétail, les besoins peuvent être estimés en considérant qu'un animal s'abreuve à une retenue s'il pâture à moins de 10 km, soit 30 000 ha pour 6000 bovins (DURAND, ROYET, et MERIAUX, 1999).

Besoin(litres/jour) = consommation spécifique(litres / jour/) * Nombre de têtes La consommation spécifique du bovin est de 30 à 50 litres /jour (DURAND, ROYET, et MERIAUX, 1999). Nous avons retenu la valeur maximale (50 litres) pour plus de sécurité.

II.2.6.3 Besoins humains

Selon les études socio-économiques, le barrage de LA, est à vocation agro- pastorale. Les besoins humains pris en compte dans le cadre de ce projet se résument donc aux prélèvements pour des activités domestiques (lessive, confection de briques etc. La population de LA, projetée pour 30 ans est d'environ 5018 pour un taux de croissance de 1,81%. La consommation spécifique pour chaque habitant est de 30 litres/jour (DURAND, 1996) soit une consommation totale de 150,54 m³/jour.

II.2.7 Courbe d'exploitation de la retenue

Elle illustre la variation du niveau d'eau dans la retenue au pas mensuel en tenant compte des pertes d'eau et des prélèvements d'eau dans la retenue. Elle est établie à partir de plusieurs hypothèses qui se présentent comme suit :

- L'arrêt effective des pluies se situe en fin Octobre et à cette date, le barrage est rempli à la côte du déversoir c'est-à-dire du plan d'eau normal. Le barrage contient en ce moment le volume d'eau retenu.
- En saison pluvieuse (mois de juin, juillet, Aout et septembre), les prélèvements dans la retenue sont compensés par les eaux de pluies et ne sont donc pas sensibles.

- Les prélèvements d'eau sont sensibles vers la fin du mois d'octobre ;
- Les prélèvements d'eau pour l'irrigation commencent le 1^{er} décembre considérant qu'à cette date, les agriculteurs ont fini de récolter.

II.3 Vérification de la capacité des ouvrages

II.3.1 Vérification de la capacité du déversoir

Il s'agit de vérifier la capacité du déversoir à évacuer la crue de projet sans dommage sur le barrage en intégrant le laminage. Dans le cadre de cette étude, Le laminage a consisté à faire varier la charge déversante afin d'obtenir la longueur hydraulique actuelle du déversoir.

II.3.2 Vérification de la revanche libre restante

La revanche libre (R) est une tranche comprise entre le PHE et la crête du barrage. Pour éviter des cas de submersion de la digue, il est important de s'assurer que la revanche libre restante est suffisante c'est-à-dire proche (égal ou supérieur) des valeurs issues de l'application des formules empiriques.

Le calcul de la revanche libre tient compte de la hauteur des vagues qui se forment sur le plan d'eau et la projection de l'eau vers le haut du barrage due à la vitesse de propagation des vagues lorsque celles-ci rencontrent le barrage. La revanche libre estimée par les formules suivantes :

Formule de BRETSCHNEIDER(Moussa LO, 2017)	$R = 0.75h_v + \frac{{V_v}^2}{2a}$; $g = 9.81m/s^2$	
Revanche libre minimale (CFGB, 2002)	$P = \frac{(H^2\sqrt{V})^{1/4}}{(H^2\sqrt{V})^{1/4}}$	
	h — 4	
R : revanche (m) H : hauteur (m) V : volume en $m^3 h_v$: hauteur des vagues (m) ; g : pesanteu		

***** Hauteur des vagues

La hauteur des vagues peut être calculée selon les formules empiriques :

El. d. CTEVENCON	Pour $F < 18 km, h_v = 0.75 + 0.34 \sqrt{F} - 0.36 \sqrt[4]{F}$;		
Formule de STEVENSON	$sinon h_v = 0.34\sqrt{F}$		
Formule de MOLITOR	Pour $F < 30 \text{ km}, h_v = 0.76 + 0.032\sqrt{UF} - 0.26\sqrt[4]{F};$		
Formule de MOLITOR	$sinon h_v = 0.032\sqrt{UF}$		
Formule de Mallet et Pacquant	$h_v = \frac{1}{2} + \frac{1}{3}\sqrt{F}$		
Avec h _v [m]: hauteur des vagues; F [km]: fetch et U [km/h]: vitesse du vent du mois de pointe			

\Delta La vitesse de propagation des vagues

La vitesse de propagation des vagues peut être évaluée approximativement par la formule de GAILLARD : $V_v = 2h_v + \frac{3}{2}$ avec h_v hauteur des vagues

Pour des hauteurs de vagues comprises entre 0,5 et 2 m (Moussa LO, 2017) ; la vitesse de propagation des vagues est donnée par la formule : $V_v = \frac{2}{3}h_v + \frac{3}{2}$

II.4 Solutions de réhabilitation du barrage

Au regard des anomalies relevées sur le terrain et des résultats issus des études techniques de base, des solutions de réhabilitations seront proposées afin de garantir la pérennité de l'ouvrage.

II.5 Dimensionnement des ouvrages proposés

II.5.1 Dimensionnement de la digue

II.5.1.1 Calcul de la hauteur de la digue

H_D [m]: hauteur de la digue ou du barrage	
H_R [m]: hauteur de la retenue ou du déversoir	
h [m] : charge déversante	

II.5.1.2 Calcul de la largeur en crête

Formule de KNAPPEN	$L_C = 1,65[H_D(m)]^{0.5}$		
Formule de PREECE	$L_C = 1.1[H_D(m)]^{0.5} + 1$		
Avec L_c [m] : largeur en crête et H_D [m] : hauteur de la digue ou du barrage			

II.5.1.3 Pentes des talus

Les valeurs des talus doivent être établies de sorte à favoriser la stabilité de l'ouvrage. Elle est choisie à partir d'un tableau (DURAND, 1996) (annexe 5) sous réserve de confirmation par une étude de stabilité.

II.5.1.4 Calcul de la largeur en base de la digue

Elle est donnée par la formule suivante :

$$L_b = L_c + H_b \left(\frac{1}{tg\alpha_1} + \frac{1}{tg\alpha_2} \right) \quad \text{avec} \quad \begin{array}{l} \checkmark \quad L_b : \text{Largeur en base de la digue} \; ; \\ \checkmark \quad L_c : \text{Largeur en crête de la digue} \; ; \\ \checkmark \quad H_b : \text{hauteur de la digue} \; ; \\ \checkmark \quad tg\alpha_1; \; tg\alpha_2 : \quad \text{respectivement} \quad \text{pente} \quad \text{des} \\ \text{talus amont et aval} \end{array}$$

II.5.1.5 Épaisseur de la couche de protection

L'épaisseur de la couche de protection des talus se calcule comme suite :

$e = 1.5 \times D_{50}$	01/00	✓ e: l'épaisseur de la couche de protection		
$e = 1.3 \times D_{50}$	avec	✓	${\rm D}_{\rm 50}$: fonction de la hauteur des vagues.	

II.5.1.6 Infiltration à travers la digue

Le barrage étant de faible hauteur (5 m), il est prévu un tapis drainant là où la hauteur d'eau dépasse 2,8 m à 3,0 m en référence aux recommandations du comité français des grands barrages (CFGB, 2002) Pour ce projet de réhabilitation, le tapis drainant sera placé là où la hauteur d'eau dépasse 2,8 m. Les données caractéristiques de l'infiltration à travers la digue sont définies comme suit :

Tableau 4 : Calcul de l'infiltration dans la digue

Paramètres Symbole/Formules		
Longueur du drain [m]	$L_{\rm d} = 0.25L_{\rm b}$	
Paramètre b[m]	$b = H_n/tg\alpha_1$	
Paramètre d [m]	$d = L_{\rm b} - L_{\rm d} - 0.7b$	Avec k _r ; k _d : respectivement les perméabilités du remblai
Hauteur du drain y ₀ [m]	$y_0 = (H_n^2 + d^2)^0.5 - d$	compacté (10 ⁻⁸ cm/s) et du
Débit de fuite q [m³/s/ml]	$q = k_r * y_0$	drain $(10^{-5} m/s)$
Epaisseur du drain [m]	$e = 2 * (q * l/k_d)^{0,5}$	

II.5.2 Conception et dimensionnement des ouvrages annexes

II.5.2.1 Dimensionnement de la diguette de protection

Une diguette de protection sera construite en rive droite pour guider les eaux du chenal. Sa côte de calage considérée est la côte PHE plus une revanche de 25 cm. Les pentes des talus seront de 2H/1V et aura une largeur en crête de 3 m.

II.5.2.2 Ouvrage de prise et de vidange

L'ouvrage de prise servira pour l'irrigation du périmètre à l'aval du barrage. Il jouera également le rôle d'ouvrage de vidange qui sert à la vidange de la retenue pour les éventuels besoins de maintenance et d'entretien. Le diamètre de la conduite pour les prélèvements est calculé à partir de la formule de Torricelli. Le choix du diamètre dans le catalogue doit répondre aux exigences de diamètre minimum présenté en annexe 6 pour la vidange selon le Comité Français des Grands Barrages.

- . Comme hypothèse de calcul, nous avons retenu :
 - > un temps de travail (nh) de 8 heures au maximum par jour ;
 - ➤ Vingt-six (26) jours de travail dans le mois ;
 - ➤ la côte de sortie est identique à celle à l'entrée de la prise

Le débit maximum de pointe a été calculé suivant la formule ci-dessous :

Le diamètre de la conduite se déduit de la formule de Torricelli.

$$Q = CS\sqrt{2gh} \qquad \qquad \checkmark \qquad Q : \text{le débit maximum de pointe } [\text{m}^3/\text{s}] \ ;$$

$$S = \frac{\pi * D^2}{4} \qquad \qquad \checkmark \qquad \text{C} : \text{coefficient de contraction };$$

$$S = \frac{1}{4} \qquad \qquad \checkmark \qquad \text{h} : \text{la charge de l'eau } [\text{m}] \ ;$$

$$V = \text{S} : \text{la section de la conduite } [\text{m}^2] \ ;$$

$$V = \text{Gote PEN} - \text{Côte à la sortie} \qquad \qquad \checkmark \qquad \text{G} : \text{l'accélération de la pesanteur } [\text{m/s}^2] \ ;$$

$$V = \text{Côte PEN} - \text{Côte à la sortie} \qquad \qquad \checkmark \qquad \text{D} : \text{le diamètre de la conduite } [\text{m}].$$

II.6 Etude d'impact environnemental et social

L'objectif principal de cette notice d'impact environnemental et social est de fournir aux parties prenantes des informations sur les enjeux environnementaux et sociaux liées aux travaux de réhabilitation du barrage. Les matrice de Leopold et de Fecteau (ADEOSSI, 2017) ont servi à l'identification et l'analyse les impacts potentiels des activités sur l'environnement biophysique et humain.

II.7 Devis quantitatif et estimatif des travaux

Les avant-métrés ont été établis à partir des plans et par nature d'ouvrage. Ils ont pour but de quantifier les travaux, services et fournitures nécessaires à la réalisation des ouvrages projetés. L'application des prix unitaires proposés dans le document Mercuriale Koudougou 2018 aux résultats des avant-métrés, permet l'établissement du devis estimatif du projet de réhabilitation du barrage.

III. RESULTATS ET DISCUSSIONS

III.1 Synthèse des études diagnostiques

III.1.1 Historique du barrage

La recherche documentaire sur le barrage de LA dans la base de données de la Direction des Etudes et de l'Information sur l'Eau (DEIE) nous a permis de retrouver le rapport géotechnique qui nous renseigne que les travaux de construction du barrage ont été conduites par l'ONBAH en 1987. Selon les informations recueillies auprès des populations riveraines le barrage a été réalisé en 1987 par l'ONG AFRICARE(a_CETRI et AGECET, 2017).

Le barrage est constitué:

- D'une digue homogène en remblai argileux,
- D'un déversoir latéral de type muret d'une longueur hydraulique de 100 m (a_CETRI et AGECET, 2017);
- D'un ouvrage de prise alimentant un périmètre irrigué en aval du barrage ;

III.1.2 Etat des lieux

L'état des lieux des éléments constitutifs du barrage lors des investigations de terrain effectuées se présente comme suit :

III.1.2.1 Corps de la digue

La digue du barrage est de type homogène en remblai argileux dans un état de dégradation avancée. Elle comporte des murs de crête vétustes. Les pentes des talus sont assez raides de l'ordre de 1H/1V. Les talus de la digue sont envahis par une végétation arbustive moyennement dense. Le talus amont est protégé par du perré sec et présente des zones d'effondrements tout au long de la digue sur 230 m. La crête de la digue dispose d'une largeur constante de 3,50 m.

Photo 1 : Des affaissements sur la crête de la digue entrainant une stagnation des eaux (Source : AGETEER, 2017)

Photo 2: Erosion du talus amont (Source: AGETEER, 2017)

III.1.2.2 Déversoir, mur bajoyer et diguette de protection

Le déversoir est constitué d'un muret latéral et est dans un état physique globalement satisfaisant. Les dimensions géométriques du seuil déversant se présentent comme suit : largeur du muret 30 cm ; longueur hydraulique 100 m. Il dispose uniquement d'un seul mur bajoyer en extrémité rive gauche. Le mur bajoyer en rive droite du seuil est inexistant (pas nécessaire au regard de la morphologie du terrain). L'aval immédiat du seuil est protégé par un tapis d'enrochements dans un état acceptable La diguette de protection en rive gauche et le mur bajoyer sont en bon état. Toute la surface de la diguette est protégée avec du perré dont la base est maçonnée. La diguette de protection en rive droite est inexistante.

Photo 3 : Aperçu du seuil déversant (Source : AGETEER, 2017)

Photo 4 : Protection avale du seuil dégradé en rive gauche (Source : AGETEER, 2017)

Photo 5 : Protection avale du seuil en rive droite (Source : AGETEER, 2017)

Photo 6 : Diguette de protection en rive gauche en bon état (Source : AGETEER, 2017)

III.1.2.3 Ouvrage de prise

Le barrage dispose d'un ouvrage de prise avec bacs amont et aval. L'ouvrage comporte une conduite en fonte de 300 mm de diamètre comportant une vanne-papillon vétuste à l'aval. Le bac aval constitué d'une chambre de vannes, d'un muret impact et d'une chambre de réception est dégradé. Le bac amont est moyennement en bon état dans l'ensemble et est sans grille. L'ouvrage de prise est raccordé à une station de pompage en aval immédiat du bac aval. Il alimente un périmètre irrigué en aval du barrage déjà exploité par le PAFASP.

Photo 7 : Aperçu de l'état de la vanne (vétuste) (Source : AGETEER, 2017)

Photo 8 : Aperçu de la station de pompage du PAFASP (Source : AGETEER, 2017)

III.1.3 Causes probables des dégradations

Au regard des différentes pathologies relevées les causes de dégradations des éléments constitutifs du barrage peuvent trouver leurs origines dans les points suivants :

- La pente du talus aval est assez raide (1H/1V).
- Le barrage n'a pas bénéficié d'un entretien périodique de la part des populations et des structures décentralisées. Ceci a favorisé la prolifération de la végétation sur les talus ainsi que les dégradations accentuées du talus amont.
- L'état de la vétusté de la vanne est probablement lié à la durée de son installation et à un manque d'entretien.

III.1.4 Utilisation actuelle du plan d'eau

Sur la rive gauche du barrage, on note la présence des exploitants maraichers. On note également une fréquentation du bétail sur le site à la recherche de l'eau pour s'abreuver.

III.2 Synthèse des études géotechniques

III.2.1 Fondation de la digue existante

Au pied aval de la digue, trois puits à ciel ouvert de 2,00 à 2,50 m de profondeur ont été creusés. Après le déblai de 0,30 à 0,40m de terre végétale et de grave argileuse, on rencontre de l'argile limoneuse ou sableuse caractérisée comme suit :

gravier	Entre 1 et 25,5%
Passant au tamis de 0 ,080 mm	Entre 51,5 et 92%
argile	Entre 27 et 47,5%
Limite de liquidité	Entre 25 et 40%
Indice de plasticité	Entre 9 et 21 %

L'identification de ce matériau par la classification USCS, montre que nous avons de l'argile moyennement à peu plastique (CL) L'existence d'une tranchée d'ancrage est évidente car aucune venue d'eau n'a été observée du côté de la digue ni de remontée d'eau au fonds du puits.

III.2.2 Matériaux de la digue existante

Il existe de nombreux arbres et arbustes sur les talus amont et aval. Le talus amont est fortement érodé. Dans le corps du remblai, deux puits à ciel ouvert ont été également creusés à 2,00 m de

profondeur pour connaître le matériau qui constitue la digue. Le matériau de remblai est caractérisé comme suit :

gravier	Entre 19 et 44%
Passant au tamis de 0 ,080 mm	Entre 38,5 et 63 %
Argile	Entre 18 et 33,5%
Taux de dispersion	Entre 10 et 37 %
Limite de liquidité	Entre 36 et 40%
Indice de plasticité	Entre 18 et 20 %
Densité sèche in situ	Entre 1,96 et 2,20t/m ³
Teneur en eau naturelle	Entre 9,1 et 12,9 %
Densité sèche à l'OPN	Entre 1,835 et 2,02 t/m ³
Teneur en eau à l'OPN	Entre 10 et 12,7 %
Indice de compactage	Entre 107 et 109 %

L'identification de ce matériau par la classification USCS, montre que nous avons de l'argile moyennement plastique (CL) et de la grave sablo argileuse (GC).

III.2.3 Zone d'emprunt

Une zone d'emprunt a été identifiée. Les analyses effectuées sur les échantillons de la couche montrent que selon la classification USCS, nous avons de l'argile moyennement à peu plastique. La confirmation de la dispersivité par la méthode du pinhole test a montré que le matériau n'est pas dispersif. Le matériau argileux non dispersif est convenable pour la reconstruction de la nouvelle digue homogène.

III.3 Rappel des études géotechniques antérieures

Axe de la digue : le matériau de l'axe est de la grave argileuse (GA) selon la classification USCS.

Zone d'emprunt: Selon la classification USCS, le matériau de l'emprunt est un mélange de grave argileuse (GA) et d'argile peu plastique (Ap) avec un pourcentage de graviers non négligeable dépassant parfois 40 %. Le problème de perméabilité pourrait donc se poser mais les études de perméabilité de cet emprunt compacté à plus de 95 % de l'OPN donnent des valeurs de K de l'ordre de 10⁻⁸ cm/s nettement inférieure à la valeur limite 10⁻⁵ recommandée. Le mélange GC et CL peut être utilisé pour la construction d'une digue homogène. Lors du compactage de la digue la valeur 1,92 t/m3 peut être utilisée comme densité de référence mais

un indice de compactage de 92 % serait suffisant. La teneur en eau devrait varier entre 13 % et 16 % lors de la mise en œuvre du matériau sur l'axe si on utilise un compacteur à compactage modéré, genre 815 ou entre 9 et 14 % si le compactage se fait avec un gros engin.

