

ETUDE TECHNIQUE DETAILLEE POUR L'AMENAGEMENT HYDRO-AGRICOLE DE 15 HA (10 HA EN SEMI-CALIFORNIEN ET 5 HA EN GOUTTE-A-GOUTTE) EN AVAL DU BARRAGE DE RAKAYE-KASSIRI DANS LA COMMUNE DE DOULOUGOU (BURKINA-FASO).

MEMOIRE POUR L'OBTENTION DU DIPLOME D'INGENIEUR 2IE AVEC GRADE DE **MASTER**

SPECIALITE : GENIE DE L'EAU, DE L'ASSAINISSEMENT ET DES AMENAGEMENTS HYDRO-AGRICOLES

Présenté et soutenu publiquement le 26/07/2021 par

Kenneth Fortuné Bignon GBETOFIA (20180775)

Encadrant 2iE : Pr. Amadou KEITA, Maitre de Conférences CAMES, Enseignant-Chercheur 2iE

Maître de stage : Mr Mahamoudou WANDAOGO, Ingénieur Génie Rural, BERA

Structure d'accueil du stage : Bureau d'Etudes et de Recherches Appliquées (BERA)

Jury d'évaluation du mémoire :

Président : Pr. Hamma YACOUBA

Membres et examinateurs : M. Moussa Bruno KAFANDO

Promotion [2020/2021]

DEDICACES

Je dédie ce travail à mes proches.

A mon père Florentin GBETOFIA pour le don de la vie et tous les efforts qu'il a consentis pour assurer mon éducation depuis mon plus jeune âge.

A ma chère mère Léa GBETOFIA née TOGBE pour ses conseils, son amour et ses innombrables prières.

A mes frères Arol, Fadoul et Christ-Vie et ma sœur Magali pour leur amour et leur soutien.

A mon tuteur Aimé SAWADO et son épouse Roseline SAWADO pour leur sens de l'hospitalité et leur amour sans limite pour moi.

REMERCIEMENTS

Nous adressons nos remerciements à toutes les personnes qui de près ou de loin ont contribué à la réussite de ce travail. Ainsi, nous remercions :

- Tout le corps professoral, le personnel de l'administration et les promotionnaires de l'Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE).
- Pr Amadou KEITA, notre encadreur, pour l'encadrement reçu, les différentes directives communiquées et la disponibilité dont il a fait preuve malgré ses multiples occupations.
- L'ensemble du personnel de BERA, pour l'accueil fort chaleureux, l'inclusion dans l'équipe, les différents conseils et la bonne atmosphère qui a toujours prévalu durant le stage.
- Mr Saly Yacouba TRAORE, Ingénieur Hydrogéologue, Directeur Général de BERA pour nous avoir intégrés dans sa structure en qualité de stagiaire.
- Mr Mahamoudou WANDAOGO, Ingénieur du Génie Rural et Chef de Service Hydraulique Agricole et Urbaine; notre maitre de stage pour l'accompagnement, le soutien et tous les apports multiformes.
- Mr Arthur VOKOUMA, Ingénieur du Génie Rural et consultant à BERA pour les conseils très utiles et l'écoute permanente.
- Mr Abdoul-Aziz SOULAMA et Mr Clauvis OUEDRAOGO, Ingénieur du Génie Rural et Chargé d'études pour leurs conseils et leur sens de fraternité durant tout le stage au sein de BERA.
- Mr Adamou WOROU WARRA, Ingénieur de l'Eau et de l'Environnement et Coordonnateur national du PIDACC/BN Bénin, pour nous avoir recommandé auprès du DG de BERA.
- Mlle Alda Wilfridine YAHOUEDEOU, juriste en formation pour la présence, l'affection et les prières incessantes tout au long du séjour à l'Institut 2iE et tout au long du stage.
- Mlle Daryle BIAOU ; Ingénieur en Eau et Environnement ; pour l'inestimable soutien, le partage d'expériences et les conseils durant le stage.
- Nos camarades de la promotion Master Infrastructures et Réseaux Hydrauliques 2iE 2020-2021 particulièrement Mlle Abah Marie Désirée-Antoine BEUGRE, Mr Steve Isaï BATIENON, Mr Hamidou OUEDRAOGO, Mr Abdoul-Aziz SAWADOGO et Mr Victor TIENDREBEOGO pour leur grande aide dans mes travaux.
- Nos ainés Kévin ILBOUDO, Romaris DAKPEDE, Abdon KINGLO, Prisque BOUDOUG et Clotilde BAZIE pour leurs précieux conseils et directives.
- Nos collègues stagiaires de BERA, Nadège KIENDREBEOGO, Christelle NAKIRI, Andréa ZONGO, Jean-Eudes DAMIBA et Hervé WANDE pour leurs sens de la fraternité et leurs apports.

Que Dieu vous le rende au centuple et vous comble de grâces.

Résumé

L'absence de pluies et le faible développement d'aménagement des terres irrigables sont à la base de la pauvreté et de la famine ici au Burkina-Faso. Ainsi pour mettre un accent de façon pratique et statistique sur le point de vue des exploitants concernant leurs préférences culturales et les systèmes d'irrigation adéquats, une étude sur la réalisation d'un aménagement hydro-agricole a été menée. La zone d'étude, d'une superficie de 15 ha est la partie aval du barrage de Rakaye-Kassiri constituée par 54 parcelles de 0,25 ha et située à 45 km de Ouagadougou, la capitale du Burkina-Faso. Sur la base d'un sondage aléatoire stratifié, 30 enquêtes de terrain, utilisant le WASO: un outil de calcul et d'enquête, ont été menées dans les villages de Rakaye-Yarcé et Rakaye-Mossi. 20 mesures d'infiltration du sol sur le périmètre irrigué, ont permis de connaitre la perméabilité du sol d'une valeur de 33,4±20,7 mm/h dévoilant un sol de type sablolimoneux. Les résultats d'enquêtes ont montré que les cultures de rentes telles que le maïs, le mil, le haricot ont un léger avantage sur les cultures maraichères (16,27/20 contre 16/20). Ainsi, les spéculations retenues sont la tomate, la laitue, l'oignon, le maïs et le haricot. En outre, il ressort également que les exploitants ont une préférence pour le NPK comme engrais chimique. Ils ont également émis avoir des connaissances en irrigation localisée et en irrigation gravitaire. Les problèmes principaux rencontrés lors de leurs campagnes culturales étant la destruction des cultures par les animaux et l'insuffisance d'équipements, par conséquent, la création d'enclos et la mise à disposition d'équipements modernes s'avèrent être des solutions durables. Le calcul des besoins en eau des cultures nous a permis de considérer les oignons et les maïs comme cultures les plus contraignantes. Les chiffres obtenus sont de 12651,9 m³ pour l'oignon et 7167,87 m³ pour le maïs. Le tour d'eau est identique pour les deux systèmes d'irrigation et est pris égal à 3 jours. Les débits d'équipement sont de 3,98 l/s pour le semi-californien et de 0.90 l/s pour l'irrigation localisée. Les réseaux de distribution sont composés de conduites en PVC et en Polyéthylène, ainsi que de goutteurs. L'étude menée sur les possibilités de pompage de l'eau pour irriguer le périmètre nous a permis de choisir une motopompe thermique mobile HONDA qui débite 43,2 m³/h d'une part et d'autre part, une pompe centrifuge GRUNDFOS qui débite 134,78 m³/h. Le réseau de drainage quant à lui, est composé de 9 drains internes pour protéger le périmètre de l'excédent d'eau.

En ce qui concerne l'étude financière, le coût global de l'aménagement s'élève à 174 959 588 FCFA soit 9 884 722 FCFA à l'hectare avec un retour sur investissement de 3 ans.

