

THEME DU STAGE:

Etude de la dynamique de la végétation sur les parcelles protégées en 2003 de l'ONG newTree par analyse de données d'inventaires d'arbres et traitement d'images satellite Landsat.

MEMOIRE POUR L'OBTENTION DU MASTER EN INGENIERIE DE L'EAU ET DE L'ENVIRONNEMENT OPTION : ENVIRONNEMENT

<u>Présenté et soutenu publiquement le 14 Juin</u> <u>2011 par</u> :

AKAFFOU YAPI FULGENCE WENCELAS

MASTER 2 ENVIRONNEMENT

Travaux dirigés par:

Dr. SOME CORENTIN STEPHANE

Ingénieur. SINA THIAM

UTER GVEA

Jury d'évaluation du stage :

Président du Jury: Dr. SOME CORENTIN STEPHANE

Membres et correcteurs :

- URS BLOESCH
- FRANZISKA KAGUEMBEGA-MÜLLER
- SINA THIAM
- SEVERE FOSSI
- SANDRINE LALANNE

Promotion (2010-2011)

REMERCIEMENTS

Je tiens tout d'abord à remercier l'ONG newTree et toute l'équipe de cette organisation, sans qui ce mémoire de Master en environnement n'aurait pas vu le jour. Une particularité est faite à la coordinatrice Franziska Müller pour son accueil, son soutien plus que positif pendant toute la durée de ce stage. Nos discussions scientifiques m'ont apportées beaucoup et j'espère que nous aurons encore l'occasion de partager de tels moments.

Je remercie mes maîtres de stage pour avoir acceptés de guider ce travail. En particuliers, Dr. SOME Corentin Stéphane et l'ingénieur Sina THIAM pour les orientations judicieuses qui ont contribué à l'avancé de ce projet.

Je remercie également Dr. David MASSON pour la formation en logiciel de programmation R, l'acquisition des scènes d'images satellite Landsat et sa disponibilité.

A mes proches et connaissances: AKAFFOU ASHLEY, Patricia KOKRA, Abibou KABRE, ADOU OYA Marcellin, M'BEKOU SOPIE Célestine, Joseph Wognin et la famille Kouédan Ange.

A tous ceux qui m'ont soutenu dans ce stage et dont je n'ai pu mentionner les noms.

RESUME

Le déficit hydrique auquel, s'ajoute une mauvaise répartition des pluies, contribue à la désertification dans les pays du sahel en particulier le Burkina Faso. L'impact de ces contraintes s'est manifesté d'une part par une modification de la structure des groupements des végétaux et une raréfaction voire une disparition de certaines espèces végétales. Consciente de cette problématique, l'ONG Suisse newTree a mis en place un programme de promotion de gestion durable des ressources végétales en permettant une régénération naturelle assistée de la végétation dans le temps sur des parcelles mises en défens depuis l'an 2003, au Burkina Faso. Cependant, l'insuffisance d'analyse de données d'inventaires phytomasses et l'exploitation des données d'images satellites au niveau des zones d'interventions du Nord et Centre de l'ONG est une contrainte majeure.

Le présent travail sur les analyses de données vise, à faire une étude floristique des parcelles mises en défens en 2003, à étudier la phytosociologie et à montrer l'impact de ces mises en défens par les images satellites dans les zones d'intervention Nord et Centre de newTree. Les résultats indiquent un état évolutif sur la diversité floristique (diversité générique à 1.25) avec au moins 128 espèces réparties dans 51 genres et 28 familles pour le Centre et 46 espèces réparties dans 15 genres de 10 familles pour le Nord ont été inventoriées en 2011, contrairement aux 81 espèces du Centre et 21 espèces du Nord inventoriées en années de référence (2003). La composition floristique des parcelles étudiées est constituée uniquement de Spermaphytes dont les familles appartenant à la classe des dicotylédones (essentiellement des phanérophytes) représentent 100% des espèces.

Les différents calculs NDVI effectués ont permis de visualiser un changement significatif en termes de superficie de terres récupérées sur les parcelles mises en défens. Ces terres occupées sont constituées de cinq (5) formations végétales dont les steppes (arborées et arbustives), les savanes (arborées et arbustives), les forêts claires, les sols nus (dégradé ou brûlés) et les zones de cultures.

Mots Clés: flore, végétation, phanérophytes, NDVI.

ABSTRACT

The hydrous deficit linked to the unequal distribution of rains contributes to intensification of dryness in Sahel countries particularly in Burkina Faso. This phenomenon of desertification manifests itself by a significant diminution of wooded surfaces, a modification of the structure of plants associations and progressive extinction vegetable species. Worried about these problems, the Swiss NGO named "newTree" had decide to carry out a program of sustainable management promotion of vegetable resources through assisted natural regeneration (ANR) of plants to determined time on fields put in reserve since 2003, in Burkina Faso.

However, there are some majors constraints liked the poverty of analysis of phytomass inventories data and the non exploitation of satellite images data of North and Centre activities areas of "newTree"

This work on data analysis aims to, thistly realize a floristic study of parcels put in reserve in 2003, then study the phytosociology and finally to show the effects of these natural reserves by satellite images of the North and Centre zones where intervenes "newTree".

The results indicate increasing of floristic diversity (generic diversity to 1.25) with more 128 species divide in 51 genders and 28 families for the centre and 46 species consisting of 15 genders and 10 families in North were inventoried in 2011, contrary to 81 species of Center and 21 species of North inventoried in 2003 (reference year)

The floristic composition of studied fields is only made up of *spermaphytes* including families of dicotyledonous (essentially *phanerophytes*) represent 100% of all species.

The various made calculation NDVI allowed to visualize (display) a significant change in terms of surface of lands got back on the plots of land put there defend. These busy lands are established (constituted) by five (5) vegetable trainings (formations) among which steppes (raised and arbustives), savannas (raised and arbustives), the clear forests, the naked grounds (degraded or burned) and the zones of cultures.

Key words: flora, vegetation, phanerophyts, NDVI

LISTE DES ABREVIATIONS

ACP Analyse en Composantes Principales

AGR Activités Génératrices de Revenus

CHA Classification Hiérarchique Ascendante

F3PA Foyer Trois Pierres Améliorées en Banco

GPS Système de Positionnement Global

ICD Image Classée en Date

Ig Indice de diversité générique

NDVI Normalized Différent Vegetation Index (Indice de végétation)

ONG Organisation Non Gouvernementale

RNA Régénération Naturelle Assistée

RVB Rouge, Vert et Bleu

TM Thematic Mapper

Sommaire

REMERCIEMEN	TS	Il
RESUME		ID
ABSTRACT		IV
LISTE DES ABRI	EVIATIONS	V
LISTE DES TABI	.EAUX	VIII
LISTE DES FIGU	RES	IX
LISTE DES PHO	TOS	X
LISTE DES GRAI	PHIQUES	X
	RESENTATION DE LA ZONE D'ETUDE	
	résentation de l'ONG suisse newTree	
	hoix des siteshoix als se new1reehoix des siteshoix des sites	
	essources forestières de la zone d'étude	
	BJECTIFS ET HYPOTHESES DE L'ETUDE	
	S DE L'ETUDE	
2.1.1.	Objectif général	
2.1.2.	Objectifs spécifiques	
	HESES DE L'ETUDE	
2.2.1 Hy 2.2.2.	/pothèse I	
	ON RELATIVE DU RECOUVREMENT MOYEN D'ESPÈCES	
CHAPITRE III: N	IETHODOLOGIE DE TRAVAIL	9
3.1. DEFINITI	ON DE QUELQUES CONCEPTS CLES DE L'ETUDE	9
3.2. DONNEE	S BIBLIOGRAPHIQUES	10
3.2.1.	Données satellites	10
3.2.2.	Données terrains	10
<i>3.2.3.</i>	Données bibliographiques	
3.2.4.	Logiciels et matériels de terrains	
	NTATION SCHEMATIQUE DE LA METHODOLOGIE ADOPTEE	
	DES DE TRAITEMENTS	
3.4.1.	Méthode d'analyse de données d'inventaire phytomasse	
3.4.2.	Méthode d'analyse de données phytosociologique	
3.4.3.	Méthode d'analyse de données images satellite Landsat TM	
	RESULTATS ET DISCUSSION DE L'ETUDE	
	AS DE L'ETUDE	
4.1. RESULTA	TS DE L'ETUDE FLORISTIQUE	
4.1.1.	Analyse de la richesse floristique	
4.1.2.	Analyse de la diversité générique (Ig)	
4.1.3.	Analyse du spectre biologique	
4.1.4.	Analyse de la structure des groupements végétaux	
	n partielle de l'étude floristique	
	TS DE L'ETUDE PHYTOSOCIOLOGIQUE	
4.2.1. 4.2.2.	Analyse en Composantes Principales (ACP) des zones d'intervention Description de la végétation des deux zones d'intervention (Nord et Centre)	
4.2.2.	Description de la vegetation des deux zones à intervention (Nord et Centre)	34

(Conclusi	on partielle sur l'étude phytosociologique	35
4.3	. RESULT	TATS DE L'ETUDE DE TRAITEMENTS D'IMAGE SATELLITE LANDSAT	36
	4.3.1.	Interprétation visuelle des images Landsat	36
	4.3.2.	Cartes d'occupation du sol	37
	4.3.3.	Evolution de l'occupation du sol des zones extraites	41
(Conclusi	on partielle des résultats de l'étude de traitement d'images	43
B-	DISCU	SSION	44
1.	APPOR	T DE LA METHODOLOGIE PROPOSEE	44
2.	SUIVI D	E L'ETAT DE DIVERSITE FLORISTIQUE	44
CONC	LUSION I	ET PERSPECTIVES	45
RÉFÉI	RENCES I	BIBLIOGRAPHIQUES	46
LISTE	RECAPI	TH ATIVE DES ANNEXES	48

LISTE DES TABLEAUX

Tableau I	Situation géographique des parcelles étudiées	4
Tableau II	Caractéristiques des images satellite	9
Tableau III	Etat de la diversité floristique	11
Tableau IV	Coefficient d'échelle d'abondance-dominance	13
Tableau V	Nombre d'espèces en genres et familles au Nord en 2011	20
Tableau VI	Nombre d'espèces en genres et familles au Centre en 2011	21
Tableau VII	Valeurs propres et Groupements des végétaux au Nord	27
Tableau VIII	Répartition des indices spécifiques au Nord	30
Tableau IX	Valeurs propres et Groupements des végétaux au Centre	30
Tableau X	Répartition des indices spécifiques au Centre	32
Tableau XI	Répartition des indices spécifiques au Nord	32
Tableau XII	Description de la végétation des zones d'étude	33
Tableau XIII	Interprétation visuelle des images de 1988, 2003 et 2011	35
Tableau XIV	Type de liaison des trois dates au Centre	40
Tableau XV	Type de liaison des trois dates au Nord	40

LISTE DES FIGURES

Figure n°1	Carte de la zone d'intervention	2
Figure n°2	Carte de situation de la zone d'étude	4
Figure n°3	Carte des domaines végétatifs au Burkina Faso	6
Figure n°4	Schéma de synthèse méthodologique	10
Figure n°5	Carte d'analyse des dispersions des phanérophytes en 2003	24
Figure n°6	Carte d'analyse des dispersions des phanérophytes en 2004	25
Figure n°7	Carte d'analyse des dispersions des phanérophytes en 2011	26
Figure n°8	Carte factorielle des groupements au Nord	28
Figure n°9	Classification Hiérarchique Ascendante au Nord	29
Figure n°10	Carte factorielle des groupements au Centre	31
Figure n°11	Classification Hiérarchique Ascendante au Centre	32
Figure n°12	Extraits de carte des NDVI des zones découpées	36
Figure n°13	Extraits de cartes de la végétation au Centre	38
Figure n°14	Extraits de cartes de la végétation au Nord	39

LISTE DES PHOTOS Photo n°1 Installation de clôture d'une parcelle de 2003 3 Photo n°2 Mise en défens après un an et huit années (2004 et 2011) 3 Photos n°3 3 Foyers 3 Pierres Améliorées et Collectes de bois de cuissons Photo n°4 AGR et Inventaire des espèces ligneuses 3 Photo n°5 Mise en défens en 2003 18 Photo n°6 Etat floristique en 2004 18 *Photo n*°7 Etat floristique en 2004 18 LISTE DES GRAPHIQUES *Graphique n*°1 Evolution du nombre de taxons par site et par année 17 *Graphique n*°2 Nombre d'espèces par genres et familles au Nord 2011 19 *Graphique n*°*3* Nombre d'espèces par genres et familles au Centre 2011 19 *Graphique* n°4 Proportion des familles des espèces au Centre 22

Proportion des familles des espèces au Nord

Graphique n°5

23

Etude de la dynamique de la végétation sur les parcelles protégées en 2003 de l'ONG newTree par analyse de données d'inventaires d'arbres et traitement d'images satellite Landsat.

INTRODUCTION

Les dernières décennies ont souvent revêtu dans les zones sahéliennes un caractère catastrophique dû à l'insuffisance des pluies. Ce déficit hydrique auquel, s'ajoute une mauvaise répartition des pluies, la pratique de l'agriculture sur brûlis et la divagation des animaux domestiques qui se nourrissent de jeunes pousses, constituent une forte pression sur les ressources naturelles. La végétation naturelle est une importante source pour l'alimentation et la satisfaction des besoins énergétiques des populations dans les pays du Sahel. L'impact de ces contraintes climatiques et anthropique s'est manifesté d'une part par une réduction sensible des superficies boisées, et d'autre part par une modification de la structure des formations végétales et une raréfaction, voire une disparition de certaines espèces (SAADOU M., 1984 et 2007). A certains endroits, ces facteurs ont presque compromis les possibilités de reconstitution de la végétation.

Au Burkina Faso, cette dégradation n'a pas épargné les formations végétales des petits sites protégés par des paysans. Conscientes de cette problématique, l'ONG newTree a mis en place un programme de mis en défens et de régénération naturelle assistée du couvert végétal en protégeant des terres dégradées avec des clôtures solides. Dans l'exécution du projet de la régénération naturelle assisté, des inventaires complets d'arbres sont réalisés régulièrement pour suivre l'évolution de la biodiversité et de la biomasse à l'intérieur et à l'extérieur des sites protégés.

La présente étude introduit l'analyse des données des inventaires d'arbres entiers à partir d'un mètre d'hauteur des années 2003, 2004 et 2011 dans les sites, et complétée avec les données d'images satellites Landsat TM. L'exploitation de ces données permet une analyse de tendance et permet de percevoir différents changements de la végétation au sein des zones d'étude. La particularité de cette étude, réside dans le suivi des changements dans le temps opérés au niveau du couvert végétal des parcelles mises en défens en 2003 au moyen de la télédétection.

Outre l'introduction, la conclusion et les recommandations, le présent rapport se subdivise en quatre (4) chapitres :

- Présentation des zones d'étude;
- Objectifs et hypothèses de l'étude;
- Méthodologie de l'étude;
- Résultats obtenus et discussion

CHAPITRE I: PRESENTATION DE LA ZONE D'ETUDE

1.1. Présentation de l'ONG suisse newTree

NewTree-nouvelarbre, est une Organisation Non Gouvernementale (ONG) suisse reconnue au Burkina Faso depuis l'an 2003. Cette organisation a pour objectif général de sauvegarder l'environnement local et de contribuer à la réduction de la pauvreté en milieu rural à travers un programme composé de:

- Mise en défens des surfaces dégradées,
- Régénération Naturelle Assisté (RNA) du couvert végétal,
- Réalisation des Activités Génératrices de Revenus (AGR),
- Construction de foyers trois pierres améliorés en banco (F3PA).

La planification, la coordination et le suivi de ce programme sont assurés par une équipe dynamique composée de 21 personnes. La biologiste suissesse Franziska Kaguembèga-Müller qui dispose d'une expérience d'une dizaine d'années dans la coopération et développement et les techniques de reboisement, coordonne les activités de l'équipe. NewTree intervient dans deux stations dont une au Centre (basée à Ouagadougou) et l'autre au Nord du Burkina Faso (basée à Djibo) (figure n°1). Ces stations couvrent six provinces avec plus de 167 parcelles de trois (3) hectares en moyenne mise en défens. Les six provinces sont : *Boulkiemdé, Kadiogo, Kourwéogo, Oubritenga, Sanmatenga et Soum*.

Figure n°1 : Carte des zones d'intervention de newTree

L'approche méthodologique développée par newTree est participative, impliquant tous les acteurs concernés par le programme. La composante de la RNA est mise en œuvre grâce à l'exécution des activités suivantes : l'animation et information, le choix des partenaires et l'implantation des clôtures.

L'objectif recherché à travers l'implantation des clôtures métalliques de protection est de préserver le couvert végétal existant et de favoriser la régénération naturelle de la végétation à l'aide des actions de défense et de restauration des sols des sites protégés. Cette action de protection de couvert végétal est suivie par des plans de gestion et une série d'inventaires des espèces ligneuses chaque année pour voir l'évolution de la structure végétale (Série de photos d'illustration des étapes d'exécution du projet RNA de l'ONG).

Photos n°1 : Installation de clôture d'une parcelle en 2003

Photos n°2: Mise en défens après 1 an et 8 ans (2004 et 2011)

Photos n°3: Foyers 3 Pierres Améliorées et Collectes de bois de cuissons

Photos n°4: AGR et Inventaires des espèces ligneuses à l'intérieur du site

1.2. Choix des sites

La présente étude analytique des données phytomasses des inventaires d'arbres sur le terrain et des images satellites est une première au sein de la structure. Ainsi, pour mieux suivre l'évolution de la régénération naturelle de la végétation dans les zones d'interventions au Nord et au Centre, newTree a retenu les six (6) sites (**figure n°2**) de référence de l'an 2003 de son programme d'action. Ces parcelles constituent les premiers contacts avec ses partenaires paysans et sont reparties dans cinq (5) villages (Tableau I).

Tableau I. Situation géographique des parcelles étudiées

Total	Cinq (05)	Six (06)	5.4590		
Kadiogo	Gampéla	03 C 03	0.4100	35 Km, Sud de la ville de Ouagadougou, axe Ouagadougou-Léo, coordonnées (-1.006156111 X et 12.00704861 Y)	
Boulkiemdé	Guela	02 C 03	1.0098	52 Km, Ouest de la ville de Ouagadougou, axe Ouagadougou- Ouahigouya, coordonnées (-1.015316389 X et 12.00897083 Y)	
Kadiogo	Dawélgué	01 C 03	1.0098	15 Km, Est de la ville de Ouagadougou, axe Ouagadougou-Fada N'gourma-Niger, coordonnées (-1.009768333 X et 12.00250056 Y)	
Zone d'intervention	on Centre				
Soum	Tongomayel	03 N 03	1.0098	18 Km, Sud- Est de la ville de Djibo, axe Djibo- Dori, coordonnées (- 1.007935833 X et 14.0012025 Y)	
Soum	Tongomayel	02 N 03	1.0098	18 Km, Sud- Est de la ville de Djibo, axe Djibo- Dori, coordonnées (-1.007913889 X et 14.00119139 Y)	
Soum	Baraboulé	01 N 03	1.0098	30 km, Nord-Ouest de la ville de Djibo, de coordonnées (-1.01414 X et 14.00318472 Y)	
Zone d'intervention	on Nord				
Provinces	Villages	Codes Sites	estimée en (Ha)	Localisations	
			Surface		

N: Nord, C: Centre

Cette étude s'est déroulée dans trois provinces (**Soum, Kadiogo et Boulkiemdé**) plus particulièrement dans les communes de **Baraboulé, Tongomayel, Siglé, Komsilga et Saaba**. Ces communes sont localisées, comme l'indique les coordonnées des parcelles du tableau ci-dessus, entre la partie Nord et Centre du Burkina Faso.