La cuvette : un échantillon intact a été ramené de la cuvette et soumis à un essai de perméabilité. Le résultat suivant a été obtenu : coefficient de perméabilité $K=1,7*10^{-7}$ cm/s à 20 ° C.

III.4 Synthèse des études topographiques

L'analyse des données topographiques se base sur les éléments caractéristiques du terrain obtenus à partir de l'élaboration des plans de masse de la cuvette. Les résultats des courbes hauteur surface et hauteur volume se présentent comme suit :

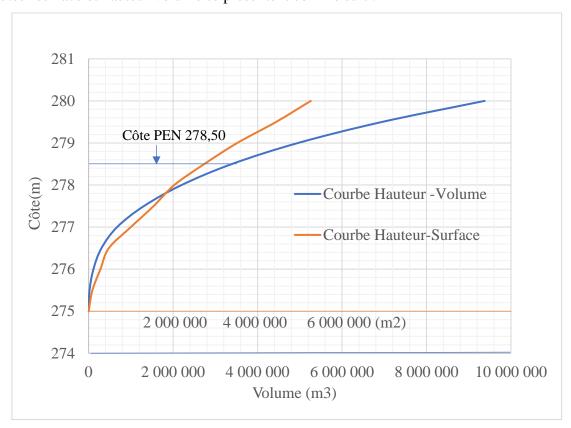


Figure 2 : Courbe Hauteur -Volume et Hauteur -Surface de la retenue de LA

III.5 Synthèse des études hydrologiques

La délimitation du bassin versant est primordiale pour l'estimation des apports et des crues. Après délimitation, le bassin versant obtenu a un périmètre de 79,69 km et une superficie de 218,824 Km². Les deux tiers (67,87 %) de cette superficie appartiennent à la province du Boulkiemdé et le reste est partagé entre Sanguié, Ziro et Sissili avec des pourcentages respectifs de 15,61; 16,37 et 0,14 %.

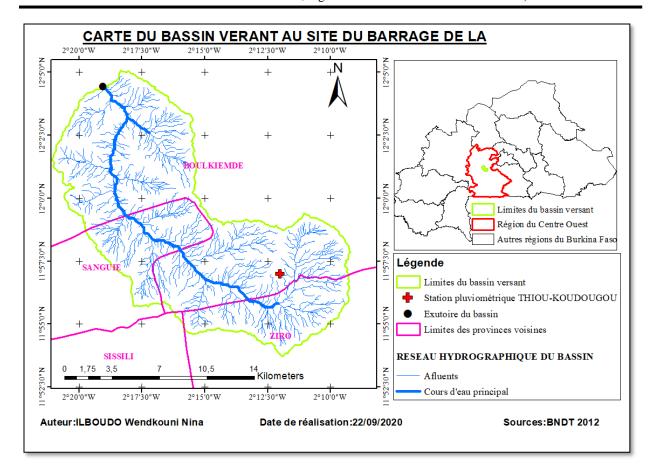


Figure 3 : Délimitation du bassin versant

III.5.1.1 Répartition annuelle de la pluviométrie

L'analyse des pluies moyennes mensuelles indique que près de 80 % de la pluviométrie annuelle est localisée entre juin et septembre et le mois d'Août est le mois le plus pluvieux. La figure ci-dessous met en relief le taux de contribution de chaque mois à la pluviométrie annuelle.

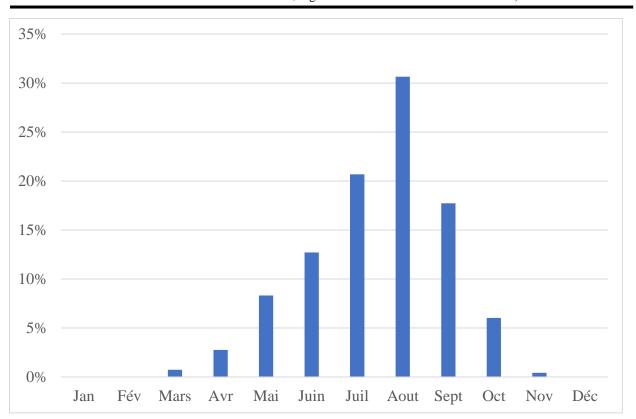


Figure 4 : Répartition annuelle de la pluviométrie

III.5.1.2 Ajustement de la pluviométrie de la zone de projet

Les pluies moyennes annuelles sont ajustées par la loi de Gauss et les pluies maximales journalières par la loi de Gumbel avec un intervalle de confiance de 95 % à l'aide du logiciel HYFRAN PLUS. Les résultats statistiques sont présentés dans le tableau ci-dessous :

Tableau 5 : Résultats de l'ajustement des pluies de la station de Thiou Koudougou

Période _	Temps de retour	Quantiles annuels	Quantiles journaliers
1 er ioue	[ans]	[mm]	[mm]
	1000	1180,714	176,228
ide	100	1080,479	132,010
hum	50	1044,703	118,627
Période humide	20	991,027	100,769
Péri	10	943,323	86,973
	5	885,540	72,590
	2	775,105	50,867
	1000	369,496	6,800
he	100	469,731	14,572
sèc]	50	505,508	17,698
Période sèche	20	559,183	22,813
Pér	10	606,887	27,857
_	5	664,670	34,721

L'ajustement des pluies fournit une pluie moyenne annuelle de 775 mm dans la zone d'étude. Elle appartient donc à la zone tropicale sèche.

III.5.2 Caracteristiques du bassin versant

III.5.2.1 Types de sols et géologie du bassin versant

A l'échelle du continent, on peut distinguer les formations suivantes du Nord au Sud selon le manuel (FAO 54, 1996):

- Au-dessous de l'isohyète 400 mm, les sols ferrugineux peu lessivés sableux sur dunes ou les sols bruns rouges subarides ;
- ➤ Entre 1000 et 400 mm, les sols ferrugineux lessivés plus ou moins gravillonnaires, les vertisols et les sols bruns sur roche basaltique ;
- ➤ Au-delà de 1000 mm, les sols ferrallitiques désaturés plus ou moins gravillonnaires, vertisols et sols bruns sur roches basaltiques.

Selon cette classification le site du projet, recevant une pluviométrie annuelle moyenne comprise entre 400 mm et 1000 mm, est principalement constitué de sols ferrugineux lessivés plus ou moins gravillonnaires, les vertisols et les sols bruns sur roche basaltique.

A l'échelle locale, selon l'étude cartographique, le site est constitué principalement de sols hydromorphes formé sur du matériau argilo-sableux bigarré en association à des sols ferrugineux tropicaux remaniés sur matériau argilo-sableux en profondeur et à des sols peu évolués hydromorphes sur matériau gravillonnaire (figure 5).

Ces sols se reposent sur une formation géologique constituée majoritairement de migmatites et granites indifférenciés (figure 6).

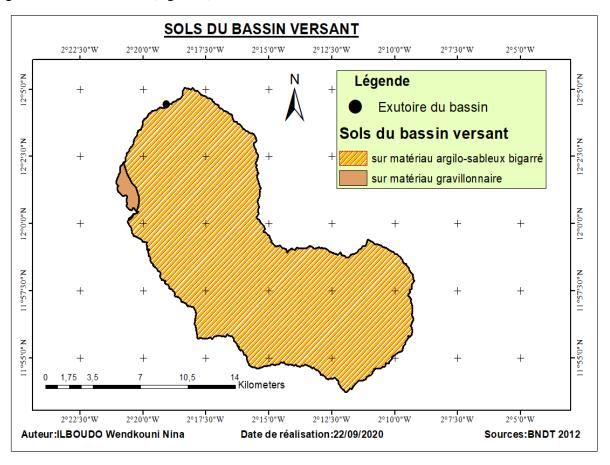


Figure 5 : Carte des sols du bassin versant au site de LA

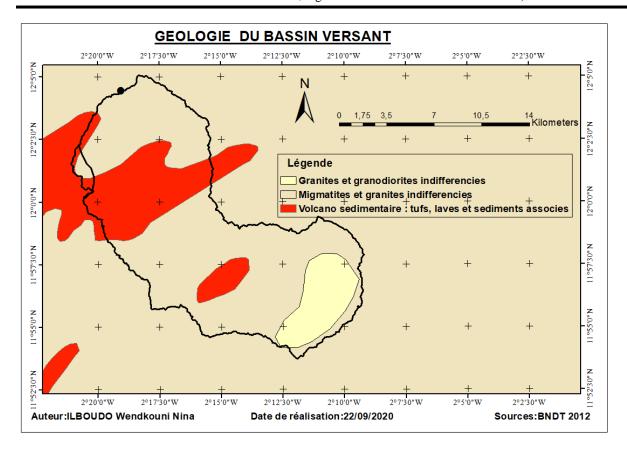


Figure 6 : Géologie du bassin versant au site de LA

III.5.2.2 Caractéristiques topographiques du bassin versant

L'exploitation des données de la surface du bassin versant en fonction des altitudes (annexe 1) a permis de construire la courbe hypsométrique ci-dessous :

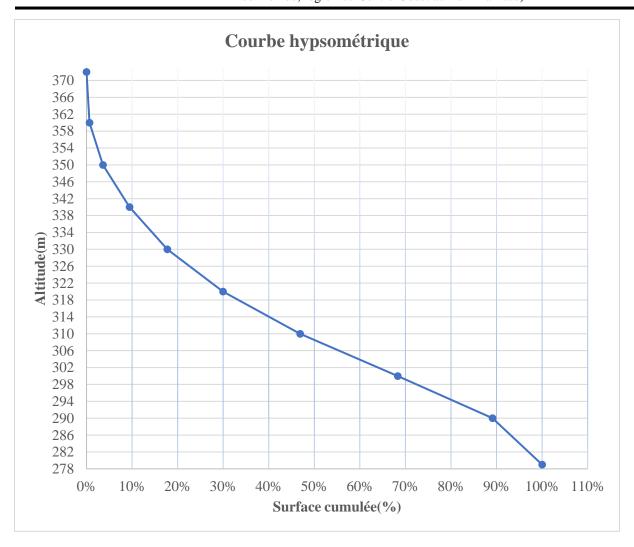


Figure 7 : Courbe hypsométrique

L'allure de la courbe hypsométrique nous renseigne que le le bassin versant au site de LA, a une pente modérée ce qui traduit un ruissellement moyen. Les dépôts solides qui seront transportées dans la cuvette du barrage seront donc en quantité moyenne vu que le bassin n'est pas fortement érodé.

III.5.2.3 Principaux paramètres du bassin versant

Le tableau ci-dessous récapitule les principaux paramètres du bassin versant. C'est un bassin moyen de forme allongée.

Tableau 6 : Principaux paramètres du bassin versant

Paramètres	Symboles	Valeurs	Unités
Surface	S	218,824	Km ²
Périmètre	P	79,693	Km
Longueur du cours d'eau principal		36,959	Km

Longueur du rectangle équivalent	L	33,269	Km	
Indice de compacité	K_{G}	1,520		
Forme du bassin	Bassin de forme allongée			
Indice de pente global	Ig	1,909	m/km	
Pente transversale	It	14,800	m/km	
Indice de pente global corrigé	Igcorr	5,132	m/km	
Dénivelée spécifique	DS	75,909	m	
Longueur totale des cours d'eau	$\sum L_i$	669,770	km	
Densité de drainage	Dd	3,061	Km/Km ²	

III.5.2.4 Classe de climat, de relief et d'infiltrabilité

L'analyse des paramètres ci-dessus du bassin versant et la consultation du manuel (Fao 54, 1996) a permis de faire le classement suivant présenté dans le tableau 9. Le bassin versant au site de LA, est situé dans une zone relativement imperméable compte tenu de la géologie (imperméable) et la pédologie (sol peu perméable).

Tableau 7 : Classe de climat, de relief et d'infiltrabilité du bassin

Ds	Relief	Pluie moyenne	Climat	Ig (m/km)	Pente	Infiltrabilité
75,909 m	Modéré	775 mm	Zone tropicale sèche	5,132	Modérée(R3)	RI (P3)

III.5.3 Détermination de la crue de projet

III.5.3.1 Crue du projet

La crue de projet est estimée pour une période de retour de 100 ans par la méthode du Gradex. Elle s'obtient en multipliant le débit de crue décennale par un coefficient majorateur.

Tableau 8 : Résultats du calcul des crues (m³/s) du bassin de LA

Méthode	Mét	thode du CIE	Н	Débit décennal	Coeff	Débit de projet
ORSTOM		Equation 40	Moyenne	retenu	du Gradex	(Q100)

62,106 62,13 64,83 63,485 63,485 3,775 239,63								
92,100 92,10 90,100 90,100 9,770 20,700	239,635	3,775	63,485	63,485	64,83	62,13	62,106	

Le débit de crue décennal est estimé à 62,106 m³/s par la méthode déterministe de l'ORSTOM, et à 63,485 m³/s par la méthode CIEH. La valeur de la méthode CIEH est la moyenne des valeurs trouvées par les deux équations. Ainsi, la crue décennale retenue, sera la valeur maximale donnée par les deux méthodes. Avec une crue décennale de 63,485 m³/s, on trouve une crue de projet de **240** m³/s.

III.5.4 Estimation des apports liquides

Les apports liquides résumés dans le tableau ci-dessous ont été approchés d'une part par la méthode Rodier et d'autre part par la méthode de Coutagne. Pour la méthode Rodier, en s'appuyant sur les caractéristiques morphologiques du bassin de LA; il peut être assimilé au bassin de Ouagadougou. Ce bassin se caractérise également par un relief assez faible et des sols peu perméables. La courbe de distribution des écoulements annuels de ce bassin a donc servi pour la détermination des coefficients d'écoulement (Ke)

Tableau 9 : Récapitulatif des apports liquides de Rodier et de Coutagne

Année	Apports liq	uides de Rodier	Apports liq	uides de Coutagne
Amee	Ke	Volume(m3)	Ke	Volume(m3)
moyenne	5,290%	8 971 790,337	16,422%	27 853 151,244
quinquennale sèche	3,009%	4 376 483,091	11,495%	16 719 289,518
décennale sèche	2,472%	3 282 362,318	8,211%	10 904 151,072

Les apports liquides de la méthode de Rodier seront retenus pour la suite de l'étude car elle prend en compte plusieurs paramètres. La méthode de Coutagne intègre seulement la température moyenne du lieu et la pluviométrie locale tandis que la méthode Rodier, en plus des paramètres climatiques, tient compte des caractéristiques morphologiques du bassin.

Tableau 10 : Apports liquides du bassin de LA

Amnáo	Pluviométrie Lame écoulée		V.	Superficie	Apports	
Année	(mm)	(mm)	Ke	(km ²)	liquides (m ³)	
moyenne	775,105	41	5,29%	218,82	8 971 790,34	
quinquennale	664,670	20	3,01%	218,82	4 376 483,09	
sèche	001,070	20	3,0170	210,02	1370 103,07	
décennale sèche	606,887	15	2,47%	218,82	3 282 362,32	

Les ressources en eau mobilisables sur le bassin de LA suffisent pour le remplissage de la cuvette dont le volume est estimé à 3 395 000 m³ en année moyenne et quinquennale sèche. Cependant en année décennale sèche, le barrage sera rempli à 97 %. Les informations recueillies auprès des services techniques et des populations riveraines confirment le remplissage de la cuvette en saison pluvieuse avec une pérennisation de l'eau dans la cuvette en saison sèche.

III.5.5 Estimation des dépôts solides

Les dépôts solides s'obtiennent en multipliant la dégradation spécifique estimée à partir des formules empiriques par la durée de vie de l'ouvrage et la superficie du bassin. Le tableau suivant présente les résultats de l'application des formules empiriques :

Tableau 11 : Résultats de l'estimation de la dégradation spécifique

	Dégrad	lation spécifique (m ³ /km ² /an)	
Paramètres	GOTTSCHALK	EIER – CIEH	KARAMBIRI
	GOTTSCHALK	(GRESILLON)	KAKAWIDIKI
Résultats	151,692	155,679	67,319

Les mesures des dépôts solides sur le bassin de Salbisgo située également dans la province du Boulkiemdé fournissent une dégradation spécifique de 16 m³/km²/an (KARAMBIRI, 1998). Nous retiendrons la valeur minimale vu qu'elle est largement supérieure à la valeur réelle (mesurée in situ).

Tableau 12 : Résultats de l'évaluation des apports solides

Paramètres	Superficie (km²)	Pluie moyenne annuelle (mm)	Dégradation spécifique (m ³ /km ² /an)	Durée	Apports solides (m ³)
Résultats	218,82	775,105	67,319	25	368 274,86

Les apports solides pour 25 ans représentent environ 11 % du volume du barrage et correspondent à une hauteur de sédiments de 1,6 m.

III.6 Courbe d'exploitation de la retenue

Le tableau ci-dessous présente les résultats de l'estimation des besoins et pertes observées dans la retenue. Le détail des calculs est en annexe 4. Ces résultats nous renseignent que la période d'irrigation s'étale de Décembre à Avril et que les besoins d'irrigation sont les plus importants

et varient en fonction du stade végétatif. Les besoins en eau pour l'irrigation en début de saison (décembre) et en arrière-saison (Avril) sont inférieurs à ceux du stade de développement (Janvier) et de mi-saison (Février, Mars). Les prélèvements d'eau pour les mois de Novembre et de Mai qui ne font pas partie de la période d'irrigation sont moins importants car ils se résument à l'abreuvement du bétail et à la satisfaction des besoins domestiques.

Tableau 13 : Récapitulatif des pertes et besoins

Mois	Besoins d'irrigation(m3)	Besoins pastoraux (m3)	Besoins humains	Total des besoins	Pertes totales(I+E) m
Novembre	0,000	9 000	4 516,200	13 516,200	0,195
Décembre	39 398,387	9 300	4 666,740	53 365,127	0,206
Janvier	61 180,464	9 300	4 666,740	75 147,204	0,212
Février	65 730,987	8 400	4 215,120	78 346,107	0,208
Mars	67 839,401	9 300	4 666,740	81 806,141	0,244
Avril	50 863,301	9 000	4 516,200	64 379,501	0,236
Mai	0,000	9 300	4 666,740	13 966,740	0,233

Les données du tableau ci-dessus ont servi à l'obtention de la courbe d'exploitation suivante : Après analyse de la courbe d'exploitation, il ressort que le calage du seuil déversant à la côte 278,5 m permet de combler les besoins humains, pastoraux et agricoles pour la superficie de 20 ha prévue. La hauteur des sédiments estimés pour 25 ans est de 1,6 m ce qui nous amène à caler la prise à la côte 276,65 m.