Mots-clés

- 1- Aménagement hydro-agricole
- 2- Irrigation gravitaire
- 3- Irrigation localisée
- 4- Rakaye-Kassiri
- 5- WASO

Abstract

The lack of rainfall and the poor development of irrigable land are at the root of poverty and famine here in Burkina Faso. Thus, in order to focus in a practical and statistical way on the farmers' point of view regarding their cropping preferences and adequate irrigation systems, a study on the realization of a hydro-agricultural development was conducted. The study area, covering 15 ha, is the downstream part of the Rakaye-Kassiri dam, consisting of 54 plots of 0.25 ha each, and is located 45 km from Ouagadougou, the capital of Burkina-Faso. On the basis of a stratified random sampling, 30 field surveys, using WASO: a calculation and survey tool, were conducted in the villages of Rakaye-Yarcé and Rakaye-Mossi. 20 soil infiltration measurements on the irrigated perimeter allowed us to know the permeability of the soil with a value of 33,4±20,7 mm/h revealing a sandy-silt type soil. The results of the surveys showed that cash crops such as maize, millet and beans have a slight advantage over market garden crops (16.27/20 versus 16/20). Thus, the crops selected are tomato, lettuce, onion, corn and bean. In addition, it also appears that farmers have a preference for NPK as chemical fertilizer. They also expressed knowledge of localized irrigation and gravity irrigation. The main problems encountered during their cropping seasons were the destruction of crops by animals and the lack of equipment, so the creation of enclosures and the provision of modern equipment proved to be sustainable solutions. The calculation of the water needs of the crops allowed us to consider onions and corn as the most constraining crops. The figures obtained are 12651.9 m3 for onions and 7167.87 m3 for corn. The water turn is identical for both irrigation systems and is taken equal to 3 days. The equipment flow rates are 3.98 l/s for semi-californian and 0.90 l/s for localized irrigation. The distribution networks are composed of PVC and Polyethylene pipes, as well as drippers. The study carried out on the possibilities of pumping water to irrigate the perimeter allowed us to choose a HONDA mobile thermal motor pump that delivers 43.2 m³/h on the one hand and on the other hand, a GRUNDFOS centrifugal pump that delivers 134.78 m3/h. The drainage network is composed of 9 internal drains to protect the perimeter from excess water.

As far as the financial study is concerned, the overall cost of the development amounts to 174,959,588 FCFA, i.e. 9,884,722 FCFA per hectare with a return on investment of 3 years.

Key-words

- 1- Gravity irrigation
- 2- Hydro-agicultural development
- 3- Localized irrigation
- 4- Rakaye-Kassiri
- 5- WASO

Liste des abréviations

ANAM Agence Nationale de la Météorologie

ANOVA Analysis of variances (Analyse des variances)

APD Avant-Projet Détaillé

APS Avant-Projet Sommaire

BERA Bureau d'Etudes et de Recherches Appliquées

BNDT Base Nationale de Données Topographiques

Ha Hectare

Hz Hertz

IGD Institut pour la Gouvernance et le Développement

ISO International Organization for Standardization (Organisation

Internationale de Normalisation)

McE mètre colonne d'Eau

ONU Organisation des Nations Unies

PDRDP-B/K Projet de Développement Rural Décentralisé et Participatif dans les

provinces du Bazéga et du Kadiogo

PE Polyéthylène

PGRN Projet de Gestion des Ressources Naturelles

PIB Produit Intérieur Brut

PNKT Parc National KABORE Tambi

PVC Polychlorure de Vinyle

QTE Question au Thème d'Enquête

RGPH Recensement Général de la Population et de l'Habitation

RA Réponse Anticipée

RTK Real Time Kinematic

TE Thème d'Enquête

Table des matières

DE	DICACES	ii
RE	MERCIEMENTS	iii
Ré	sumé	iv
Ab	stract	v
Lis	te des abréviations	vi
Lis	te des tableaux	9
Lis	te des figures	. 10
Fic	he technique du projet	. 11
I.	INTRODUCTION	. 12
II.	PRESENTATION DE LA STRUCTURE D'ACCUEIL ET DE LA ZONE D'ETUDE	. 13
I	I.1. PRESENTATION DE LA STRUCTURE D'ACCUEIL	. 13
I	I.2. PRESENTATION DE LA ZONE D'ETUDE	. 15
III.	PRESENTATION DU PROJET	. 22
IV.	MATERIELS ET METHODES	. 23
I	V.1. METHODOLOGIE DE COLLECTE DE DONNEES	. 23
I	V.2. METHODOLOGIE DE CONCEPTION DE L'AMENAGEMENT	. 23
	IV.2.1. Détermination des paramètres de base	. 23
I	V.3. METHODOLOGIE DE CONCEPTION DES SYSTEMES D'IRRIGATION	. 34
	IV.3.1. Parcellisation.	. 34
	IV.3.2. Design préliminaire	. 34
	IV.3.3. Design final	.41
	IV.3.4. Dimensionnement de la station de pompage	. 46
	IV.3.5. Dimensionnement du réseau de drainage	. 48
	IV.3.6. Organisation de l'arrosage	. 49
	IV.3.7. Entretien et gestion du périmètre	. 49
	IV.3.8. Etude économique	. 50
V.	RESULTATS ET DISCUSSION	. 51
7	V.1. Détermination des paramètres de base	. 51
	V.1.1. Données topographiques	. 51
	V.1.2. Etude statistique des pluies	. 51
	V.1.3. Etudes hydrologiques	. 51
	V.1.4. Evaluation de la ressource en eau du barrage	. 52
	V.1.2. Résultats enquêtes WASO	. 53

7	V.1.2. Etudes pédologiques et aptitude du sol	60
7	V.1.3. Choix des cultures	61
V.2	2. Evaluation des besoins en eau des cultures	63
V.3	. Méthodologie de conception des systèmes d'irrigation	63
7	V.3.1. Parcellisation	63
7	V.3.2. Dimensionnement préliminaire	65
7	V.2.2. Dimensionnement final	66
7	V.2.3. Dimensionnement et calage des ouvrages	68
7	V.2.3. Dimensionnement du réseau de drainage	71
7	V.2.4. Organisation de l'arrosage	71
7	V.2.5. Description des procédures d'entretien du périmètre	71
7	V.2.6. Etude économique	72
VI.	NOTICE D'IMPACT ENVIRONNEMENTAL ET SOCIAL	73
	1. IDENTIFICATION ET EVALUATION DES IMPACTS ET EFFETS DU	
	R L'ENVIRONNEMENT	
	2. EVALUATION DE L'IMPORTANCE DES IMPACTS IDENTIFIES	
	/I.2.1. Méthodologie d'évaluation des impacts	
7	VI.2.2. Evaluation des impacts par phase	74
VI.	3. PLAN DE GESTION ENVIRONNEMENTAL ET SOCIAL (PGES)	76
7	VI.3.1. Mesures d'atténuation et compensations	77
7	7I.3.2. Suivi et Surveillance environnementale	77
VII.	CONCLUSION - PERSPECTIVES	78
VIII.	RECOMMANDATIONS	79
IX.	Bibliographie	80
X. Al	NNEXES	81