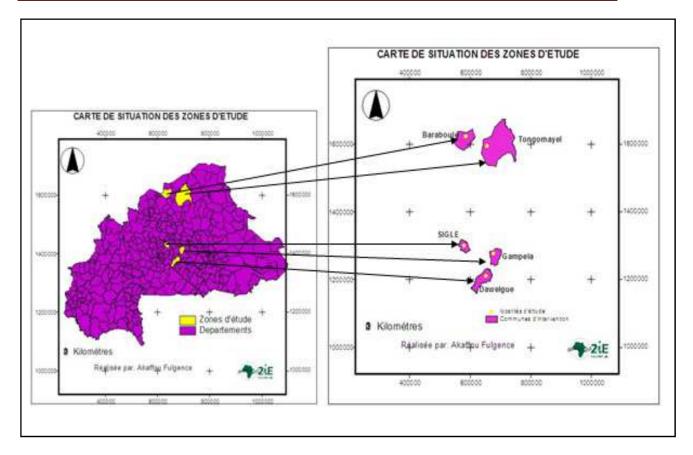
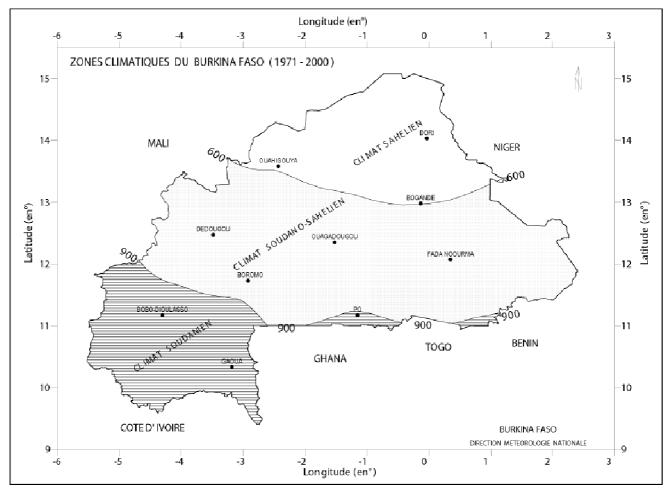


Figure n°2 : Carte de situation de la zone d'étude

1.3. Ressources forestières de la zone d'étude

Au Burkina Faso, les ressources forestières ont fait l'objet de peu d'évaluations (FAO, 2003 ; GUINKO, 1984). Ces évaluations montrent que de nos jours, il y a une régression du potentiel forestier. La composition floristique burkinabè compte 1 407 espèces dont 376 espèces de plantes ligneuses.

1.3.1. Découpage phytogéographique


Dans le cadre notre étude, on distingue deux domaines phytogéographiques subdivisés en secteurs et districts sur la base de la trilogie climat-flore-végétation (GUINKO, 1984) : le domaine sahélien et le domaine soudano-sahélien dont la frontière se situe aux environs du $13^{\text{ème}}$ parallèle nord (figure n°3).

a) La végétation du domaine sahélien

La végétation d'ensemble de ce domaine est dominée par des steppes à plusieurs faciès (herbeuse, arbustive, arborée) dont la monotonie est rompue par des fourrés de densité croissante du nord vers le sud, et des galeries forestières. La physionomie et la composition floristique de la végétation permettent de situer une partie de nos zones d'étude (Baraboulé et Tongomayel) au niveau du secteur **Sud sahélien**, entre les 13^{ème} et 14^{ème} parallèles, qui est caractérisé par des *steppes arbustives* évoluant vers le sud en *steppes arborées*.

b) <u>La végétation du domaine soudano-sahélien</u>

Le domaine soudano- sahélien constitue la zone d'extension des savanes. D'autres parties de nos zones d'étude (Siglé, Komsilga et Saaba) sont situées dans le secteur nord soudano-sahélien, entre les 13^{ème} et 12^{ème} parallèles, qui correspond à la zone la plus intensément cultivée du pays du fait de la forte poussée démographique. La végétation présente l'allure de *paysages agricoles* dominés par des espèces protégées comme le *Vitellaria paradoxa* (Karité), le *Parkia biglobosa* (Néré), l'*Adansonia digitata* (Baobab), qui témoignent de l'existence d'une végétation climatique constituée de *forêts claires, savanes arbustives et savanes arborées*.

Source : Direction Météorologie Nationale

Figure n°3: Carte des domaines végétatifs du Burkina Faso

1.3.2. Types biologiques des végétaux

La végétation de nos zones d'étude est caractérisée par sa physionomie et ses variations qui sont les résultats des types biologiques qui la composent. Ils existent cinq (5) principaux types de végétaux en fonction de la position et du degré de protection des bourgeons et des jeunes pousses pendant les saisons favorables et défavorables à leur développement.

Il s'agit des:

- *Phanérophytes* sont représentées par des plantes (arbres, arbustes et arbrisseaux) dépassant 50 cm de hauteur.
- *chaméphytes* sont formées de sous arbrisseaux, herbes et plantes sub ligneuses ne dépassant pas 50 cm de hauteur.
- hemicryptophytes regroupent les plantes basses à bourgeons pérennants situés au ras du sol.
- *géophytes* constituent des plantes dont les organes de conservation sont souterrains (rhizomes, bulbes, tubercules).
- *thérophytes* ou plantes annuelles passent la mauvaise saison à l'état de graine.

CHAPITRE II: OBJECTIFS ET HYPOTHESES DE L'ETUDE

A. Objectifs de l'étude

2.1.1. Objectif général

Cette étude a pour but, de quantifier, d'évaluer, d'analyser et de comparer la variation spatio temporelle des changements à l'intérieur des sites protégés en 2003, au moyen d'une analyse diachronique (2003 et 2011) de données satellites Landsat, couplées aux données d'inventaires entiers d'arbres.

2.1.2. Objectifs spécifiques

Pour ce travail de mémoire de Master d'ingénierie, il s'agit de:

- Etudier l'évolution de la diversité floristique des bosquets familiaux des sites;
- Caractériser l'évolution spatio-temporelle de la structure végétale des zones d'intervention au Nord et au Centre.

B. Hypothèses de l'étude

Dans le but de mener à bien cette étude, deux hypothèses sont formulées :

2.2.1 Hypothèse I

La mise en défens contribue à une augmentation de la diversité floristique des bosquets familiaux.

Indicateurs

- Richesse floristique (nombre d'espèces)
- 4 Indice générique (état de la diversité floristique)
- Spectre biologique (affinité sociologique)

Variables

- Nombre d'espèce par site et par année
- ♣ Nombre de famille, de genre et d'espèces par site et par année
- 4 Taille des espèces par site et par année

2.2.2. Hypothèse II

Les parcelles protégées ont contribué à la modification de la structure végétale des zones d'intervention au Nord comme au Centre du Burkina Faso.

Indicateurs

- 4 Indice du pourcentage de représentativité (contribution)
- ♣ Coefficient de similitude

variables

- ♣ Moyenne des coefficients d'abondance-dominance
- ♣ Nombre d'espèces par groupement
- ♣ Proportion relative du recouvrement moyen d'espèces.

CHAPITRE III: METHODOLOGIE DE TRAVAIL

3.1. Définition de quelques concepts clés de l'étude

- Végétation : est l'ensemble des plantes (la flore) sauvages ou cultivées qui poussent sur une surface donnée de sol, ou dans un milieu aquatique. On parle aussi de "couverture végétale".
- Espèce végétale : est une population ou un ensemble de populations dont les individus peuvent effectivement ou potentiellement se reproduire entre eux et engendrer une descendance viable et féconde, dans des conditions naturelles.
- **Dicotylédones :** forment un groupe d'espèces végétales dans la classification classique présentent une plantule à deux cotylédons,
- Genre d'espèce : est un rang taxinomique qui regroupe un ensemble d'espèces ayant en commun plusieurs caractères similaires.
- Famille d'espèce: est un taxon qui regroupe les genres qui présentent le plus de similitudes entre eux.
- La formation végétale désigne une communauté d'espèces végétales, caractérisée par une certaine physionomie, et qui détermine un paysage caractéristique.
- L'abondance est la proportion relative des individus d'une espèce donnée.
- La dominance, la surface couverte par cette espèce.
- **NDVI**: Normalized Différent Vegetation Index (Indice de végétation), c'est la différence entre la valeur radiométrique dans le canal **proche infra rouge et** celle du canal Rouge (Bande 3), rapportée à la somme des deux canaux cités.
- La Bande TM3: est la bande d'absorption des pigments chlorophylliens et dont l'image rehaussée en niveau gris présente la végétation verte et dense en sombre.
- La Bande TM4: désigne l'image NDVI (en niveau gris) et traduit l'activité photosynthétique du couvert végétal à l'instant de la mesure.
- La résolution spectrale : désigne le nombre et la finesse des bandes spectrales dans les quelles le capteur enregistre les informations.
- La résolution radiométrique : désigne la capacité de reconnaître de petites différences d'intensité dans l'énergie électromagnétique. Le nombre maximal de niveau d'intensité disponible dépend du nombre de bits utilisés pour représenter l'intensité.
- La composition colorée : est la combinaison de trois bandes spectrale, donnant sur papier une synthèse soustractive des couleurs.

3.2. Données bibliographiques

Dans le cadre de ce mémoire de fin cycle d'ingénierie en environnement, un certain nombre de matériels et données ont été utilisés :

3.2.1. Données satellites

Toutes les images recueillies sont prises en **saison sèche** car nous avons été attentifs à ne pas comparer des images de saisons différentes, ce qui pourrait donner lieu à des résultats non comparables.

Tableau II. Caractéristiques des images Landsat

Capteurs	Capteurs Résolution I		Niveau de correction
Landsat TM		Une série de 20 images de 1984 à	
(3,4,5,7)	30 m	Mai 2011	Brute (CN)

Chaque fichier image est compressé (.zip) et contient les données images (réflectance) dans les sept bandes spectrales choisies (B10, B20, B30, B40, B50, B70, B80) en format GeoTIFF.

3.2.2. Données terrains

Les données d'inventaires entiers d'arbre réalisées en 2003, 2004 et 2011 à l'intérieur des parcelles mises en défens en 2003. Deux Techniciens en Gestion des Ressources Naturelles (TGRN) ont été sollicités pour expliquer la démarche d'inventaire entier réalisé sur les parcelles de newTree. Le concours des deux chargés de programme des stations Nord et Centre a été très utile.

3.2.3. Données bibliographiques

Une recherche bibliographique a été réalisée, afin de mieux cadrer le thème d'étude. Ainsi, une synthèse des travaux antérieurs sur l'analyse des données d'inventaires phytomasse et d'images satellites LANDSAT a permis de mieux comprendre la problématique de notre thème d'étude et de définir l'approche méthodologique adéquate.

3.2.4. Logiciels et matériels de terrains

- a) <u>Logiciels utilisés</u>
- ✓ le logiciel de traitement d'image : **Envi** version 4.2 et **chips 4.7** pour Windows
- ✓ le logiciel de SIG et de programmation: ArcView version 3.2, R
- ✓ les logiciels d'analyses de données : **Tanagra** version 1.4, **SPSS** version 12.0.1
 - b) Matériels de terrains
- ✓ un **GPS** (Système de Positionnement Global = Global Position System);
- ✓ un appareil photo numérique de type canon.

3.3. Représentation schématique de la méthodologie adoptée

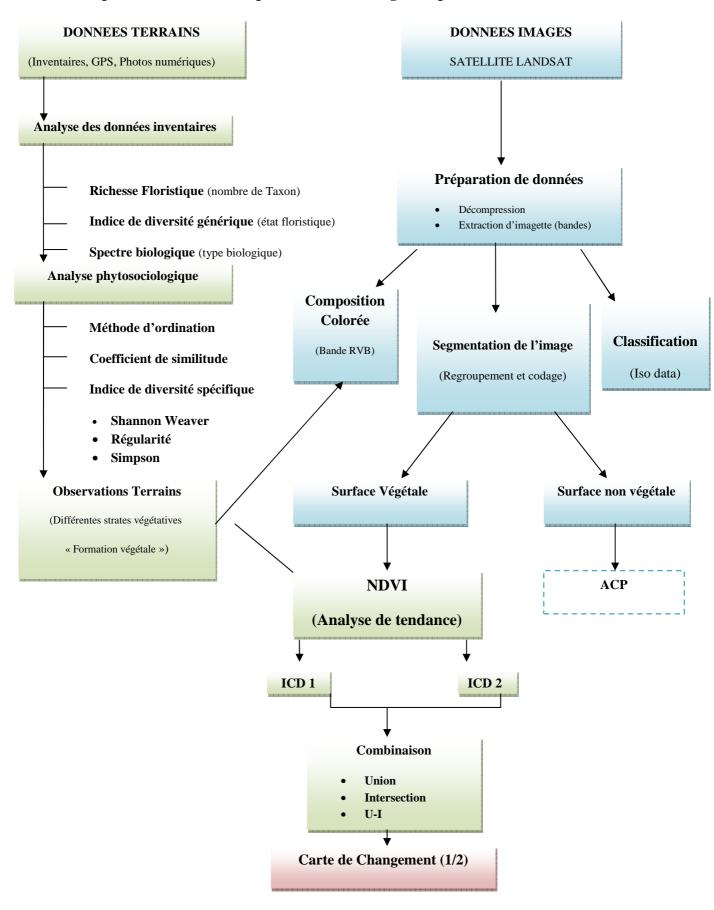


Figure n°4 : Diagramme de la méthodologie de travail

3.4. Méthodes de traitements

3.4.1. Méthode d'analyse de données d'inventaire phytomasse

L'étude de l'analyse des données de végétation des sites tests implique l'adoption d'une méthode d'investigation dont il est indispensable de préciser les principes et la démarche. La caractérisation des formations végétales est basée sur les résultats de relevés exhaustifs d'espèces floristiques réalisés entre Mars et Mai 2003, 2004 et 2011 à l'intérieur des sites par les TGRN de la structure newTree. Ce type de relevés d'espèces florales, permettra de faire un récapitulatif de la composition floristique par site test, a été utilisé par CHEVALIER (1998) et AKE ASSI (1998, 2001, 2002). Il consiste à inventorier l'entité d'une parcelle protégée et géo référencée en faisant la transcription des noms scientifiques de toutes les espèces végétales rencontrées (ANNE-C., HILDEGARD, MARIE M., 2006), ayant un (1) mètre et plus de hauteur, suivant une fiche technique d'inventaire entier (voir annexe I au tableau I).

a- Richesse floristique spécifique (S) d'une parcelle

La richesse floristique d'une parcelle est le nombre d'espèces que compte cette parcelle. Elle est le **nombre d'espèces** qui compose nos zones d'études entre 2003, 2004 et 2011, sans prendre en compte la fréquence, l'abondance et la taille des espèces rencontrées. Dans cette étude, la mesure de la richesse floristique nous permettra de montrer l'évolution du nombre d'espèces que comptent nos différentes parcelles étudiées (CORTHAY R., 1996).

b- Diversité générique (Ig) d'une parcelle

A partir des données du nombre d'espèces floristiques de 2003, 2004, 2011 que comptent les six (6) parcelles, nous avons cherché à les classifier selon le **genre** et la **famille** (MICHEL A., 2002 et KABORE C. 1995 et 2008). Au sein d'une famille donnée, la diversité générique est le rapport du nombre total des espèces par celui des genres. Cette mesure basée sur des indices d'hétérogénéités nous donne une idée claire sur l'état de diversité florale de la parcelle étudiée (Tableau III).

Tableau III. Etat de la diversité floristique

	Formule mathématique	Interprétations
Ig : l'indice de diversité générique	_	Ig < 4, la flore est plus diversifiée
G: le nombre total de genres	_	Ig > 4, la flore est faiblement diversifiée
E : le nombre total d'espèces	Ig = E / G	Ig = 4, diversité moyenne

c- Spectre biologique

Le concept de groupement végétal change en fonction des auteurs selon l'état de connaissance disponible et le but visé par l'étude. Pour certains auteurs tels que ADJANOHOUN (1965), GUINKO (1984), la notion de groupement végétal s'identifie à celle de groupe écologique qui se définit comme un ensemble d'espèces ayant entre elles une certaine affinité sociologique plus ou moins grande. L'expression «affinité sociologique» résume toutes les tendances d'ordre écologique, géographique, climatologique ou biologique. D'autres auteurs utilisent la terminologie suivante: *formation végétale* pour toujours évoquer la notion de groupement végétal qui est employé pour ce présent mémoire de fin de cycle.

Types biologiques

Les types biologiques permettent de faire une appréciation qualitative de la végétation en rapport avec les conditions climatiques. Ils expriment, par le spectre biologique, l'adaptation aux divers milieux. Dans le cadre de notre étude, le type biologique adapté aux formations végétales des parcelles étudiées a été retenu. Il s'agit des *phanérophytes*(**p**) qui sont des végétaux ligneux pérennes dont les bourgeons de rénovation sont situés à plus de 50 cm du sol. Ce type biologique se subdivise (SAADOU, 1984) en :

- ✓ Nanophanérophytes (**Np**) : 50 cm à 199 cm,
- ✓ Microphanérophytes (mp) : 2 m à 3,99 m,
- ✓ *Mésophanérophytes* (**mP**) : 4 m et plus.

Le résultat des données d'inventaires entiers disponible pour analyse, nous a emmené à combiner les *microphanérophytes* et les *mésophanérophytes*, ensuite à considérer au niveau des *nanophanérophytes* que les arbres de **100 cm à 199 cm**. Cette disposition nous permet d'avoir deux principales classes de hauteur [100 cm à 199 cm] et [2 m et plus]. Le but est de caractériser et comparer l'évolution des strates des parcelles en année de référence (2003), en année 2004 et 2011 au sein de chaque site. Le scatter plot de l'analyse de dispersion est utilisée dans ce mémoire pour détecter si l'âge de la parcelle est un facteur significatif du changement des paramètres structuraux durant les années de protection. Cette analyse a été effectuée avec le logiciel *SPSS version 12.0.1 pour Windows*.

3.4.2. Méthode d'analyse de données phytosociologique

La méthode d'analyse phytosociologique consiste à traiter les données d'inventaires des deux zones d'intervention de newTree sur la base d'une matrice brute de **18 relevés et 46 espèces** au Nord (Annexes I, Tableau II) et une matrice brute de **18 relevés et 128 espèces** au Centre (Annexes I, Tableau III). L'objectif est de comparer les relevés issus des zones d'étude sur la base de leur composition floristique et de réduire la variabilité floristique entre ces relevés à un nombre réduit d'axes factoriels afin d'obtenir la carte factorielle de groupement (BOUXIN, G., 1987).

Nous avons opté pour une méthode d'ordination particulière spécifiquement adaptée au tableau de présence. Cette méthode consiste à utiliser l'Analyse en Composantes Principales (ACP) traiter des données floristiques indépendamment des variables environnementales. C'est une technique d'analyse qui repose sur une pondération de chaque cellule du tableau d'une part par les totaux marginaux de la ligne et d'autre part, par les totaux marginaux de la colonne correspondante. C'est sur ces deux matrices pondérées que nous allons rechercher ensuite les axes principaux en veillant à conserver les distances euclidiennes entre les lignes d'une part et les colonnes d'autre part. Ensuite, nous soumissions cette matrice à une Classification Hiérarchique Ascendante (CHA) dont le principe est que les individus (qui correspondent aux relevés) soient regroupés progressivement selon leur degré de ressemblance (variable espèces) jusqu'à l'obtention de classes. Le critère d'agrégation de ces individus consiste à rechercher une partition telle que la variance interne des classes soit minimum alors que la variance externe est maximum. Le résultat final est sous forme de classes de relevés regroupés en fonction de leur affinité floristique. Pour chaque classe d'individus des indicateurs sont retenus. Il s'agit de l'indice de spécificité et du pourcentage de représentativité (contribution). Enfin, nous déterminons le recouvrement moyen (RM) au sein de chaque groupement. Un peuplement végétal peut être étudié en évaluant l'abondance des espèces constitutives à partir du pourcentage de la surface du sol couvert par les individus de chaque espèce. Ainsi, le recouvrement moyen des espèces sur une parcelle mise en défens est la moyenne des coefficients d'abondance dominance de chaque espèce d'une parcelle (tableau IV).

Tableau IV. Coefficients de l'échelle d'abondance-dominance de Blanquet

Coefficients	Significations	Recouvrement Moyen (RM %)
+	Un individu	0.5
1	RM ≤ 5%, plusieurs individus	3.0
2	RM compris entre 6 et 25 %	15.0
3	RM compris entre 26 et 50 %	37.5
4	RM compris entre 51 et 75 %	62.5
5	RM compris entre 76 et 100 %	87.5

Ces analyses ont été menées avec le logiciel *Tanagra version 1.4*.

a) Coefficient de similitude (CS) de Sorensen

Dans le but d'apprécier le degré de ressemblance des listes d'espèces des différents sites inventoriés pris deux à deux, nous utilisons le calcul de **coefficient de similitude**. Ce coefficient ne tient pas compte de l'effectif des espèces rencontrées, mais plutôt de la présence ou de l'absence des espèces. Parmi diverses formules valables les unes que les autres (GOUNOT, 1969), nous avons retenu celle proposée par SORENSEN parce qu'il donne deux fois plus de poids à la présence conjointe de deux espèces au même endroit qu'à la présence de l'une des deux. SORENSEN a défini: **CS=[(2C)/(A+B)] x 100**. Avec,

- A et B désignent les nombres respectifs d'espèces des deux groupements n°1 et n°2
- C, le nombre d'espèces communes aux deux groupements.

On obtient, **une matrice globale** à double entrée reliant les espèces ligneuses et les relevés de végétation exécutés sur le terrain (en ligne, les espèces et en colonne les relevés). Ainsi, deux sites comparés sont proches sur le plan de la composition floristique, si le coefficient de similitude est supérieur ou égal à **50 pourcent**.

b) Indices de diversités spécifiques des groupements

La mesure de la diversité spécifique d'une communauté biologique est un autre domaine où la théorie de l'information trouve une application en écologie (LEGENDRE L & LEGENDRE P., 1979 et MAHAMANE A., 2005).