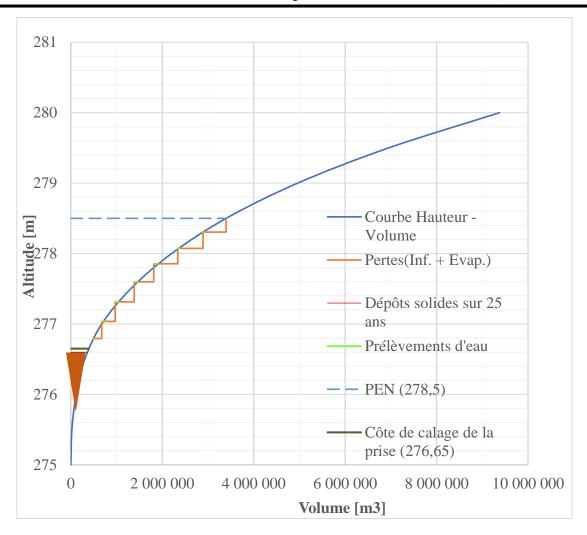


Figure 8 : Courbe d'exploitation de la retenue

III.7 Vérification de la capacité des ouvrages

III.7.1 Vérification de la capacité du déversoir

Il s'agit de vérifier la capacité du déversoir à évacuer la crue de projet sans dommage sur le barrage en intégrant le laminage. Dans le cadre de cette étude, le laminage a consisté à faire varier la charge déversante afin d'obtenir la longueur hydraulique actuelle du déversoir. Les résultats issus des calculs détaillés en annexe 3 sont consignés dans le tableau suivant :

Tableau 14 : Vérification du dimensionnement hydraulique du seuil

Crue de projet (m³/s)	Débit déversant après laminage (m³/s)	m	Longueur(m)	Charge(m)
240	187,2	0,43	100	0,99

(avec m=0,43 pour un déversoir en mince paroi)

Les résultats du tableau montrent que la longueur du seuil parvient à l'évacuation du débit du projet avec une charge hydraulique de 0,99 m.

III.7.2 Vérification de la revanche libre restante

La vérification de la revanche libre s'est faite suivant l'approche simplifiée des chercheurs du comité Français des grands barrages au regard de la taille du barrage (petit barrage) et de la formule de BRETSCHNEIDER. Il ressort de ces calculs une revanche libre comprise entre 0,55m et 1m. Le détail des calculs est présenté en annexe 5.

Le calage actuel de la digue à la côte 280 m et du seuil déversant à 278,50m donne une revanche totale de 1,50 m. En considérant la charge hydraulique de 1 m, la revanche libre restante est d'environ 50 cm. Cette valeur est inférieure à la revanche libre minimale calculée. La revanche libre restante est insuffisante pour éviter toute submersion du remblai en période de crues. Des dispositions de sécurité seront donc proposées à la suite du travail.

III.8 Solutions de réhabilitation du barrage

Au regard des anomalies relevées sur le terrain et des résultats issus des études techniques de base, des solutions de réhabilitations peuvent être proposées afin de garantir la pérennité de l'ouvrage.

Nous proposons une reconstruction de la digue du barrage compte tenu de la vétusté des éléments constitutifs afin de garantir la pérennité de l'ouvrage. La tranchée d'ancrage sera conservée Les détails des actions entreprises sont consignées dans le tableau ci-dessous.

Ouvrages	Etat et anomalies relevées	Propositions de réhabilitations				
	Le corps de la digue présente des	Démolition complète de la				
	dégradations sévères	digue actuelle ;				
	notamment :	Reprise du remblai corps de la				
	la présence massive d'une	digue avec du remblai				
	végétation arbustive sur les talus	argileux;				
	de la digue ;	Protection des talus amont et				
	des zones d'effondrements sur	aval sur une couche de pose en				
Digue	les talus amont et aval;	remblai latéritique ;				
Digue	des détériorations du perré sec du	Reprise de la couche de				
	talus amont et aval	couronnement en remblai				
	des affaissements localisés à	latéritique ;				
	divers endroits.	Construction d'un mur parapet				
		sur le talus amont de la crête de				
		la digue ;				
		Reconstruction du drain de pied				
		et de la butée de pied amont				
Chenal et diguettes de	Dégradation des enrochements	Reprise des enrochements en				
protection	de protection en aval;	aval du seuil renforcé par un				
	Absence de diguette de	matelas de gabions en aval;				
	protection en rive droite	Réalisation d'une diguette de				
	entrainant un déversement des	protection en rive droite.				
	eaux en dehors du chenal.					
		Démolition de l'ouvrage				
		actuel;				
	Vanne vétuste	Reprise d'un nouvel ouvrage de				
Ouvrage de prise	Bac aval dégradé	prise avec des bacs amont et				
		aval avec commande en aval;				
		Pose d'un escalier en				
		maçonnerie de moellons.				

III.9 Dimensionnement des ouvrages proposés

Les plans d'exécution des ouvrages sont présentés en annexe 10.

III.9.1 Dimensionnement de la nouvelle digue

III.9.1.1 Crête de la digue

Le calage de la digue du barrage tient compte de la morphologie de l'axe de la digue. L'exploitation du plan de la masse du barrage fait ressortir que la digue existante bien que dégradée est calée à la côte maximale du terrain naturel de l'axe. Les travaux de reconstruction s'effectueront en gardant la côte de la digue existante mais en renforçant la sécurité du barrage par la mise en place d'un muret parapet.

Mise en place d'un mur parapet

La revanche libre restante est insuffisante, pour la sécurité du barrage vis-à-vis des déversements, la mise en place d'un mur parapet est donc capitale.

Le mur parapet aura une hauteur de 50 cm au-dessus de la crête amont avec un ancrage de 50 cm dans la crête de la digue. Il sera en maçonneries de moellons coulé par plots de 5 m séparés par des joints secs.

Nous retenons en récapitulatif:

Côte de la digue : 280 m.

Côte mur parapet : 280.5 m

III.9.1.2 Largeur en crête

Formule de KNAPPEN	Formule de PREECE	Largeur retenue		
3,69	3,46	3,50		

Nous retiendrons une largeur de 3,50 m.

III.9.1.3 Fruit des talus

Le choix des fruits des talus de la digue est fonction de la qualité des matériaux du corps de la digue et de la hauteur de celle- ci. Le choix des fruits des talus s'est fait en tenant compte des recommandations des chercheurs dans la conception des petits barrages en terre.

Nous retiendrons des fruits de 2.5 H/1V pour le talus amont et 2H/1V pour le talus aval.

III.9.1.4 Tranchée d'ancrage

La tranchée d'ancrage représente la fondation de la digue et devra ancrée sur un matériau imperméable afin de limiter les infiltrations en dessous de la digue. Nous conserverons la tranchée actuelle vu qu'aucune fuite d'eau n'a été observée lors des études géotechniques.

III.9.1.5 Protection des talus de la digue

Talus amont

Le talus amont sera protégé avec une couche de perré sec de 30 cm. En outre, Une couche de pose de 15 cm sera mise en place entre le corps du remblai en argile et le perré. Elle a pour objet d'amortir l'énergie résiduelle des vagues passant dans les interstices entre blocs et empêcher l'entrainement du matériau de remblai par le phénomène de pompage. Elle sera constituée de graveleux latériques suffisamment grossiers.

Au pied du parement amont, sera construite une butée dont le rôle est d'ancrer le pied du perré dans le terrain naturel et d'autre part de prendre en charge une partie des poussées engendrées par le poids propre du perré. La butée est de section triangulaire de hauteur d'environ 50 cm et d'une largeur de 150 cm.

Talus aval

Le talus aval sera également protégé avec une couche de perré sec d'épaisseur 30 cm. Il comportera également la couche de pose de 15n cm et un drain de pied.

Muret de crête aval et couche de couronnement

Le muret de crête aval aura les dimensions 50 * 50 et sera en maçonneries de moellons. Par ailleurs, le couronnement de la digue sera fait en grave latéritique d'épaisseur 20 cm.

Hydraulique interne

Du fait de la charge hydraulique à l'amont du barrage, l'eau s'infiltre progressivement dans le massif de la digue, c'est pourquoi on prévoit à l'intérieur du massif un dispositif drainant qui interceptera les eaux d'infiltration. Le débit de fuite estimé est faible de l'ordre de 4,6.10⁻¹¹ m/s et l'épaisseur minimale de filtre résultant est de 1,14cm.

Pour permettre un meilleur drainage de l'eau dans le corps de la digue et éviter le colmatage du filtre nous retenons une épaisseur de 0,50 m pour le filtre.

III.9.2 Dimensionnement de la diguette de protection

III.9.2.1 Dimensionnement de la diguette de protection

Les diguettes de protection servent à canaliser les eaux après le déversement et empêcher un éventuel retour au pied de la digue. La diguette de protection en rive gauche actuelle est en bon état. Pour éviter les affouillements au niveau de la rive droite et protéger la route, nous proposons une construction d'une diguette de protection au niveau de cette rive

Elle sera en remblai argileux et partira du déversoir pour s'étendre sur une longueur de 20,00m

Elle sera soigneusement compactée jusqu'à une hauteur de 1,50 m, avec des talus de 2H/1V et une largeur en crête de 3,50m.

III.9.3 Dimensionnement de l'ouvrage de prise et de vidange.

L'ouvrage de prise d'eau projeté est destiné au prélèvement d'eau pour l'irrigation des terrains en aval par gravité. Il servira à irriguer les cultures en cas de poches de sécheresse durant la saison des pluies et pour le maraîchage en contre saison et jouera également le rôle d'ouvrage de vidange

La prise est calée en tenant compte des apports solides sur une durée de 25 ans. Ces apports sont estimés à 368 274 m³ et correspondent à la côte 276,6 m. Nous retenons la côte 276 ,65 m pour le calage de la prise.

L'ouvrage de prise se compose :

- ✓ d'un bac de réception amont en béton armé fermé par une grille à mailles serrées de fabrication locale en fer T12 avec cadenas et muni d'un escalier de descente en fer D12 ;
- √ d'une conduite en fonte ductile de DN 300 de longueur 22,5 m traversant le corps de digue et enrobée dans un massif en béton ordinaire de 0,20 m d'épaisseur et dont les différents éléments seront joints par des brides boulonnées. La conduite sera protégée à l'amont par une crépine fabriquée sur place avec du fer D10. Au milieu de la digue, deux écrans anti-renard en béton armé sont prévus pour renforcer l'étanchéité et éviter les percolations préférentielles le long de la conduite. La conduite sera inclinée de à 0,5% vers l'aval afin de faciliter l'écoulement de l'eau.
- ✓ d'un robinet vanne DN 300 en fonte ductile (placé en aval);
- √ d'un bac de réception aval en béton armé comprenant une chambre de vanne, une chambre de réception, un mur à impact également en béton armé destiné à briser l'énergie de l'eau et deux échelles de descente en fer D12. La chambre des vannes sera fermée par une grille de fabrication locale en fer T12 avec cadenas.

Un escalier sur le talus de la digue permet l'accès à la prise.

III.10 Dispositif de suivi et de maintenance

III.10.1 Dispositif de suivi du barrage

Il sera constitué de :

❖ Une échelle de longueur de 5 m pour le suivi de l'eau dans la retenue.

Deux (02) bornes d'observation seront en outre implantées pour les références topographiques. Ces bornes permettront le suivi topographique de la digue.

III.10.2 Dispositif de surveillance et d'entretien

Ce dispositif vise essentiellement le maintien du fonctionnement des ouvrages du barrage. Les exploitants autour du barrage seront organisés en comité d'exploitants, le bureau de ce comité veillera à assurer la surveillance et l'entretien courant de l'ouvrage en prenant en charge :

- ❖ De façon générale, par la méthode de l'observation visuelle régulière, à repérer les défauts de fonctionnement ou les détériorations quelconques (fissures, inégalités de tassements, fuites, éboulements, érosion régressive etc.) et à saisir les autorités régionales chargées de l'hydraulique au cas où l'anomalie est jugée préoccupante ;
- ❖ Le nettoyage régulier de la végétation qui surviendrait sur la digue du barrage ;
- ❖ Les petites réparations (remise en place des moellons, comblement des ravines, nettoyage de l'emprise de la prise d'eau, etc.);
- ❖ Le respect du calendrier cultural pour les cultures de contre saison et pour les cultures pluviales.

Des formations relatives à la surveillance et la maintenance des barrages (identification des défauts ou détériorations, définition des techniques sommaires d'entretien, etc.) seront dispensées au comité d'exploitants pour plus d'efficacité.

III.10.3 Ressources en eau pour les travaux et construction de batardeaux

L'eau nécessaire aux travaux sera prélevée dans le barrage pour les travaux de réhabilitations. En cas de nécessité, des forages ou des petits marigots de la zone pourront être sollicités. Pour tenir compte de la pérennité de l'eau, nous proposons une construction des batardeaux au fur et à mesure de l'exécution des travaux avec les matériaux de la digue existante.

III.11 Notice d'impact environnemental et social

La réhabilitation du barrage de LA, est d'une grande importance pour l'essor socioéconomique de la commune de Sourgou et des populations des communes riveraines car elle ouvrira la voie au développement des activités agro sylvo- pastorales. Cependant, quelques impacts négatifs ont été relevés sur l'environnement (le milieu biophysique et humain). Dans le souci d'assurer une meilleure insertion du projet dans son environnement récepteur et d'être en conformité avec les normes en vigueur, un plan de gestion environnemental et social a été élaboré en annexe 8 pour apporter des réponses aux problèmes identifiés présentés dans le tableau 15. La matrice du Fecteau pour l'évaluation des impacts est consignée dans le tableau 16.

Tableau 15 : Résultats de la matrice d'identification des impacts

	COMPOSANTES DU MILIEU RECEPTEUR											
Sources d'impact		Milieu physique			Mil	Milieu		Milieu humain				
		Sol	Eaux de surface	Eaux Souterraine		Végétation/ paysage	Sécurité / Santé	Emploi /population	Circulation	Commerce, artisanat et transport	Agropastor al	Sécurité alimentaire
		construc	ction	T			T				,	
Installation du chantier	X	X			X	X	X	X		X		
Recrutement de personnel (création d'emploi)	X							X				
Débroussaillage abattage, déboisement dans l'emprise du projet		X			X	X	X	X				
Réhabilitation de la digue de protection et du déversoir (préparation et		X	X	X			X	X				
mise en œuvre de bétons pour les ouvrages de maçonnerie-béton)												
Réalisation et ou la réhabilitation des voies d'accès aux sites		X	X	X	X	X	X	X				
Travaux de construction et ou la réhabilitation des pistes de circulation (principales et secondaires)		X	X	X	X	X	X	X				
Transport et circulation liée aux activités de chantier	X		X		X		X	X	X	X		
Création et exploitation des emprunts et carrières	X	X			X	X	X	X	X			
Repli du chantier (restauration des zones d'emprunts)		X	X	X	X	X						
Phase d'exploitation												
Présence du barrage réhabilité avec ces divers usages	X	X					X	X		X	X	X
Augmentation du trafic routier sur les pistes réhabilitées	X	X	X	X	X		X		X	X		
Production de la pêche										X		X
Fréquentation du bétail autour du barrage et des périmètres irrigués	X		X	X		X		_	_		X	X

 ${\bf X}$: signifie que l'activité est source d'impact sur la composante considérée

Tableau 16: Matrice d'évaluation de FECTEAU

Intensité de l'impact	Étendue de l'impact	Durée de l'impact	Importance de l'impact
		Longue = Permanente	Majeure
	Régionale	Moyenne	Majeure
		Courte = Temporaire	Majeure
		Longue = Permanente	Majeure
	Locale	Moyenne	Moyenne
Forte = Majeure =		Courte = Temporaire	Moyenne
élevée		Longue = Permanente	Majeure
	Ponctuelle	Moyenne	Moyenne
		Courte= Temporaire	Mineure
		Longue = Permanente	Majeure
	Régionale	Moyenne	Moyenne
		Courte = Temporaire	Moyenne
		Longue = Permanente	Moyenne
	Locale	Moyenne	Moyenne
Moyenne =		Courte = Temporaire	Moyenne
modérée		Longue = Permanente	Moyenne
	Ponctuelle	Moyenne	Moyenne
		Courte= Temporaire	Mineure
		Longue = Permanente	Majeure
	Régionale	Moyenne	Moyenne
		Courte = Temporaire	Mineure
		Longue = Permanente	Moyenne
Faible	Locale	Moyenne	Moyenne
I WINIC		Courte = Temporaire	Mineure
	Ponctuelle	Longue = Permanente	Mineure

III.12 Devis estimatif des travaux

Le coût global de réhabilitation du barrage de LA, est de **333 666 133 F CFA HT.** Le détail des calculs du métré est présenté en annexe 7. Le métré entre dans le calcul du devis estimatif. Les résultats du devis estimatif présenté en annexe 9 sont résumés dans le tableau ci-dessous :

Tableau 17 : Coût de la réhabilitation du barrage de LA

Désignation	Coût HT (F CFA)	Ratio (%)	
Amenée et replis	33 800 000	10,13	
Digue	214 941 249	64,42	
Ouvrage de prise et de vidange	11 692 280	3,50	
Correction de l'ensemble du tapis d'enrochement chenal+ réalisation de la diguette de protection en rive droite	19 632 604	5,88	
Dispositif d'auscultation	12 100 000	3,63	
Total des travaux de réhabilitation	292 166 133	87,56	
Mise en œuvre du PGES	41 500 000	12,44	
Total général	333 666 133	100	

IV. CONCLUSION ET RECOMMANDATIONS

Le barrage de LA, construit en 1987 est dans un état très alarmant d'où l'urgence de procéder à sa réhabilitation afin de garantir la continuité des activités agro-sylvo- pastorales. En effet, il n'a pas bénéficié d'un entretien périodique de la part des populations et des structures décentralisées ce qui a favorisé la prolifération de la végétation ainsi que les dégradations accentuées sur les talus, de l'ouvrage de prise et du chenal. A l'issu des études réalisées, nous retenons principalement la construction d'une nouvelle digue, de l'ouvrage de prise, d'une diguette de protection en rive droite et la reprise des enrochements du chenal. La morphologie du terrain ne permet pas un rehaussement du seuil déversant et nous impose également à conserver la côte de la digue actuelle (280 m) pour la nouvelle digue. Afin de renforcer la sécurité hydrologique, un mur parapet sera donc projeté sur le talus amont. Le calage du seuil déversant à la côte 278,5 m permet de stocker un volume assez important d'environ 3 39 5000 m³ suffisant pour combler les besoins humains, pastoraux et agricoles projetés.