Liste des tableaux

Tableau 1 : Effectif du cheptel dans la commune de Doulougou	21
Tableau 2 : Récapitulatif des TE, QTE et RA	28
Tableau 3 : Choix de l'échantillon	29
Tableau 4: Localisation des points de mesure d'infiltration	30
Tableau 5 : Avantages et inconvénients du semi-californien	33
Tableau 6 : Avantages et inconvénients du goutte-à-goutte	33
Tableau 7 : Coefficients liés à la nature de la conduite	46
Tableau 8 : Analyse des pluies	51
Tableau 9 : Caractéristiques du bassin versant	51
Tableau 10 : Informations sur la digue du barrage	52
Tableau 11 : Pertes et apports dans la cuvette	52
Tableau 12 : One-way ANOVA pour QTE 1.1	54
Tableau 13 : Informations groupées utilisant le test de Tukey à 95% d'intervalle de	confiance,
QTE 1.1	54
Tableau 14 : One-way ANOVA pour QTE 1.2	55
Tableau 15 : Informations groupées utilisant le test de Tukey à 95% d'intervalle de	confiance,
QTE 1.2	55
Tableau 16: One-way ANOVA QTE.2	56
Tableau 17 : Informations groupées utilisant le test de Tukey à 95% d'intervalle de	confiance,
QTE 2	
Tableau 18: Test de Kruskal-Wallis sur le QTE 3	57
Tableau 19: Test de Mann-Whitney sur QTE 3	57
Tableau 20 : Test de Kruskal-Wallis sur le QTE 4	57
Tableau 21: Test de Mann-Whitney sur le QTE 4	
Tableau 22 : Test de Kruskal-Wallis sur le QTE 5	58
Tableau 23: Test de Mann-Whitney sur le QTE 5	
Tableau 24 : One-way ANOVA pour QTE 6	
Tableau 25 : Informations groupées utilisant le test de Tukey à 95% d'intervalle de	
QTE 6	
Tableau 26 : One-way ANOVA pour QTE 7	59
Tableau 27 : Informations groupées utilisant le test de Tukey à 95% d'intervalle de	
QTE 7	
Tableau 28 : Récapitulatif des résultats de MINITAB et SPAW	
Tableau 29 : Caractéristiques des cultures	
Tableau 30 : Besoins de pointe mensuels des cultures	
Tableau 31 : Déficit hydrique de l'oignon	
Tableau 32 : Déficit hydrique du maïs	
Tableau 33 : Dimensionnement préliminaire semi-californien	
Tableau 34 : Dimensionnement préliminaire goutte-à-goutte	
Tableau 35 : Caractéristiques du goutteur choisi	
Tableau 36 : Calage des prises	
Tableau 37 : Caractéristiques des conduites	
Tableau 38 : Caractéristiques des conduites	
Tableau 39 : Caractéristiques du bassin partiteur	
T T T T T T T T T T T T T T T T T T T	

Tableau 40 : Données de courbes conduite et pompe équivalente	70
Tableau 41 : Caractéristiques du point de fonctionnement	
Tableau 42 : Caractéristiques des drains	71
Tableau 43 : Synthèse du cout du projet	72
Tableau 44 : Rentabilité de l'investissement	72
Tableau 45: Matrice de Léopold – Evaluation des impacts	73
Tableau 46 : Matrice de FECTEAU	
Tableau 47 : Evaluation des impacts par phase	75
T 1	
Liste des figures	
Figure 1 : Organigramme de la structure	14
Figure 2 : Localisation de la zone d'étude	15
Figure 3 : Courbe ombrothermique de Ouagadougou (Source ANAM 2020)	16
Figure 4 : Carte géologique de Doulougou	17
Figure 5 : Carte pédologique de Doulougou	18
Figure 6 : Carte hydrographique de Doulougou	20
Figure 7 : Déroulement d'une enquête	27
Figure 8 : Matériel pour les mesures d'infiltration	29
Figure 9 : Répartition des points de mesure d'infiltration	
Figure 10 : Courbe d'exploitation du barrage	53
Figure 11 : Graphe des résidus pour QTE 1.1 (Cultures de rente, cultures maraichères)	54
Figure 12 : Classification des types de sols selon SAVVA & FRENKEN	60
Figure 13 : Plan de parcellisation	
Figure 14 : Goutteur choisi	
Figure 15 : Motopompe thermique HONDA	
Figure 16 : Point de fonctionnement	

Fiche technique du projet

1-Localisation	Province	Bazéga	
	Commune	Doulougou	
	Village Rakaye		
	Coordonnées	Latitude : 11°50'32'' ;	
		Longitude: 1°33'36''	
2-Ressource en eau	Barrage en project	ion (phase d'études)	
3-Localisation du	En aval du barrag	e de Rakaye-Kassiri	
périmètre irrigué			
4-Spéculations envisagées	Tomate, Laitue, O	ignon, Maïs, Haricot	
5-Système d'irrigation	Aménagement de 10 ha de	Aménagement de 5 ha de	
	type semi-californien	type irrigation localisée (maïs	
	(maraichage)	et haricot)	
	Débit d'équipement : 3,98	Débit d'équipement : 0,90 l/s	
	1/s		
	Organisation de l'arrosage :	Organisation de l'arrosage	
	- Tour d'eau : 3 jours	- Tour d'eau : 3 jours	
	- Temps de poste :	- Temps de poste : 6	
	Toutes les parcelles	parcelles à la fois	
	du jour (12) pendant	pendant 4h	
	8h		
	1.0		
6-Station de pompage	1 Groupe Motopompe	1 pompe GRUNDFOS	
7 D() 1 1 1	thermique diesel		
7-Réseau de drainage	Drain interne, de section trapézoïdale		
	Longueur totale des drains internes $L_{interne} = 200 \text{ m}$		
8-Couts estimatifs du	174 959 588 FCFA		
projet (FCFA)			

I. INTRODUCTION

Avec environ 9 millions de terres arables estimées, l'agriculture représente le premier secteur d'activités au Burkina Faso. Le secteur agro-sylvo-pastoral occupe près de 80% de la population active et son poids varie entre 28 et 31% du PIB (Tribune Afrique, 2018). Cependant, étant situé au cœur du Sahel, le pays figure parmi les plus vulnérables face aux changements climatiques qui allongent les périodes de sécheresse et fragilisent encore l'agriculture qui dépend fortement des précipitations. À cela s'ajoutent les contraintes socioéconomiques, démographiques et le manque de matériel adéquat. Ce qui caractérise le plus l'agriculture au Burkina Faso, ce sont hélas les techniques archaïques employées : un matériel encore rudimentaire est nécessaire pour faire fonctionner des exploitations généralement petites avec des rendements faibles. Pour ce faire, les techniques d'irrigation tels que le goutte à goutte, l'aspersion et le semi-californien se positionnent comme des alternatives incontournables dans cette situation car elles présentent des efficiences supérieures à 60% (FAO, 2008). L'agriculture irriguée se veut donc importante pour participer à l'autosuffisance alimentaire et la réduction de la pauvreté surtout en milieu rural (FAO, 2015). Toutefois, avant de faire le choix d'une technique d'irrigation, il est primordial de faire une étude préliminaire auprès des exploitants bénéficiaires et de prendre en compte plusieurs facteurs tels que le cout de réalisation des travaux d'aménagement, les bénéfices, la maitrise de la technique d'irrigation, l'efficience, la qualité de l'eau d'irrigation et les cultures à mettre en place.

C'est ainsi que pour atteindre son objectif de « Faim Zéro » en conformité avec le deuxième Objectif de Développement Durable de l'ONU, le gouvernement burkinabé a entrepris depuis plusieurs années déjà la réalisation d'aménagements hydro-agricoles en vue d'accroitre la production agricole et la création d'emplois.

C'est dans cette optique que le bureau d'études BERA a été désigné pour l'étude de la mise en œuvre d'un périmètre irrigué en aval du barrage de Rakaye-Kassiri dans la commune de Doulougou. Nous ferons donc une étude détaillée de la réalisation d'un tel ouvrage en proposant les meilleurs coûts, une gestion optimale du périmètre et surtout un bon rendement.

12

II. PRESENTATION DE LA STRUCTURE D'ACCUEIL ET DE LA ZONE D'ETUDE

II.1. PRESENTATION DE LA STRUCTURE D'ACCUEIL

1. Raison sociale de la structure

Créé en 1987, le Bureau d'Etudes et Recherches Appliquées (**BERA**) est un bureau d'ingénierie de droit burkinabè à vocation internationale qui intervient dans le domaine de l'eau et de l'environnement. Il intervient dans l'assistance technique auprès du Maitre d'ouvrage, la Maitrise d'œuvre complète, les études d'exécution et le contrôle des travaux.

2. Mission et vision stratégique

Le bureau d'études BERA s'est donné comme mission de contribuer à l'amélioration des conditions de vie des populations présentes et futures par la recherche appliquée au développement dans un environnement de qualité. Sa vision stratégique est de : « jouer un rôle de premier plan dans la recherche des solutions techniques et sociales aux problèmes de développement ».