♣ Indice de diversité de Shannon-Weaver (H)

C'est un indice qui varie en fonction du nombre d'espèces présentes et de la proportion relative du recouvrement des diverses espèces. Il s'exprime en « Bits/individu » et se formule ainsi : $H=-\sum Pi \text{ Log2 }(Pi)$.

Avec Pi (compris entre 0 et 1) la proportion relative du recouvrement moyen de l'espèce i dans le regroupement et exprimant par : $Pi = ni / \sum ni$ où ni est le recouvrement moyen de l'espèce i et $\sum ni$ le recouvrement total de toutes i espèces.

La valeur de l'indice de diversité **H**, communément rencontrée dans les inventaires d'un groupe botanique étudié, est comprise entre *1bit et 4,5 bits* (OUMAROU, 2003). Ainsi, pour un effectif d'espèces données, **H** est plus faible lorsqu'un nombre réduit d'espèces assure le maximum de recouvrement.

♣ Indice de régularité (R)

L'évaluation du poids de chaque espèce dans l'occupation d'une parcelle, est déterminée par un indice de régularité noté \mathbf{R} qui correspond au rapport entre la diversité \mathbf{H} et la richesse floristique (S) de la zone d'étude. Son expression générale est la suivante: $\mathbf{R} = [\mathbf{H} / \log 2(\mathbf{S})]$. Avec : \mathbf{H} , l'indice de Shannon-Weaver et \mathbf{S} , la richesse spécifique.

L'indice de régularité varie entre 0 et 1, il **tend vers 0** quand la quasi-totalité des effectifs correspond à une seule espèce du peuplement, et **tend vers 1** lorsque chacune des espèces est représentées par le même nombre d'individus ou le même recouvrement. Les régularités courantes sont de l'ordre de *0,8 et 0,9 bits*. Par ailleurs, pour qu'une espèce apporte une contribution maximale à l'entropie de l'ensemble, il faut que sa probabilité soit voisine de *0,37 soit 0,53 bits*.

♣ Indice de Simpson (D)

L'indice de Simpson mesure la probabilité pour que deux individus extraits au hasard du peuplement appartiennent à la même espèce. C'est un indice de dominance car d'une part sa valeur maximale est atteinte lorsqu'il n'y a qu'une seule espèce présente (dominance complète) et d'autre part, on obtient des *valeurs qui tendent vers 0* lorsqu'il y a un grand nombre d'espèces et que chacune de ces espèces ne représente qu'une très petite fraction du total (absence de dominance). Son expression est la suivante : $\mathbf{D} = \sum (Pi)^2$

Mais en terme de diversité, il est plus intéressant de calculer l'indice réciproque de manière à ce qu'un indice élevé puisse refléter une diversité élevée : $1-D = 1-\sum (Pi)^2$

Les indices de diversité de **Shannon**, de **Simpson** et de **régularité** sont plus pratiques pour comparer et caractériser les groupements végétaux de la zone d'intervention. Ils permettent de spécifier les structures végétales en formation végétale (KOULIBALY A., 2008) selon les types.

3.4.3. Méthode d'analyse de données images satellite Landsat TM

Toutes les étapes suivies durant cette partie ont été programmées **sous R**, commençant par la préparation des données, de l'extraction des fenêtres des zones d'intervention Nord et Centre et la sélection des images, aux calculs statistiques sur les images extraites. Toutes les images (*Exemple d'Image Satellite Landsat TM* en Annexes I) sont prises en **saison sèche** car nous avons été attentifs à ne pas comparer des images de saisons différentes, ce qui pourrait donner lieu à des résultats non comparables.

a) Préparation des données images satellite

♣ Décompression des fichiers zippés

Dans le but d'avoir les données images dans leur propre format et pour faciliter la manipulation de ces données, nous avons décompressé tous les fichiers zippés.

♣ Sélection des images couvrant nos zones d'intervention

L'utilisation d'images satellite requiert d'abord que certaines modifications soient apportées aux données brutes de sorte à ce que l'information qui sera éventuellement extraite soit fiable. Les images Landsat TM ont d'abord été géographiquement corrigées et projetées en coordonnées UTM zone 30, WGS 84. Ensuite, nous avons découpé dans chaque scène, une fenêtre d'étude de 1900 x 950 pixels centrée sur la zone d'étude et en se basant sur les valeurs des coordonnées géographique de chaque image décrites dans le fichier «_MTL.txt ».

b) Traitements des images satellite

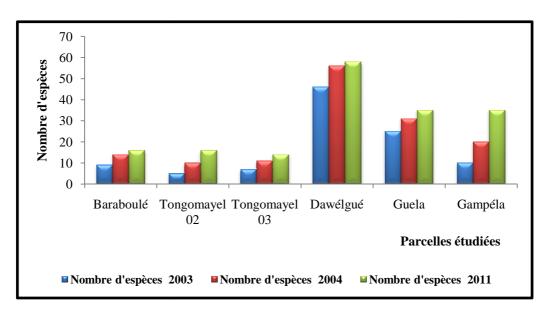
La **figure n°4** montre un schéma qui résume la séquence des traitements que nous avons effectués sur les images satellites. On procède à une visualisation d'une image dans une composition colorée RVB (rouge, vert, bleu), ensuite on fait une classification automatique non dirigée (DEFOURNY Pierre, 1990).

- Si le résultat de cette classification ne permet pas d'identifier les classes recherchées, on a dans ce cas des surfaces non végétales. Cette situation nous renvoie au calcul d'Analyse en Composantes Principales (ACP) des parties de l'image qui présentent des confusions de classes.
- Si le résultat de cette classification permet d'identifier les classes recherchées, on a dans ce cas, des surfaces végétales (DAN JIMO B., 1997). Lorsque celles-ci ne sont pas bien séparées, on utilise donc, un indice de végétation (NDVI) pour mieux séparer ces classes.

En définitive, on obtient :

- une carte d'occupation du sol (N'GUESSAN K. E. et N'DA D., 2005) pour chaque date (1988, 2003 et 2011) analysée,
- les surfaces en progression, les surfaces en régression et,
- les surfaces invariantes.

CHAPITRE IV: RESULTATS ET DISCUSSION DE L'ETUDE


A- RESULTAS DE L'ETUDE

4.1. Résultats de l'étude floristique

L'exploitation des données d'inventaires entiers collectés, à travers une démarche adaptée, nous a permis de recueillir des résultats ci-après présentés.

4.1.1. Analyse de la richesse floristique

L'analyse des données des inventaires entiers réalisés en 2003, 2004 et 2011 ont révélé qu'il existe respectivement **12, 16 et 20** espèces ligneuses sur les trois (3) sites inventoriées au Nord et **54, 67 et 74** espèces ligneuses sur les trois (3) sites inventoriées au Centre. L'analyse de la richesse floristique des parcelles étudiées montre une constante évolution du nombre de taxons selon les années sur l'ensemble des sites mis en défens (*graphique n°1*). L'analyse comparative des zones d'intervention indique une nette différence des strates végétatives avec les parcelles du Centre où le nombre d'espèces en année de référence (2003) représente le triple de ceux localisés au Nord. L'état de la richesse floristique est plus détaillé par site test (*Tableau I en annexe II*). Cet état est récapitulé selon la zone d'intervention et les années dans des tableaux II et III en annexe, c'est une liste floristique globale d'évolution des espèces ligneuses.

Graphique n°1: Evolution du nombre d'espèces par site et par année

Nous avons matérialisé cette évolution du nombre d'espèces par année avec une série de photo de la parcelle de *Tongomayel 02* dans la zone du Nord, où en 2011 une nette amélioration du couvert végétal est enregistré (Photos).

Photo n°5: Mise en défens en 2003

Photo n°6: Etat floristique de la parcelle en 2004

Photo n°7: Etat floristique de la parcelle de *Tongomayel 02* en Mars 2011

4.1.2. Analyse de la diversité générique (Ig)

Les espèces ligneuses qui composent la richesse floristique des zones d'intervention appartiennent respectivement à un nombre variable de genres repartis au sein de familles d'espèces selon l'année de l'inventaire et la parcelle étudiée. Nous donnons dans le *tableau* V, un récapitulatif des zones d'intervention en termes de genres et de nombre de familles. Ainsi,

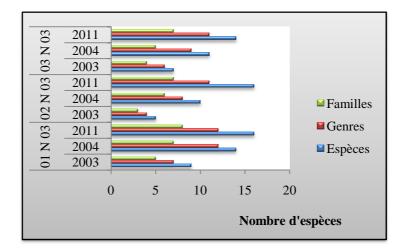
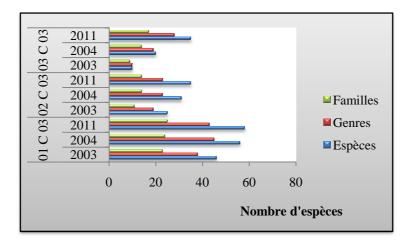

- ✓ la flore des parcelles de la station du Nord-est composée de **21 espèces réparties** dans **9 genres et 5 familles** pour l'année 2003. Cette composition spécifique passe en 2011 à **46 espèces réparties dans 15 genres et 10 familles**, montre donc une évolution significative en nombre de genres et familles.
- ✓ la flore des parcelles de la station du Centre est composée de **81 espèces réparties** dans **42 genres et 23 familles** pour l'année 2003. Cette composition spécifique passe en 2011 à **128 espèces réparties dans 51 genres et 28 familles** et montre une évolution positive en nombre de genres et familles.

Tableau V. Répartition des espèces du Nord et du Centre en fonction des genres et familles.


Zones	Année 2003		Année 2004			Année 2011			
Zones	Nb espèces	Familles	Genres	Nb espèces	Familles	Genres	Nb espèces	Familles	Genres
Nord	21	5	9	35	7	13	46	10	15
Centre	81	23	42	107	27	51	128	28	51

Les détails sur la composition des noms des genres et familles des espèces pour les années 2003, 2004 et 2011 sont présentés *en annexe II, sur les tableaux IV et V*.

Nous donnons les différents résultats des évolutions enregistrées par zone d'intervention (graphiques n^2 et n^3), par années et par sites.

Graphique n°2: Nombre d'espèces par genres et familles de la zone Nord en 2011

Graphique n°3: Nombre d'espèces par genres et familles de la zone Centre en 2011

Nous présentons à travers les *tableaux VI et VII*, un exemple d'analyse des résultats d'inventaires classés selon les familles et les genres par zone d'intervention pour l'année 2011.

Le *tableau VI* montre que sur les **15 genres** des espèces ligneuses du Nord en 2011, **05 genres** sont représentés par une seule espèce représentant **10,9%** de la diversité floristique ligneuse. Les autres comptent entre **3 et 11 espèces**.

Les genres les plus représentés dans la diversité spécifique ligneuse de cette zone sont : les *Acacia* (23,9%) et les *Maerua* (13,0%). Ces genres regroupent 36,9% de la diversité floristique ligneuse de la zone d'intervention du Nord.

Le regroupement par famille des espèces ligneuses met en relief la prépondérance des *Mimosacées* qui totalisent **18 espèces**. Cette famille représente **39,1%** de la diversité floristique ligneuse de la zone d'intervention du Nord. On a dénombré également **04 familles** comptant chacune **une seule espèce**. Ces familles « mono spécifiques » représentent **8,7%** de la diversité floristique ligneuse.

Tableau VI. Nombre d'espèces par genres et familles de la zone Nord en 2011

Familles	Nb espèces	Abondance	Genres	Nb espèces	Abondance
Mimosacées	18	39,1	Acacia	11	23,9
Capparacées	6	13,0	Maerua	6	13,0
Césalpiniacées	6	13,0	Balanites	3	6,5
Combrétacées	6	13,0	Bauhinia	3	6,5
Balanitacées	3	6,5	Combretum	3	6,5
Rhamnacées	3	6,5	Dichrostachys	3	6,5
Familles mono spécifiques	4	8,7	Faidherbia	3	6,5
			Guiera	3	6,5
			Ziziphus	3	6,5
			Piliostigma	3	6,5
			Genres mono spécifiques	5	10,9
Total	46	100		46	100

Le tableau VII indique que sur les **51 genres** des espèces ligneuses de la zone du Centre en 2011, **19 genres** sont représentés par une seule espèce représentant **14,8%** de la diversité floristique ligneuse. Les autres comptent entre **2 et 13 espèces**.

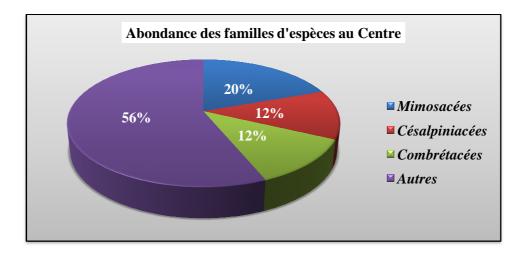
Les genres les plus représentés dans la diversité spécifique ligneuse de la zone sont les *Acacia* (10,2%), les *Combretum* (7,0%) et les *Lannea* (4,7%). Ces genres regroupent 21.9% de la diversité floristique ligneuse de la zone d'intervention du Centre.

Le regroupement par famille des espèces ligneuses met en relief la prépondérance des taxons suivants qui totalisent chacun entre **15 et 22 espèces**: les *Mimosacées* (**17,2%**), les *Combrétacées* (**11,7%**) et les *Césalpiniacées* (**11,7%**). Ces familles totalisent **40,6%** de la diversité floristique ligneuse de la zone d'intervention du Centre. On a dénombré également **7 familles** comptant chacune **une seule espèce**. Ces familles « mono spécifiques » représentent **5,5%** de la diversité floristique.

Tableau VII. Nombre d'espèces par genres et familles de la zone Centre en 2011

Familles	Nb espèces	Abondance	Genres	Nb espèces	Abondance
Mimosacées	22	17,2	Acacia	13	10,2
Césalpiniacées	15	11,7	Combretum	9	7,0
Combrétacées	15	11,7	Lannea	6	4,7
Anacardiacées	10	7,8	Cassia	5	3,9
Rubiacées	9	7,0	Gardenia	5	3,9
Capparacées	7	5,5	Grewia	5	3,9
Méliacées	5	3,9	Maerua	5	3,9
Tiliacées	5	3,9	Piliostigma	4	3,1
Apocynacées	4	3,1	Ziziphus	4	3,1
Rhamnacées	4	3,1	Azadiratcha	3	2,3
Bombacacées	3	2,3	Dichrostachys	3	2,3
Ebénacées	3	2,3	Diospyros	3	2,3
Sapotacées	3	2,3	Feretia	3	2,3
Annonacées	2	1,6	Guiera	3	2,3
Balanitacées	2	1,6	Sclerocarya	3	2,3
Bignoniacées	2	1,6	Vitellaria	3	2,3
Fabacées	2	1,6	Annona	2	1,6
Moracées	2	1,6	Balanites	2	1,6
Moringacées	2	1,6	Bombax	2	1,6
Olacacées	2	1,6	Detarium	2	1,6
Polygalacées	2	1,6	Entada	2	1,6
Familles mono spécifiques	7	5,5	Ficus	2	1,6
			Holarrhena	2	1,6
			Khaya	2	1,6
			Maytenus	2	1,6
			Moringa	2	1,6
			Parkia	2	1,6
			Saba	2	1,6

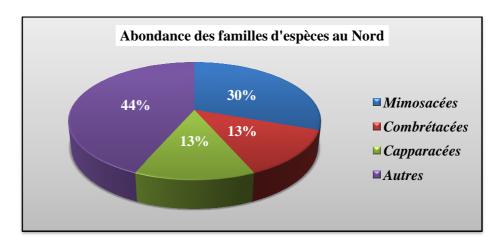
	Nb			Nb	
Familles	espèces	Abondance	Genres	espèces	Abondance
			Securinega	2	1,6
			Sterospermum	2	1,6
			Tamarindus	2	1,6
			Ximenia	2	1,6
			Genres mono spécifiques	19	14,8
Total	128	100		128	100


L'analyse de la richesse floristique des zones d'intervention nous permet d'obtenir des indices de diversité générique (Ig) moyens au Nord (1,25) et (1,55) au Centre. Ces indices sont largement inférieur au seuil requis (**Ig= 4**) cela confirme l'existence d'une **flore plus diversifiée.** Les tableaux VI et VII en annexe II, donnent les détails récapitulatifs de calcul d'indice par année et par parcelle.

4.1.3. Analyse du spectre biologique

La richesse floristique des parcelles mises en défens en 2003 dans la zone d'intervention Nord et au Centre est composée uniquement de **Spermaphytes** et toutes les familles d'espèces appartiennent à la classe des **dicotylédones**.

✓ Au niveau de la zone d'intervention du centre :


La famille des *Mimosacées* avec **25 espèces**, les Césalpiniacées avec **16 espèces** et les *Combrétacées* avec **15 espèces** forment à elles seules plus des **40%** des espèces inventoriées (*graphique n°4*), et l'ensemble des détails du tableau sur le spectre taxonomique de la zone Centre est en annexe I.

Graphique n°4: Proportion des familles d'espèces au Centre

✓ Au niveau de la zone d'intervention du Nord :

La famille des *Mimosacées* avec **14 espèces**, les Capparacées avec **6 espèces** et les *Combrétacées* avec **6 espèces** forment à elles seules plus des **50%** des espèces inventoriées (*graphique n°5*), et l'ensemble des détails du tableau sur le spectre taxonomique de la zone Nord est en annexe I.

Graphique n°5: Proportion des familles d'espèces au Nord

4.1.4. Analyse de la structure des groupements végétaux

Cette partie de l'analyse intègre la taille relative des espèces, qui est un paramètre important pour détecter si l'âge des parcelles mises en défens est un facteur significatif du changement des paramètres structuraux.

a) Analyse du type biologique des formations végétales

Le groupe **des phanérophytes** regroupant les *microphanérophytes* et les *nanophanérophytes* totalise **100% des espèces** inventoriées, ce qui est logique car nous avons sélectionné que les espèces de 1 mètre et plus pour cette étude. Les figures ci après sont des représentations des différentes dispersions d'espèces des deux zones d'interventions selon le type biologique et l'âge des parcelles mises en défens.

La figure **n**°**5** est la présentation de l'état floristique en année de référence en 2003. Elle indique que les espèces ont été protégées selon deux niveaux de strates végétatives et deux types de parcelles.

- ✓ Les parcelles de type 1 concernent deux parcelles du Centre (Dawélgué et Guela) où, on a enregistré en moyenne en année de référence la présence minimale de 250 individus d'arbres microphanérophytes et 550 individus d'arbres nanophanérophytes. La présence maximale d'espèces est donnée à Dawélgué avec plus de 750 individus d'arbres nanophanérophytes.
- ✓ Les parcelles de type 2 concernent les quatre autres parcelles (Gampéla et ceux du Nord) où, nous enregistrons en 2003 la présence minimale de 9 individus d'arbres microphanérophytes et 18 individus d'arbres nanophanérophytes (figure n°5).

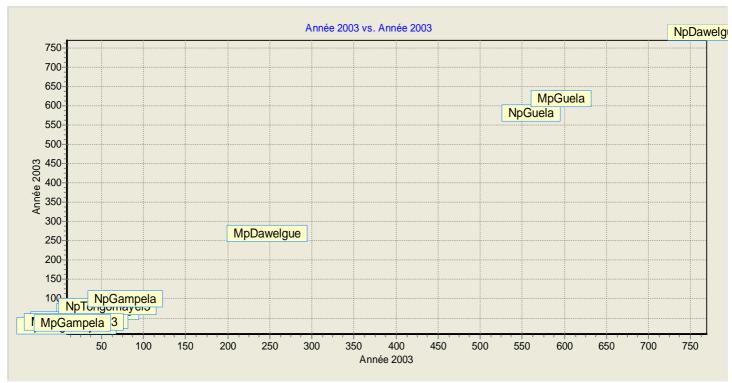


Figure n°5 : Carte d'analyse de dispersion des phanérophytes en 2003 par site

La figure **n**°**6** donne l'état de la végétation protégée en 2004. Elle montre une nette progression sur l'ensemble des deux types de parcelles.

✓ Sur les parcelles de type 1, on enregistre une présence minimale évolutive de 600 individus d'arbres microphanérophytes et de 800 individus d'arbres nanophanérophytes.

La présence maximale d'espèces est donnée à **Dawélgué** avec plus de **1100** individus d'arbres nanophanérophytes.

✓ Sur les parcelles de type 2, on a également une présence minimale évolutive de 18 individus d'arbres microphanérophytes et 63 individus d'arbres nanophanérophytes.

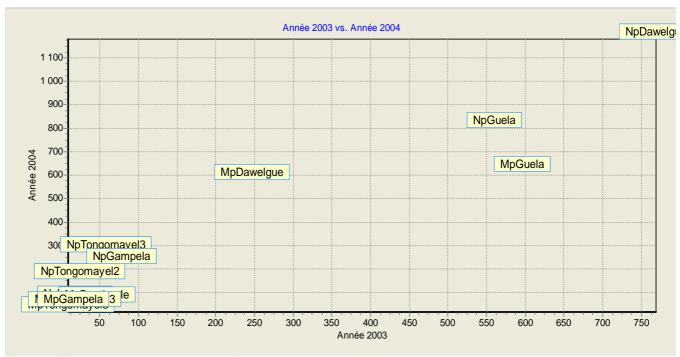


Figure n°6 : Carte d'analyse de dispersion des phanérophytes en 2004 par site

La figure **n**°7 montre l'état de la végétation en 2011. On observe une progression significative sur l'ensemble des deux types de parcelles surtout *les parcelles de types 2*.