Le coût global de la réhabilitation du barrage est de 386 256 037 F CFA TTC soit environ 115 F CFA/ m³). La participation de chaque habitant est de 6 591 F CFA/an en considérant uniquement le village de LA, par contre à l'échelle commune, elle est de 1293 FCFA/an.

La réhabilitation du barrage contribuera fortement à l'amélioration des conditions de vie de la population de la commune de Sourgou.

Dans le but de garantir une exploitation durable de la ressource en eau qui sera mobilisée, il est nécessaire de mettre en œuvre les recommandations suivantes :

- ✓ la constitution d'un comité d'exploitants pour assurer le suivi, l'entretien courant du barrage ainsi que le périmètre qui sera réaménagé en aval ;
- ✓ la plantation d'arbres à l'amont du barrage pour réduire son envasement ;
- ✓ la formations des exploitants sur des programmes d'appui technique et de vulgarisation agricole, la pêche et de l'élevage afin de booster les rendements.
- ✓ la mise en application du Plan de Gestion Environnementale et Sociale (PGES).

V. BIBLIOGRAPHIE

Références bibliographiques :

- BURKINA FASO (2018). Deuxième Programme National du Secteur rural (PNSR II) 2016-2020, Décret n°2018-0301,98 pages.
- Comité Français des Grands Barrages CFGB (2002). Petits barrages: recommandations pour la conception, la réalisation et le suivi, livre; Paris: Cemagref éd.; Engref coéd, 183 pages.
- FAO 54 (1996). Crues et apports : manuel pour l'estimation des crues décennales et des apports annuels pour les petits bassins versants non jaugés de l'Afrique sahélienne et tropicale sèche, livre, Rome : Cemagref Editions, 265 pages.
- FAO (2008). Manuel des techniques d'irrigation sous pression, livre, Rome : Cemagref Editions, 308 pages.
- Harouna KARAMBIRI (1998). Etude de l'envasement des barrages au Burkina Faso : Etude de cas, Mémoire de fin d'études Master 2, EIER (BURKINA FASO), 99 pages.
- Institut national de la statistique et de la démographie INSD (2015). Caractéristiques sociodémographiques de la population, Rapport de l'Enquête Multisectorielle Continue (EMC) 2014,58 pages.
- Jean Michel GRESILLON, Patrick HERTER, et Jean Pierre LAHAYE (1976). Note sur le dimensionnement des ouvrages évacuateurs de crues en Afrique de l'ouest sahélienne ou tropicale, bulletin,49 pages.
- Jean-Maurice DURAND, Paul ROYET, et Patrice MERIAUX (1999). Technique des petits barrages en Afrique sahélienne et équatoriale, livre, Cemagref Editions ,401 pages.
- Ministère de l'Agriculture, de l'Hydraulique et des Ressources et Halieutiques (2007). Analyse de la filière maraichage au Burkina Faso, Module EASYPol 107, 127 pages.
- Ministère de l'environnement et du cadre de vie (2007). Programme d'Action National d'Adaptation à la variabilité et aux changements climatiques (PANA) au Burkina Faso, rapport, 84 pages.

Rapports des cabinets d'étude :

- a CETRI et AGECET (2017). Mémoire technique du barrage de LA, Rapport,52 pages.
- b_CETRI et AGECET (2017). Notice d'impact environnemental et social de la réhabilitation du barrage de LA,64 pages.
- ONBAH (1986). Rapport géotechnique sur le barrage de LA.

Cours consultés :

- Bassirou BOUBE (2014). Cours de bases d'irrigation 2iE.
- Giraude ADEOSSI (2017). Cours d'étude d'impact environnemental et social 2iE
- Harouna KARAMBIRI et Dial NIANG. s. d. Cours d'hydrologie 2iE.
- Harouna KARAMBIRI et Ismaïla GUEYE (2005). Petits barrages en terre EIER-ETSHER.
- Jean-Maurice DURAND (1996). Petits barrages pour l'équipement rural en Afrique EIER.
- M.L. COMPAORE (1996). Cours de barrages EIER.
- Moussa LO. (2017). Cours de Barrage 1 2iE.

VI. ANNEXE

Annexe 1 : Etude topographique	58
Annexe 2 : Etude hydrologique	58
Annexe 3 : Calculs hydrauliques	72
Annexe 4 : Estimations des besoins et pertes	75
Annexe 5 : Dimmensionnement de la nouvelle digue	76
Annexe 6: Dimmensionnement des Ouvrages annexes	81
Annexe 7 : Métré des différents ouvrages	84
Annexe 8 : Notice d'impact environnemental et social	88
Annexe 9 : Devis estimatif des travaux	95
Annexe 10 :Plans d'execution	98

ANNEXE 1: ETUDE TOPOGRAPHIQUE

> Données des courbes hauteurs volumes et surfaces

Les résultats des investigations géotechniques sont consignés dans le tableau suivant :

Côte(m)	Surface(ha)	Dénivelée(m)	Volume élémentaire(m3)	Volume cumulé(m3)	
275,00	0	0	0	0	
275,50	9	0,5	22 500	22 500	
276,00	28	0,5	92 500	115 000	
276,50	48	0,5	190 000	305 000	
277,00	100	0,5	370 000	675 000	
277,50	154	0,5	635 000	1 310 000	
278,00	203	0,5	892 500	2 202 500	
278,50	274	0,5	1 192 500	3 395 000	
279,00	352	0,5	1 565 000	4 960 000	
279,50	444	0,5	1 990 000	6 950 000	
280,00	526	0,5	2 425 000	9 375 000	

Tableau(annexe) 1 : résultats des investigations topographiques

ANNEXE 2: ETUDE HYDROLOGIQUE

1. Données climatologiques de la station synoptique de OUAGADOUGOU (2007-2016

Mois	Vent	T° MIN	T° MAX	Evapo bac	ЕТО	Vent max
	(m/s)	(°C)	(°C)	mm	mm	(m/s)
Janvier	2,86	16,71	33,01	249,55	190,61	3,5
Février	2,68	20,35	36,86	264,62	187,88	3,4
Mars	2,59	24,73	39,59	327,71	211,33	3,1
Avril	2,80	27,31	40,15	317,24	200,76	3
Mai	3,23	27,31	38,54	299,79	202,13	3,6
Juin	3,24	25,44	35,71	241,25	177,49	3,7
Juillet	2,73	23,50	32,84	188,51	155,09	3
Août	2,32	23,02	31,55	148,93	141,75	2,7
Septembre	2,11	23,13	32,95	149,70	147,79	2,4
Octobre	2,14	24,40	36,24	200,37	177,06	2,6
Novembre	1,89	20,60	37,02	218,26	177,13	2,4
Décembre	2,58	17,40	34,08	236,80	187,90	3,4

Tableau(annexe) 2: Données climatologiques de OUAGADOUDOU

2. Pluviométries annuelles et maximales journalières

4 Répartition annuelle de la pluviométrie

Moi	S	Jan	Fév	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov	Déc	Total
pluie moy	[mm]	0,00	0,13	5,63	21,33	64,43	98,49	160,33	237,64	137,40	46,74	3,29	0,00	775,39
% pluie	moy [%]	0,00	0,02	0,73	2,75	8,31	12,70	20,68	30,65	17,72	6,03	0,42	0,00	100

♣ Données pluviométriques de la station de Koudougou

A	Pluies moyennes	Pluies maximales
Année	annuelles (mm)	journalières (mm)
1977	707,3	39,6
1978	671,3	46,4
1979	671,5	73,5
1980	600,9	34,8
1981	735,8	111,4
1982	553,2	24,3
1983	616,8	52,5
1984	720,5	26
1985	711	28,5
1986	899,2	34,5
1987	802,4	26,7
1988	847,9	30,8
1989	812,9	49,5
1990	648,1	59,2
1991	885,3	52,5
1992	823,3	29,3
1993	864,4	71,9
1994	961,1	53
1995	862	38,8
1996	716	28,8

1997	713,6	41
1998	711,8	42,4
1999	1012,7	46
2000	701,2	27,6
2001	827,9	51,6
2002	630,2	42,4
2003	950,3	78,8
2004	782,8	86,2
2005	784	52,3
2006	782,4	115,8
2007	901,4	122,9
2008	904	46
2009	1003,7	87,1
2010	835,3	71
2011	593	70,5
2012	508,8	64,8
2013	580	51,8
2014	747,1	61,7
2015	964,6	62,3
2016	958,5	62
Moyenne	775,105	54,905
Ecart type	131,2423	24,582
Coefficient de variation	0,169	0,448
	1	l .

Tableau(annexe) 3 : Pluies de la station de KOUDOUGOU (1977-2016)

♣ Résultats des ajustements des pluies moyennes annuelles par la méthode de GAUSS avec un intervalle de confiance de 95 %.

Temps	Fréquence	Overtiles (mm)	Emmoure	Borne	Borne
de retour	expérimentale	Quantiles(mm)	Erreur	inférieure	supérieure
10000	0,9999	1263,213	59,035	1147,482	1378,945
2000	0,9995	1206,994	53,122	1102,853	1311,135
1000	0,999	1180,714	50,397	1081,916	1279,511
200	0,995	1113,218	43,546	1027,850	1198,585

100	0,99	1080,479	40,326	1001,424	1159,533
50	0,98	1044,703	36,911	972,342	1117,063
20	0,95	991,027	32,068	928,162	1053,893
10	0,9	943,323	28,167	888,104	998,542
5	0,8	885,540	24,228	838,045	933,036
3	0,6667	831,578	21,714	789,009	874,146
2	0,5	775,105	20,751	734,424	815,786
1,4286	0,3	706,334	22,164	662,883	749,784
1,25	0,2	664,670	24,228	617,174	712,165
1,1111	0,1	606,887	28,167	551,668	662,107
1,0526	0,05	559,183	32,068	496,317	622,048
1,0204	0,02	505,508	36,911	433,147	577,868
1,0101	0,01	469,731	40,326	390,677	548,786
1,005	0,005	436,993	43,546	351,625	522,360
1,001	0,001	369,496	50,397	270,699	468,294
1,0005	0,0005	343,216	53,122	239,075	447,357
1,0001	0,0001	286,997	59,035	171,265	402,728

Tableau(annexe) 4: Résultats de l'ajustement des pluies moyennes annuelles

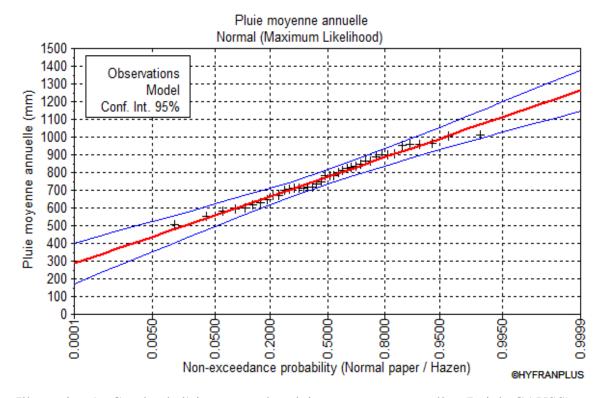


Illustration 1 : Courbe de l'ajustement des pluies moyennes annuelles (Loi de GAUSS)

Résultats des ajustements des pluies maximales journalières par la loi de GUMBEL avec un intervalle de confiance de 95 %.

Temps	Fréquence	Quantiles(mm)	Еммони	Borne	Borne
de retour	expérimentale	Quantines(mm)	Erreur	inférieure	supérieure
10000	0,9999	220,369	29,731	162,084	278,653
2000	0,9995	189,518	24,652	141,190	237,846
1000	0,999	176,228	22,469	132,179	220,277
200	0,995	145,343	17,418	111,197	179,488
100	0,99	132,010	15,251	102,111	161,908
50	0,98	118,627	13,092	92,962	144,293
20	0,95	100,769	10,251	80,674	120,865
10	0,9	86,973	8,115	71,065	102,881
5	0,8	72,590	6,008	60,812	84,368
3	0,6667	61,144	4,533	52,258	70,030
2	0,5	50,867	3,567	43,873	57,860
1,4286	0,3	40,284	3,278	33,858	46,711
1,25	0,2	34,721	3,489	27,881	41,561
1,1111	0,1	27,857	4,035	19,946	35,767
1,0526	0,05	22,813	4,578	13,839	31,787
1,0204	0,02	17,698	5,208	7,489	27,907
1,0101	0,01	14,572	5,621	3,552	25,591
1,005	0,005	11,884	5,990	0,142	23,626
1,001	0,001	6,800	6,712	-6,359	19,959
1,0005	0,0005	4,968	6,980	-8,715	18,650
1,0001	0,0001	1,287	7,525	-13,465	16,038

Tableau(annexe) 5 : Résultats de l'ajustement des pluies maximales journalières (loi de GUMBUL)

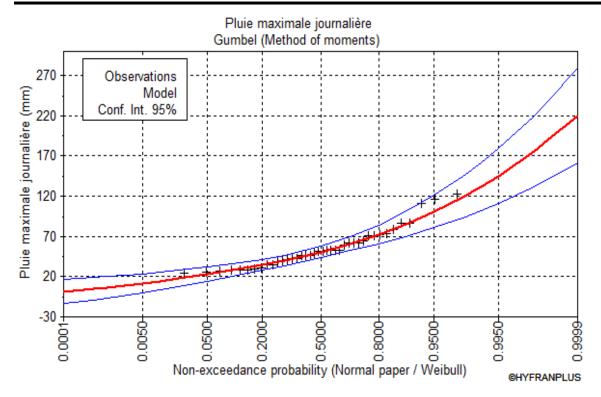


Illustration 2 : Courbe de l'ajustement des pluies maximales journalières

3. Caractéristiques du bassin versant

Courbe hypsométrique

C'est la répartition de la superficie du bassin (exprimé en pourcentage) en fonction de l'altitude. Elle est obtenue en faisant le cumul des pourcentages élémentaires partant de la côte la plus élevée a la plus basse. Les données d'entrée pour le tracé de la courbe sont résumées dans le tableau suivant :

Altitude(m)	Surface élémentaire(m2)	Superficie cumulée (m2	Pourcentage cumulé
279	23807171	218824155	100,00%
290	45569812	195016983	89,12%
300	46870063	149447171	68,30%
310	37045809	102577108	46,88%
320	26707184	65531299	29,95%
330	18205737	38824115	17,74%
340	12707539	20618378	9,42%
350	6464328,4	7910839,2	3,62%
360	1446510,8	1446510,8	0,66%
372	0	0	0,00%

Tableau(annexe) 6 : Répartition de la surface du bassin versant en fonction des altitudes

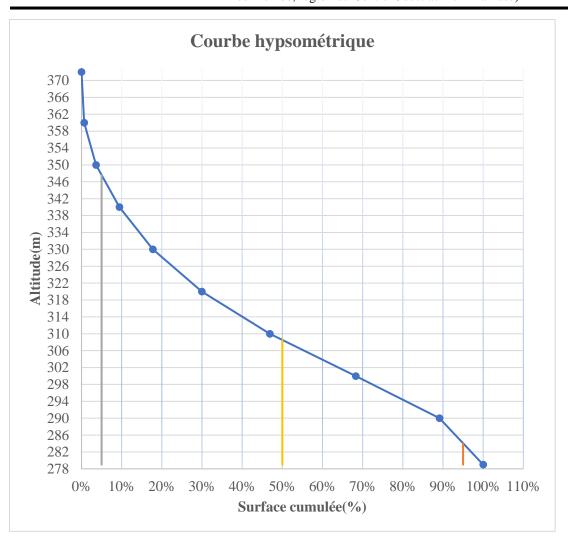


Illustration 3: Courbe hypsométrique

Le graphe ci-dessus (**Illustration 3**) renseigne sur les différentes altitudes suivantes :

Altitudes caractéristiques du bassin versant				
Altitude médiane à 50% de la Superficie Z _{50%}	308,5	m		
Altitude minimale	279	m		
Altitude maximale		m		
Altitude à 5% de la Superficie Z _{5%}	347,5	m		
Altitude à 95 % de la superficie Z _{95%}	284	m		
Dénivelée $\mathbf{D} = \mathbf{Z}_{5\%} - \mathbf{Z}_{95\%}$	63,5	m		

Tableau(annexe) 7 : Altitudes caractéristiques du bassin versant

4. Crue de projet

➤ Méthode ORSTOM pour l'estimation de la crue décennale

Calcul du coefficient de ruissellement décennal Kr10

Le coefficient de ruissellement décennal pour une pluie journalière décennale différente de 70 et 100 mm est obtenu par interpolation entre les valeurs de Kr70 (Kr10 pour P10=70mm) et Kr100 ((Kr10 pour P10=100mm)

Les valeurs Kr70 et Kr100 sont estimés en fonction des paramètres a, b, c et la superficie S du bassin versant. a, b et c sont fournis sur des tables et varient en fonction de l'indice global de pente.

$$Kr_{70} \ ou \ Kr_{100} = \frac{a}{(S+b)} + c$$

	Paramètres	Valeurs de ig encadrant igcorr du bassin		Coefficients interpolés	Valeur de Kr10 (%)
	ig(m/km)	7	3	5,132	
Kr70	a	200	150	176,644	17,605
IXI / O	b	20	20	20,000	17,003
	С	18,5	15	16,865	
	ig(m/km)	7	3	5,132	
Kr100	a	240	200	221,315	20,554
Kiloo	b	30	30	30,000	20,334
	С	22	17	19,664	

Interpolation de Kr10

Le coefficient Kr10 de la pluie décennale est ainsi interpolé à partir des valeurs de P10=100mm et 70 mm

P10(mm)	100	70	86,97
Kr10	20,554%	17,605%	19,273%

• Calcul du temps de base Tb10 par interpolation

Valeurs de ig encadrant igcoo	r Tb10
du bassin	interpolé

$Tb10 = a * S^{0,36} + b$	ig(m/km)	7	3	5,132
Avec a et b fonction de ig.	a	163	325	
S : la superficie du bassin	b	142	315	
versant	Tb10(mm)	1276,0231	2576,089	1883,316