3. Domaines de compétence et d'intervention et prestations offertes

Les principaux domaines d'intervention sont : l'hydraulique agricole, hydraulique urbaine et assainissement, environnement et hydraulique villageoise et pastorale. Les prestations offertes par le bureau d'études sont les Études techniques d'Avant-Projet Sommaire (APS) et d'Avant-Projet Détaillé (APD).

Les autres domaines de compétences concernent la socio-économie, la topographie et les pistes.

4. Organigramme de la structure

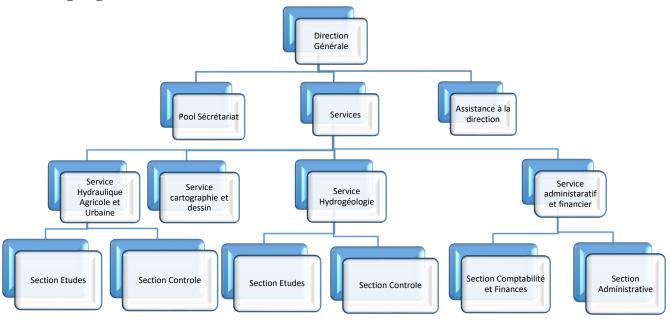


Figure 1 : Organigramme de la structure

II.2. PRESENTATION DE LA ZONE D'ETUDE

1. Localisation de la zone d'étude

Doulougou est une commune rurale située dans la région du Centre Sud du Burkina Faso, plus précisément dans la province du Bazéga. Elle est limitée au Nord par les communes de Saponé et Koubri, à l'Est et au Sud-Est par la commune de Kombissiri, chef-lieu de la province du Bazéga, au Sud par le Parc National KABORE Tambi (PNKT), à l'Ouest par la commune de Ipelcé et au Sud-Ouest par la commune de Sapouy et le fleuve Nazinon.

La localité se trouve à 16 km de Kombissiri (chef-lieu de la province) et à 45 km de Ouagadougou. Avec une altitude moyenne de 375 m, elle est à 11°59'00''Nord et 1°27'00''Ouest (Wikimedia maps). La figure 2 ci-contre, donne une localisation spatiale de la zone d'étude.

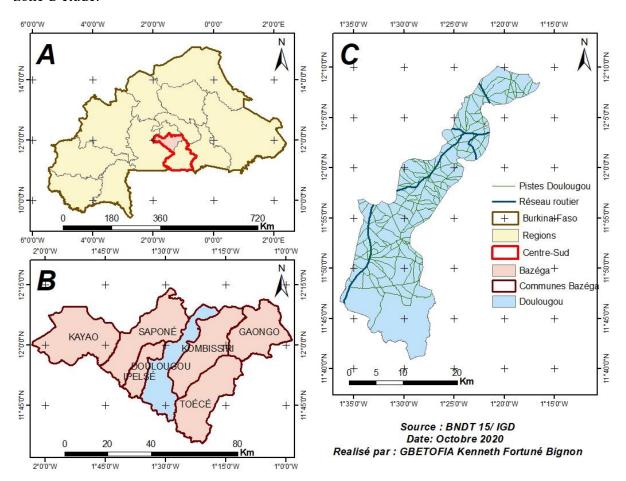


Figure 2 : Localisation de la zone d'étude

2. Présentation du cadre physique

♣ Climat – Pluviométrie

La commune de Doulougou a un climat de type nord soudanien marqué par le contraste entre :

- Une longue saison sèche de huit mois d'octobre à mai ;
- Une courte saison pluvieuse de quatre mois de juin à septembre

Les températures sont très variables au cours de l'année avec une moyenne de 30°C tandis que la température maximale atteint 42°C pendant les périodes les plus chaudes de l'année. Les vents dominants sont la mousson qui souffle pendant l'hivernage, l'harmattan, vent sec et froid (de décembre à février) et les vents chauds et secs (de mars à avril).

Les précipitations annuelles sont comprises entre 800 mm et 1000 mm et se caractérisent par leur mauvaise répartition spatiale et temporelle.

La figure 3 nous donne une idée de l'évolution des pluies moyennes mensuelles et des températures dans la commune de Doulougou de 1989 à 2018 :

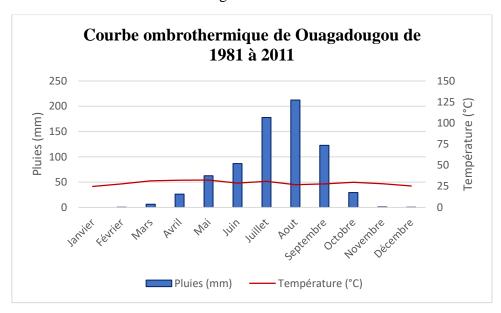


Figure 3: Courbe ombrothermique de Ouagadougou (Source ANAM 2020)

* Relief – Géomorphologie

D'une manière générale, la commune de Doulougou est une pénéplaine, avec de longues pentes de l'ordre de 1 à 2% aboutissant à des talwegs dont les remblais, atteignant souvent le niveau de la pénéplaine, sont actuellement repris par l'érosion.

On distingue trois (03) principales formations géomorphologiques au niveau de la commune :

- Les bas-fonds se retrouvent dans la partie nord du territoire communal et concerne les villages de Lamzoudo, Kagamzince, Widi, Watinoma et Pibsé. Ces bas-fonds constituent pour la plupart des réservoirs d'eau naturels surtout en période hivernale;
- Les crêtes sont les sommets des collines, des buttes, et/ou des affleurements granitiques. Ce relief saillant est retrouvé sur l'ensemble du territoire communal surtout dans la partie Nord :
- Les versants ou les plaines servent de raccordement entre les crêtes et les bas-fonds. Ceux-ci occupent la plus grande partie du territoire allant de l'Ouest vers l'Est en passant par le centre de Doulougou.

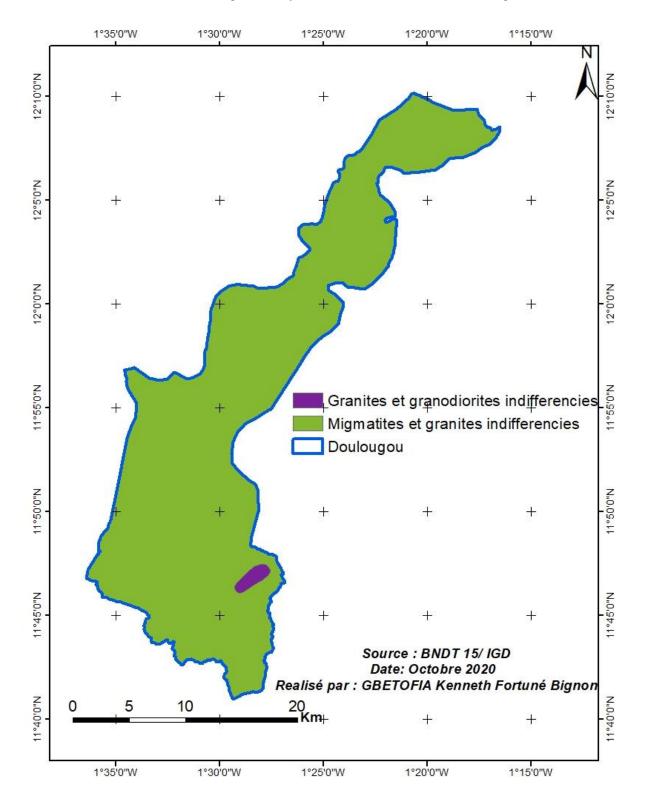


Figure 4 : Carte géologique de Doulougou

* Sols

Trois types de sols caractérisent essentiellement la pédologie de la commune :

- Les sols sablo-gravillonnaires localisés aux abords des collines : Ils ont une valeur agronomique faible et sont difficiles à mettre en valeur ;

- Les sols sablonneux sont très répandus. Ils sont favorables à la culture du mil, du sorgho et de l'arachide ;
- Les sols argilo-sablonneux localisés le long des berges des cours d'eau. Ils sont assez riches et favorables à la culture maraîchère.