✓ Sur les parcelles de type 1, la présence minimale évolutive est de 904 individus d'arbres microphanérophytes et de 550 individus d'arbres nanophanérophytes.

La présence maximale d'espèces enregistrées est donnée à **Dawélgué** avec plus de **1300** individus d'arbres *microphanérophytes*. En revanche, une baisse est enregistrée au niveau des nanophanérophytes et surtout à Dawélgué (moins de 600 individus).

✓ *Sur les parcelles de type 2*, on a également une présence minimale évolutive de *450* individus d'arbres *microphanérophytes* et *167* individus d'arbres *nanophanérophytes*.

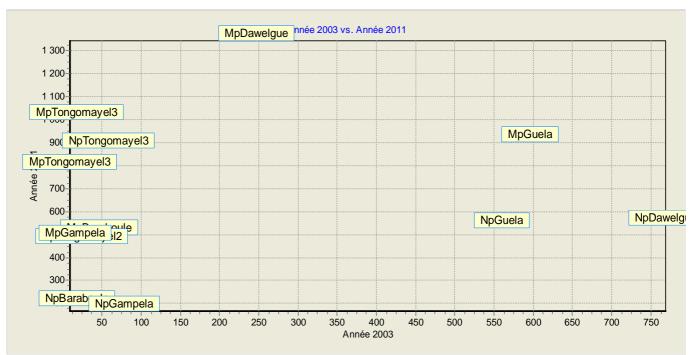


Figure n°7: Carte d'analyse de dispersion des phanérophytes en 2011 par site

Conclusion partielle de l'étude floristique

Les résultats de ce travail montrent une amélioration de l'état de la végétation caractérisée pour une augmentation importante du nombre d'espèces ligneuses (77 nouvelles espèces) et du nombre d'individus (654 nouveaux individus).

La diversité générique est très bonne et atteint 1.25 par endroit. On note une nette différentiation entre les mises de défens au Nord et celles au centre. La diversité générique est de 1.25 au nord avec 46 espèces réparties en 15 genres et 10 familles. Au Centre, elle est de 1.55 avec 128 espèces réparties en 51 genres et 28 familles.

Cette amélioration est également remarquable niveau de structure verticale de la végétation avec une augmentation tendancielle de l'abondance des arbres par rapport aux arbustes. La conséquence est le passage progressif vers des sols nus ou steppes arbustives vers des formations savanicoles arborées à boisée.

La richesse floristique des parcelles mises en défens en 2003 dans la zone d'intervention Nord et au Centre est composée uniquement de **Spermaphytes** et toutes les familles d'espèces appartiennent à la classe des **dicotylédones** (annexes II aux tableaux VIII et IX). Ces résultats nous permettent donc de vérifier notre première hypothèse (**H1**) de l'étude.

4.2. Résultats de l'étude phytosociologique

Cette partie de l'étude va nous permettre de faire une répartition en groupements de végétaux à travers des analyses statistiques afin de vérifier l'impact de ces mises en défens.

4.2.1. Analyse en Composantes Principales (ACP) des zones d'intervention

a) Analyse de la matrice brute de la zone Nord

Les valeurs propres sont calculées à partir d'une matrice de corrélation. Le *tableau VIII* donne le résumé de l'**ACP** appliquée à la matrice de la zone Nord. Les quatre premiers axes factoriels retenus expliquent à **48,20** % la **variance totale.**

Tableau VIII. Valeurs propres et Groupements de végétaux du Nord

Valeurs propres

Axes	Valeurs propres	Pourcentage	Pourcentage cumulé
1	2.396582	13.31%	13.31%
2	2.309862	12.83%	26.15%
3	2.096725	11.65%	37.80%
4	1.872392	10.40%	48.20%

Groupements de végétaux

Groupements	Description	Tailles de groupe (espèces)
Groupement n°1	Groupement à Dichrostachys cinerea	2
Groupement n°2	Groupement à Balanites aegyptiaca	7
Groupement n°3	Groupement à Acacia nilotica	11

Les trois (3) groupements de végétaux dont les tailles respectives sont connues (2 à 11 espèces/groupement) se distinguent à travers une Classification Hiérarchique Ascendante (CHA). Ce regroupement nous permis de séparer les groupes de relevés représentatifs des unités liées aux différentes zones d'intervention et d'obtenir une carte factorielle privilégiant les espèces les plus fréquentes (figure n°8).

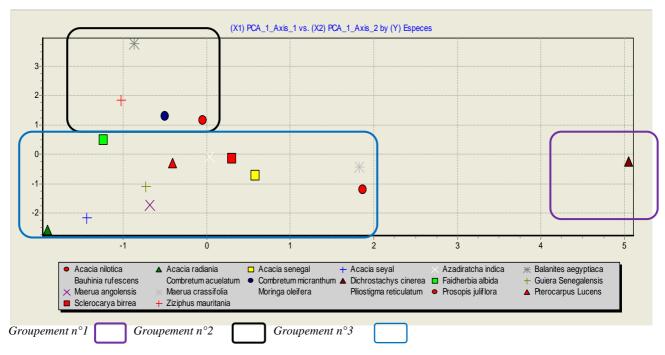


Figure n°8 : Carte factorielle des groupements des végétaux au Nord

La composition floristique et la structure de ces trois groupements sont récapitulées dans le tableau I de l'annexe III.

b) Analyse des regroupements des végétaux des parcelles du Nord

Cette partie sur les regroupements nous permet de montrer les différentes affinités qui existent entres les espèces du Nord.

Union de la conficient de similitude de Sorensen entre les groupements individualisés

Le coefficient de similitude de Sorensen pour les trois (3) groupements montre que les groupements dans leur majorité appartiennent à **des communautés végétales différentes deux à deux** (coefficient faible): G1 et G2 (44,44 %), G1 et G3 (30,77 %). Les valeurs faibles obtenues n'indiquent pas nécessairement l'existence d'un caractère dissemblant. Seul le groupement (coefficient fort) G2 et G3 (77,78 %) appartient à une même communauté végétale (tableau III de l'annexe III). Ces résultats sont illustrés par l'arbre d'hiérarchie à travers la Classification Hiérarchique Ascendante (figure n°9).

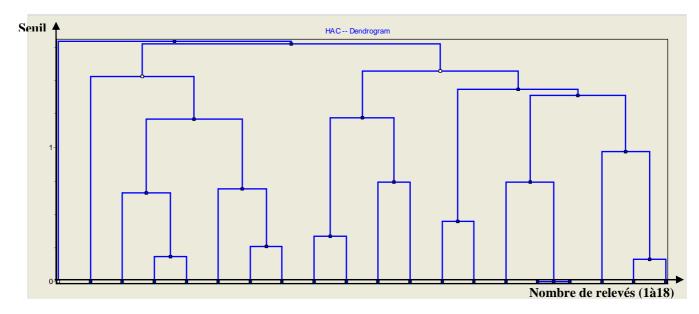


Figure n°9: Classification des groupements des végétaux du Nord

4 Indice de diversités spécifiques des trois groupements du Nord

Le groupement n°1 (Tableau IX) composé de 2 espèces, présente un indice de diversité de Shannon égale à 0.24 bits pour un indice de régularité de 0.15 bits. L'indice réciproque (1-D), d'une valeur de 0,38 est déduit de l'indice de Simpson D calculé (0,63). Ainsi, la diversité du groupement n°1 équivaut à 15 % (échelle de Shannon) et à 38 % (échelle de Simpson) de toute la diversité maximale possible dans ce système à 2 espèces. Le faible indice de régularité permet de conclure qu'une seule espèce nouvelle (*Dichrostachys cinerea*) domine.

Le groupement n°2 (Tableau IX) composé de 7 espèces, présente un indice de diversité de Shannon (H) égale à0.81 bits pour un indice de régularité de 0.49 bits. L'indice réciproque (1-D), d'une valeur de 0,84 est déduit de l'indice de Simpson D calculé (0,16). Ainsi, la diversité du groupement n°2 équivaut à 49 % (échelle de Shannon) et à 84 % (échelle de Simpson) de toute la diversité maximale possible dans ce système à 7 espèces. Ces valeurs permettent de conclure que l'association de *Balanites aegyptiaca, Combretum acuelatum*, Faidherbia albida et du Ziziphus mauritania est bien à une limite de diversification avec une répartition régulière du recouvrement entre les espèces.

Le groupement n°3 (Tableau IX) composé de 11 espèces, présente un indice de diversité de Shannon égale à 1.0 bits pour un indice de régularité de 0.60 bits. L'indice réciproque (1-D), d'une valeur de 0,90 est déduit de l'indice de Simpson D calculé (0,10). Ainsi, la diversité du groupement n°3 équivaut à 60 % (échelle de Shannon) et à 90 % (échelle de Simpson) de toute la diversité maximale possible dans ce système à 11espèces. Ces valeurs confirment très bien que l'association d'Acacia nilotica, Acacia radiania, Acacia senegal, Acacia seyal, Bauhinia rufescens, Maerua angolensis et de Maerua crassifolia est diversifiée avec une répartition régulière du recouvrement entre les espèces.

Tableau IX. Récapitulatif des indices de spécificités dans la zone Nord

Groupement n°1	Groupement n°2	Groupement n°3
0.24	0.81	1.00
0.15	0.49	0.60
0.63	0.16	0.10
0.38	0.84	0.90
	0.24 0.15 0.63	0.24 0.81 0.15 0.49 0.63 0.16

c) Analyse de la matrice brute de la zone Centre

Les valeurs propres sont calculées à partir d'une matrice de corrélation. Le *tableau X* donne le résumé de l'**ACP** appliquée à la matrice de la zone Nord. Les quatre premiers axes factoriels retenus expliquent à **38,08** % la **variance totale.**

Tableau X. Valeurs propres et groupements de végétaux du Centre

	Valeurs propres											
Axes	Valeurs propres	Pourcentage	Pourcentage cumulé									
1	2.075855	11.53%	11.53%									
2	1.761737	9.79%	21.32%									
3	1.593416	8.85%	30.17%									
4	1.424292	7.91%	38.08%									

Groupements de végétaux

Groupements	Description	Tailles de groupe (espèces)
Groupement n°1	Groupement à Combretum nigricans	8
Groupement n°2	Groupement à Maerua angolensis	29
Groupement n°3	Groupement à Cassia singueana	36

Les trois (3) groupements de végétaux dont les tailles respectives sont connues (8 à 36 espèces/groupement) se distinguent à travers une Classification Hiérarchique Ascendante (CHA).

Ce regroupement nous permis de séparer les groupes de relevés représentatifs des unités liées aux différentes zones d'intervention et d'obtenir **une carte factorielle** privilégiant les espèces les plus fréquentes (figure $n^{\circ}10$).

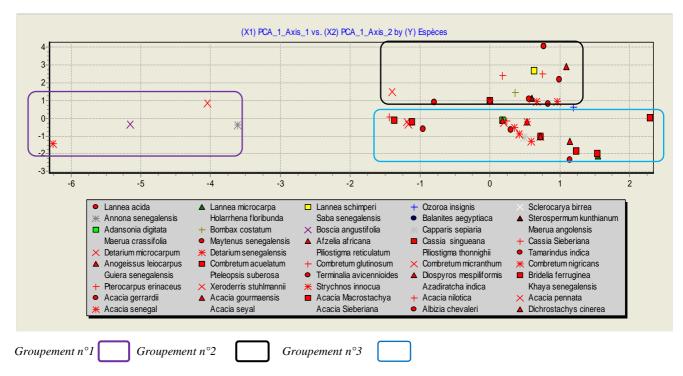


Figure n°10: Carte factorielle des groupements des végétaux du Centre

La composition floristique et structure de ces trois groupements sont récapitulées dans le tableau IV de l'annexe III.

d) Analyse des regroupements des végétaux de la zone du Centre

Cette partie sur les regroupements nous permet de montrer les différentes affinités qui existent entres les espèces du Centre.

Coefficient de similitude de Sorensen entre les groupements individualisés

Le coefficient de similitude de Sorensen pour les trois (3) groupements montre que les groupements dans leur majorité appartiennent à des communautés végétales différentes deux à deux (coefficient faible): G1 et G2 (32,34 %), G1 et G3 (36,36 %). Les valeurs faibles obtenues n'indiquent pas nécessairement l'existence d'un caractère dissemblant. Seul le groupement (coefficient fort) G2 et G3 (52,31 %) appartient à une même communauté végétale (tableau V).

Ces résultats sont illustrés par l'arbre d'hiérarchie à travers la Classification Hiérarchique Ascendante (figure $n^{\circ}11$).

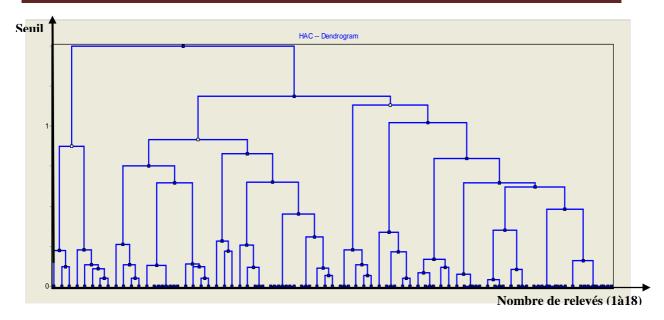


Figure n°11 : Classification des groupements des végétaux du Centre

Les des des diversités spécifiques des trois groupements

Le groupement n°1 (Tableau XI) composé de 8 espèces, présente un indice de diversité de Shannon égale à 0.84 bits pour un indice de régularité de 0.45 bits. L'indice réciproque, d'une valeur de 0,83 est déduit de l'indice de Simpson calculé (0,17). Ainsi, la diversité du groupement n°1 équivaut à 45 % (échelle de Shannon) et à 83 % (échelle de Simpson) de toute la diversité maximale possible dans ce système à 8 espèces. Le faible indice de régularité permet de conclure qu'une seule espèce (*Combretum nigricans*) domine.

Le groupement n°2 (Tableau XI) composé de 29 espèces, présente un indice de diversité de Shannon égale à 1.43 bits pour un indice de régularité de 0.76 bits. L'indice réciproque, d'une valeur de 0,96 est déduit de l'indice de Simpson calculé (0,04). Ainsi, la diversité du groupement n°2 équivaut à 76 % (échelle de Shannon) et à 96 % (échelle de Simpson) de toute la diversité maximale possible dans ce système à 29 espèces. Ces valeurs permettent de conclure que l'association de *Maerua angolensis, Piliostigma reticulatum, Terminalia avicennioides, Acacia gourmaensis* et de l'*Acacia pennata* est bien diversifiée avec une répartition régulière du recouvrement entre les espèces.

Le groupement n°3 (Tableau XI) composé de 36 espèces, présente un indice de diversité de Shannon égale à 1.49 bits pour un indice de régularité de 0.80 bits. L'indice réciproque, d'une valeur de 0,97 est déduit de l'indice de Simpson calculé (0,03). Ainsi, la diversité du groupement n°3 équivaut à 80 % (échelle de Shannon) et à 97 % (échelle de Simpson) de toute la diversité maximale possible dans ce système à 36 espèces. Ces valeurs permettent de conclure que l'association de Cassia singueana, Lannea microcarpa, Dichrostachys cinerea, Piliostigma thonnighii et de l'Eucalyptus camaldulensis est bien diversifiée avec une répartition régulière du recouvrement entre les espèces.

Tableau XI. Récapitulatif des indices de spécificités dans la zone Centre

Indices Groupement n°1		Groupement n°3				
0.84	1.43	1.49				
0.45	0.76	0.80				
0.83	0.96	0.97				
0.17	0.04	0.03				
	0.84 0.45 0.83	0.84 1.43 0.45 0.76 0.83 0.96				

4.2.2. Description de la végétation des deux zones d'intervention (Nord et Centre)

Les conclusions de l'étude précédente nous permettent de mettre en lumière la question du zonage par des observations terrains. En effet, ces résultats ne donnent pas une vue synoptique et synthétique de la zone d'étude mais au contraire, la plus *petite unité de végétation*, *l'abondance relative et de la structure verticale de la végétation*. Nous montrons dans le *tableau XII*, la description de la végétation actuelle des parcelles étudiées.

Tableau XII. Description de la végétation des zones d'intervention

Grands types de végétaux		Structure	e de la					
		Structure verticale		Type de végétation				
	Code	Hauteur en (m)	Н	R	S	RM (%)	Formations végétales	N°
			-	-	+	< 25		1
			+	+	-	25 <rm<75< td=""><td></td><td>2</td></rm<75<>		2
Ligneux Bas	LBc	1 à 2	+	+	+	> 75	Steppes arbustives	3
			-	-	+	< 25	Steppes arborées	1
			+	+	-	25 <rm<75< td=""><td></td><td>2</td></rm<75<>		2
	LHd	2 à 8	+	+	+	> 75	Savanes arbustives	3
			-	-	+	< 25		1
			+	+	-	25 <rm<75< td=""><td>Savanes arborées</td><td>2</td></rm<75<>	Savanes arborées	2
Ligneux Hauts	LHe	8 et plus	+	+	+	> 75	Forêts	1

⁽⁺⁾ = Bon indice (-) = Mauvais indice, $(N^{\bullet}1)$ = claire, $(N^{\bullet}2)$ = moyen dense, $(N^{\bullet}3)$ = dense

H, R, S sont les indices de Shannon, de Régularité et Simpson

Conclusion partielle sur l'étude phytosociologique

L'étude phytosociologie montre que la majorité des regroupements végétaux (trois dans chacune des zones d'intervention en 2003) appartiennent à des communautés végétales différentes pris deux à deux (faible coefficient de similitude).

L'association d'espèces dominantes à un ensemble différentes d'un même groupement végétal est très bien diversifiée avec des répartitions régulières du recouvrement entre les espèces.

L'ensemble des observations ont permis d'identifier et de caractériser cinq unités de végétation sur les parcelles, à cela s'ajoute les unités comme les cultures, les sols nus et dégradés.

Une telle classification très générale doit pouvoir être adaptée afin de permettre la description correcte de certaines situations particulières dont les seuils de couvert qui sont délicats à adopter.

4.3. Résultats de l'étude de traitements d'image satellite Landsat

4.3.1. Interprétation visuelle des images Landsat

Le parcours des sites, en se référant à l'analyse des images TM3 rehaussée, du NDVI et la composition colorée TM3, TM4 et TM5, a permis de retenir **cinq thèmes**. Sur le tableau XIII, on présente les résultats de l'interprétation visuelle des images extraites.

Tableau XIII. Interprétation visuelle des images de 1988, 2003 et 2011

Unités thématiques	Images									
	TM3 (en niveau de gis)	NDVI (en niveau de gis)	Composition colorée, RVB (TM3, TM4, TM5)							
Formation forestière: Forte activité photosynthétique	Noir	Blanc	Vert 75%							
Savanes arborées: activité photosynthétique moyenne	Gris légèrement sombre	Blanc et gris clair	Vert 50%							
Steppes et savanes arbustives: activité photosynthétique faible	Gris clair	Gris sombre	Vert 25%, Marron							
Sols nus ou dénudés, dégradés et Cultures (faiblement herbeux)	Blanc	Noir	Bleu, jaune							
Zones brûlées	Noir	Noir	Noir							

La composition colorée TM3, TM4 et TM5 présente toutes les surfaces boisées en vert. De même, l'image NDVI en niveaux de gris permet de bien discerner ces surfaces. Les extraits des cartes de la **figure n**°12 donnent une illustration des NDVI calculés des zones d'étude.