• Calculs des autres paramètres

Paramètres		Formulation	Valeur	
la hauteur de l'averse ponctuelle de fréquence décennale	P ₁₀		86,973	mm
Coefficient d'abattement A	$A = 1 - \left[\frac{(161 - 0.042 * \overline{Pan})}{1000} * logS \right]$		0,699	
la hauteur de précipitation				
moyenne sur le bassin de	$Pm_{10} = A*P_{10}$		60,831	mm
fréquence décennale				
Coefficient de ruissèlement	Kr_{10}		0,193	
Volume de ruissellement	$Vr_{10}(m^3)$	$= 1000 * Pm_{10} (mm)$	2565510.00	m2
décennal		$*S(km^2)*Kr_{10}$	2565519,99	m3
Temps de base	$Tb_{10}(minutes) = a * S^{0,36} + b$		1883,316	mn
Temps de montée Tm10	$Tm_{10} = Tb_{10} * 0.33$		627,772	mn
Débit moyen de la crue	$Q_{m10}(m^3 / \text{s}) = 16.7 * (Pm_{10}(\text{mm}) * S(km^2) * Kr_{10})/Tb_{10}(\text{mn})$		22,749	m3/s
Coefficient de pointe décennal	α_{10}		2,600	
Damarqua	La checkl	ist ne présente aucune modific	cation car le ré	éseau a
Remarque	une struct	ure dendritique.		
Débit maximal de ruissellement ou débit maximum ruisselé	$Qr_{10} = Qr_{10}$	$nr_{10} * \alpha_{10}$	59,148	m3/s

Débit dû à l'écoulement retardé	$Qret_{10} = Qr_{10} * m \ avec \ 0,05$	2,957	m3/s
Débit de pointe décennal ou débit maximal total	$Q_{10 (ORSTOM)} = Qr_{10} + Qret_{10}$	62,106	m3/s

Tableau(annexe) 8 : Résultats de calcul de la crue décennale (Méthode ORSTOM)

> Détermination de la crue décennale par la méthode CIEH

$$Q_{10} = a \times S^{s} \times \overline{P_{an}}^{p} \times I_{g}^{i} \times K_{r10}^{k} \times D_{d}^{d}$$

S [km²]: Superficie du bassin versant

 $I_g[\frac{m}{km}]$: indice global de pente

 $\overline{P_{an}}$ [mm] : hauteur moyenne annuelle de pluie

 K_{r10} : coefficient de ruissellement de la pluie décennale

D_d[km^{−1}] : Densité de drainage

a, s, p, i, k et d des coefficients à déterminer

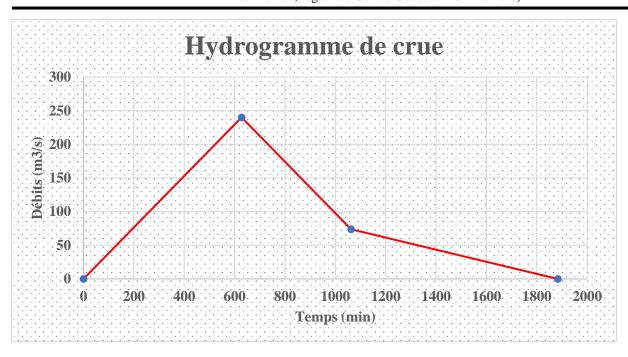
N°	Echantillon	Constante	Exposants des paramètres de l'équation				Exposants des paramètres de l'équation			Q10
	n	a	S	Ig	Pan	Pm10	Kr10	Dd	(m^3/s)	
39	61	0,41	0,425				0,923		62,135	
40	60	0,254	0,462	0,101			0,976		64,835	
	Moyenne						63,485			

Tableau(annexe) 9 : Résultats de calcul de la crue décennale (Méthode CIEH)

> Crue de projet

La crue de projet est calculée pour une période de retour de 100 ans. Elle s'obtient en multipliant la valeur maximale de la crue décennale estimée par les méthodes ORSTOM et CIEH par un coefficient majorateur C.

Débit de pointe décennal			
ou débit maximal total	$Q_{10} = Max(Q_{10 (ORSTOM)}; Q_{10 (CIEH)})$	63,485	m^3/s
Q10 retenu			


Coefficient du Gradex C	$C = 1 + \left[\frac{P_{100} - P_{10}}{P_{10}} * \frac{(T_b(heures)/24)^{0,12}}{Kr_{10}} \right]$	3,775	
Débit de la crue centennale	$Q_{100} = Q_{10} * C$	239,635	m ³ /s
Débit de la crue centenna	240 m ³ /s		

Tableau(annexe) 10: Résultats de calcul de la crue de projet

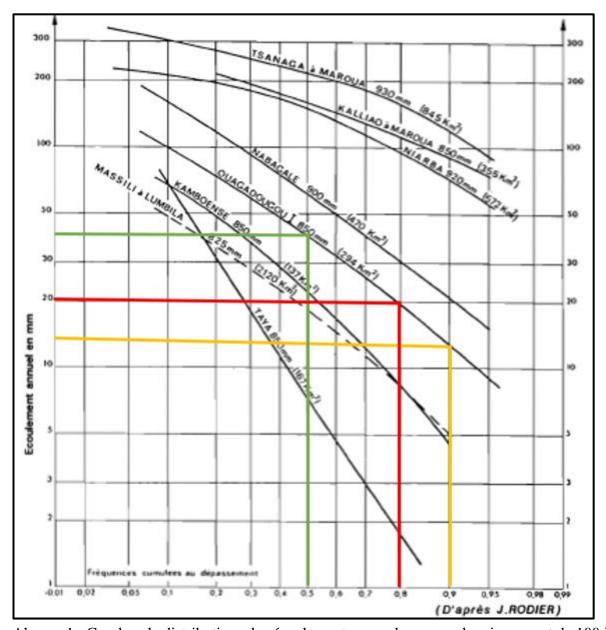
> Hydrogramme de crue

L'hydrogramme de crue donne l'évolution de la crue en fonction du temps. Il est schématisé en trois tronçons linéaires proposé par GRESILLON, HERTER et LAHYAYE et construit à l'aide des temps de base et de montée. Le changement de pente de la décrue s'effectue à un débit Q appelé débit de discontinuité qui se calcule par la relation ci-après à partir de la relation suivante :

	\propto_{10} : coefficient de pointe de la crue décennale
	T _{b10} : temps de base de la crue décennale
$\frac{Q}{Q_{cmax}} = \frac{2}{\alpha_{10}} \times \frac{T_{b10} - \alpha_{10} \times T_{m10}}{T_{b10} - 2 \times T_{m10}}$	T _{m10} : temps de monté
To bio mile	Q_{cmax} : le débit de projet
	Q: débit de rupture de pente de la décrue

5. Estimation des apports liquides

Méthode Rodier


Elle consiste à identifier, dans le catalogue des bassins-type, celui ou ceux ayant les caractéristiques les plus voisins du bassin étudié pour estimer ainsi l'écoulement annuel de ce dernier. La recherche du bassin-type se base sur quatre critères ou niveaux de sélection sur lesquels s'est fondée la classification des bassins expérimentés de Rodier. Ces critères sont les suivants : (i) le régime hydrologique ;(ii) la superficie du bassin;(iii) les caractéristiques des sols;(iv) la physiographie des bassins.

La pluviométrie moyenne annuelle du bassin au site de LA, estimée à 775 mm est comprise entre 750 et 1000 mm, ce qui nous amène à nous positionner d'abord dans la catégorie de région tropicale sèche. Cette catégorie est scindée ensuite en deux classes de superficies : la première classe concerne les bassins de moins de 100 km² et la seconde, les bassins dont la superficie est comprise entre 100 et 1000 km². Cette dernière nous concerne au regard de la superficie de notre bassin versant égale à 218,82 km². Enfin, en se basant sur les deux derniers critères, le bassin versant au site de LA, est constitué de sols relativement imperméables et possède un relief modéré, nous optons donc pour les bassins de type Ouagadougou particulièrement celui de Ouagadougou I ayant les caractéristiques suivantes :

Superficie (Km ²)	S	294	km ²
Dénivelée spécifique(m)	Ds	52	m
Densité de drainage	Dd	0,56	km / km ²

Relief assez faible et sols peu per		000	
Hauteur de pluviométrie médiane (mm)	Pmed	850	mm

Tableau(annexe) 11 : Caractéristiques du bassin type OUAGADOUGOU I

Abaque 1 : Courbes de distributions des écoulements annuels pour un bassin versant de 100 à 1000 km2, sur granite et granito-gneiss, Zone 750-1000 mm.

Une fois le bassin type identifié, nous avons utilisé sa courbe de distribution présentée cidessus pour la lecture des lames d'eau écoulées correspondantes aux fréquences de 0,5 ;0,8 ;0,9. Les lames d'eau vont servir pour le calcul du coefficient d'écoulement annuel Ke.

$V = K_e \times S \times P$	S [km ²]: superficie du bassin versant
La	P [mm]: pluviométrie annuelle concernée
$K_e = \frac{\Delta e}{P}$	K _e : coefficient d'écoulement

Année	Pluviométrie	Lame écoulée	Ke	Superficie	Apports liquides
Affilee	(mm)	(mm)	(%)	(km^2)	(m^3)
Moyenne (0,5)	775,105	41	5,29	218,82	8 971 790,34
quinquennale sèche (0,8)	664,670	20	3,01	218,82	4 376 483,09
décennale sèche (0,9)	606,887	15	2,47	218,82	3 282 362,32

Tableau(annexe) 12 : Résultats de l'évaluation des apports liquides (Méthode de Rodier)

➤ Méthode de Coutagne

$K_e(Coutagne) = \frac{P - D}{P}$	$K_{e5} = 0.70 \times K_e$
$D = P \operatorname{si} P < \frac{1}{8\lambda}$	$K_{e10} = 0.50 \times K_e$ et $V = K_e \times S \times P$ D [m] : déficit d'écoulement
$D = P - \lambda P^2 \text{ si } P \in \left[\frac{1}{8\lambda}; \frac{1}{2\lambda}\right]$	P [m]: pluviométrie moyenne annuelle
$D = 0.20 + 0.035 \bar{T} \text{si P} > \frac{1}{2\lambda}$	K _e : coefficient d'écoulement
$D = 0.20 + 0.035 T \text{ SIP} > \frac{1}{2\lambda}$	\bar{T} [°C] : température moyenne annuelle
$\lambda = \frac{1}{0.8 + 0.14 \times \bar{T}}$	K_{e5} et K_{e10} : coefficients d'écoulement quinquennal et décennal

Paramètres de base

0,775 m
28 ° C
0,21
0,59
2,36
0,648 m
0,127 m

Calcul des apports liquides

Année	Ke	Pluviométrie	Volume
Ailliee	(%)	(mm)	(m3)
moyenne	16,422	775,105	27 853 151,24
quinquennale sèche	11,495%	664,670	16 719 289,52
décennale sèche	8,211%	606,887	10 904 151,07

Tableau(annexe) 13 : Résultats de l'évaluation des apports liquides (Méthode de Coutagne)

6. Estimation de la dégradation spécifique pour les apports solides

Trois formules seront utilisées pour la détermination des apports solides. Il s'agit de la formule de de GOTTSCHALK, de EIER-CIEH (Grésillon) et de la formule de KARAMBIRI élaborée en grande partie grâce à des recherches réalisées au Burkina Faso.

(i) La formule de GOTTSCHALK : $D = 260 \times S^{-0.1}$

(ii) La formule de EIER-CIEH :
$$D = 700 \left(\frac{P}{500}\right)^{-2,2} \times S^{-0.1}$$

(iii) La formule de KARAMBIRI (1998)
$$D = 137 \left(\frac{P}{700}\right)^{-2.02} \times S^{-0.05} \times [0.25 + 1.13 \times (h + r)]^{1.15}$$

Valeurs de h, paramètre anthro	Valeurs de r, paramètre morpho			
$h \in [0,7;1]$: Bassin versant comportant des grandes villes, gros	$r \in [0,7;1]$: Relief très			
villages ou situé à proximité de ceux-ci. Probabilité d'extension	accidenté, accusé.			
rapide ou villages sur le bassin				
$h \in [0,4;0,7]$: Bassin versant comportant des petites villes, des	r ε [0,4; 0,7] :Relief			
villages moyens ou situés à proximité de ceux-ci. Probabilité	moyennement accidenté,			
d'extension moyennes de villes ou villages sur le bassin	accusé.			
$h \in [0,1;0,4]$: Bassin versant comportant des petits villages ou	$r \in [0,1;0,4]$:Relief peu			
situés à proximité de ceux-ci.	accidenté, accusé.			
$h \in [0;0,1]$: Bassin versant relativement inhabité ou éloigné de	$r \in [0; 0,1]$: Relief			
toute ville ou village.	relativement plat et monotone.			

Tableau(annexe) 14 : Paramètres h et r de la formule de KARAMBIRI

Les résultats de l'application des formules sont consignés dans le tableau ci -dessous :

	P	S	h	r	Dégradation spécifique (m3/km2/an)				
Paramètres	mm	Km ²			GOTTSCHALK	EIER – CIEH (GRESILLON)	KARAMBIRI		
Résultats	775,105	218,82	0,25	0,25	151,692	155,679	67,319		

Tableau(annexe) 15: Résultats de l'estimation de la dégradation spécifique

ANNEXE 3: CALCULS HYDRAULIQUES

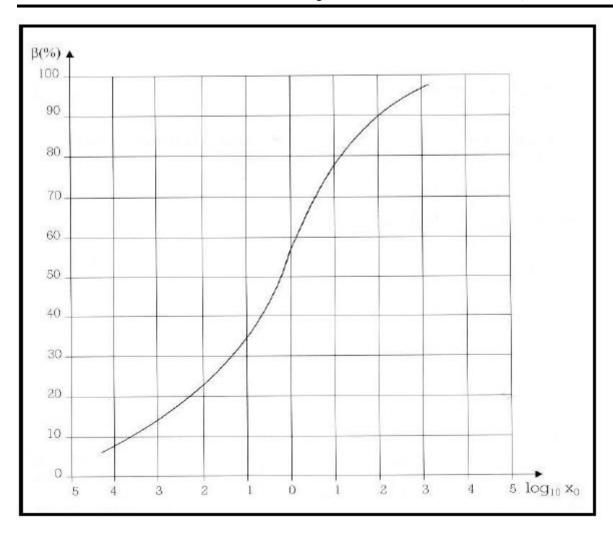
Vérification de la capacité du déversoir

> Laminage des crues

Le laminage de crues calculé par la méthode **EIER-CIEH** décrite ci-dessous consiste dans notre étude à déterminer la hauteur d'eau déversante au-dessus du déversoir partant de la longueur actuelle de celui-ci afin de vérifier si la longueur actuelle suffisante pour évacuer la crue de projet.

Méthodologie pratique

❖ Calculer L₁ sans tenir compte de l'effet de laminage : L₁ =
$$\frac{Q_{cmax}}{m \times \sqrt{2g} \times h^{\frac{3}{2}}}$$


- * Lire β_1 sur l'abaque 2 et calculer $Q_{emax} = \beta_1 \times Q_{cmax}$
- Puis on réitère toutes les étapes jusqu'à obtenir une valeur convergente de L proche de la longueur actuelle du déversoir en faisant varier la charge déversante. Avec

 $L\ [m]$: longueur approchée du déversoir ; $S\ [m^2]$: la superficie normale de la retenue

m : coefficient de débit de l'évacuateur ; Tm [s]: temps de montée des eaux

 $Q_{cmax}[m^3/s]$: débit de projet ; $Q_{emax}[m^3/s]$: débit maximum évacué

h [m]: charge au-dessus du déversoir; g: accélération de la pesanteur

Abaque 2 : courbe de β

Param	nètres de base	s de base Etapes		Log10(X0i)	ßi+1	Qi+1	Li
S	2 740 000 m ²	0	18,647	1,271	0,8100	194,4	104,009
Qcmax	240 m ³ /s	1	12,234	1,088	0,7800	187,2	100,157
g	9,81	2	11,345	1,055	0,7800	187,2	100,157
h	0,987m	3	11,345	1,055	0,7800	187,2	100,157
m	0,43	4	11,345	1,055	0,7800	187,2	100,157
Tm	37666,311 s	5	11,345	1,055	0,7800	187,200	100,157
L	128,407 m	6	11,345	1,055	0,7800	187,200	100,157

Tableau(annexe) 16 : Résultats de la simulation de la méhuode Xo

ANNEXE 4: ESTIMATIONS DES BESOINS ET PERTES

1. Besoins agricoles

Besoins en eau des cultures retenues

Culture	Paramètre	Décembre	Janvier	Février	Mars	Avril	Total besoins	
	Pluie efficace journalière(mm/jr)	0,000	0,000	0,003	0,109	0,427	nets mensuels	
Tr + /1	Eto(mm/jr)	6,061	6,149	6,710	6,817	6,692		
Tomate(1er decembre-14	nombre de jours	31	31	28	31	14		
Avril)	Kc	0,460	0,750	1,036	1,026	0,800		
7 () 111)	Besoins nets(mm/jr)	2,786	4,612	6,947	6,884	4,927	706,224	
	Besoins net mensuel(mm)	86,373	142,959	194,509	213,403	68,980		
	nombre de jours	31	31	28	30			
Chan (1am	Kc	0,556	0,915	1,050	0,975			
Chou (1er décembre-30	Besoins nets(mm/jr)	3,373	5,623	7,043	6,538		672,197	
Mars)	Besoins net mensuel(mm)	104,557	174,318	197,193	196,128			
	nombre de jours	31	31	28	31	9		
Aubanaina (1 an	Kc	0,460	0,750	1,036	1,026	0,800		
Aubergine(1er décembre-9	Besoins nets(mm/jr)	2,786	4,612	6,947	6,884	4,927	681,589	
avril)	Besoins net mensuel(mm)	86,373	142,959	194,509	213,403	44,344		
	nombre de jours	31	31	28	31	29		
Oignon(1er	Kc	0,629	0,963	1,050	0,979	0,850		
décembre-29	Besoins nets(mm/jr)	3,813	5,921	7,043	6,565	5,262	855,038	
avril)	Besoins net mensuel(mm)	118,195	183,541	197,193	203,518	152,590		
	nombre de jours	31	31	28	30			
Poivron1er	Kc	0,418	0,723	1,050	0,950		604,435	
décembre-30	Besoins nets(mm/jr)	2,532	4,443	7,043	6,367			
Mars)	Besoins net mensuel(mm)	78,494	137,733	197,193	191,016			