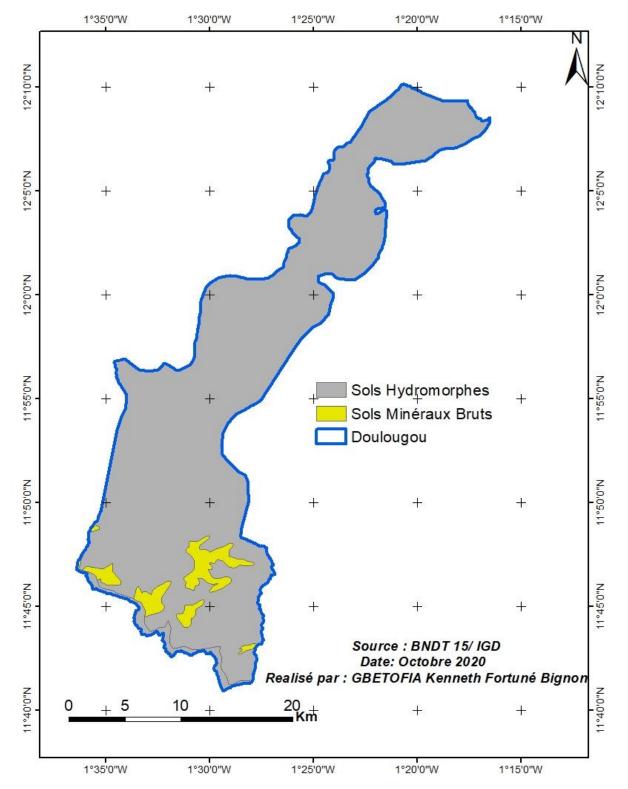


Figure 5 : Carte pédologique de Doulougou

❖ Végétation, faune et flore

La végétation originelle, dans la commune de Doulougou, est de type savane arborée fortement dégradé du fait de la sécheresse et de la forte pression foncière. La commune dispose d'un massif forestier dans sa partie extrême Sud (partie relevant des terroirs de Toebanega, Rakaye Yarcé et Sarana). Ce massif forestier fait partie de la forêt classée du parc national KABORE TAMBI. Les autres formations végétales naturelles encore présentes sont les forêts villageoises et les reliques de forets galeries le long des principaux bas-fonds de la commune. Le tapis herbacé dans l'ensemble discontinu est assez fourni le long des bas-fonds. Les forêts villageoises ont été mises en place par les populations avec les appuis techniques et financiers des services de l'Environnement, le PGRN et le PDRDP-B/K. Elles contribuent significativement à la sécurité alimentaire (apport de fruits comestibles) et énergétique (apport en bois de chauffe). Certaines essences y sont régulièrement prélevées et utilisées comme produits de la pharmacopée.

La faune comprend de petits gibiers (rats, lièvres..) ainsi qu'un nombre élevé d'oiseaux et de reptiles.

Hydrographie

Le réseau hydrographique est essentiellement constitué de cours d'eau mais on note également la présence de quelques retenues d'eau dont les plus importantes sont celles de Lamzoudo, Gana, Bangléongo, Bingla, Pibsé, Widi et Kagamzincé.

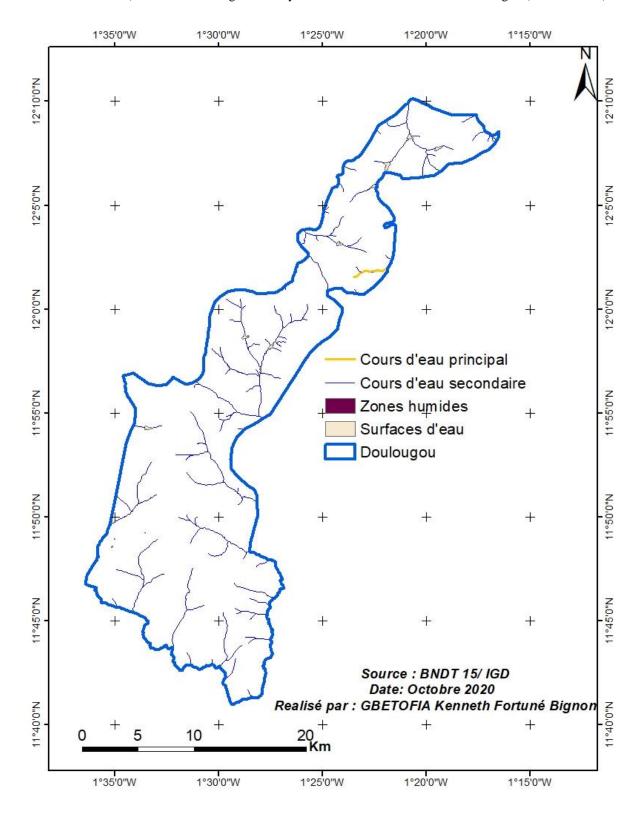


Figure 6 : Carte hydrographique de Doulougou

3. Présentation du cadre humain

♦ Aspects démographiques

Les résultats du recensement RPGH de 2019 étant provisoire, nous allons exploiter les résultats du recensement de 2006. Selon le Recensement Général de la Population et de l'Habitation

(RGPH) de 2006, la population de la commune de Doulougou a été estimée à 26.178 habitants (12.476 hommes et 13.702 femmes). Les groupes ethniques présents dans la commune sont essentiellement : les Mossi, les Fulbé, les Peulhs et les Gourounsi.

Les religions pratiquées sont principalement le catholicisme, l'islam, l'animisme (ou religion traditionnelle) et les athées.

♦ Aspects socio-économiques

L'agriculture représente le premier secteur d'activité dans la commune de Doulougou. Suivent ensuite, l'élevage, le commerce, l'artisanat et le tourisme.

- Agriculture: Elle constitue une activité très importante dans la commune de Doulougou puisqu'elle occupe 60.54% du territoire communal. Il s'agit d'une agriculture de subsistance basée sur la production de cultures vivrières (petit mil, sorgho, mais, riz, niébé, patate, haricot, voandzou), de cultures de rente (arachide, sésame, soja, coton) et de cultures maraichères (tomate, chou, laitue, piment, oignon, concombre). (PIF, 2017).
- **Elevage** : Elle figure après l'agriculture, au second rang des activités motrices de l'économie locale. L'élevage mobilise, notamment à temps partiel une bonne partie de la population de la commune dans des activités de production et ou de commercialisation. Le système d'élevage concerne tout le cheptel composé de bovins, ovins, caprins, porcins, asins et volaille.

Le tableau 1 renseigne l'effectif du cheptel dans la commune de Doulougou

Tableau 1 : Effectif du cheptel dans la commune de Doulougou

Espèces	Bovins	Ovins	Caprins	Porcins	Asins	Volaille
Effectifs	15526	24961	48321	7017	7584	194542
Doulougou 2020						
Total Bazéga 2020	108683	174734	338247	49124	53090	1361798

Source : DPRA (Direction Provinciale des Ressources Animales/ Bazéga).

- **Commerce** : Les activités commerciales sont organisées essentiellement autour du marché principal de Doulougou. Il draine des vendeurs et acheteurs de tous les villages et des communes environnantes. Les produits agricoles constituent les principaux produits des transactions.
- Tourisme : Les sites touristiques de la commune restent très peu connus et non valorisés.
- Artisanat : Concernant le secteur de l'artisanat, celui-ci reste toutefois embryonnaire et intéresse divers domaines. L'artisanat de service regroupe les activités de transport, de mécanique auto, de blanchisserie, de réparation d'appareils divers, de coiffure, etc. L'artisanat de production comprend les activités de fabrication de beurre de karité, de soumbala, de préparation du dolo, de fabrication de savon, de décorticage du riz, de production de farine de céréales et la petite restauration.