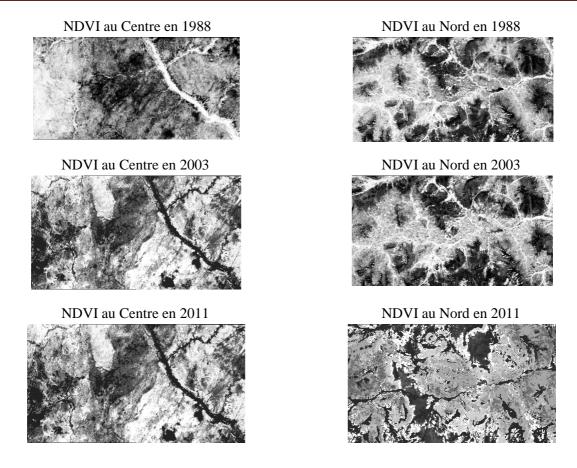


Figure n° 12: Extraits de cartes des NDVI calculés dans les zones d'intervention

4.3.2. Cartes d'occupation du sol

Les cartes résultantes du traitement par télédétection des deux zones d'intervention sont présentées sur la **figure n°13 et n°14.** Elles ont été obtenues à partir de l'analyse des scènes Landsat TM et, dans l'objectif de mener à bien nos évaluations nous avons utilisé comme matériel de référence, la carte de la végétation et d'occupation des terres du Burkina Faso.

a) Zone d'intervention du Centre (figure n°13)

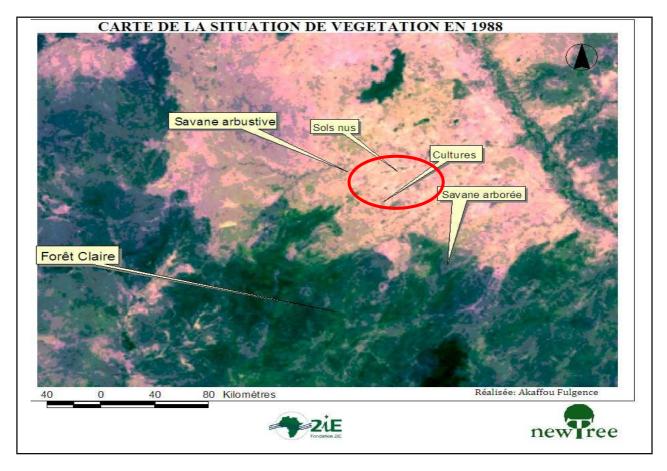
Nous pouvons constater que les classes les plus répandues sont : les sols nus, cultures et les savanes arborées qui occupaient la majeure partie de la surface totale de la zone extraite.

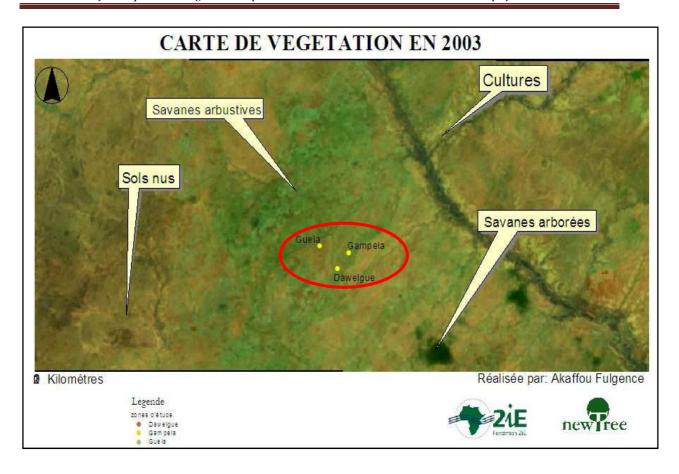
L'analyse visuelle des trois cartes au niveau du Centre nous permet de constater que les principaux changements sont :

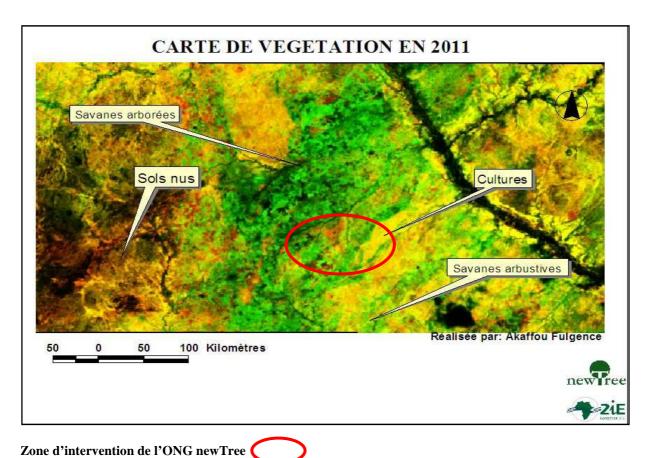
- l'augmentation des surfaces de savane arborée entre 1988 et 2011;
- le progrès des surfaces de cultures et
- la fluctuation des classes de forêts claires et de culture

La classe qui semble être la plus stable durant cette période, est la culture qui occupe la moitié de la surface pour les trois dates analysées.

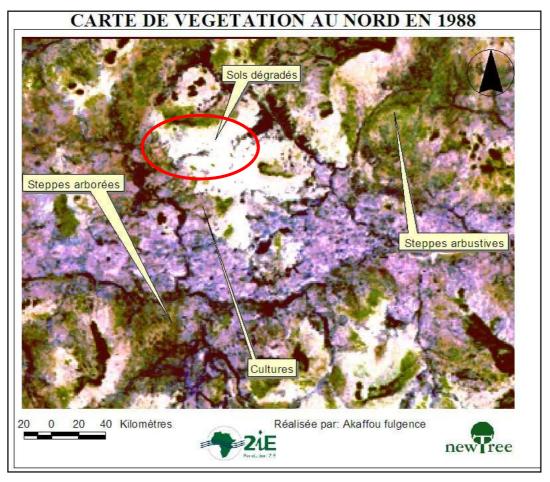
b) Zone d'intervention du Nord (figure n°14)

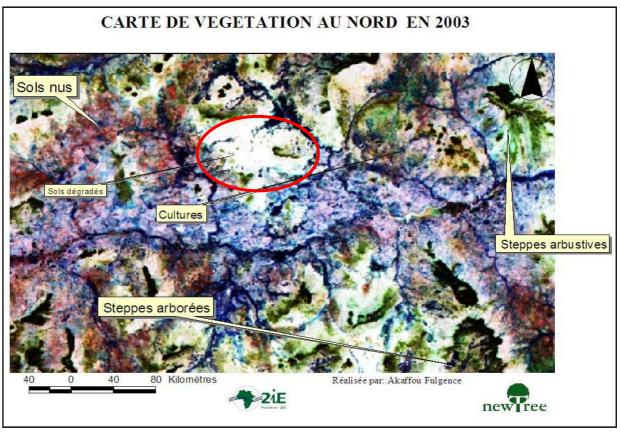

Nous pouvons constater que les classes les plus répandues sont : les sols nus, cultures et les steppes arbustives qui occupaient plus du 60% de la surface totale de la zone extraite.

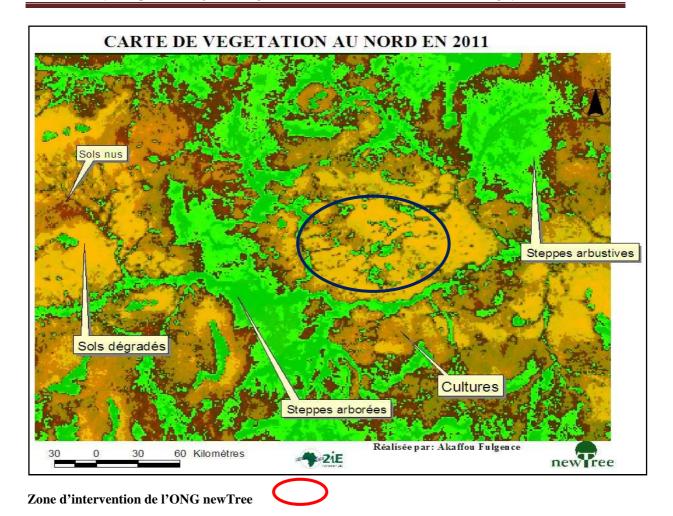

L'analyse visuelle des trois cartes au niveau du Nord nous permet d'observer que les principaux changements sont :


- l'augmentation des surfaces de steppes arbustives entre 1988 et 2011;
- le progrès des surfaces de cultures et
- la fluctuation des sols nus et dégradés.

La classe qui semble être la plus stable durant cette période, est la steppe arbustive qui occupe près de la moitié de la surface pour les trois dates analysées.


Ainsi, les extraits de cartes de végétation au Centre de 1988 à 2011sont présentées à la figure n°13 et 14.





Figures n°13: Extraits de cartes d'occupation du sol en 1988, 2003 et 2011.

Figures n°14: Extraits de cartes d'occupation du sol en 1988, 2003 et 2011.

4.3.3. Evolution de l'occupation du sol des zones extraites

Afin de montrer l'évolution de chaque classe d'occupation du sol au cours du temps, nous avons utilisé une série de transformations ensemblistes ; la relation entre la même classe à deux dates différentes, nous permet d'extraire les zones « stables », de « régression » et de « progression » de cette classe.

On considère que **T1** représente l'ensemble de pixels de l'année 1988, **T2** l'ensemble de pixels de l'année 2003 et que **T3** est l'ensemble de pixels pour l'année 2011.

Les valeurs positives représentent *une progression de la surface* de la classe pendant la période analysée et les valeurs négatives indiquent *la perte de surface* d'une classe entre les deux dates. Les valeurs proches de zéro nous indiquent que la classe *reste relativement stable* entre les deux dates. Ainsi, nous présentons dans les tableaux XIV et XV les types de liaisons entre les trois dates dans les zones d'intervention.

Tableau XIV. Type de liaisons entre les trois dates au Centre

	1988	2003	2011		
Classes	Surface (Km ²)	Surface (Km²)	Surface (Km²)	T1-T2	T2-T3
Forêts Claires	2.5	0.295	0.103	2.205	0.192
Savanes arborées	1.048	1.806	2.573	-0.758	-0.767
Savanes arbustives	0.219	1.007	1.621	-0.788	-0.614
Cultures	1.492	2.854	3.098	-1.362	-0.244
Sols nus, dégradés	3.627	2.924	1.494	0.703	1.43
Total	8.886	8.886	8.886		

Tableau XV. Type de liaisons entre les trois dates au Nord

	1988	2003	2011		
Classes	Surface (Km²)	Surface (Km²)	Surface (Km²)	T1-T2	T2-T3
Steppes arborées	1.873	1.006	2.093	0.867	-1.087
Steppes arbustives	1.267	0.980	3.873	0.287	-2.893
Cultures	2.014	3.536	3.621	-1.522	-0.085
Sols nus, dégradés	4.892	4.524	0.459	0.368	4.065
Total	10.046	10.046	10.046		

a) Evolution de l'occupation du sol dans la zone du Centre

• entre 1988 et 2003

Sur la **figure n°13**, on observe que la classe dont la surface reste la plus stable dans le temps, est la classe des sols nus et dégradés, outre qu'il s'agit de la classe la plus étendue aux deux dates. En revanche, ce sont les classes de forêts claires et de cultures qui sont les plus fluctuantes. Les résultats du tableau XV entre 1988 et 2003 (T1-T2) montrent que la classe « cultures » présente une importante progression avec plus de **1362 km²** de croissance durant une période de 15 années (tableau XV). Nous avons perçu plus clairement d'autres changements importants tels que la diminution des surfaces des classes « forêt claire ».

entre 2003 et 2011

Pendant cette période la classe culture présente une grande stabilité entre les deux dates, mais nous pouvons aussi observer un comportement similaire pour la classe « savanes arborées » qui présente un grand nombre de pixels. Dans le cas de cette dernière classe, sur la figure 13, il est clair qu'elle a perdu une proportion considérable. En regardant les cartes

de la figure n°13, nous pouvons donc établir que l'occupation du sol pendant la période compris entre 2003 et 2011 montre une stabilité globale, en particulier de la classe « culture » et des « savanes arborées ». Une grande proportion des surfaces de la classe des savanes arbustives est observée. La contribution de la mise en défens au niveau de la zone d'intervention est visible coroborant ainsi la stabilité au niveau des savanes arborées.

b) Evolution de l'occupation du sol dans la zone du Nord

entre 1988 et 2003

Sur la **figure n°14**, on observe que la classe dont la surface reste la plus stable dans le temps, est la classe des sols nus et dégradés, outre qu'il s'agit de la classe la plus étendue aux deux dates. En revanche, ce sont les classes de cultures et de steppes arborées qui sont les plus fluctuantes. Les résultats du tableau XVI entre 1988 et 2003 (T1-T2) montrent que la classe «cultures» présente une importante progression avec plus de **1522 km²** de croissance durant une période de 15 années (tableau XVI). Nous avons perçu plus clairement d'autres changements importants tels que la régression des surfaces des classes « savanes arbustives».

entre 2003 et 2011

Pendant cette période la classe culture présente une grande stabilité entre les deux dates, mais nous pouvons aussi observer un changement positif considérable de la classe « savanes arbustives » qui présente un grand nombre de pixels. Au niveau de la classe des sols nus, dégradés, sur la figure 14, il est clair qu'elle a perdu une nette proportion considérable. En regardant les cartes de la figure n°14, nous pouvons donc établir que l'occupation du sol pendant la période compris entre 2003 et 2011 montre une stabilité globale, en particulier de la classe « culture». La contribution de la mise en défens au niveau de la zone d'intervention est plus visible en terme de recupérartion des sols dégradés, avec la forte progression de la classe des savanes arbustives.

Conclusion partielle des résultats de l'étude de traitement d'images

Cette étude d'analyse d'images satellite nous permis d'observer et d'analyser cinq (5) formations végétales sur les images extraites dans les zones d'intervention. Au niveau de l'occupation des sols de ces zones nous avons pu conclure que :

- Les classes les plus répandues sont : les sols nus, cultures et les savanes arborées au Centre et les sols nus, cultures et les steppes arbustives au Nord
- Les principaux changements sont dans l'ensemble le progrès de surface de culture et l'augmentation des surfaces savanes arborées pour le Centre et les steppes arbustives pour le Nord.

Sur les zones mises en défens on a observé particulièrement des changements positifs en termes de récupération de terres et de contribution à l'évolution du couvert végétal de la zone d'intervention.

B- DISCUSSION

1. Apport de la méthodologie proposée

L'acquisition des scènes Landsat TM offre un avantage non négligeable dans le cadre d'un suivi de la végétation, par sa capacité à capter des données sur de plus grandes zones dans un plus court laps de temps et pour un moindre coût. La méthodologie d'analyse de données d'inventaire phytomasses combinée au traitement d'image ont permis de résoudre certains problèmes présents déjà il y a une dizaine d'année (GIRARD Michel-Claude et GIRARD Colette M., 1999) :

- ✓ Le suivi de l'évolution des espèces végétales en fonction des années et voir leur dispersion sur un espace (tendance d'évolution des phanérophytes).
- ✓ L'état floristique en rapport avec les formations végétales existantes et l'impact des mises en défens dans le temps sur les parcelles par analyse des images satellite Landsat TM est plus visible et rapide en interprétation.

L'analyse de données de végétation a montré qu'il existait un biais entre les deux approches proposées (données d'inventaires et d'images satellite). Car les deux jeux de données montrent une tendance générale avec une évolution d'espèces végétales. Les résultats restent donc satisfaisants et complémentaire. En ce qui concerne les calculs de NDVI des images extraites de chaque zone, les résultats sont globalement satisfaisants. La complication de traitement pour ces deux images est en effet importante et donnée: les bruits sur les bandes. Nous avons pu écrire un code sur le langage de programmation R pour faire des calibrations et des corrections. Ces résultats ont permis de réaliser des cartes d'occupation de sols entre l'intervalle d'année 1988, 2003 et 2011.

2. Suivi de l'état de diversité floristique

La classification réalisée à partir de fonctions statistiques d'appartenance amène à de bons résultats grâce à la double discrimination spectrale et spatiale. L'intérêt de cette classification réside dans le fait qu'elle soit reconductible. Tous les attributs et fonctions d'appartenance appliqués à chaque classe peuvent être utilisés pour une autre parcelle d'une même zone, où apparaissent les mêmes classes thématiques. La même hiérarchie de classes pourra lui être attribuée et la classification s'exécutera automatiquement. Cette technique peut être intéressante lorsqu'on a une série d'image à classer et que l'on veut employer les mêmes critères de discrimination pour chacune. Cela permet de comparer les classifications pour une analyse de l'état de diversité floristique rapide et pertinente ainsi que leur cartographie. Une autre approche permise par l'utilisation de cette méthode de classification orientée-objet est l'exportation des objets classés en « Shape » et leur intégration dans un logiciel de SIG (Arc view 3.2) afin de réaliser une étude diachronique de l'état de diversité floristique. En effet, l'utilisation d'objets pertinents et leur superposition sur une image de la même zone, à la même échelle et à des dates différentes, permettrait d'analyser son évolution (Exemple figure n°14). Le SIG doit en effet pouvoir répondre à ces questions : « A quel moment des changements dans l'état du couvert végétal sont-ils intervenus? Quels sont l'âge et l'évolution du phénomène ?». Cette analyse temporelle traduit que l'information apportée au SIG soit rattachée à des unités spatiales reproductibles.

CONCLUSION ET PERSPECTIVES

Le travail accompli dans le cadre de ce projet est considérable au regard des objectifs qui lui ont été assignés et au temps imparti pour sa réalisation. Il a été possible d'intégrer de façon effective des technologies (imagerie satellitaire, informatique) et méthodes de travail classique (inventaire forestier sur le terrain). Les analyses statistiques d'un grand nombre de données de végétation ont permis de réduire les inévitables erreurs d'interprétation ponctuelles.

La cartographie à l'aide de la télédétection a permis d'optimiser l'interprétation des limites entre les différents types de formations végétales. Ainsi, les résultats sur l'étude floristique indiquent qu'au moins 128 espèces réparties dans 51 genres et 28 familles pour le Centre et 46 espèces réparties dans 15 genres de 10 familles pour le Nord ont été inventoriées en 2011. La richesse floristique des parcelles mises en défens en 2003 dans la zone d'intervention Nord et au Centre est composée uniquement de Spermaphytes et toutes les familles d'espèces appartiennent à la classe des dicotylédones. L'état de la végétation mise en défens jusqu'en 2011 montre bien l'évolution positive en nombre d'arbres sur l'ensemble des deux types de parcelles identifiées. L'étude phytosociologique a montré que la majorité des regroupements végétaux appartiennent à des communautés végétales différentes pris deux à deux. Il existe une diversité floristique avec de parfaites répartitions du recouvrement entre espèces et l'ensemble des observations conduisent à identifier cinq formations de végétation, auxquelles s'ajoutent les unités comme les cultures, les sols nus et dégradés. Cette assertion est confirmé par l'analyse d'images satellite qui nous a permis de réaliser des cartes d'occupation des sols et de conclure que :

- Les classes les plus répandues sont : les sols nus, cultures et les savanes arborées au Centre et les sols nus, cultures et les steppes arbustives au Nord
- Les principaux changements sont dans l'ensemble le progrès de surface de culture et l'augmentation des surfaces savanes arborées pour le Centre et les steppes arbustives pour le Nord.

Les zones mises en défens ont montré particulièrement des changements positifs en termes de récupération de terres et de contribution à l'évolution du couvert végétal de la zone d'intervention.

Les perspectives d'évolution de la méthode d'analyse de données d'inventaire et de traitement d'images satellite sont nombreuses, cette étude n'étant qu'une proposition visant à établir une méthode simple, rapide et automatisable pour y arriver. D'une part, l'acquisition de nouvelles images satellites (SPOT...) est à envisager car elle permettrait de réaliser une étude diachronique à l'intérieur des parcelles afin d'établir un suivi de l'évolution de l'état floristique sur le long terme. La réalisation d'une étude approfondie dans le cadre d'une thèse est souhaitée pour l'ensemble des sites newTree jusqu'en 2011. Elle permettra d'étudier les facteurs déterminants de régénération naturelle assistée intégrant la topographie, l'étude des sols, du climat et les ressources hydrogéologique (nappe phréatique).

RÉFÉRENCES BIBLIOGRAPHIQUES

ADJANOHOUN E., 1965 : Etude phytosociologique des savanes de basse Côte d'ivoire (savanes lagunaires) vol XI, 38 pages.

AKÉ ASSI L., 1998. Impact de l'exploitation forestière et du développement agricole sur la conservation de la biodiversité biologique en Côte d'Ivoire. *Le flamboyant* N° 46 Déc. : pp. 20-21.

AKÉ ASSI L., 2001. Flore de la Côte d'Ivoire 1 : catalogue systématique, biogéographique et écologique. Conservatoire et Jard. Bot., Genève, Switzerland, *Boissera 57*, 396 p

AKÉ ASSI L., 2002. Flore de la Côte d'Ivoire 2 : catalogue systématique, biogéographique et écologique. Conservatoire et Jard. Bot., Genève, Switzerland, *Boissera 58*, 401 p.

ANNE-C., HILDEGARD, MARIE M., 2006. Arbres et Arbustes du Sahara, voyage au cœur de leurs usages, éditions Ibis presse Paris, 239 pages.

BOUXIN, G. (1987). Le traitement statistique des tableaux de végétation. II. Les ensembles de tableaux et les grands tableaux. Biom. Praximétrie 27 : 65-97.

CHEVALIER J. F., 1998. Evaluation de l'imagerie spatiale haute résolution pour la

Cartographie et le suivi du couvert végétal des aires protégées et leur zone périphériques : cas du parc national de la Marahoué (Côte d'Ivoire). Mémoire de DEA Université Cocody. 63p.

CORTHAY R., 1996. Analyse floristique de la forêt sempervirente de Yapo (Côte d'Ivoire). Mémoire, Diplôme Université de Genève. 152p.