Tableau(annexe) 17:Besoins en eau des cultures

Besoins en eau de l'oignon, culture contraignante en saison sèche									
Paramètres	Décem bre	Janvier	Fevrier	Mars	Avril	Total	Superfi cie (ha)		

Besoins net mensuel(mm)	118,19 5	183,54 1	197,19 3	203,51	152,59 0	855,0	
Besoins bruts	196,99 2	305,90 2	328,65 5	339,19 7	254,31 7	1425,1	20
Besoins bruts	1969,9	3059,0	3286,5	3391,9	2543,1	14250,	20
mensuels(m3/ha)	19	23	49	70	65	6	
Besoins bruts	39398,	61180,	65730,	67839,	50863,	28501	
mensuels(m3)	387	464	987	401	301	2,5	

2. Besoins pastoraux

Nombre de têtes	6000
Consommation spécifique (litre/jour/hbt)	50
Consommation totale(litres/jour)	300 000
Consommation totale(m3/jour)	300

Mois	Jan	Fév	Mars	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
Besoins	9300	8400	9300	9000	9300	9000	9300	9300	9000	9300	9000	9300
pastoraux(m3)	9300	0400	9300	9000	9300	9000	9300	9300	9000	9300	9000	9300

3. Besoins humains

Mois	Jan	Fév	Mars	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Déc
Besoins	4666	4215	4666	4516	4666	4516	4666	4666	4516	4666	4516	4666
humains (m3)	,74	,12	,74	,2	,74	,2	,74	,74	,2	,74	,2	,74

ANNEXE 5 : DIMMENSIONNEMENT DE LA NOUVELLE DIGUE

Calcul de la revanche libre

Paramètres	Formulation	Vale	ır					
Vitesse du vent	U	11,040	km/h					
Fetch	F	0,58	km					
	Hauteur des vagues							
Formule de STEVENSON	Pour $F < 18 \text{ km}, h_v = 0.75 + 0.34\sqrt{F} - 0.36\sqrt[4]{F}$ sinon $h_v = 0.34\sqrt{F}$	0,695	m					
Formule de MOLITOR	Pour $F < 30 \ km, h_v = 0.76 + 0.032 \sqrt{UF} - 0.26 \sqrt[4]{F} \ \text{sinon} \ h_v = 0.032 \sqrt{UF}$	0,614	m					

Formule de Mallet et Pacquant	$h_v = \frac{1}{2} + \frac{1}{3}\sqrt{f}$	0,754	m
	Vitesse de propagation des vagues		
Formule de	h _v de STEVENSON	2,890	m/s
GAILLARD	h _v de MOLITOR	2,728	m/s
$V_v = 2h_v + \frac{3}{2}$	h _v de MALLET ET PACQUANT	3,008	m/s
Autre formule	h _v de STEVENSON	1,963	m/s
$V_v = \frac{2}{3}h_v + \frac{3}{2}$	h _v de MOLITOR	1,909	m/s
	h _v de MALLET ET PACQUANT	2,003	m/s
	Revanche libre		
Formule de	GAILLARD + STEVENSON	0,947	m
BRETSCHNEIDER V_v^2	GAILLARD + MOLITOR	0,840	m
$R = 0.75h_v + \frac{{V_v}^2}{2g};$	GAILLARD + MALLET ET PACQUANT	1,026	m
$g = 9.81m/s^2$	AUTRE FORMULE + STEVENSON	0,718	m
3 1,1 1,1	AUTRE FORMULE + MOLITOR	0,646	m
	AUTRE FORMULE + MALLET ET PACQUANT	0,770	m
Revanche libre minimale (CFGB)	$R = \frac{(H^2\sqrt{V})^{1/4}}{4}$	0,545	m

Tableau(annexe) 18: Résultats du calcul de la revanche libre

Hauteur de la digue

La hauteur du barrage (E) est égale à la hauteur normale de la retenue des eaux (H) majorée de la charge maximale au-dessus du déversoir de crue et de la revanche (R)

$H_{d} = H + h + R$	$H_{\rm d} = 3.5 + 1 + 0.5$	$H_d = 5 \text{ m}$
---------------------	-----------------------------	---------------------

Niveau des plus hautes eaux

Le niveau des plus hautes eaux PHE est égal au niveau de la retenue augmentée de la lame d'eau au-dessus du déversoir. La hauteur PHE est donnée par la formule :

PHE = PNE + h	PHE = 3.5 + 1	PHE = 4.5 m

Largeur en crête

Elle est calculée par deux formules : Celle de PREECE et de KNAPPEN.

Formules Application numérique Valeurs
--

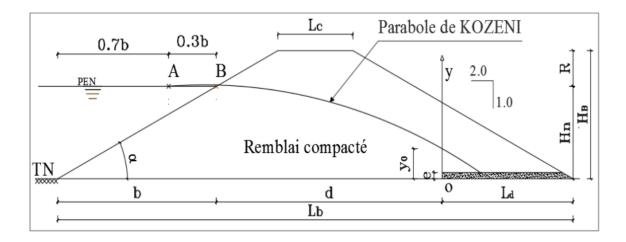
PREECE	$L_{\rm c} = 1.1 * \sqrt{H_{\rm D}} + 1$	$L_{c} = 1,1 * \sqrt{5} + 1$	$L_{c} = 3,460 m$
KNAPPEN	$L_{c} = 1,65 * \sqrt{H_{D}}$	$L_{c} = 1,65 * \sqrt{5}$	$L_c = 3,690 m$

Nous retiendrons une largeur en crête de 3.5m.

❖ Pentes des talus et vérification de la stabilité sur le logiciel

Les valeurs des talus doivent être établies de sorte à favoriser la stabilité de l'ouvrage. Elle est choisie à partir d'un tableau suivant sous réserve de confirmation par une étude de stabilité.

Hauteur du	Type de barrage	Pente des talus	
barrage[m]	Type de barrage	Amont	Aval
Inférieur à 5 m	Homogènes	1 / 2,5	1 /2
	A zones	1 /2	1 /2
	Homogène, granulométrie étendue	1 /2	1 /2
Entre 5 et 10 m	Homogène à fort % d'argile	1 /2,5	1 /2,5
	A zone	1 /2	1 /2,5
	Homogène, granulométrie étendue	1 /2,5	1 /2,5
Entre 10 et 20 m	Homogène à fort % d'argile	1 /3	1 /2,5
	A zone	1 /2	1 /3


Tableau(annexe) 19:valeurs indicatives des pentes des talus

La hauteur du barrage est de 5 m et le type de barrage est homogène, les valeurs 1/2,5 et 1/2 correspondants respectivement pour les talus amont et aval seront retenues.

 \diamond Calcul de la largeur en base de fondation L_f

$L_f = L_c + H_B * \left(\frac{1}{\tan \alpha_1} + \frac{1}{\tan \alpha_2}\right)$	$L_f = 3.5 + 5 * (2 + 2.5)$	$L_f = 26 \text{ m}$
--	-----------------------------	----------------------

Détermination des paramètres du drain

Figure(annexe) 1:Paramètres servant à calculer les dimensions du drain

Longueur du drain à mettre en place	$\left(\frac{1}{4} \dot{a} \frac{1}{3}\right) l_f$	$L_{d} = \frac{L_{B}}{4} = \frac{26}{4}$	$L_{d} = 6.50 \text{ m}$
Calcul du paramètre b	$b = \frac{H_r}{\tan \alpha}$	$b = \frac{3.5}{1/2.5}$	b = 8,75 m
Calcul du paramètre d	$d = L_f - L_d - 0.7 * b$		d = 12.88 m
Détermination de y ₀	$y_0 = \sqrt{Hr^2 + d^2} - d$	$y_0 = \sqrt{3.5^2 + 12.88^2} - 12.88$	$y_0 = 0,47m$
Perméabilité du matériau			$k_{\rm r} = 10^{-8} cm/s$
Evaluation du débit de fuite	$q = k_r * y_0$	$q = 4,60.10^{-1}$	⁻¹¹ m/s

L

Caractéristiques du drain

- Epaisseur du drain

	e _d	
$e_{d} = 2 * \sqrt{\frac{q * l_{d}}{k_{d}}}$	$=2*\sqrt{\frac{4.60.10^{-11}*6.50}{10^{-5}}}$	$e_{d} = 1,14 \text{ cm}$

L'épaisseur de drain retenue est de 50 cm.

- Longueur du drain

La longueur du drain est de 6.50 m.

Protection des talus du remblai

4 Epaisseur des protections

L'épaisseur des protections est déterminée par la formule suivante :

$e = 1.5 \times D_{50}$	avec	D_{50} [m]: fonction de la hauteur des vagues (annexe)	
		e [m] : épaisseur de protection	

Annexe 1:Détermination D50 en fonction de la hauteur des vagues

Hauteur des vagues [m]	Epaisseur minimum de la couche d'enrochement [m]	D ₅₀ minimum [m]
0 à 0,30	0,30	0,20
0,30 à 0,60	0,40	0,25
0,60 à 1,20	0,45	0,30
1,20 à 1,80	0,55	0,40
1,80 à 2,40	0,70	0,45
2,40 à 3,00	0,80	0,55

La valeur maximale de la hauteur des vagues est de 0,745; cela donne $D_{50} = 0,3$. Par suite, l'épaisseur de la protection est de 0,45m.

Nous retiendrons 45 cm pour l'épaisseur des protections.

Une couche de pose de 15 cm sera mise en place entre le corps du remblai en argile et le perré. Elle a pour objet d'amortir l'énergie résiduelle des vagues passant dans les interstices entre blocs et empêcher l'entrainement du matériau de remblai par le phénomène de pompage. Elle sera constituée de graveleux latériques suffisamment grossiers (classe 5/50mm) Compte tenu de la couche de pose. Compte tenu de la présence de cette couche, nous adoptons une épaisseur de perré de 30 cm de perré sec pour chaque talus.

4 Crête de la digue

La crête de la digue sera recouverte en grave latérique d'épaisseur 20 cm.

Murets de crête

Les murets de crête auront les dimensions 50*50 [cm²] et seront en maçonnerie de moellons.

Tableau(annexe) 20 : Récapitulatif des dimensions de la digue et de ses éléments constitutifs

Désignations	Unités	Valeurs	
Côte de la crête de la digue	m	280	
Pente des talus amont et aval	m/m 2,5 H/1V et 2H/1		
Largeur de la base de la digue	m	26,00	
Hauteur de la digue	m	5	
Largeur en crête de la digue			
Longueur de la digue	m	581	
	Pro	tection de la digue	
Épaisseur couche de couronnement	cm	20	
Murets de crête	cm*cm	50*50	
Épaisseur enrochement des talus	m	0.30	
Nature de la protection du talus amont		Perré	
Nature de la protection du talus aval		Perré	
	Caractéristiques du drain		
Epaisseur du filtre	cm	50	
Longueur du filtre	ueur du filtre m 6.5		
Débit de fuite	m ³ /s	4,50E-11	
	Tranchée d'ancrage		
Pente de talus de la tranchée d'ancrage	m/m	1 H /3V	
Profondeur de la tranchée	m	Variable	
		3,5 (largeur des	
Largeur de la tranchée d'ancrage	m	engins de	
		compactage)	

ANNEXE 6: DIMMENSIONNEMENT DES OUVRAGES ANNEXES

1. Dimensionnement de l'ouvrage de prise et de vidange

L't ouvrage permettra l'irrigation des cultures de riz pluvial en cas de poches de sécheresse et le maraichage en contre saison et la vidange de la retenue en cas de nécessité. Le potentiel aménageable en aval du barrage vaut 20 ha. la conduite est dimensionnée sur la base des besoins de pointes calculés sur les 20 ha. Comme hypothèse de calcul, nous avons retenu :

- > un temps de travail (nh) de 8 heures au maximum par jour ;
- ➤ Vingt-six (26) jours de travail dans le mois ;
- la côte de sortie est identique à celle à l'entrée de la prise

Le débit maximum de pointe a été calculé suivant la formule ci-dessous :

$$Q = \frac{BB*1000}{nj*nh*3600}$$

$$Q : le débit maximum de pointe [l/s];$$

$$V \Rightarrow BB : les besoins bruts mensuels [m³];$$

$$V \Rightarrow nj: le nombre de jour réels d'irrigation dans le mois.$$

$$V \Rightarrow Nh : nombre d'heures d'irrigation$$

Le diamètre de la conduite se déduit de la formule de Torricelli.

$$Q = CS\sqrt{2gh} \qquad \qquad \checkmark \qquad Q : \text{le débit maximum de pointe } [\text{m}^3/\text{s}] \; ;$$

$$C : \text{coefficient de contraction } ;$$

$$S = \frac{\pi * D^2}{4} \qquad \text{avec} \qquad \checkmark \qquad \text{h} : \text{la charge de l'eau } [\text{m}] \; ;$$

$$\forall \qquad S : \text{la section de la conduite } [\text{m}^2] \; ;$$

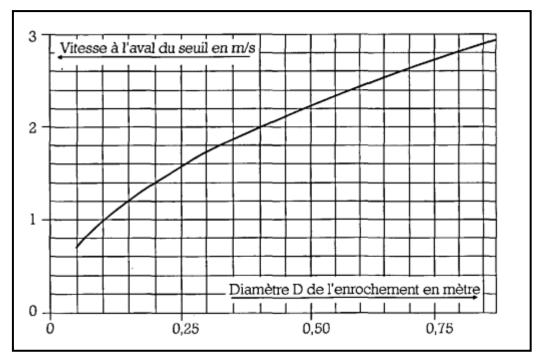
$$\forall \qquad \text{g} : \text{l'accélération de la pesanteur } [\text{m/s}^2] \; ;$$

$$\forall \qquad D : \text{le diamètre de la conduite } [\text{m}].$$

Tableau(annexe) 21:Résultats de l'estimation du diamètre de l'ouvrage de prise

Besoins bruts du mois de pointe	67089,225	m^3
Nombre de jour réels d'irrigation dans le mois nj	26	
Nombre d'heures d'irrigation nh	8	
Débit maximum de pointe	0,089	m^3/s
Coefficient de contraction	0,8	
Côte PEN	278,5	m
Côte a la sortie	275,55	m
Charge de l'eau	2,95	m
Section de la conduite	0,015	m^2
Diamètre de la conduite	136,906	mm
Diamètre de la conduite retenue	300	mm

Le diamètre retenu est de 300 mm, diamètre minimal recommandé par le Comité Français des Grands Barrages consigné dans le tableau suivant :


Tableau(annexe) 22 : Dispositif de vidange minimum

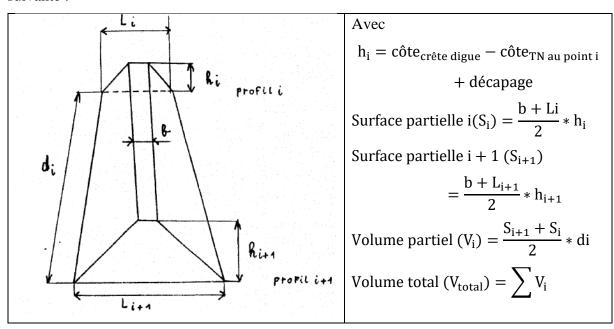
H²√V	Type de conduite	Diamètre de la conduite en mm	Nombre et position des vannes
< 30	PVC ou acier	160 ou 200 PVC 200 à 300 en acier	une vanne aval
30 à 100	acier	300 à 400	
100 à 300		400 à 600	
300 à 700	acier ou béton à âme tôle	600 à 800	une vanne de garde amont et une vanne aval
700 à 1 500		800 à 1 200	et une vanne avai
> 1 500	galerie en béto	n armé	vanne de garde et vanne réglable à l'amont

2. Chenal d'évacuation

Il est nécessaire de revêtir l'aval avec des enrochements et/ou des gabions sur une certaine distance. Pour une protection en enrochements, nous recommandons la méthode de dimensionnement proposé par SOGREAH, mise au point sur modèle réduit avec des conditions relativement sévères.

- On détermine d'abord la vitesse Ve de début d'entraînement des matériaux du lit en aval du bassin : pour les sols argileux, Ve varie de 0,80 à 1,20 m/s; elle est égale à **0,8 m/s**.
- On détermine le diamètre minimum des enrochements nécessaires, à l'aide de l'abaque suivant :

Abaque 3 : Diamètre de l'enrochement pour protection du chenal


En considérant une vitesse d'entrainement de 1m/s, Le diamètre minimal est donc égal à 0,10 m dans notre cas.