III. PRESENTATION DU PROJET

1. Contexte et problématique

Le Burkina-Faso est un pays de l'Afrique de l'Ouest dont l'économie repose majoritairement sur l'agriculture. Malheureusement, force est de constater que l'aménagement des terres irrigables et des bas-fonds reste peu développé, malgré un potentiel assez élevé ; ce qui impacte significativement sur l'autosuffisance alimentaire. Face à ce constat, les demandes communautaires en termes d'aménagement sont de plus en plus importantes. Afin de répondre à la demande communautaire et de contribuer à l'autosuffisance alimentaire, des études d'aménagement préalables sont nécessaires pour bien évaluer les besoins en termes de travaux et assurer leur bonne planification. Dans ce contexte, la commune de Doulougou a été identifiée pour bénéficier d'un aménagement hydro-agricole.

Le projet permettra d'évaluer la faisabilité technique et socio-économique du périmètre irrigué à mettre en place.

2. Objectifs

Le principal objectif de cette étude est de contribuer à l'équipement du monde rural pour son automatisation à travers la conception d'un périmètre hydro-agricole en aval du barrage de Rakaye-Kassiri. Aussi, les objectifs spécifiques seront :

- Connaissance de l'hydrologie et protection de l'aménagement ;
- Etude de sol : double anneau et aptitudes des types de sol ;
- Avant-Projet Détaillé de l'aménagement : parcellisation, besoins en eau d'irrigation et dimensionnement des conduites ;
- Présentation de l'organisation de l'arrosage ;
- Description des procédures d'entretien ;
- Etude économique : Durée de Retour sur Investissement (DRI) et Retour sur Investissement (Rinv) ;
- Elaboration d'une notice d'impact environnemental et social du projet ;

3. Diagnostic / Etat des lieux

Le barrage de Rakaye-Kassiri est en phase études. Lors de nos investigations, seules les études topographiques, géologiques et hydrologiques avaient été menées.

Aussi, nous avons pu constater que la présence de certaines cultures au niveau de la zone à aménager.

Le barrage projeté est à vocation agro-pastorale. Il servira pour l'agriculture notamment les cultures de contre-saison et pour l'abreuvage des animaux.

Pour ce qui est des aménagements hydro-agricoles existants, notons qu'il n'existe aucun barrage dans le village et aucun aménagement agricole également.

IV. MATERIELS ET METHODES

Pour réaliser ce projet d'étude nous avons utilisé les outils suivants :

- Les logiciels ArcGIS et Google Earth pour localiser et présenter la zone d'étude mais aussi pour extraire et traiter la carte du bassin versant de notre site d'étude afin d'en déduire les caractéristiques ;
- Les logiciels de Conception Assistée à l'ordinateur comme AutoCAD, ArchiCAD pour la conception des dessins et l'élaboration des différents profils ;
- Le logiciel Hyfran Plus pour le traitement des données pluviométriques ;
- Le logiciel CROPWAT pour les données culturales suivant le cycle végétatif des spéculations ;
- Le WASO pour effectuer les enquêtes auprès des populations et ainsi quantifier l'intensité de leur opinion ;
- Logiciels Microsoft Office (Excel 2013 et Word 2013) pour les calculs de paramètres et le traitement de textes.
- Le logiciel ZOTERO pour les références bibliographiques.

IV.1. METHODOLOGIE DE COLLECTE DE DONNEES

Pour atteindre les objectifs spécifiques visés, une méthodologie a été élaborée et suivie. Elle s'est orientée suivant les axes :

- ♦ Une phase de recherche bibliographique qui se distingue en plusieurs étapes qui sont : l'exploration, la classification, l'exploitation et la documentation. Elle a consisté principalement à collecter et explorer les bases de données bibliographiques préexistantes sur la zone d'étude et la littérature existante sur la structure d'accueil.
- ♦ Une phase de visite de terrain afin d'effectuer des enquêtes auprès des futurs bénéficiaires. Aussi, des études de sol ont été effectuées pour déterminer les caractéristiques des différents types de sols présents dans la zone d'étude.
- ♦ Une phase d'étude de conception et de dimensionnement qui consiste en une analyse des données recueillies pour la conception d'un système optimal.
- ◆ Et une phase de rédaction pour faire une synthèse globale des résultats obtenus à l'issue de nos travaux.

IV.2. METHODOLOGIE DE CONCEPTION DE L'AMENAGEMENT

IV.2.1. Détermination des paramètres de base

IV.2.1.1. Etudes topographiques

La collecte des données a été faite en utilisant 02 GPS différentiels RTK. Pour le traitement, nous avons fait usage des logiciels de dessins assistés par ordinateur tels que AutoCad et COVADIS.

IV.2.1.2. Etudes statistiques des pluies

L'analyse fréquentielle des données pluviométriques issues des stations synoptiques a été faite avec le logiciel Hyfran Plus.

IV.2.1.3. Etudes hydrologiques

Les études hydrologiques ont pour but de déterminer les paramètres à prendre en compte : les différents usages, étude hydraulique, simulation de l'utilisation de la retenue, etc.

Le bassin versant est un territoire qui draine l'ensemble de ses eaux vers un exutoire commun, cours d'eau ou mer (Futura-Sciences, 2020). Notre barrage se situe sur un affluent du fleuve Nazinon.

Détermination des caractéristiques du bassin versant

La détermination des caractéristiques s'est faite avec les logiciels Google Earth et ArcGIS. Les paramètres déterminés sont notamment :

❖ Périmètre P (Km) et Surface S (km²)

Ils ont été obtenus avec le logiciel ArcGIS avec un traitement de données géographiques.

Pente longitudinale (I)

Elle influe de manière notable sur les débits de crues en augmentant ou en diminuant les vitesses de ruissellement suivant que la pente est forte ou faible. Elle est donnée par la formule simplifiée de GRESILLON :

$$I = \frac{0.026}{\sqrt{S}}$$

Avec

I : Pente longitudinale (m/km)

S : Superficie du bassin versant (km²)

❖ Indice de compacité (Ic)

Encore appelé coefficient de forme, il renseigne sur la forme du bassin versant et est donné par la formule suivante :

$$c = 0.28 * \frac{P}{S^{0.5}}$$

Avec

Ic : Indice de compacité

P: Périmètre du bassin versant (km)

S: Superficie du bassin versant (km²)

Longueur du rectangle équivalent (Leq)

C'est la longueur d'un rectangle équivalent au bassin versant concerné et qui a même surface, même périmètre (donc même indice de compacité) et même hypsométrie que ce dernier. Cette longueur est calculée par la relation :

$$Leq = \sqrt{S} * \left(\frac{Ic}{1.128}\right) * \left[1 + \sqrt{\left(1 - \left(\frac{1.128}{Ic}\right)^2\right)}\right]$$

Avec

S : Superficie du bassin versant (km²)

Ic : Indice de compacité

Leq: la longueur du rectangle équivalent (km)

❖ Indice global de pente (Ig)

Il permet de caractériser le relief su bassin versant. Il est donné par la formule :

$$Ig = \frac{\Delta h}{Leq}$$

Avec

Δh : Différence entre le point le plus haut et le point le plus bas (m)

L : Longueur du rectangle équivalent (km)

Ig: Indice global de pente

Les Evaluation de la ressource en eau du barrage

Il est question de faire ici une étude sur les conditions de remplissage du barrage afin de s'assurer si la réserve en eau de la retenue pourra subvenir aux différents besoins agro-pastoraux avec la mise en place d'un nouvel aménagement agricole.