DAN JIMO B., 1997. Contribution à l'étude floristique et écologique des formations naturelles et des agro systèmes au Sud du département de Dosso (Niger). DEA Faculté des sciences et Techniques (FAST). Université de Ouagadougou 76 Pages.

DEFOURNY Pierre, 1990. Méthode d'évaluation quantitative de la végétation ligneuse en région soudano-sahélienne à partir de données Landsat TM (Burkina Faso). In Télédétection et sécheresse. Ed. AUPELF-UREF : 63-74.

FAO., 2003. Atelier FAO/EC LNV/GTZ sur la gestion des forêts tropicales secondaires en Afrique.

GIRARD Michel-Claude et Girard Colette M., 1999. Traitement des données de Télédétection, Interprétation physique des données, les comportements spectraux. 529p

GOUNOT M., 1969. Méthode d'étude quantitative de la végétation. Masson, Paris 314 p.

GUINKO S., 1984 : La végétation de la haute volta. Tome I et II. Thèse présentée à l'université de Bordeaux III. Pour obtenir le grade de Dr. es- sciences naturelles.

KABORE C. 2008. Rapport d'inventaire forestier de la forêt classée du Koulbi Province du Noumbiel Région du Sud-ouest. Version provisoire. Direction du Suivi Ecologique.57p.

KABORE C. 1995. Inventaire forestier des forêts de Nabéré. Rapport d'inventaire – Rapport de consultation : DGF-Ugo/PNGT, Burkina Faso 66p.

KOULIBALY A., 2008. Caractéristiques de la végétation et dynamique de la régénération, sous l'influence de l'utilisation des terres, dans des mosaïques Forêts-Savanes, des régions de la Réserve de Lamto et du Parc National de la Comoé, en Côte d'Ivoire. Thèse de l'Université de Cocody. 452 p.

LEGENDRE L. & LEGENDRE P., 1979. Ecologie numérique : le traitement multiple des données écologiques. Collection d'écologie 12. Masson : 197 pages.

MAHAMANE A., 2005. Etudes Floristique, Phytosociologique et Phytogéographique de la végétation du Parc Régional du W du Niger. Thèse de docteur en Sciences Agronomiques et ingénierie de L'Université Libre de Bruxelles, 516 Pages.

MICHEL A., 2002. Arbres, arbustes et lianes des zones sèches d'Afrique de l'Ouest, deuxième édition, CIRAD, MNHN, 573 pages.

N'GUESSAN K. E. et N'da D. H., 2005. Caractérisation et cartographie par télédétection Satellitaire de la végétation de la forêt classée de Bouaflé (Côte d'Ivoire).

OUMAROU M., 2003. Etudes écologiques, floristique, phytogéographique et phytosociologique des inselbergs du Benin. Thèse de Doctorat, Université libre de Bruxelles, facultés des sciences, Laboratoire de Botanique systématique, 210 pages.

SAADOU M., 1984. Contribution à l'étude de la flore et de la végétation des milieux drainés de l'ouest de la république du Niger, de la longitude de Dogondoutchi au fleuve Niger, Thèse présentée devant les universités de Bordeaux III et de Niamey pour obtenir le titre de docteur de spécialité 175 Pages.

SAADOU M., 2007. Biodiversité végétale du Niger, 54 Pages.

ANNEXES SUR L'ANALYSE DE DONNEES DE L'ONG NEWTREE

LISTE RECAPITULATIVE DES ANNEXES

ANNEXES I: METHODES DE TRAITEMENTS

- **Tableau I.** Présentation d'une fiche technique d'inventaire entier
- **Tableau II.** Relevés de végétation de la zone d'intervention du Nord en 2011

ANNEXES II: RESULTATS DE L'ETUDE FLORISTIQUE

- **Tableau I.** Richesse floristique par site
- Tableau II. Liste floristique d'évolution des espèces ligneuses par année du Nord
- Tableau III. Liste floristique d'évolution des espèces ligneuses par année du Centre
- **Tableau IV**. Nombre d'espèces par genres et familles de la zone Nord en 2003 et 2004
- **Tableau V**. Nombre d'espèces par genres et familles de la zone Centre en 2003 et 2004
- Tableau VI. Récapitulatif des calculs d'indice de diversité générique au Nord
- Tableau VII. Récapitulatif des calculs d'indice de diversité générique au Centre
- Tableau VIII. Récapitulatif du spectre taxonomique de la zone du Centre
- **Tableau IX.** Récapitulatif du spectre taxonomique de la zone du Nord
- Tableau X. Types phytogéographies au niveau Mondial pour le Nord
- **Tableau XI.** Types phytogéographies au niveau Mondial pour le Centre

<u>ANNEXE III : RESULTATS DE L'ETUDE PHYTOSOCIOLOGIQUE</u>

- **Tableau I.** Relevé phytosociologique des Groupements du Nord
- **Tableau II.** Coefficient de Sorensen pour le Nord
- Tableau III. Relevé phytosociologique des Groupements du Centre
- **Tableau IV.** Coefficient de Sorensen pour le Centre

ANNEXES I: METHODES DE TRAITEMENTS

Tableau I. Présentation d'une fiche technique d'inventaire entier

N°	Nom scientifique de l'espèce	Nombre des arbres par catégorie de taille									
		20 cm à < 1m	1m à 2m	2m							
1											
2											
••											
n											

Tableau II. Relevés de végétation de la zone d'intervention du Nord en 2011

										R	ELE	EVES	5									
Familles	Espèces	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2	Total
Anacardiacées	Sclerocarya birrea	0	0	0	0	0	0		2	0	0	0	0	0	0	1	0	0	0	1	0	4
Balanitacées	Balanites aegyptiaca	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2
Capparacées	Maerua angolensis	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	3
Capparacées	Maerua crassifolia	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	3
Césalpiniacées	Bauhinia rufescens	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Césalpiniacées	Piliostigma reticulatum	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	3
Combrétacées	Combretum acuelatum	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	3
Combrétacées	Combretum micranthum	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2
Combrétacées	Guiera Senegalensis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Fabacées	Pterocarpus Lucens	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	3
Méliacées	Azadiratcha indica	0	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	3
Mimosacées	Acacia nilotica	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	3
Mimosacées	Acacia radiania	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	3
Mimosacées	Acacia senegal	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	3
Mimosacées	Acacia seyal	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Mimosacées	Dichrostachys cinerea	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2

											R	ELE	EVES	8								
Familles	Espèces	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	Total
Mimosacées	Faidherbia albida	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Mimosacées	Prosopis juliflora	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
Moringacées	Moringa oleifera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
Rhamnacées	Ziziphus mauritania	0	0	0	0	0	0	0	2	0	0	0	0	0	1	0	0	0	0	0	0	3
	Total	2	2	3	2	2	2	2	4	3	1	2	1	2	4	3	2	2	2	2	3	46

Tableau III. Relevés de végétation de la zone d'intervention du Centre en 2011

		R	ELF	EVE	S																	
Familles	Espèces	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1	2	Total
Anacardiacée s	Lannea acida	0	0	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	1
Anacardiacée s	Lannea microcarpa	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	3
Anacardiacée s	Lannea schimperi	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	2
Anacardiacée s	Ozoroa insignis	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1		0	0	0	2
Anacardiacée s	Sclerocarya birrea	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	2
Annonacées	Annona senegalensis	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1		0	0	0	0	2
Apocynacées	Holarrhena floribunda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Apocynacées	Saba senegalensis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Balanitacées	Balanites aegyptiaca	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bignoniacées	Sterospermum kunthianum	0	0	0	0	0	0	0	0		0	0	0	0	1	0	0	0	0	0	0	1
Bombacacées	Adansonia digitata	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bombacacées	Bombax costatum	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Capparacées	Boscia angustifolia	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	3
Capparacées	Capparis sepiaria	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	2
Capparacées	Maerua angolensis	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	3

		R	ELF	EVE	S																	
Familles	Espèces	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	Total
Capparacées	Maerua crassifolia	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Célastracées	Maytenus senegalensis	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Césalpiniacé es	Afzelia africana	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Césalpiniacé es	Cassia singueana	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	4
Césalpiniacé es	Cassia Sieberiana	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Césalpiniacé es	Detarium microcarpum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Césalpiniacé es	Detarium senegalensis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Césalpiniacé es	Piliostigma reticulatum	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	3
Césalpiniacé es	Piliostigma thonnighii	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	3
Césalpiniacé es	Tamarindus indica	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	2
Combrétacée s	Anogeissus leiocarpus	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Combrétacée s	Combretum acuelatum	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Combrétacée s	Combretum Glutinosum	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Combrétacée s	Combretum micranthum	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Combrétacée s	Combretum nigricans	0	1	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	1	5
Combrétacée s	Guiera senegalensis	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
Combrétacée s	Pteleopsis suberosa	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Combrétacée s	Terminalia avicennioides	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	3
Ebénacées	Diospyros mespiliformis	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Euphorbiacée s	Bridelia ferruginea	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

		R	ELE	EVE	S																	
Familles	Espèces	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	Total
Fabacées	Pterocarpus erinaceus	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2
Fabacées	Xeroderris stuhlmannii	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
Loganiacées	Strychnos innocua	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2
Méliacées	Azadiratcha indica	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2
Méliacées	Khaya senegalensis	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Mimosacées	Acacia gerrardii	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
Mimosacées	Acacia gourmaensis	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	3
Mimosacées	Acacia Macrostachya	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	2
Mimosacées	Acacia nilotica	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2
Mimosacées	Acacia pennata	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	3
Mimosacées	Acacia senegal	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
Mimosacées	Acacia seyal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
Mimosacées	Acacia Sieberiana	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Mimosacées	Albizia chevaleri	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
Mimosacées	Dichrostachys cinerea	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	3
Mimosacées	Entada africana	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2
Mimosacées	Leucena leucephala	0	0	0	0	0	0	0	0		1	0	0	0	0	0	0	0	1	0	0	2
Mimosacées	Parkia biglobosa	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	2
Moracées	Ficus platyphyllia	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Moracées	Ficus thonnighii	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	2
Moringacées	Moringa oleifera	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Myrtacées	Eucalyptus camaldulensis	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	3
Olacacées	Ximenia americana	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Polygalacées	Securinega virosa	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Rhamnacées	Ziziphus mauritania	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Rhamnacées	Ziziphus mucronata	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
Rubiacées	Crossopteryx febrifuga	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	2

		R	ELF	VE	S																	_
Familles	Espèces	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1	2	Total
Rubiacées	Feretia apodanthera	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2
Rubiacées	Gardenia erubescens	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Rubiacées	Gardenia soketensis	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
Rubiacées	Gardenia ternifolia	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Rutacées	Citrus limon	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2
Sapotacées	Vitellaria paradoxa	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Sterculiacées	Sterculia setigera	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	3
Tiliacées	Grewia bicolor	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Tiliacées	Grewia flavescens	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Tiliacées	Grewia mollis	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	2
	Parkindibila	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2
	Total	9	8	7	8	9	9	7	7	5	6	5	6	6	6	4	5	4	5	6	6	128

Annexe II : Résultats de l'étude floristique

Tableau I. Richesse floristique par site

N°	PID SITE: 01N-03/BARABOULE			INVENTAIRE ENT	TIERS 20	03
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Sclerocarya birrea	Anacardiacées	Sclerocarya	0	2	2
2	Balanites aegyptiaca	Balanitacées	Balanites	1	3	4
3	Parkinsonia acuelatum	Césalpiniacées	Parkinsonia	0	4	4
4	Guiéra Senegalensis	Combrétacées	Guiéra	11	23	34
5	Acacia nilotica	Mimosacées	Acacia	3	13	16
6	Acacia senegal	Mimosacées	Acacia	0	1	1
7	Acacia seyal	Mimosacées	Acacia	1	0	1
8	Faidherbia albida	Mimosacées	Faidherbia	1	0	1
9	Prosopis juliflora	Mimosacées	Prosopis	1	0	1
Total	9	5	7	18	46	64
N°]	ID SITE: 01N-03/BARABOULE			INVENTAIRE EN	ΓIERS 20)04
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Sclerocarya birrea	Anacardiacées	Sclerocarya	0	2	2
2	Balanites aegyptiaca	Balanitacées	Balanites	6	5	11
3	Bauhinia rufescens	Césalpiniacées	Bauhinia	2	3	5
4	Parkinsonia acuelatum	Césalpiniacées	Parkinsonia	1	4	5
5	Combretum aculeatum	Combrétacées	Combretum	1	0	1
6	Guiéra Senegalensis	Combrétacées	Guiéra	40	27	67
7	Azadirachta indica	Méliacées	Azadirachta	1	1	2
8	Acacia nilotica	Mimosacées	Acacia	6	15	21
9	Acacia senegal	Mimosacées	Acacia	0	1	1
10	Acacia seyal	Mimosacées	Acacia	3	0	3
11	Dichrostachys cinerea	Mimosacées	Dichrostachys	1	0	1
12	Faidherbia albida	Mimosacées	Faidherbia	0	1	1
13	Prosopis juliflora	Mimosacées	Prosopis	0	1	1
14	Ziziphus mauritiana	Rhamnacées	Ziziphus	2	0	4
Total	14	7	12	63	60	125

N°ID	SITE: 01N-03/BARABOULE			INVENT	TAIRE ENTIEF	RS 2011
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Sclerocarya birrea	Anacardiacées	Sclerocarya	0	2	2
2	Balanites aegyptiaca	Balanitacées	Balanites	30	47	77
3	Maerua crassifolia	Capparacées	Maerua	0	3	3
4	Maerua angolensis	Capparacées	Maerua	1	0	1
5	Bauhinia rufescens	Césalpiniacées	Bauhinia	6	9	15
6	Piliostigma reticulatum	Césalpiniacées	Piliostigma	4	4	8
7	Guiéra Senegalensis	Combrétacées	Guiéra	35	138	173
8	Acacia radiania	Mimosacées	Acacia	18	23	41
9	Acacia senegal	Mimosacées	Acacia	4	7	11
10	Acacia seyal	Mimosacées	Acacia	1	5	6
11	Dichrostachys cinerea	Mimosacées	Dichrostachys	0	5	5
12	Faidherbia albida	Mimosacées	Faidherbia	0	1	1
13	Prosopis juliflora	Mimosacées	Prosopis	0	1	1
14	Acacia nilotica	Mimosacées	Acacia	84	243	327
15	Moringa oleifera	Moringacées	Moringa	1	0	1
16	Ziziphus mauritania	Rhamnacées	Ziziphus	6	11	17
Total	16	8	12	190	499	689

N°ID S	ITE: 02N-03 / TOGOMAYEL			INVENTAIRE	ENTIERS	2003
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Balanites aegyptiaca	Balanitacées	Balanites	8	8	16
2	Combretum micranthum	Combrétacées	Combretum	1	0	1
3	Guiéra Senegalensis	Combrétacées	Guiéra	6	0	6
4	Acacia nilotica	Mimosacées	Acacia	8	1	9
5	Acacia seyal	Mimosacées	Acacia	1	0	1
Total	5	3	4	24	9	33

N	°ID SITE: 02N-03/TOGOMAYEL			INVENTAIRE I	ENTIERS 2	004
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Balanites aegyptiaca	Balanitacées	Balanites	41	17	58
2	Bauhinia rufescens	Césalpiniacées	Bauhinia	2	1	3
3	Combretum micranthum	Combrétacées	Combretum	1	0	1
4	Guiéra Senegalensis	Combrétacées	Guiéra	11	0	11
5	Azadirachta indica	Méliacées	Azadirachta	2	0	2
6	Acacia nilotica	Mimosacées	Acacia	89	0	89
7	Acacia senegal	Mimosacées	Acacia	1	0	1
8	Acacia seyal	Mimosacées	Acacia	9	0	9
9	Faidherbia albida	Mimosacées	Faidherbia	1	0	1
10	Ziziphus mauritiana	Rhamnacées	Ziziphus	1	0	1
Tota	al 10	6	8	158	18	176
N	°ID SITE: 02N-03/TOGOMAYEL			INVENTAIRE I	ENTIERS 2	011
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Balanites aegyptiaca	Balanitacées	Balanites	81	77	158
2	Maerua angolensis	Capparacées	Maerua	1	2	3
3	Maerua crassifolia	Capparacées	Maerua	3	5	8
4	Bauhinia rufescens	Césalpiniacées	Bauhinia	3	8	11
5	Piliostigma reticulatum	Césalpiniacées	Piliostigma	18	10	28
6	Combretum acuelatum	Combrétacées	Combretum	7	11	18
7	Combretum micranthum	Combrétacées	Combretum	4	2	6
8	Guiéra Senegalensis	Combrétacées	Guiéra	31	40	71
9	Azadiratcha indica	Méliacées	Azadiratcha	0	1	1
10	Acacia nilotica	Mimosacées	Acacia	141	457	598
11	Acacia radiania	Mimosacées	Acacia	2	5	7
12	Acacia senegal	Mimosacées	Acacia	4	17	21
13	Acacia seyal	Mimosacées	Acacia	39	67	106
14	Dichrostachys cinerea	Mimosacées	Dichrostachys	24	5	29
15	Faidherbia albida	Mimosacées	Faidherbia	1	2	3
16	Ziziphus mauritania	Rhamnacées	Ziziphus	102	75	177
Total	16	7	11	461	784	1245

N°IE	SITE: 03N-03 / TOGOMAYE	L (FRUITIER)		INVENT	AIRE ENTIE	RS 2003
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Balanites aegyptiaca	Balanitacées	Balanites	9	16	25
2	Bauhinia rufescens	Césalpiniacées	Bauhinia	0	1	1
3	Combretum aculeatum	Combrétacées	Combretum	1	0	1
4	Guiéra Senegalensis	Combrétacées	Guiéra	11	0	11
5	Acacia nilotica	Mimosacées	Acacia	33	1	34
6	Acacia seyal	Mimosacées	Acacia	3	0	3
7	Faidherbia albida	Mimosacées	Faidherbia	1	0	1
Гotal	7	4	6	58	18	76

N°II	D SITE: 03N-03/ TOGOMAYEI	L (FRUITIER)		INVENT	AIRE ENTIEF	RS 2004
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Balanites aegyptiaca	Balanitacées	Balanites	19	25	44
2	Bauhinia rufescens	Césalpiniacées	Bauhinia	3	1	4
3	Piliostigma reticulatum	Césalpiniacées	Piliostigma	2	0	2
4	Combretum aculeatum	Combrétacées	Combretum	4	0	4
5	Guiéra Senegalensis	Combrétacées	Guiéra	21	2	23
6	Acacia nilotica	Mimosacées	Acacia	114	9	123
7	Acacia senegal	Mimosacées	Acacia	7	0	7
8	Acacia seyal	Mimosacées	Acacia	95	2	97
9	Dichrostachys cinerea	Mimosacées	Dichrostachys	1	0	1
10	Faidherbia albida	Mimosacées	Faidherbia	1	1	2
11	Ziziphus mauritiana	Rhamnacées	Ziziphus	6	0	6
Total	11	5	9	273	40	313

N°ID	SITE: 03N-03/ TOGOMAYE	L (FRUITIER)		INVE	ENTAIRE ENTII	ERS 2011
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Balanites aegyptiaca	Balanitacées	Balanites	184	94	278
2	Maerua angolensis	Capparacées	Maerua	0	4	4
3	Maerua crassifolia	Capparacées	Maerua	9	6	15
4	Bauhinia rufescens	Césalpiniacées	Bauhinia	11	8	19
5	Piliostigma reticulatum	Césalpiniacées	Piliostigma	9	8	17
6	Combretum acuelatum	Combrétacées	Combretum	2	6	8
7	Guiéra Senegalensis	Combrétacées	Guiéra	11	35	46
8	Pterocarpus Lucens	Fabacées	Pterocarpus	0	1	1
9	Acacia nilotica	Mimosacées	Acacia	205	483	688
10	Acacia senegal	Mimosacées	Acacia	14	16	30
11	Acacia seyal	Mimosacées	Acacia	180	205	385
12	Dichrostachys cinerea	Mimosacées	Dichrostachys	94	17	111
13	Faidherbia albida	Mimosacées	Faidherbia	0	1	1
14	Ziziphus mauritania	Rhamnacées	Ziziphus	155	117	272
Total	14	7	11	874	1001	1875

N°I	D SITE: 01C-03 / DAWEGUE		INVE	NTAIRE EN	TIERS 20	003
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Anacardium occidentale	Anacardiacées	Anacardium	10	1	11
2	Lannea acida	Anacardiacées	Lannea	29	9	38
3	Lannea microcarpa	Anacardiacées	Lannea	3	2	5
4	Lannea schimperi	Anacardiacées	Lannea	0	1	1
5	Ozoroa insignis	Anacardiacées	Ozoroa	8	1	9
6	Annona Senegalensis	Annonacées	Annona	45	11	56
7	Saba Senegalensis	Apocynacées	Saba	9	1	10
8	Balanites aegyptiaca	Balanitacées	Balanites	1	0	1
9	Stereospermum kunthianum	Bignoniacées	Stereospermum	20	43	63
10	Adansonia digitata	Bombacacées	Adansonia	3	3	6
11	Ceiba pentandra	Bombacacées	Ceiba	4	2	6
12	Maerua angolensis	Capparacées	Maerua	10	7	17