- On calcule l'épaisseur de la couche d'enrochement comme étant égale à au moins trois fois le diamètre. On retient donc une épaisseur de 0,30 m pour l'enrochement.
- La longueur protégée actuelle est d'environ 10 m

ANNEXE 7: METRE DES DIFFERENTS OUVRAGES

Volume du remblai

La détermination du volume du remblai est un élément important pour l'estimation du coût de l'ouvrage et pour permettre de délimiter les chambres d'emprunt des matériaux. Il est déterminé à partir des différents profils en faisant la moyenne de la surface des deux profils et en la multipliant par la distance entre les deux. Le remblai est découpé en tronçons de la manière suivante :

Les résultats du métré de la digue sont résumés dans le tableau suivant :

	Estimation du volume de remblai/ déblai (Nouvelle digue)							
	Côte crete	Côte TN au	Décapa					
Profil	digue(m)	point i(m)	ge(m)	hi(m)	Li(m)	Si(m)	Di(m)	Vi(m3)
3	280	279,97	0,2	0,23	4,535	4,0175		
4	280	279,65	0,2	0,55	5,975	4,7375	17,17	75,173
5	280	279,24	0,2	0,96	7,82	5,66	9,55	49,626
6	280	279,26	0,2	0,94	7,73	5,615	16,05	90,494

7	280	279,28	0,2	0,92	7,64	5,57	19,06	106,594
8	280	279,3	0,2	0,9	7,55	5,525	19,63	108,897
9	280	277,16	0,2	3,04	17,18	10,34	20,65	163,806
10	280	276,33	0,2	3,87	20,915	12,21	35,31	398,076
11	280	276,34	0,2	3,86	20,87	12,185	34,54	421,258
12	280	276,23	0,2	3,97	21,365	12,4325	12,17	149,797
13	280	276,7	0,2	3,5	19,25	11,375	19,72	234,742
14	280	275,7	0,2	4,5	23,75	13,625	31,37	392,125
15	280	275,74	0,2	4,46	23,57	13,535	12,58	170,836
16	280	276,11	0,2	4,09	21,905	12,7025	25	327,969
17	280	276,36	0,2	3,84	20,78	12,14	25	310,531
18	280	276,4	0,2	3,8	20,6	12,05	25	302,375
19	280	276,43	0,2	3,77	20,465	11,9825	25	300,406
20	280	276,33	0,2	3,87	20,915	12,2075	25	302,375
21	280	276,24	0,2	3,96	21,32	12,41	25	307,719
22	280	275,88	0,2	4,32	22,94	13,22	12,05	154,421
23	280	275,91	0,2	4,29	22,805	13,1525	12,95	170,762
24	280	276,11	0,2	4,09	21,905	12,7025	25	323,187
25	280	276,7	0,2	3,5	19,25	11,375	25	300,969
26	280	277,09	0,2	3,11	17,495	10,4975	25	273,406
27	280	277,39	0,2	2,81	16,145	9,8225	25	287,188
28	280	277,81	0,2	2,39	14,255	8,8775	25	269,750
29	280	278,07	0,2	2,13	13,085	8,2925	25	245,844
30	280	278,15	0,2	2,05	12,725	8,1125	8,13	75,650
		Volume	total (m3) rembla	i/déblai			6238,804

Synthèse du métré de la digue du Barrage

Volume décapé	(Déblai)			6 238,80	
Volume apporte	Volume apporté (Remblai)				
Councin amon	t latániti ana	Ep. (m)	l (m)	L(m)	Vcou.lat
Couronnemen	i lateritique	0,2	3,5	580,93	406,65
Muret de crête a		S (m ²)	L (m)	Déblai (m³)	Maçonnerie de moellons (m³)
et mur parap	et $(0,5*1)$	0,25	580,93	145,23	145,23
		0,50	580,93	145,23	290,47
			Total	290,47	435,70
	Désignation	En (m)	I (noromant) (m)	Volume perré	(m^3)
	Designation	Ep. (m)	L(parement) (m)	Maçonné sur 10 m	Sec
Perré sur talus	amont	0,30	13,46	40,38	2305,42
aval		0,30	11,46	-	1997,24
	Total			40,38	4 302,66

Couche de po	S_Sous Butée		S_Amont	S_Aval	Ep. Pose	Vpose (m ³)
		726,16	7819,33	6657,47	0,15 m	2280,44
Drain de	Dé	signation	h (m)	l (m)	L (m)	Volume (m³)
pied	Dé	blai	0,6	1,5	580,93	261,42
(section	En	rochement	0,25	2	580,93	290,47
triangulaire)	Béton de propreté		0,1	2	580,93	116,19
	Désignation		h (m)	l (m)	L (m)	V_butée (m³)
Butée	Dé	blai	0,6	1,5	580,93	261,42
(section triangulaire)	En	rochement	0,5	1,5	580,93	217,85
		ton de opreté	0,1	2,5	580,93	145,23
Drain de filtre		Ep. (m)	l (m)	L (m)	V_Filtre (m³)	
			0,5	6,5	425	1 381,25

Tableau(annexe) 23 : Estimation de la surface des talus (nouvelle digue)

Profil	Côte crête digue(m)	Côte TN au point i(m)	hi(m)	Di(m)	L(m)	Si(m2)	Sc(m2)
3	280	279,97	0,03		, ,	, ,	, ,
4	280	279,65	0,35	17,17	0,9424038	16,18	7,626
5	280	279,24	0,76	9,55	2,0463626	19,53	27,160
6	280	279,26	0,74	16,05	1,992511	31,98	59,144
7	280	279,28	0,72	19,06	1,9386593	36,95	96,095
8	280	279,3	0,7	19,63	1,8848077	37,00	133,094
9	280	277,16	2,84	20,65	7,646934	157,91	291,003
10	280	276,33	3,67	35,31	9,8817774	348,93	639,929
11	280	276,34	3,66	34,54	9,8548516	340,39	980,315
12	280	276,23	3,77	12,17	10,151036	123,54	1103,853
13	280	276,7	3,3	19,72	8,8855219	175,22	1279,076
14	280	275,7	4,3	31,37	11,578104	363,21	1642,281
15	280	275,74	4,26	12,58	11,470401	144,30	1786,579
16	280	276,11	3,89	25	10,474146	261,85	2048,432
17	280	276,36	3,64	25	9,8009999	245,02	2293,457
18	280	276,4	3,6	25	9,6932967	242,33	2535,790
19	280	276,43	3,57	25	9,6125192	240,31	2776,103
20	280	276,33	3,67	25	9,8817774	247,04	3023,147
21	280	276,24	3,76	25	10,12411	253,10	3276,250
22	280	275,88	4,12	12,05	11,09344	133,68	3409,926

23	280	275,91	4,09	12,95	11,012662	142,61	3552,540
24	280	276,11	3,89	25	10,474146	261,85	3814,393
25	280	276,7	3,3	25	8,8855219	222,14	4036,531
26	280	277,09	2,91	25	7,8354148	195,89	4232,417
27	280	277,39	2,61	25	7,0276401	175,69	4408,108
28	280	277,81	2,19	25	5,8967555	147,42	4555,527
29	280	278,07	1,93	25	5,196684	129,92	4685,444
30	280	278,15	1,85	8,13	4,9812774	40,50	4725,942

Tableau(annexe) 24 : Devis quantitatif de la réhabilitation du barrage de LA

	Désignation	Unité	Quantité
I	Installation et Service		
I.1	Amenée, mise en place et repliement des installations générales	FF	1
	Installation du chantier y compris dossier d'exécution, sondages		
I.2	géotechniques	FF	1
II	Digue		_
TT 1	Débroussaillage et démolition de la digue et mise en place des	CC	1
II.1	barbacanes	ff	1
II.2	Déblai (décapage digue existante)	m3	6239
II.3	Remblai compacté aux engins pour corps de la digue	m3	6239
II.4	Couche de pose filtrante sur les talus amont et aval (ép.15cm)	m3	2280
II.5	Perré sec pour protection des talus aval et amont	m2	4726
II.6	Couche de couronnement latéritique de la crête (ép.20 cm)	m3	407
II.7	Sable pour filtre horizontal	m3	1381
II.8	Maçonnerie de moellons pour murets de crête et mur parapet	m3	436
II.9	Déblai manuel pour muret de crête et mur parapet	m3	290
II.10	Béton cyclopéen pour Butée	m3	261
II.11	Déblai pour butée amont et drain de pied aval	m3	523
II.13	Enrochement rangé la main pour butée de pied amont	m3	218
II.14	Perré maçonné sur talus amont (10 ml)	m2	40
II.15	Enrochement à la main pour drain de pied aval (ép.25 cm)	m2	290
III	Ouvrage de prise et de vidange		
III.1	Démolition des bacs	ff	1
III.2	Béton de propreté dosé à 150 kg/m3	m3	4
III.3	Béton armé dosé à 350 kg/m3 pour bac aval	m3	15
III.4	Fourniture et pose d'une conduite en fonte DN300	ml	23
III.5	Fourniture et pose d'une vanne DN300	u	1
III.6	Grilles de protection des bacs amont et aval avec cadenas	ml	2
III.7	Fourniture et pose d'une crépine Φ300	u	1
III.9	Échelle de descente dans les bacs	u	2
III.10	Maçonnerie de moellons pour escalier	m3	5
IV	chenal d'évacuation	•	1

IV.1	Débroussaillage et nettoyage sur l'emprise du chenal	ff	1
	Blocage du tapis d'enrochement existant en aval du seuil par du		
IV.2	gabion (1*2*0,5)	m3	100
IV.3	Reprise des enrochements du chenal	m3	300
V	Diguette de protection en rive droite		
V.1	Débroussaillage et décapage de l'emprise de la diguette	ff	1
V.2	Remblai aux engins pour corps de la diguette	m3	98
V.3	Couche de couronnement de la crête en matériaux latéritiques	m3	30
V.4	Couche de pose filtrante sur les talus amont et aval (ép.10cm)	m3	5
V.5	Perré sec sur talus aval	m2	50
V.6	Perrés maçonnés pour protection du talus amont (ép.25 cm)	m2	50
V.7	Enrochement à la main pour butée et drain de pied aval	m3	19
V.8	Déblai à la main pour butée et drain de pied aval	m3	19
VI	Dispositif de suivi et d'auscultation		
VI.1	Echelle limnimétrique par unité de 1 m fabriquée en usine	m	3
VI.2	Implantation des bornes d'auscultation	u	2
VI.3	Matérialisation et implantation des bornes du PHE	ff	1
	Matérialisation et implantation des bornes de la bande de		
V.4	servitude	ff	1

ANNEXE 8 : NOTICE D'IMPACT ENVIRONNEMENTAL ET SOCIAL

✓ Zone d'influence du projet

La réhabilitation du barrage entrainera des impacts potentiels sur le milieu biophysique (nettoyage de l'emprise concernée par la réhabilitation) et socioéconomique (déplacement des exploitants maraichers sur les berges du barrage) qui concerneront la bande d'environ 500 m de large dans laquelle seront concentrés les travaux de construction projetés (l'étendue du plan d'eau du barrage et son environnant immédiat). Sur le plan socioéconomique, elle s'étend au niveau communal, de la province et au niveau national du fait de l'effet de la chaine d'impact socio-économique indirect. Les deux tableaux ci-dessous présente l'évaluation des impacts de la réhabilitation du barrage et le plan de gestion environnementale et sociale

Tableau(annexe) 25 :Evaluation des impacts de la réhabilitation du barrage

Milieu affecté	Impacta identifiéa		Critères d	Critères d'évaluation des impacts			
Willieu affecte	Impacts identifiés	Catégorie	Intensité	Étendue	Durée	Importance	
PHASE D'INSTALLATION ET DES TI	RAVAUX						
	Milieu biophysique						
Air ambiant et climat sonore	Pollutions atmosphériques et nuisances sonores	Négatif	Faible	Locale	Courte	Moyenne	
Sols	Production des déchets solides et liquides	Négatif	Moyenne	Locale	Courte	Mineure	
Ressources en eau	Pollution de la nappe phréatique dûe aux rejets des polluants liquides	Négatif	Moyenne	Locale	Courte	Mineure	
Paysage	Défrichements et abattages d'arbres	Négatif	Faible	Ponctuelle	Courte	Mineure	
Faune et animaux domestiques	Délogement de la faune à proximité du chantier	Négatif	Faible	Locale	Courte	Mineure	
	Milieu humain						
Santé et sécurité	Maladies respiratoires, risque de contamination par les IST, accidents de travail ou de circulation,	Négatif	Moyenne	Locale	Courte	Moyenne	
Commerce, le transport et l'artisanat	Hausse de la vente des denrées alimentaires, de produits d'artisanat et des produits locaux, des équipements de construction, de carburant et de pièces de rechange	Positif	Moyenne	Locale	Courte	Moyenne	
Emploi	la création d'emploi pour la main d'œuvre locale	Positif	Moyenne	Locale	Courte	Moyenne	
Diversité culturelle, l'intégration et la cohésion sociale	Brassage de populations	Positif	Faible	Ponctuelle	Courte	Mineure	
PHASE D'EXPLOITATION							

	Milieu biophysique					
Air ambiant	Augmentation de l'humidité et baisse de la température	Positif	Forte	Locale	Longue	Moyenne
Sols	Dégradation des sols	Négatif	Forte	Locale	Longue	Majeure
Ressources en eau	Pollution des eaux	Négatif	Faible	Locale	Longue	Majeure
Paysage	Installation dans les dépressions d'une végétation naturelle	Positif	Moyenne	Ponctuelle	Longue	Moyenne
Faune et animaux domestiques	Recolonisation de la faune et de la microfaune	Positif	Forte	Locale	Longue	Majeure
	Milieu humain					
Sante et sécurité	Maladies hydriques	Négatif	Faible	Locale	Longue	Moyenne
Activités agro pastorales	Surpâturage, raréfaction du fourrage, conflits entre éleveurs et agriculteurs et hausse du rendement agricole	Négatif	Moyenne	Locale	Longue	Moyenne
Sécurité alimentaire	Amélioration des conditions de vie	Positif	Forte	Régionale	Longue	Majeure
Commerce, le transport et l'artisanat	Développement du trafic routier et des activités commerciales	Positif	Forte	Locale	Longue	Majeure
Emploi	Augmentation du nombre d'exploitants agricoles et éleveurs	Positif	Forte	Régionale	Longue	Majeure
Diversité culturelle, l'intégration et la cohésion sociale	Brassage culturel et un transfert de technologies	Positif	Forte	Locale	Longue	Moyenne

Tableau(annexe) 26 : Plan de gestion environnementale et sociale

Milieu	IMPACTS	Action d'atténuation/	Objectif de l'action
Récepteur		Bonification	
		Milieux biophysique	
Air/Micro climat	-Emission de poussière ; -Emission de gaz d'échappement (co ₂)	-Arrosage régulier des voies d'accès au chantier et à la traversé des agglomérations ; -visite technique régulier des véhicules et engins du chantier.	de l'air pendant les travaux
Sols	-Erosion et tassement du sol ; -Pollution par les hydrocarbures ;	-Remise en état des zones d'emprunt et de carrières ; -Gestion des déchets solides et liquides	-Réduire les risques de pollution des sols,
Eaux de		-Imposition dans le cahier de charges la propreté des lieux (collecte et élimination des déchets solides et liquides); -mettre en place un comité de l'eau;	
		-délimiter un couloir de protection des berges du	
Végétation	-Destruction du couvert végétal ; -Prolifération des plantes envahissantes	-Plantation de compensation et protection des berges du barrage ; -Reboisement compensatoire dans les zones d'emprunts ; -Plantation d'alignement sur la piste	végétal
Faune/animaux domestiques	-Risque de collision; -Destruction de l'habitat faunique; -Risque d'intoxication des animaux et le bétail par les pesticides lors de l'abreuvage.		-Minimiser les risques de collisions, -minimiser les risques d'intoxication

		-Réalisation de piste à bétail bien balisées	-Elaborer un cahier de charge pour l'exploitation du barrage		
		3.600			
	12 1 112	Milieu humain			
		-Interdiction l'accès des chantiers aux populations	-Réduire le risque d'accident;		
	•	riveraines surtout les enfants ;			
	11	-Limitation la vitesse à 30 km/h	-Maintenir le personnel en bonne		
		-Installer des balises et panneaux de signalisation à	santé		
	-Risque d'accident de travail ou de				
Sécurité / Santé	circulation.	-Doter la main d'œuvre d'équipements de protection			
		individuel (EPI) et veiller à leur utilisation effective			
		- Arrosage des chantiers et à la traversée des			
		agglomérations			
	-Conflits potentiels entre utilisateurs	-Sensibiliser les populations riveraines sur les	-Réduire le risque de noyade des		
	de l'eau du barrage (pêcheurs,		enfants;		
	agriculteurs et éleveurs);	- Mettre en place un comité de gestion du barrage ;			
	-Risque de noyade ;	- mettre en place un comité de gestion des conflits			
Population		liés à l'utilisation de l'eau du barrage	-Réduire les risques de propagation		
	-Risque de contamination aux IST	-Sensibilisation les populations et le personnel du	des IST/SIDA		
	(VIH/SIDA);	chantier sur les IST/SIDA			
Circulation	-Perturbation de la circulation;	-Opter pour la limitation de vitesse en	-Réduire les risques d'accident de		
	-Risque d'accident de circulation	agglomération et sur le chantier	circulation		
Emploi	-Création d'emplois temporaires ou	Privilégier l'embauche de la main d'œuvre locale;	-Réduire le chômage		
	permanents	Priorité est donnée aux entreprises locales pour la	-Lutter contre la pauvreté		
	-Brassage de population,	réalisation des travaux.	-Contribuer au bien-être de la		
	-Intégration, cohésion sociale		population locale		

Études techniques pour la réhabilitation du barrage de LA dans la commune rurale de Sourgou (province du Boulkiemdé, région du Centre-Ouest au Burkina Faso)

Com	merce,	-Amélioration de l'achat de produits	-Politique pertinente	d'appui	au secteur	-Développer	les	activités
Tran	sport,	locaux;	agropastoral;			commerciales	et le	transport
Artis	anat	-Achat des équipements de	-Créer et l'instituer une	foire de c	ommerce de	interdépartement	al	
		construction;	produits agropastoraux,			-Augmentation	des	échanges
		-Achat de carburant, de pièces de	-Améliorer la voie d'accès	au site;		commerciaux		
		rechange et de nourriture	-Renforcer les mécanismes	de comme	rcialisation.			

\checkmark Évaluation des couts de mise en œuvre des mesures environnementales et sociales

L'évaluation des coûts des mesures environnementales et sociales permet de gérer les impacts du projet sur l'environnement biophysique et humain.