A Calcul des apports solides

Les apports solides sont estimés par plusieurs formules empiriques, celles de GOTTSCHALK, de GRESILLON (CIEH-EIER) et KARAMBIRI :

- Formule de GOTTSCHALK

	S : Superficie du bassin versant (km²)
$D = 260 * S^{-0.1}$	P : Périmètre du bassin versant (km)
	D : Dégradation spécifique annuelle
	$(m^3/km^2/an)$

- Formule de GRESILLON (CIEH-EIER)

$$D = 700 * \left(\frac{P}{500}\right)^{-2.2} * S^{-0.1}$$

$$S : Superficie du bassin versant (km²)$$

$$P : Périmètre du bassin versant (km)$$

$$D : Dégradation spécifique annuelle (m³/km²/an)$$

- Formule de KARAMBIRI

Elle se présente sous la forme suivante :

$$D = 137 * \left(\frac{P}{700}\right)^{-2.02} * S^{-0.1} * [0.25 + 1.13 * (h+r)]^{1.15}$$

Avec

S : Superficie du bassin versant (km²)

P: Périmètre du bassin versant (km)

D: Dégradation spécifique annuelle (m³/km²/an)

h : Paramètre anthropique

r : Paramètre morphologique

Les volumes des dépôts solides annuels du bassin-versant sont estimés de la manière suivante :

V = S * D

Avec

V : Volume des écoulements annuels du bassin (m³/an)

S : Superficie du bassin versant (m²)

D : Dégradation spécifique annuelle (m³/km²/an)

Calcul des pertes

Les pertes englobent les pertes par évaporation et celles par infiltration. Elles sont déterminées comme suit :

- Pertes par infiltration

L'infiltration est généralement comprise entre 1 et 3 mm par jour (Koudougou, 2008). Pour notre étude, nous avons adopté 2 mm par jour.

- Pertes par évaporation

A partir des valeurs d'évaporation d'un bac, il est possible d'établir une corrélation avec les valeurs d'évaporation d'un lac. (Compaoré, 2006). Nous avons utilisé la relation de régression de M. Bernard POUYAUD (ORSTOM) pour obtenir l'évaporation au niveau de la retenue. La formule se présente sous la forme :

$$E = 1,664 * Ebac^{0,602}$$

Avec

E : Evaporation journalière sur le plan d'eau sur le barrage (mm/j)

Ebac : Evaporation journalière mesurée sur le bac de la station météorologique de Ouagadougou (mm/j)

Les Evaluation des besoins en eau d'élevage

Pour estimer les besoins en eau d'élevage, nous retenons les valeurs ci-après tirées du cours de barrage 1 (LO, 2017) :

- Bovins 30 à 40 litres par jour
- Petits ruminants 5 litres par jour

IV.2.1.4. Déroulement des enquêtes

Les enquêtes effectuées ont consisté en la collecte de données qui vise à caractériser l'intérêt de la population pour différents paramètres (préférences culturales par exemple). Nous avons opté pour le Questionnaire Fermé Codé et Scoré (QFCS). Ce dernier donne la possibilité à l'enquêteur d'établir des réponses anticipées de les soumettre à l'enquêté sous forme de choix multiples et permet à l'enquêté d'accorder un score à ces réponses anticipées.

IV.2.1.4.1. Outil d'Enquête utilisé

Conçu par le Professeur Amadou KEITA, l'outil d'enquête utilisé est le WASO (Keïta 2016; Mémoire RUTABARA 2017; Mémoire BIAOU 2017; Mémoire SANDWIDI 2017). Il est la combinaison de l'AWALE (jeu traditionnel africain utilisant le comptage de petits cailloux) et du SOROBAN (outil de mesure japonais, « boulier japonais »). Cet outil donne l'avantage de quantifier directement l'opinion exprimée de l'enquêté. Il est composé de 6 colonnes et de 4 lignes. Il donne l'avantage à l'enquêté de répondre librement aux questions tout en leur attribuant une note. Les ouvriers accorderont donc des scores selon l'importance de chaque réponse anticipée à l'aide des graines d'Afzélia africana. Ces scores varient de 1 à 20. Par conséquent une note de 5/20 veut dire que la réponse anticipée ne motive pas l'enquêté contrairement à une note de 19/20.

Figure 7 : Déroulement d'une enquête

Kenneth GBETOFIA (l'enquêteur) à gauche, Amidou DABO (l'enquêté, paysan PE18) au milieu et Boukari DIALLO (un interprète) à droite lors d'une enquête à Rakaye-Mossi.

Le questionnaire administré aux 30 agriculteurs comportait au total 7 TE, 8 QTE et 28 RA (Tableau 2).

Le temps moyen d'enquête était de $60 \min \pm 15 \min$.

Tableau 2 : Récapitulatif des TE, QTE et RA

Thèmes d'Enquête (TE)	Questions de thèmes d'enquêtes (QTE)	Nombre de réponses anticipées (RA)
TE1 Spéculations pratiquées	QTE1 1 Quelles sont les différentes spéculations pratiquées ?	2
	QTE 1 2 Dans quelle période de l'année les activités agricoles sont effectuées essentiellement ?	2
TE 2 Equipements de labour utilisés	QTE 2 Quels sont les équipements de labour que vous utilisez ?	5
TE 3 Types d'engrais utilisés	QTE 3 Quels sont les types d'engrais que vous utilisez dans la production de vos cultures ?	2
TE 4 Habitudes d'arrosage	QTE 4 Quelles techniques d'irrigation vous semblent la plus adaptée et la plus efficiente pour vous ?	4
TE 5 Types de cultures souhaités	QTE 5 Si l'aménagement hydro-agricole se fait, quelles sont les cultures que vous souhaitez mettre en place ?	3
TE 6 Difficultés rencontrées lors des campagnes agricoles	QTE 6 Quelles sont les difficultés que vous rencontrez ?	5
TE 7 Solutions appropriées pour pallier aux difficultés rencontrées	QTE 7 Quelles sont les solutions appropriées pour pallier aux difficultés rencontrées ?	5

IV.2.1.4.2. Echantillonnage

Afin d'éviter les biais et d'assurer la représentativité des échantillons, il est important de prendre les individus dans différentes strates de la population. La technique d'échantillonnage utilisée est le Sondage stratifié proportionnel (STP) compte tenu de l'absence de l'idée sur la variance des paramètres recherchés au sein de la population (Statistique Canada, 2003). Pour sélectionner l'échantillon, il faut déterminer son taux de sondage à l'aide de la formule suivante :

$$f = \frac{n}{N}$$

Avec f : le taux de sondage, n : la taille de l'échantillon et N : la taille de la population dans une strate

Tableau 3 : Choix de l'échantillon

Strates	Rak	aye
Sous-strates	Yarcé	Mossi
Effectif total	1777	651
Taux de sondage	1,24%	
Taille	20	10
échantillon		

La strate est constituée par 1573 habitants. Avec un échantillon de 30 paysans, on a un taux de sondage de 1,24%. En appliquant ce taux dans chaque sous strate, selon le principe du sondage stratifié proportionnel, nous avons 20 paysans dans la première sous strate et 10 paysans dans la seconde.

IV.2.1.5. Etudes pédologiques et aptitude des sols

Pour déterminer la perméabilité du sol en présence et son adaptabilité aux types de cultures, nous avons la méthode d'infiltration du double-anneau de MUNTZ. Cette méthode permet de déterminer le coefficient de perméabilité à saturation du sol (Ksat) et donne des éclaircissements sur l'aptitude des sols par rapport aux variétés de cultures à y produire. La figure suivante montre le matériel nécessaire pour la mise en place de cette méthode.

Figure 8 : Matériel pour les mesures d'infiltration

Procédure de la méthode

Les deux anneaux sont disposés de façon concentrique sur le sol, puis enfoncés de 5cm dans le sol en utilisant la planche et le marteau. L'enfoncement est réalisé de façon lente et régulière, pour éviter de perturber le sol au voisinage des anneaux. Les deux anneaux doivent être au même niveau et leur alignement est contrôlé au niveau à bulle. L'anneau extérieur est appelé 'anneau de garde' et a pour fonction de garantir une infiltration verticale dans l'anneau central. Le principe du double anneau est de suivre l'évolution du niveau d'eau en fonction du temps dans l'anneau interne pour connaître la vitesse d'infiltration sur chaque pas de temps.