N°I	D SITE: 01C-03 / DAWEGUE		INVE	NTAIRE EN	TIERS 20	003
13	Maytenus Senegalensis	Célastracées	Maytenus	31	14	45
14	Cassia sieberiana	Césalpiniacées	Cassia	2	0	2
15	Cassia singueana	Césalpiniacées	Cassia	34	3	37
16	Detarium microcarpum	Césalpiniacées	Detarium	51	17	68
17	Piliostigma reticulatum	Césalpiniacées	Piliostigma	37	6	43
18	Piliostigma thonningii	Césalpiniacées	Piliostigma	50	22	72
19	Tamarindus indica	Césalpiniacées	Tamarindus	10	1	11
20	Combretum Glutinosum	Combrétacées	Combretum	53	13	66
21	Combretum micranthum	Combrétacées	Combretum	0	6	2
22	Combretum nigricans	Combrétacées	Combretum	4	0	4
23	Guiéra Senegalensis	Combrétacées	Guiéra	1	1	2
24	Pteleopsis suberosa	Combrétacées	Pteleopsis	29	9	1
25	Terminalia avicennioides	Combrétacées	Terminalia	43	9	52
26	Diospyros mespiliformis	Ebénacées	Diospyros	19	0	19
27	Bridelia ferruginea	Euphorbiacées	Bridelia	7	5	12
28	Xeroderris stuhlmannii	Fabacées	Xeroderris	4	0	4
29	Azadirachta indica	Méliacées	Azadirachta	3	0	3
30	Khaya Senegalensis	Méliacées	Khaya	7	0	7
31	Acacia albida	Mimosacées	Acacia	1	1	2
32	Acacia gourmaensis	Mimosacées	Acacia	0	2	2
33	Acacia pennata	Mimosacées	Acacia	3	3	6
34	Dichrostachys cinerea	Mimosacées	Dichrostachys	5	2	7
35	Entada africana	Mimosacées	Entada	28	2	30
36	Eucalyptus sp.	Myrtacées	Eucalyptus	10	5	15
37	Ximenia americana	Olacacées	Ximenia	19	0	19
38	Securidaca longepedunculata	Polygalacées	Securidaca	2	0	2
39	Securinega virosa	Polygalacées	Securinega	4	1	5
40	Ziziphus mauritiana	Rhamnacées	Ziziphus	17	0	17
41	Crossopteryx febrifuga	Rubiacées	Crossopteryx	36	2	38
42	Feretia apodanthera	Rubiacées	Feretia	25	13	38
43	Gardenia erubescens	Rubiacées	Gardenia	31	5	36

N°I	D SITE: 01C-03 / DAWEGUE		II	INVENTAIRE ENTIERS 2003		
44	Vitellaria paradoxa	Sapotacées	Vitellaria	58	18	76
45	Sterculia setigera	Sterculiacées	Sterculia	3	1	4
46	Grewia bicolor	Tiliacées	Grewia	0	5	5
Total	46	23	38	769	247	1016

N°ID SITE: 01C-03 / DAWEGUE				INVENTAIRE ENTIERS 2004			
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total	
1	Lannea acida	Anacardiacées	Lannea	66	15	81	
2	Lannea microcarpa	Anacardiacées	Lannea	16	9	25	
3	Lannea schimperi	Anacardiacées	Lannea	0	6	6	
4	Ozoroa insignis	Anacardiacées	Ozoroa	10	2	12	
5	Annona Senegalensis	Annonacées	Annona	29	17	46	
6	Saba Senegalensis	Apocynacées	Saba	15	6	21	
7	Balanites aegyptiaca	Balanitacées	Balanites	6	2	8	
8	Stereospermum kunthianum	Bignoniacées	Stereospermum	21	12	33	
9	Adansonia digitata	Bombacacées	Adansonia	1	0	1	
10	Bombax costatum	Bombacacées	Bombax	2	1	3	
11	Ceiba pentandra	Bombacacées	Ceiba	13	4	17	
12	Capparis corymbora	Capparacées	Capparis	2	1	3	
13	Capparis sepiaria	Capparacées	Capparis	3	0	3	
14	Maerua angolensis	Capparacées	Maerua	2	1	3	
15	Maerua ablongifolia	Capparacées	Maerua	2	1	3	
16	Maytenus Senegalensis	Célastracées	Maytenus	18	32	50	
17	Afzelia africana	Césalpiniacées	Afzelia	1	0	1	
18	Cassia singueana	Césalpiniacées	Cassia	26	10	36	
19	Daniellia oliveri	Césalpiniacées	Daniellia	3	1	4	
20	Detarium microcarpum	Césalpiniacées	Detarium	113	59	172	
21	Piliostigma reticulatum	Césalpiniacées	Piliostigma	20	10	30	
22	Piliostigma thonningii	Césalpiniacées	Piliostigma	78	27	105	
23	Tamarindus indica	Césalpiniacées	Tamarindus	10	11	21	
24	Anogeissus leiocarpus	Combrétacées	Anogeissus	1	0	1	

N°	ID SITE: 01C-03 / DAWEGUE			INVENTAIRE E	NTIERS 2	004
25	Combretum Glutinosum	Combrétacées	Combretum	78	66	144
26	Combretum micranthum	Combrétacées	Combretum	13	20	33
27	Combretum nigricans	Combrétacées	Combretum	14	4	18
28	Guiéra Senegalensis	Combrétacées	Guiéra	23	3	26
29	Pteleopsis suberosa	Combrétacées	Pteleopsis	64	20	84
30	Terminalia avicennioides	Combrétacées	Terminalia	57	25	82
31	Diospyros mespiliformis	Ebénacées	Diospyros	25	4	29
32	Bridelia ferruginea	Euphorbiacées	Bridelia	31	15	46
33	Pterocarpus erinaceus	Fabacées	Pterocarpus	15	2	17
34	Azadirachta indica	Méliacées	Azadirachta	14	4	18
35	Khaya Senegalensis	Méliacées	Khaya	2	2	4
36	Acacia gourmaensis	Mimosacées	Acacia	0	2	2
37	Acacia macrostachya	Mimosacées	Acacia	5	4	9
38	Acacia pennata	Mimosacées	Acacia	7	8	15
39	Dichrostachys cinerea	Mimosacées	Dichrostachys	11	0	11
40	Entada africana	Mimosacées	Entada	76	20	96
41	Leucena leucephala	Mimosacées	Leucena	2	1	3
42	Parkia biglobosa	Mimosacées	Parkia	2	1	3
43	Ficus gnaphalocarpa	Moracées	Ficus	3	1	4
44	Ficus thonningii	Moracées	Ficus	2	0	2
45	Eucalyptus camaldulensis	Myrtacées	Eucalyptus	0	5	5
46	Eucalyptus sp.	Myrtacées	Eucalyptus	13	7	20
47	Ximenia americana	Olacacées	Ximenia	10	4	14
48	Securidaca longepedunculata	Polygalacées	Securidaca	1	0	1
49	Securinega virosa	Polygalacées	Securinega	7	39	46
50	Ziziphus mucronata	Rhamnacées	Ziziphus	2		2
51	Crossopteryx febrifuga	Rubiacées	Crossopteryx	52	22	74
52	Feretia apodanthera	Rubiacées	Feretia	26	12	38
53	Gardenia erubescens	Rubiacées	Gardenia	46	18	64
54	Vitellaria paradoxa	Sapotacées	Vitellaria	110	35	145
54	γιωπατα ματαασχα	σαρσιαίτες	y iteliui iu	110	JJ	113

N°I	D SITE: 01C-03 / DAWEGUE			INVENTAIRE E	NTIERS 2	004
55	Sterculia setigera	Sterculiacées	Sterculia	9	12	21
56	Grewia bicolor	Tiliacées	Grewia	2		2
Total	56	24	45	1180	582	1763
I	N°ID SITE: 01C-03 / DAWEGUE			INVENTAIRE ENT	TERS 201	1
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Lannea microcarpa	Anacardiacées	Lannea	10	26	36
2	Lannea acida	Anacardiacées	Lannea	4	52	56
3	Lannea schimperi	Anacardiacées	Lannea	1	2	3
4	Ozoroa insignis	Anacardiacées	Ozoroa	11	2	13
5	Sclerocarya birrea	Anacardiacées	Sclerocarya	1	0	1
6	Annona Senegalensis	Annonacées	Annona	12	1	13
7	Saba Senegalensis	Apocynacées	Saba	10	9	19
8	Balanites aegyptiaca	Balanitacées	Balanites	0	2	2
9	Sterospermum kunthianum	Bignoniacées	Sterospermum	14	27	41
10	Bombax costatum	Bombacacées	Bombax	0	3	3
11	Boscia angustifolia	Capparacées	Boscia	0	4	4
12	Capparis sepiaria	Capparacées	Capparis	0	2	2
13	Maerua angolensis	Capparacées	Maerua	0	1	1
14	Maerua crassifolia	Capparacées	Maerua	3	3	6
15	Mayterus Senegalensis	Célastracées	Mayterus	10	19	29
16	Afzelia africana	Césalpiniacées	Afzelia	0	3	3
17	Cassia Sieberiana	Césalpiniacées	Cassia	0	1	1
18	Cassia singueana	Césalpiniacées	Cassia	1	9	10
19	Detarium microcarpum	Césalpiniacées	Detarium	114	338	452
20	Detarium Senegalensis	Césalpiniacées	Detarium	1	3	4
21	Piliostigma reticulatum	Césalpiniacées	Piliostigma	18	14	32
22	Piliostigma thonnighii	Césalpiniacées	Piliostigma	21	59	80
23	Tamarindus indica	Césalpiniacées	Tamarindus	1	9	10
24	Combretum Glutinosum	Combrétacées	Combretum	65	40	105
25	Combretum micranthum	Combrétacées	Combretum	0	40	40
26	Combretum nigricans	Combrétacées	Combretum	0	6	6

N°I	D SITE: 01C-03 / DAWEGUE			INVENTAIRE EI	NTIERS 2	004
27	Guiéra Senegalensis	Combrétacées	Guiéra	2	3	5
28	Pteleopsis suberosa	Combrétacées	Pteleopsis	47	66	113
29	Terminalia avicennioides	Combrétacées	Terminalia	23	37	60
30	Diospyros mespiliformis	Ebénacées	Diospyros	8	40	48
31	Bridelia ferruginea	Euphorbiacées	Bridelia	6	13	19
32	Pterocarpus erinaceus	Fabacées	Pterocarpus	0	10	10
33	Xeroderris stuhlmannii	Fabacées	Xeroderris	4	3	7
34	Strychnos innocua	Loganiacées	Strychnos	2	3	5
35	Azadiratcha indica	Méliacées	Azadiratcha	0	3	3
36	Khaya Senegalensis	Méliacées	Khaya	0	1	1
37	Acacia gerrardii	Mimosacées	Acacia	0	4	4
38	Acacia gourmaensis	Mimosacées	Acacia	3	3	6
39	Acacia Macrostachya	Mimosacées	Acacia	2	6	8
40	Acacia pennata	Mimosacées	Acacia	2	19	21
41	Dichrostachys cinerea	Mimosacées	Dichrostachys	1	2	3
42	Entada africana	Mimosacées	Entada	3	109	112
43	Parkia biglobosa	Mimosacées	Parkia	0	4	4
44	Ficus platyphyllia	Moracées	Ficus	0	1	1
45	Ficus thonnighii	Moracées	Ficus	0	1	1
46	Eucalyptus camaldulensis	Myrtacées	Eucalyptus	2	2	4
47	Ximenia americana	Olacacées	Ximenia	3	4	7
48	Securinega virosa	Polygalacées	Securinega	1	18	19
49	Ziziphus mucronata	Rhamnacées	Ziziphus	0	1	1
50	Crossopteryx febrifuga	Rubiacées	Crossopteryx	21	71	92
51	Feretia apodanthera	Rubiacées	Feretia	27	0	27
52	Gardenia erubescens	Rubiacées	Gardenia	57	6	63
53	Gardenia ternifolia	Rubiacées	Gardenia	1	1	2
54	Vitellaria paradoxa	Sapotacées	Vitellaria	15	215	230
55	Sterculia setigera	Sterculiacées	Sterculia	0	6	6
56	Grewia bicolor	Tiliacées	Grewia	0	3	3
57	Grewia mollis	Tiliacées	Grewia	1	0	1

N°I	D SITE: 01C-03 / DAW	/EGUE		INVENTAIRE E	ENTIERS 2	004
58	Parkindibila			14	12	26
Total	58	25	43	542	1342	1884

N°ID S	ITE: 02C-03 / GUELA			IN	IVENTAI	RE 2003
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Lannea acida	Anacardiacées	Lannera	0	1	1
2	Lannea microcarpa	Anacardiacées	Lannera	0	7	7
3	Sclerocarya birrea	Anacardiacées	Sclerocarya	1	21	22
4	Holarrhena floribunda	Apocynacées	Holarrhena	4	5	9
5	Cassia sieberiana	Césalpiniacées	Cassia	9	12	21
6	Cassia singueana	Césalpiniacées	Cassia	59	5	64
7	Piliostigma reticulatum	Césalpiniacées	Piliostigma	208	61	269
8	Tamarindus indica	Césalpiniacées	Tamarindus	1	1	2
9	Anogeissus leiocarpus	Combrétacées	Anogeissus	3	20	23
10	Combretum Glutinosum	Combrétacées	Combretum	38	9	47
11	Combretum micranthum	Combrétacées	Combretum	44	151	195
12	Guiéra Senegalensis	Combrétacées	Guiéra	133	116	249
13	Diospyros mespiliformis	Ebénacées	Diospyros	3	34	37
14	Azadirachta indica	Méliacées	Azadirachta	0	4	4
15	Acacia macrostachya	Mimosacées	Acacia	1	58	59
16	Acacia seyal	Mimosacées	Acacia	0	29	29
17	Albizia chevaleri	Mimosacées	Albizia	2	14	16
18	Entada africana	Mimosacées	Entada	0	1	1
19	Ximenia americana	Olacacées	Ximenia	30	25	55
20	Feretia apodanthera	Rubiacées	Feretia	7	3	10
21	Gardenia erubescens	Rubiacées	Gardenia	2	0	2
22	Gardenia sokotensis	Rubiacées	Gardenia	5	1	6
23	Vitellaria paradoxa	Sapotacées	Vitellaria	4	13	17
24	Grewia bicolor	Tiliacées	Grewia	2	1	3
25	Grewia mollis	Tiliacées	Grewia	4	4	8
Total	25	11	19	560	596	1156

N°ID	°ID SITE: 02C-03 / GUELA			IN	INVENTAIRE 2004		
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total	
1	Lannea acida	Anacardiacées	Lannea	0	1	1	
2	Lannea microcarpa	Anacardiacées	Lannea	0	7	7	
3	Sclerocarya birrea	Anacardiacées	Sclerocarya	1	22	23	
4	Holarrhena floribunda	Apocynacées	Holarrhena	22	8	30	
5	Maerua angolensis	Capparacées	Maerua	0	1	1	
6	Cassia sieberiana	Césalpiniacées	Cassia	8	13	21	
7	Cassia singueana	Césalpiniacées	Cassia	49	9	58	
8	Piliostigma reticulatum	Césalpiniacées	Piliostigma	249	45	294	
9	Piliostigma thonningii	Césalpiniacées	Piliostigma	1	0	1	
10	Tamarindus indica	Césalpiniacées	Tamarindus	1	1	2	
11	Anogeissus leiocarpus	Combrétacées	Anogeissus	7	25	32	
12	Combretum Glutinosum	Combrétacées	Combretum	36	7	43	
13	Combretum micranthum	Combrétacées	Combretum	118	159	277	
14	Combretum nigricans	Combrétacées	Combretum	4	0	4	
15	Guiéra Senegalensis	Combrétacées	Guiéra	156	138	294	
16	Diospyros mespiliformis	Ebénacées	Diospyros	14	29	43	
17	Azadirachta indica	Méliacées	Azadirachta	4	4	8	
18	Acacia macrostachya	Mimosacées	Acacia	6	53	59	
19	Acacia seyal	Mimosacées	Acacia	9	30	39	
20	Albizia chevaleri	Mimosacées	Albizia	6	14	20	
21	Dichrostachys cinerea	Mimosacées	Dichrostachys	1	0	1	
22	Entada africana	Mimosacées	Entada	0	1	1	
23	Ximenia americana	Olacacées	Ximenia	43	23	66	
24	Securinega virosa	Polygalacées	Securinega	1	0	1	
25	Ziziphus mauritiana	Rhamnacées	Ziziphus	1	0	1	
26	Feretia apodanthera	Rubiacées	Feretia	44	4	48	
27	Gardenia erubescens	Rubiacées	Gardenia	2	0	2	
28	Gardenia sokotensis	Rubiacées	Gardenia	5	2	7	
29	Vitellaria paradoxa	Sapotacées	Vitellaria	3	14	17	
30	Grewia bicolor	Tiliacées	Grewia	4	1	5	

31	Grewia mollis	Tiliacées	Grewia		8	4	12
Total	31	14	23	803 61		615	1418
N°ID	SITE: 02C-03 / GUELA			INVENTAIRE ENTIERS			
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	1	Total
1	Lannea acida	Anacardiacées	Lannea	0	1		1
2	Lannea microcarpa	Anacardiacées	Lannea	2	7		9
3	Sclerocarya birrea	Anacardiacées	Sclerocarya	1	23		24
4	Holarrhena floribunda	Apocynacées	Holarrhena	7	26		33
5	Maerua angolensis	Capparacées	Maerua	0	4		4
6	Cassia singueana	Césalpiniacées	Cassia	2	7		9
7	Cassia sieberina	Césalpiniacées	Cassia	9	20		29
8	Piliostigma reticulatum	Césalpiniacées	Piliostigma	94	115		209
9	Tamarindus indica	Césalpiniacées	Tamarindus	0	3		3
10	Anogeissus leiocarpus	Combrétacées	Anogeissus	10	32		42
11	Combretum Glutinosum	Combrétacées	Combretum	20	15		35
12	Combretum micranthum	Combrétacées	Combretum	133	278		411
13	Combretum nigricans	Combrétacées	Combretum	24	15		39
14	Guiéra Senegalensis	Combrétacées	Guiéra	67	163		230
15	Diospyros mespiliformis	Ebénacées	Diospyros	8	31		39
16	Azadiratcha indica	Méliacées	Azadiratcha	2	8		10
17	Acacia macrostachya	Mimosacées	Acacia	4	42		46
18	Acacia nilotica	Mimosacées	Acacia	5	5		10
19	Acacia senegal	Mimosacées	Acacia	5	0		5
20	Acacia seyal	Mimosacées	Acacia	13	33		46
21	Albizia chevaleri	Mimosacées	Albizia	2	13		15
22	Dichrostachys cinerea	Mimosacées	Dichrostachys	1	0		1
23	Entada africana	Mimosacées	Entada	0	1		1
24	Moringa oleifera	Moringacées	Moringa	0	2		2
25	Ximenia americana	Olacacées	Ximenia	28	30		58
26	Ziziphus mauritiana	Rhamnacées	Ziziphus	3	0		3
27	Ziziphus mucronata	Rhamnacées	Ziziphus	0	1		1
28	Feretia apodanthera	Rubiacées	Feretia	43	5		48

Etude de la dynamique de	la végétation à partir des d	lonnées satellites et d'inv	ventaires phytomasses-newTree

Total	35	14	23	531	903	1434
35	Grewia mollis	Tiliacées	Grewia	4	5	9
34	Grewia flavescens	Tiliacées	Grewia	2	0	2
33	Grewia bicolor	Tiliacées	Grewia	3	0	3
32	Vitellaria paradoxa	Sapotacées	Vitellaria	2	17	19
31	Gardenia ternifolia	Rubiacées	Gardenia	1	0	1
30	Gardenia soketensis	Rubiacées	Gardenia	33	1	34
29	Gardenia erubescens	Rubiacées	Gardenia	3	0	3

N°	N°ID SITE: 03C-03 / GAMPELA			INVENTA	INVENTAIRE ENTIERS 2003		
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total	
1	Acacia seyal	Mimosacées	Acacia	1	1	2	
2	Azadirachta indica	Méliacées	Azadirachta	3	6	9	
3	Balanites aegyptiaca	Balanitacées	Balanites	0	1	1	
4	Combretum Glutinosum	Combrétacées	Combretum	1	0	1	
5	Guiéra Senegalensis	Combrétacées	Guiéra	4	0	4	
6	Holarrhena floribunda	Apocynacées	Holarrhena	1	0	1	
7	Lannea microcarpa	Anacardiacées	Lannea	0	1	1	
8	Piliostigma reticulatum	Césalpiniacées	Piliostigma	40	0	40	
9	Vitellaria paradoxa	Sapotacées	Vitellaria	0	2	2	
10	Ziziphus mauritiana	Rhamnacées	Ziziphus	28	5	33	
Total	10	9	10	78	16	94	