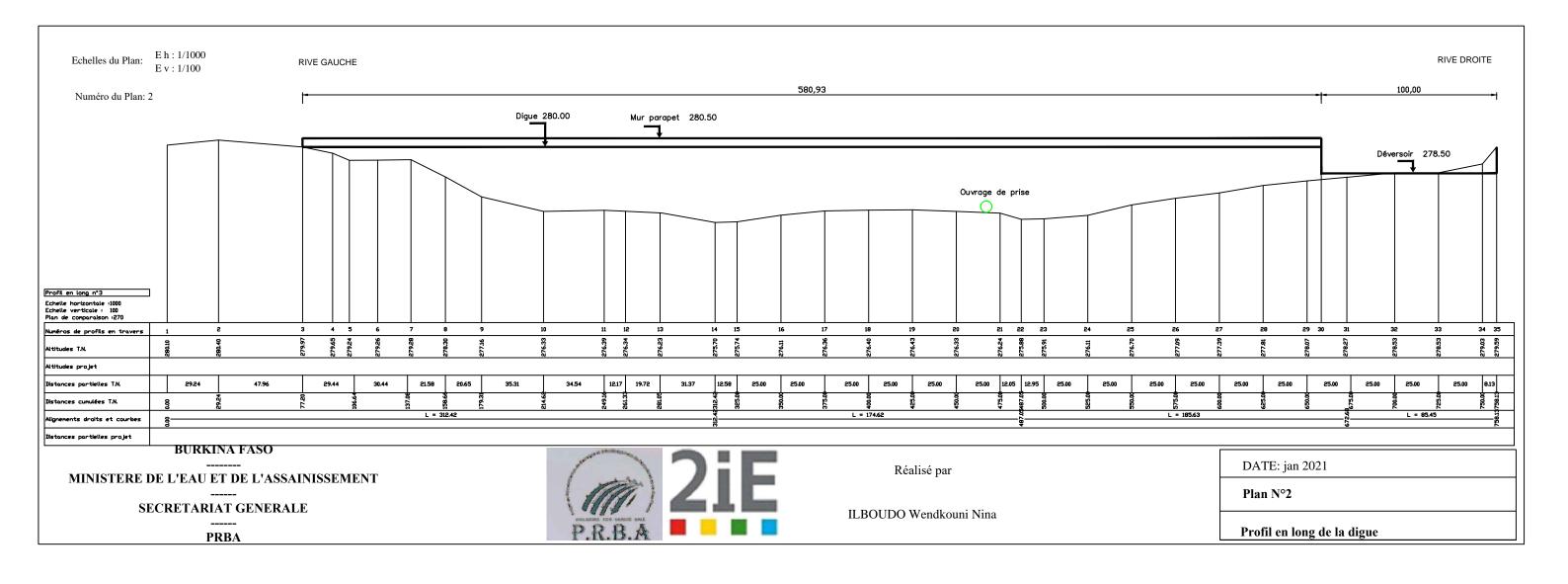
Tableau(annexe) 27:Récapitulatif des coûts de mise en œuvre des mesures environnementales

Impacts/Actions environnementales	Unité	Quantit é	C.U. (FCFA)	TOTAL (FCFA)
Dégradation de la qualité de l'air (arrosage des voies	Forfait		(1 0111)	2.000.000
Remise en état des emprunts	Forfait			3.000.000
Renforcement technique des exploitants du barrage sur la protection des berges, sur l'impact de l'utilisation des pesticides	Forfait			2 500 000
Renforcement des mécanismes de commercialisation	Forfait	-		3.000 000
Programme d'appui technique et de vulgarisation	Forfait	5 ans	500.000	2.500.000
agricole, la pêche et de l'élevage par DPRAH et DPAAH				
Création d'un couloir à bétail menant au plan d'eau	U	04	500.000	2.000.000
Sensibilisation sur les infections sexuellement	Forfait			
transmissibles telles que le VIH SIDA				3.000.000
Mettre en place un plan d'IEC de prévention sur les				1.500.000
maladies hydriques (paludisme, etc.)				
Former et sensibiliser le personnel sur les risques lié à l'intoxication et aux mesures de sécurité	Forfait			500 000
Appui aux comités de gestion du barrage	Annuel	5 ans	1.000.000	5.000.000
Soutien aux activités féminines assurant la promotion des Activités Génératrices de Revenus.	Forfait			2.000 000
Reboisement de compensation (zones d'emprunts, protection des berges, plantation d'alignement sur les	U	3000	2000	6.000 000
Suivi reboisement et entretien	Annuel	3	500 000	1 500 000
Surveillance et suivi environnemental (suivi permanent, la supervision, évaluation).	Forfait	1	7 000 000	7000 000
TOTAL GENERAL				41.500.000

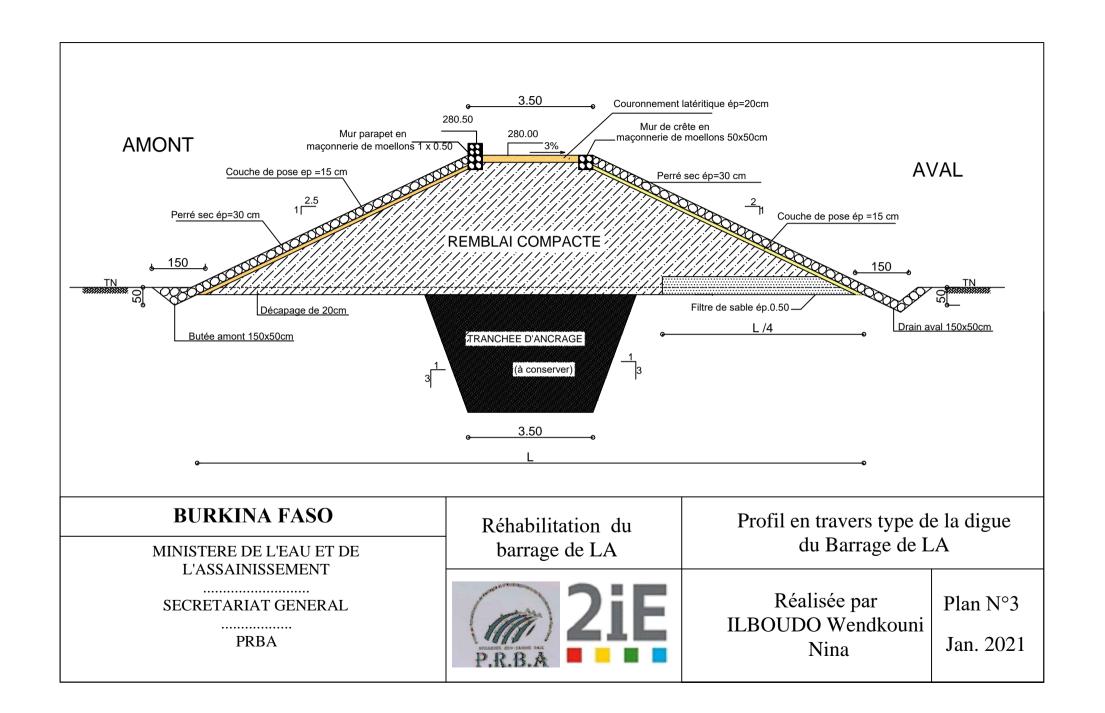
ANNEXE 9: DEVIS ESTIMATIF DES TRAVAUX

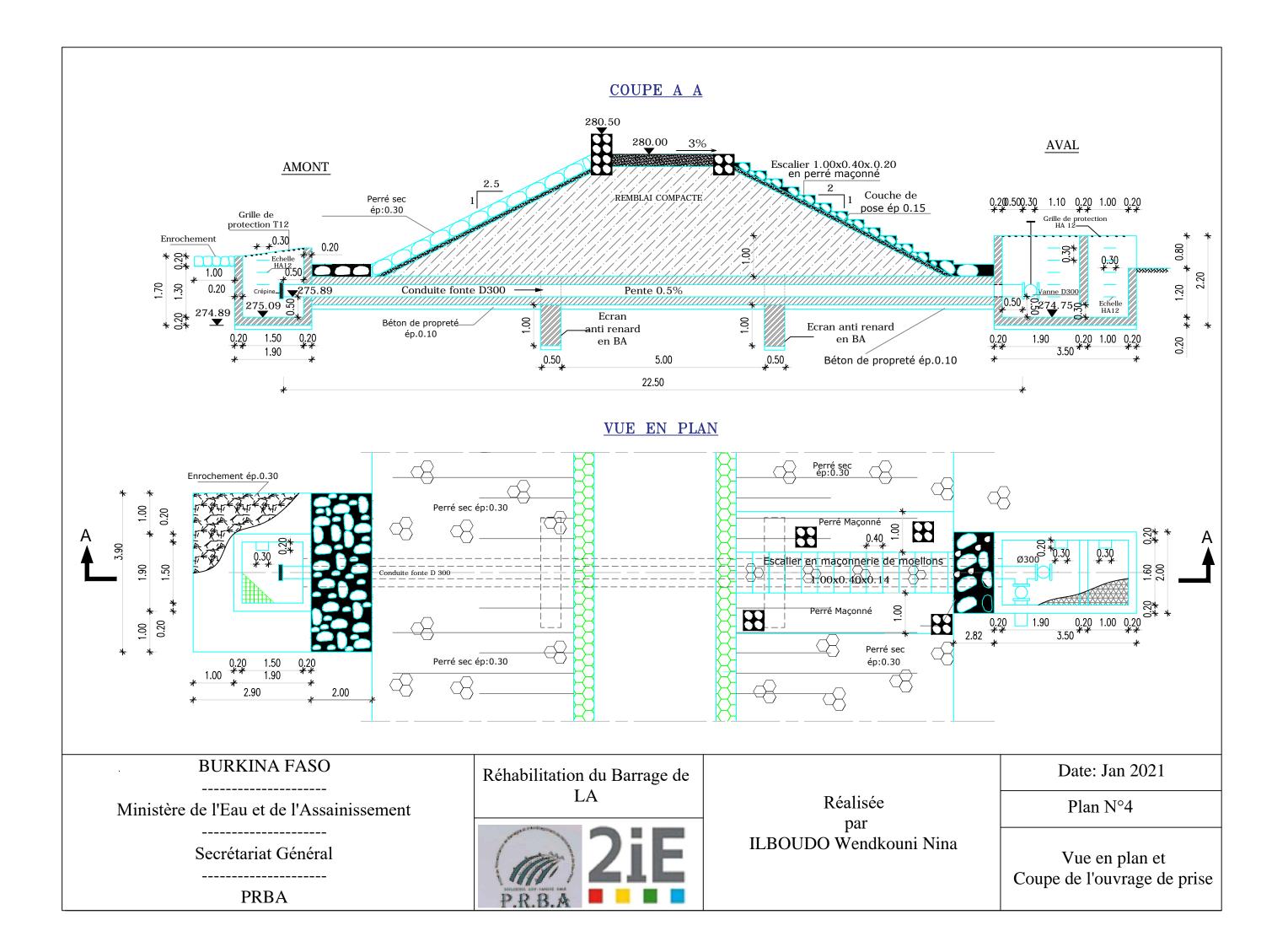
	Désignation	Unité	Quantité	PU	Prix total		
I	Instal	Installation et Service					
I.1	Amenée, mise en place et repliement des installations générales	FF	1	15 000 000	15 000 000		
I.2	Installation du chantier y compris dossier d'exécution, sondages géotechniques	FF	1	18 800 000	18 800 000		
	Sous Total			33 800 000			
II		Digue					
II.1	Débroussaillage et démolition de la digue et mise en place des barbacanes	FF	1	10 000 000	10 000 000		
II.2	Déblai (décapage digue existante)	m3	6 239	5 000	31 194 021		
II.3	Remblai compacté aux engins pour corps de la digue	m3	6 239	5 800	36 185 064		
II.4	Couche de pose filtrante sur les talus amont et aval (ép.15cm)	m3	2280	7 000	15 963 107		
II.5	Perré sec pour protection des talus aval et amont	m2	4726	8 900	42 060 880		
II.6	Couche de couronnement latéritique de la crête (ép.20 cm)	m3	407	7 000	2 846 561		
II.7	Sable pour filtre horizontal	m3	1381	8 000	11 050 000		
II.8	Maçonnerie de moellons pour murets de crête et mur parapet	m3	436	70 000	30 498 867		
II.9	Déblai manuel pour muret de crête et mur parapet	m3	290	5 000	1 452 327		
II.10	Béton cyclopéen pour Butée	m3	261	100 000	26 141 886		
II.11	Déblai pour butée amont et drain de pied aval	m3	523	5 000	2 614 189		
II.13	Enrochement rangé la main pour butée de pied amont	m3	218	11 000	2 396 340		
II.14	Perré maçonné sur talus amont (10 ml)	m2	40	12 500	504 750		

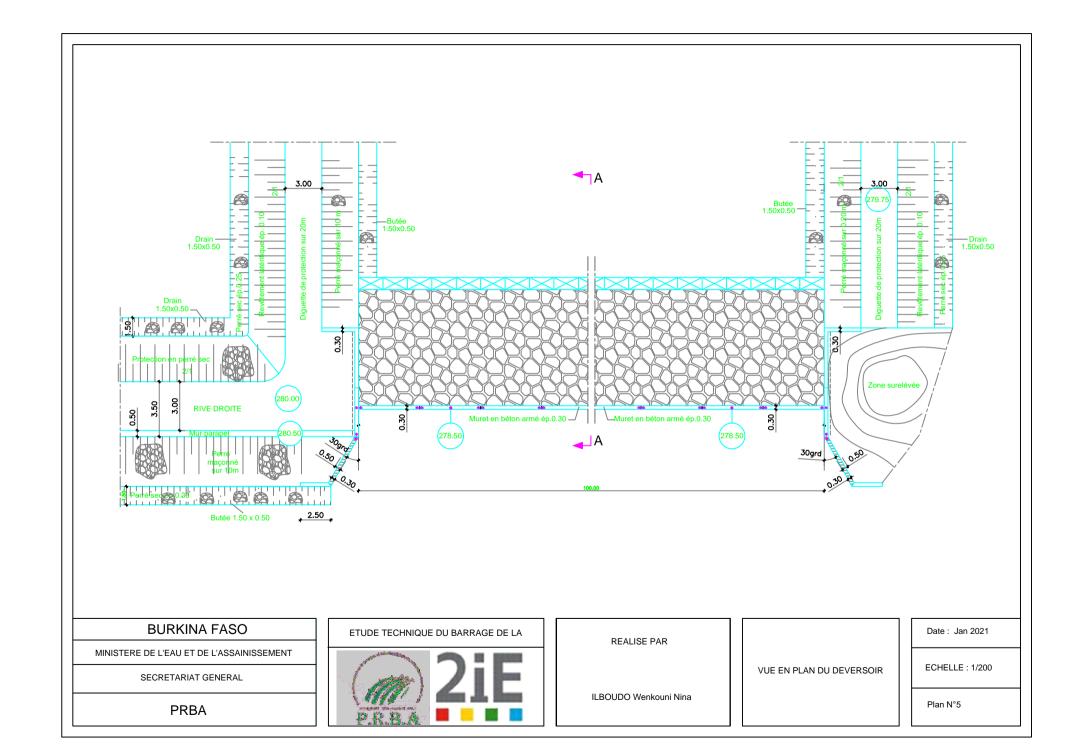
Études techniques pour la réhabilitation du barrage de LA dans la commune rurale de Sourgou (province du Boulkiemdé, région du Centre-Ouest au Burkina Faso)

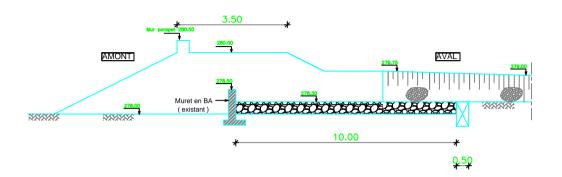

_	Centre-Ouest au Burkina	1 430)				
II.15	Enrochement à la main pour drain de pied aval (ép.25 cm)	m2	290	7 000	2 033 258	
	Sous Total	214 94	214 941 249			
III	Ouvrage de prise et de vidange					
III.1	Démolition des bacs	FF	1	500 000	500 000	
III.2	Béton de propreté dosé à 150 kg/m3	m^3	4	65 000	276 380	
III.3	Béton armé dosé à 350 kg/m3 pour bac aval	m^3	15	195 000	2 936 700	
III.4	Fourniture et pose d'une conduite en fonte DN300	ml	23	300 000	6 750 000	
III.5	Fourniture et pose d'une vanne DN300	u	1	400 000	400 000	
III.6	Grilles de protection des bacs amont et aval avec cadenas	ml	2	175 000	350 000	
III.7	Fourniture et pose d'une crépine Φ300	u	1	100 000	100 000	
III.9	Échelle de descente dans les bacs	u	2	120 000	240 000	
III.10	Maçonnerie de moellons pour escalier	m^3	5	30 000	139 200	
	Sous Total	11 69	2 280			
IV	Déversoir e	et chenal d'é	vacuation			
IV.1	Débroussaillage et nettoyage sur l'emprise du chenal	ff	1	3 000 000	3 000 000	
IV.3	Blocage du tapis d'enrochement existant en aval du seuil par du gabion (1*2*0,5)	m^3	100	35 000	3 500 000	
IV.4	Reprise des enrochements du chenal	m^3	300	6 000	1 800 000	
	Sous Total 8 300 000					
V	Diguette de protection sur rive droite					
V.1	Débroussaillage et décapage de l'emprise de la diguette	FF	1	500 000	500 000	
V.2	Remblai aux engins pour corps de la diguette	m3	98	5 800	570 104	

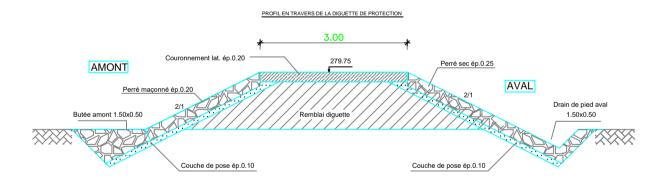
Études techniques pour la réhabilitation du barrage de LA dans la commune rurale de Sourgou (province du Boulkiemdé, région du Centre-Ouest au Burkina Faso)


	Centre-Ouest au Burkina Faso)								
V.3	Couche de couronnement de la crête en matériaux latéritiques	m^3	30	7 000	210 000				
V.4	Couche de pose filtrante sur les talus amont et aval (ép.10cm)	m^3	5	6 500	32 500				
IV.10	Perré sec sur talus aval	m2	50	8 900	445 000				
IV.11	Perrés maçonnés pour protection du talus amont (ép.25 cm)	m2	50	15 000	750 000				
IV.12	Enrochement à la main pour butée et drain de pied aval	m3	19	23 000	431 250				
	Déblai à la main pour butée et drain de pied aval	m3	18,75	5 000	93 750				
	Sous Total			11 33	2 604				
V	Dispositif de	suivi et d'au	ıscultation						
V.1	Échelle limnimétrique par unité de 1 m fabriquée en usine	m	3	300 000	900 000				
V.2	Implantation des bornes d'auscultation	u	2	100 000	200 000				
V.3	Matérialisation et implantation des bornes du PHE	FF	1	5 000 000	5 000 000				
V.4	Matérialisation et implantation des bornes de la bande de servitude	ff	1	6 000 000	6 000 000				
	Sous Total	12 100 000							
Total des travaux de réhabilitation				292 166 133					
Mise en œuvre du PGES				41 500 000					
Total hors taxes (F CFA)				333 666 133					
Taxes à valeur ajoutée (TVA) 18%				52 589 904					
Total toutes taxes confondus (F CFA)				386 256 037					


Études techniques pour la re	éhabilitation du barrage d	de LA dans la commun	e rurale de Sourgou	(province du Boulkiemd	é, région du
	Centre-Quest	t au Burkina Faso)			


ANNEXE 10: PLANS D'EXECUTION





COUPE TRANSVERSALE DU DDEVERSOIR

BURKINA FASO

MINISTERE DE L'EAU ET DE L'ASSAINISSEMENT

SECRETARIAT GENERAL

PRBA

ETUDES TECHNIQUE POUR LA REHABILITATION DU

BARRAGE DE LA

Memoire S10 IRH

COUPE TRANSVERSALE

DU DEVERSOIR ET

DE LA DIGUETTE DE PROTECTION

Date :JAN 2021

ECHELLE: 1/100

Plan N°6