N	N°ID SITE: 03C-03 / GAMPELA		INVENTAIRE ENTIERS			2004
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Lannea microcarpa	Anacardiacées	Lannea	0	1	1
2	Holarrhena floribunda	Apocynacées	Holarrhena	6	0	6
3	Calotropis procera	Asclépiadacées	Calotropis	1	0	1
4	Balanites aegyptiaca	Balanitacées	Balanites	0	1	1
5	Adansonia digitata	Bombacacées	Adansonia	1	0	1
6	Ceiba pentandra	Bombacacées	Ceiba	4	0	4
7	Commiphora africana	Burséracées	Commiphora	5	0	5

Etude de la dynamique d	de la végétation à	à partir des données	s satellites et d'inv	entaires phytomasses-newTree

8	Piliostigma reticulatum	Césalpiniacées	Piliostigma	72	3	75
9	Combretum Glutinosum	Combrétacées	Combretum	3	2	5
10	Combretum micranthum	Combrétacées	Combretum	1	0	1
11	Guiéra Senegalensis	Combrétacées	Guiéra	31	2	33
12	Diospyros mespiliformis	Ebénacées	Diospyros	3	0	3
13	Azadirachta indica	Méliacées	Azadirachta	0	10	10
14	Khaya Senegalensis	Méliacées	Khaya	4	0	4
15	Acacia seyal	Mimosacées	Acacia	12	2	14
16	Dichrostachys cinerea	Mimosacées	Dichrostachys	1	0	1
17	Leucena leucephala	Mimosacées	Leucena	3	0	3
18	Moringa oleifera	Moringacées	Moringa	1	2	3
19	Ziziphus mauritiana	Rhamnacées	Ziziphus	74	14	88
20	Vitellaria paradoxa	Sapotacées	Vitellaria	0	2	2
Total	20	14	19	222	39	261

	N°ID SITE: 03C-03 / GAMPELA			INVENTA	S 2011	
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
1	Lannea amicrocarpa	Anacardiacées	Lannea	1	3	4
2	Sclerocarya birrea	Anacardiacées	Sclerocarya	1	2	3
3	Annona Senegalensis	Annonacées	Annona	1	0	1
4	Holarrhena floribunda	Apocynacées	Holarrhena	0	7	7
5	Saba Senegalensis	Apocynacées	Saba	1	2	3
6	Balanites aegyptiaca	Balanitacées	Balanites	0	3	3
7	Sterospermum kunthianum	Bignoniacées	Sterospermum	4	0	4
8	Adansonia digitata	Bombacacées	Adansonia	1	1	2
9	Bombax costatum	Bombacacées	Bombax	9	8	17
10	Maerua angolensis	Capparacées	Maerua	1	3	4
11	Maerua crassifolia	Capparacées	Maerua	0	3	3
12	Cassia sieberiana	Césalpiniacées	Cassia	23	5	28
13	Maytenus Senegalensis	Césalpiniacées	Maytenus	0	1	1
14	Piliostigma reticulatum	Césalpiniacées	Piliostigma	43	58	101
15	Combretum acuelatum	Combrétacées	Combretum	1	17	18

1	N°ID SITE: 03C-03 / GAMPELA			INVENTAIRE ENTIERS 2011		
Nb	Espèces	Familles	Genres	1 - 2m	> 2m	Total
16	Combretum Glutinosum	Combrétacées	Combretum	4	7	11
17	Combretum micranthum	Combrétacées	Combretum	0	2	2
18	Guiéra Senegalensis	Combrétacées	Guiéra	1	36	37
19	Diospyros mespiliformis	Ebénacées	Diospyros	0	4	4
20	Azadiratcha indica	Méliacées	Azadiratcha	2	38	40
21	Khaya Senegalensis	Méliacées	Khaya	0	4	4
22	Acacia nilotica	Mimosacées	Acacia	27	41	68
23	Acacia pennata	Mimosacées	Acacia	1	3	4
24	Acacia senegal	Mimosacées	Acacia	0	1	1
25	Acacia seyal	Mimosacées	Acacia	12	49	61
26	Acacia Sieberiana	Mimosacées	Acacia	0	3	3
27	Dichrostachys cinerea	Mimosacées	Dichrostachys	6	18	24
28	Leucena leucephala	Mimosacées	Leucena	0	2	2
29	Parkia biglobosa	Mimosacées	Parkia	0	2	2
30	Moringa oleifera	Moringacées	Moringa	5	8	13
31	Securinega virosa	Polygalacées	Securinega	3	3	6
32	Ziziphus mauritania	Rhamnacées	Ziziphus	18	138	156
33	Feretia apodanthera	Rubiacées	Feretia	2	2	4
34	Citrus limon	Rutacées	Citrus	0	1	1
35	Vitellaria paradoxa	Sapotacées	Vitellaria	0	2	2
Total	35	17	28	167	477	644

Tableau II. Liste floristique d'évolution des espèces ligneuses par année du Nord

Acacia seyal	Acacia senegal	Acacia senegal
Balanites aegyptiaca	Acacia seyal	Acacia seyal
Guiéra senegalensis	Balanites aegyptiaca	Balanites aegyptiaca
Sclerocarya birrea	Bauhinia rufescens	Bauhinia rufescens
Acacia senegal	Faidherbia albida	Dichrostachys cinerea
Bauhinia rufescens	Guiéra senegalensis	Faidherbia albida
Combretum aculeatum	Ziziphus mauritiana	Guiéra senegalensis
Combretum micranthum	Azadirachta indica	Maerua angolensis
Faidherbia albida	Combretum aculeatum	Maerua crassifolia
Parkinsonia acuelata	Dichrostachys cinerea	Piliostigma reticulatum
Prosopis juliflora	Combretum micranthum	Ziziphus mauritania
	Parkinsonia acuelata	Acacia radiania
	Piliostigma reticulatum	Combretum acuelatum
	Prosopis juliflora	Sclerocarya birrea
	Sclerocarya birrea	Azadiratcha indica
		Combretum micranthum
		Moringa oleifera
		Prosopis juliflora
		Pterocarpus Lucens

Tableau III. Liste floristique d'évolution des espèces ligneuses par année du Centre

Espèces ligneuses en 2003	Espèces ligneuses en 2004	Espèces ligneuses en 2011
Acacia albida	Acacia gourmaensis	Acacia gerrardii
Acacia gourmaensis	Acacia macrostachya	Acacia gourmaensis
Acacia macrostachya	Acacia pennata	Acacia macrostachya
Acacia pennata	Acacia seyal	Acacia nilotica
Acacia seyal	Adansonia digitata	Acacia pennata
Adansonia digitata	Afzelia africana	Acacia senegal
Albizia chevaleri	Albizia chevaleri	Acacia seyal
Anacardium occidentale	Annona senegalensis	Acacia sieberiana
Annona senegalensis	Anogeissus leiocarpus	Adansonia digitata
Anogeissus leiocarpus	Azadirachta indica	Afzelia africana
Azadirachta indica	Balanites aegyptiaca	Albizia chevaleri
Balanites aegyptiaca	Bombax costatum	Annona senegalensis
Bridelia ferruginea	Bridelia ferruginea	Anogeissus leiocarpus
Cassia sieberiana	Calotropis procera	Azadiratcha indica
Cassia singueana	Capparis corymbora	Balanites aegyptiaca
Ceiba pentandra	Capparis sepiaria	Bombax costatum
Combretum Glutinosum	Cassia sieberiana	Boscia angustifolia
Combretum micranthum	Cassia singueana	Bridelia ferruginea
Combretum nigricans	Ceiba pentandra	Capparis sepiaria
Crossopteryx febrifuga	Combretum Glutinosum	Cassia singueana
Detarium microcarpum	Combretum micranthum	Cassia sieberiana
Dichrostachys cinerea	Combretum nigricans	Citrus limon
Diospyros mespiliformis	Commiphora africana	Combretum acuelatum
Entada africana	Crossopteryx febrifuga	Combretum Glutinosum
Eucalyptus sp.	Daniellia oliveri	Combretum micranthum
Feretia apodanthera	Detarium microcarpum	Combretum nigricans
Gardenia erubescens	Dichrostachys cinerea	Crossopteryx febrifuga
Gardenia sokotensis	Diospyros mespiliformis	Detarium microcarpum
	I	I

Espèces ligneuses en 2003	Espèces ligneuses en 2004	Espèces ligneuses en 2011
Grewia bicolor	Entada africana	Detarium senegalensis
Grewia mollis	Eucalyptus camaldulensis	Dichrostachys cinerea
Guiera senegalensis	Eucalyptus sp.	Diospyros mespiliformis
Holarrhena floribunda	Feretia apodanthera	Entada africana
Khaya senegalensis	Ficus gnaphalocarpa	Eucalyptus camaldulensis
Lannea acida	Ficus thonningii	Feretia apodanthera
Lannea microcarpa	Gardenia erubescens	Ficus platyphyllia
Lannea schimperi	Gardenia sokotensis	Ficus thonnighii
Maerua angolensis	Grewia bicolor	Gardenia erubescens
Maytenus senegalensis	Grewia mollis	Gardenia soketensis
Ozoroa insignis	Guiera senegalensis	Gardenia ternifolia
Piliostigma reticulatum	Holarrhena floribunda	Grewia bicolor
Piliostigma thonningii	Khaya senegalensis	Grewia flavescens
Pteleopsis suberosa	Lannea acida	Grewia mollis
Saba senegalensis	Lannea microcarpa	Guiera senegalensis
Sclerocarya birrea	Lannea schimperi	Holarrhena floribunda
Securidaca longepedunculata	Leucena leucephala	Khaya senegalensis
Securinega virosa	Maerua ablongifolia	Lannea microcarpa
Sterculia setigera	Maerua angolensis	Lannea acida
Stereospermum kunthianum	Maytenus senegalensis	Lannea microcarpa
Tamarindus indica	Moringa oleifera	Lannea schimperi
Terminalia avicennioides	Ozoroa insignis	Leucena leucephala
Vitellaria paradoxa	Parkia biglobosa	Maerua angolensis
Xeroderris stuhlmannii	Piliostigma reticulatum	Maerua crassifolia
Ximenia americana	Piliostigma thonningii	Maytenus senegalensis
Ziziphus mauritiana	Pteleopsis suberosa	Moringa oleifera
	Pterocarpus erinaceus	Ozoroa insignis
	Saba senegalensis	Parkia biglobosa
	Sclerocarya birrea	Parkindibila
	I	I

Espèces ligneuses en 2003	Espèces ligneuses en 2004	Espèces ligneuses en 2011
	Securidaca longepedunculata	Piliostigma reticulatum
	Securinega virosa	Piliostigma thonnighii
	Sterculia setigera	Pteleopsis suberosa
	Stereospermum kunthianum	Pterocarpus erinaceus
	Tamarindus indica	Saba senegalensis
	Terminalia avicennioides	Sclerocarya birrea
	Vitellaria paradoxa	Securinega virosa
	Ximenia americana	Sterculia setigera
	Ziziphus mauritiana	Sterospermum kunthianum
	Ziziphus mucronata	Strychnos innocua
		Tamarindus indica
		Terminalia avicennioides
		Vitellaria paradoxa
		Xeroderris stuhlmannii
		Ximenia americana
		Ziziphus mauritania
		Ziziphus mucronata

Total espèces ligneuses sur les sites tests du Centre

54	67	74

Tableau VI. Récapitulatif des calculs d'indice de diversité générique au Nord et Centre

Sites tests du Nord			Nombre		Etat de diversité florale
		2003	2004	2011	
	Espèces	9	14	16	
	Genres	7	12	12	
BARABOULE 01 N	Familles	5	7	8	Flore plus diversifiée
	Ig	1.28	1.17	1.33	
	Espèces	5	10	16	
TOYGOV AND	Genres	4	8	11	
TONGOMAYEL 02 N	Familles	3	6	7	Flore plus diversifiée
	Ig	1.25	1.25	1.45	
	Espèces	7	11	14	
	Genres	6	9	11	
TONGOMAYEL 03 N	Familles	4	5	7	Flore plus diversifiée
	Ig	1.17	1.22	1.27	
	Espèces	21	35	46	
Total Sites tests Nord	Genres	17	29	34	
	Familles	12	18	22	
Sites tests du Centre			Nombre		Etat de diversité florale
		2003	2004	2011	
	Espèces	46	56	58	
DANIEL CHE 01 C	Genres	38	45	43	
DAWELGUE 01 C	Familles	23	24	25	Flore plus diversifiée
	Ig	1.21	1.24	1.34	
	Espèces	25	31	35	
CHELA 02 C	Genres	19	23	23	Element 1 1 1000
GUELA 02 C	Familles	11	14	14	Flore plus diversifiée
	Ig	1.32	1.35	1.52	
	Espèces	10	20	35	
CAMDELA 02 C	Genres	10	19	28	Flore plus diversifiée
GAMPELA 03 C	Familles	9	14	17	Flore plus diversifiee
	Ig	1.0	1.05	1.25	
	Espèces	81	107	128	
Total Sites tests Centre	Genres	67	87	94	

Tableau VIII. Récapitulatif du spectre taxonomique de la zone du Centre

Classe	Familles	Nb espèces	Proportion (%)
D	Mimosacées	25	19.53
D	Césalpiniacées	16	12.50
D	Combrétacées	15	11.72
D	Anacardiacées	10	7.81
D	Rubiacées	9	7.03
D	Capparacées	8	6.25
D	Tiliacées	5	3.91
D	Bombacacées	3	2.34
D	Fabacées	3	2.34
D	Méliacées	3	2.34
D	Myrtacées	3	2.34
D	Rhamnacées	3	2.34
D	Sterculiacées	3	2.34
D	Moracées	3	2.34
D	Annonacées	2	1.56
D	Apocynacées	2	1.56
D	Loganiacées	2	1.56
D	Parkindibila	2	1.56
D	Rutacées	2	1.56
D	Balanitacées	1	0.78
D	Bignoniacées	1	0.78
D	Célastracées	1	0.78
D	Ebénacées	1	0.78
D	Euphorbiacées	1	0.78
D	Moringacées	1	0.78
D	Olacacées	1	0.78
D	Polygalacées	1	0.78
D	Sapotacées	1	0.78
100%	Total	128	100.00

D = Dicotyl'edones

Tableau IX. Récapitulatif du spectre taxonomique de la zone du Nord

Classe	Familles	Nb espèces	Proportion (%)
D	Mimosacées	14	30.43
D	Combrétacées	6	13.04
D	Capparacées	6	13.04
D	Césalpiniacées	4	8.70
D	Anacardiacées	4	8.70
D	Fabacées	3	6.52
D	Méliacées	3	6.52
D	Rhamnacées	3	6.52
D	Balanitacées	2	4.35
D	Moringacées	1	2.17
100%	Total	46	100.00

D = Dicotyl'edones

Annexe III : Résultats de l'étude phytosociologique

Tableau I. Relevé phytosociologique des Groupements (RM= recouvrement moyen) du Nord

Groupement	Relevés	R	Groupement	Relevés	RM	Groupement	Relevés	RM
n°1		M	n°2			n°3		
Dichrostachys cinerea	0.5+0.5+ 0.5	1.5	Balanites aegyptiaca	0.5+0.5+0. 5	1.5	Acacia nilotica	0.5+0.5+0.5 +0.5	2
Moringa oleifera	0.50	0.5	Combretum acuelatum	0.5+0.5+0. 5	1.5	Acacia radiania	0.5+0.5+0.5	1.5
2		2	Combretum micranthum	0.5	0.5	Acacia senegal	0.5+0.5+0.5	1.5
			Faidherbia albida	0.5+0.5+0. 5	1.5	Acacia seyal	0.5+0.5+0.5	1.5
			Piliostigma reticulatum	0.5+0.5	1.0	Azadiratcha indica	0.50	0.5
			Prosopis juliflora	0.50	0.5	Bauhinia rufescens	0.5+0.5+0.5	1.5
			Ziziphus mauritania	0.5+0.5+0. 5	1.5	Guiera Senegalensis	0.5+0.5+0.5	1.5

Groupement	Relevés	R	Groupement	Relevés	RM	Groupement	Relevés	RM
n°1		M	n°2			n°3		
			7		8	Maerua angolensis	0.5+0.5+0.5	1.5
						Maerua crassifolia	0.5+0.5+0.5	1.5
						Pterocarpus Lucens	0.50	0.5
						Sclerocarya birrea	0.50	0.5
						11		14

Tableau II. Coefficient de Sorensen pour le Nord

Groupement de végétaux (G)	G1	G2	G3
G1	1.00		
G2	44.44	1.00	
G3	30.77	77.78	1.00

Tableau III. Relevé phytosociologique des Groupements (RM= recouvrement moyen) du Centre

Groupement	Relevés	RM	Groupement	Relevé	RM	Groupement	Relevés	RM
n°1			n°2	S		n°3		
Combretum nigricans	0.5+0.5+0.5+ 0.5+0.5	2.5	Maerua angolensis	0.5+0.5 +0.5	1.5	Cassia singueana	0.5+0.5+0. 5+0.5	2
Boscia angustifolia	0.5+0.5+0.5	1.5	Piliostigma reticulatum	0.5+0.5 +0.5	1.5	Lannea microcarpa	0.5+0.5+0. 5	1.5
Sterculia setigera	0.5+0.5+0.5	1.5	Terminalia avicennioide s	0.5+0.5 +0.5	1.5	Piliostigma thonnighii	0.5+0.5+0. 5	1.5
Guiera senegalensis	0.5+0.5	1	Acacia gourmaensis	0.5+0.5 +0.5	1.5	Dichrostachys cinerea	0.5+0.5+0. 5	1.5
Annona senegalensis	0.5+0.5	1	Acacia pennata	0.5+0.5 +0.5	1.5	Eucalyptus camaldulensis	0.5+0.5+0. 5	1.5
Cassia Sieberiana	0.5	0.5	Lannea schimperi	0.5+0.5	1.00	Capparis sepiaria	0.5+0.5	1
Detarium senegalensis	0.5	0.5	Ozoroa insignis	0.5+0.5	1	Tamarindus indica	0.5+0.5	1
			I			I		

Groupement n°1	Relevés	RM	Groupement n°2	Relevé s	RM	Groupement n°3	Relevés	RM
Ziziphus mauritania	0.5	0.5	Sclerocarya birrea	0.5+0.5	1	Azadiratcha indica	0.5+0.5	1
8		9	Combretum micranthum	0.5+0.5	1	Acacia Macrostachya	0.5+0.5	1
			Pterocarpus erinaceus	0.5+0.5	1	Acacia senegal	0.5+0.5	1
			Strychnos innocua	0.5+0.5	1	Entada africana	0.5+0.5	1
			Acacia gerrardii	0.5+0.5	1	Leucena leucephala	0.5+0.5	1
			Acacia nilotica	0.5+0.5	1	Parkia biglobosa	0.5+0.5	1
			Ficus thonnighii	0.5+0.5	1	Ziziphus mucronata	0.5+0.5	1
			Crossoptery x febrifuga	0.5+0.5	1	Citrus limon	0.5+0.5	1
			Feretia apodanthera	0.5+0.5	1	Grewia mollis	0.5+0.5	1
			Gardenia soketensis	0.5+0.5	1	Parkindibila	0.5+0.5	1
			Lannea acida	0.5	0.5	Holarrhena floribunda	0.5	0.5
			Adansonia digitata	0.5	0.5	Saba senegalensis	0.5	0.5
			Bombax costatum	0.5	0.5	Balanites aegyptiaca	0.5	0.5
			Maerua crassifolia	0.5	0.5	Sterospermum kunthianum	0.5	0.5
			Maytenus senegalensis	0.5	0.5	Afzelia africana	0.5	0.5
			Detarium microcarpu m	0.5	0.5	Combretum Glutinosum	0.5	0.5
			Anogeissus leiocarpus	0.5	0.5	Pteleopsis suberosa	0.5	0.5
			Combretum acuelatum	0.5	0.5	Diospyros mespiliformis	0.5	0.5

Groupement n°1	Relevés	RM	Groupement n°2	Relevé s	RM	Groupement n°3	Relevés	RM
			Xeroderris stuhlmannii	0.5	0.5	Bridelia ferruginea	0.5	0.5
			Albizia chevaleri	0.5	0.5	Khaya senegalensis	0.5	0.5
			Ficus platyphyllia	0.5	0.5	Acacia seyal	0.5	0.5
			Vitellaria paradoxa	0.5	0.5	Acacia Sieberiana	0.5	0.5
			29		25.5	Moringa oleifera	0.5	0.5
						Ximenia americana	0.5	0.5
						Securinega virosa	0.5	0.5
						Gardenia erubescens	0.5	0.5
						Gardenia ternifolia	0.5	0.5
						Grewia bicolor	0.5	0.5
						Grewia flavescens	0.5	0.5
						36		30

Tableau IV. Coefficient de Sorensen pour le Centre

Groupement de végétaux (G)	G1	G2	G3
G1	1.00		
G2	32.43	1.00	
G3	36.36	52.31	1.00