Localisation spatiale des points de mesures

Afin d'avoir une grande connaissance du sol, nous avons effectué les mesures en 20 différents points répartis sur tout le périmètre. Les coordonnées de ces points sont transcrites dans le tableau ci-après :

Tableau 4 : Localisation des points de mesure d'infiltration

Points	Latitude	Longitude (°)	
	(°)		
1	11,823001	-1,590604	
2	11,822425	-1,589674	
3	11,821935	-1,588769	
4	11,821638	-1,587828	
5	11,821078	-1,587002	
6	11,820711	-1,587621	
7	11,821052	-1,588593	
8	11,821731	-1,589402	
9	11,822176	-1,59018	
10	11,82211	-1,591138	
11	11,821367	-1,590278	
12	11,820852	-1,589121	
13	11,820141	-1,588401	
14	11,819905	-1,587447	
15	11,819285	-1,588249	
16	11,821314	-1,591675	
17	11,820785	-1,590705	
18	11,820277	-1,589189	
19	11,819432	-1,587639	
20	11,820122	-1,590003	

La figure 9 présente la répartition spatiale des points de mesure sur Google Earth.

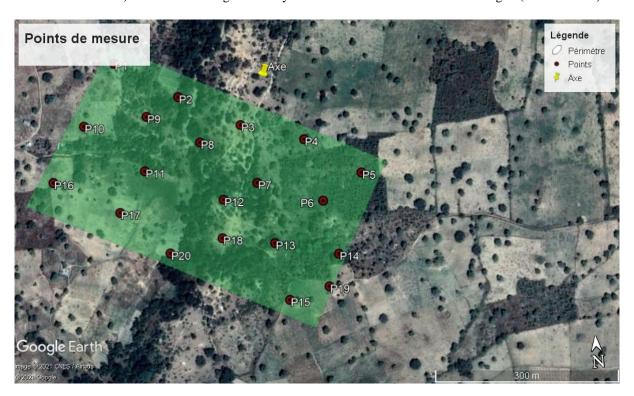


Figure 9 : Répartition des points de mesure d'infiltration

Traitement des données

Les données collectées ont été traitées avec le logiciel MINITAB 17. Ce logiciel nous a permis de tracer la courbe d'ajustement non linéaire. Le but principal est de déterminer à partir de la formule de HORTON intégrée, les paramètres **ksat**, **b** et **i**₀.

L'infiltration cumulée est donnée par la formule:

$$It = Ksat * t + \left(\frac{1}{b}\right) * (i0 - Ksat) * \left(1 - e^{-bt}\right)$$

Avec

t: temps cumulé (h)

b : paramètre d'ajustement de la courbe de régression fixé à 1 au départ

Ksat: conductivité hydraulique (mm/h) fixé à 1 au départ

i₀ : vitesse d'infiltration initiale fixée à 1 au départ

I_t: hauteur cumulée d'eau infiltrée (mm)

Ksat, i0 et b sont déterminés par l'application des moindres carrés aux données de l'infiltration cumulée.

Détermination des caractéristiques du sol

Les caractéristiques du sol ont été déterminées grâce à la vitesse d'infiltration de l'eau avec le logiciel SPAW Hydrology.

IV.2.1.6. Choix des cultures

Le choix des cultures a été fait en fonction de critères que sont :

- Le type de sol en présence ;
- Les besoins en eau ;
- Les paramètres agro-écologiques de la culture ;
- Les habitudes culturales de la population.

IV.2.1.7. Choix du système d'irrigation

Les systèmes d'irrigation (semi-californien et goutte-à-goutte) sont choisis en fonction de certains facteurs que sont :

- La topographie du périmètre ;
- La ressource en eau ;
- La nature du sol et le type de cultures ;
- Les facteurs économiques, sociologiques et culturels.

Système semi-californien

Fonctionnement

Dans ce système d'irrigation, le transport de l'eau se fait sous pression dans des conduites en charge. Pour des raisons de coût, de maniabilité et de mise en œuvre, les matériaux les plus utilisés sont : (i) les matériaux plastiques (le PVC1 et le PET2) jusqu'au diamètre 150 mm et au-delà, (ii) d'autres matériaux notamment l'acier, l'acier soudé et la fonte. Le transport sous pression a lieu depuis la station de pompage jusqu'à un bac de répartition situé généralement (mais pas nécessairement) à un point haut dominant la zone aménagée. A partir de ce point, l'eau est acheminée de façon gravitaire dans le réseau de distribution constitué par des conduites enterrées (Manuel semi-californien BF, 2013).

Le système d'irrigation est constitué pour l'essentiel des ouvrages suivants :

- Le chenal ou conduite d'amené ;
- La station de pompage;
- La conduite de refoulement ;
- Le bassin partiteur principal;
- Les ouvrages partiteurs intermédiaires ;
- Les prises d'irrigation;
- Les conduites de distribution ;
- Les canaux arroseurs.

Avantages et inconvénients

Tableau 5 : Avantages et inconvénients du semi-californien

Avantages	Inconvénients		
 ✓ Facilité de gestion aussi bien individuelle que collective; ✓ Diminution notable des pertes d'eau 	 Charges d'exploitation élevées par rapport à celles relatives au système gravitaire; 		
par infiltration lors du transport et de la distribution de l'eau d'irrigation ; ✓ Infériorité du coût comparativement à celui du système californien qui est	 Source de pertes d'eau énorme par rapport à celle concernant le système goutte à goutte; Difficultés de réparation du réseau de 		
entièrement sous pression ; ✓ Simplicité d'entretien puisqu'il ne	conduites enterrées.		
nécessite pas d'interventions particulières ;			
✓ Possible exploitation des terres en cultures pluviales en hivernage avec éventuellement une irrigation de complément.			

Source : Ministère de l'Agriculture, (2013)

Système goutte-à-goutte

Fonctionnement

Encore appelée irrigation localisée ou micro irrigation, l'irrigation goutte à goutte consiste à appliquer l'eau à faible débit et à intervalles fréquents au voisinage des plantes uniquement au moyen d'un réseau dense de conduites (MERMOUO, 2004). En effet, la méthode consiste à amener l'eau sous pression dans un système de canalisations, généralement en PVC; cette eau est ensuite distribuée en gouttes au champ par un grand nombre de goutteurs répartis tout le long des rangées des plantations. Selon la FAO (2008), dans l'irrigation goutte-à-goutte, l'eau est directement versée sur les cultures par de petits goutteurs placés sur des tuyaux souples en polyéthylène longeant les rangées de culture.

Avantages et inconvénients

Tableau 6 : Avantages et inconvénients du goutte-à-goutte

Avant	ages	Inconvénients		
✓	Répartition uniforme de l'eau dans la	 Risque de rupture de capillarité dans 		
	parcelle;	le sol;		
✓	Basse pression et économie	➤ Risque d'obturation nécessitant un		
	d'énergie;	entretien et un nettoyage réguliers ;		
✓	Economie en eau;	Complique le sarclage des cultures ;		
✓	Réduction de certaines maladies	 Nécessite une eau de bonne qualité et 		
	cryptogamiques;	un système de filtration performant.		
✓	Défavorise la poussée des mauvaises	-		
	herbes entre les rangs;			
✓	Limite de l'évaporation et du			
	refroidissement du sol.			

Source: CALCET et al., (2016)

IV.2.1.8. Besoins en eau des cultures

Les besoins en eau des cultures sont estimés à partir de l'évapotranspiration mesurée ou estimée et le coefficient cultural des cultures. Les données climatiques utiles pour l'estimation des besoins ont été récupérées aux stations synoptiques de Kombissiri, Toécé et Ouagadougou. Les coefficients culturaux des cultures ont quant à eux été pris dans le manuel de la FAO et dans les anciens cours d'irrigation sous pression.

L'efficience d'application est prise égale à 0,63 pour le système semi-californien et égale à 0,9 pour le système goutte-à-goutte.

Les valeurs de pluies efficaces peuvent être calculées avec les relations suivantes (KEITA, 2019):

- Pe = 0.8 * P si P > 75 mm/mois
- ♦ Pe = 0.6 * P si P < 75 mm/mois

IV.3. METHODOLOGIE DE CONCEPTION DES SYSTEMES D'IRRIGATION

Le dimensionnement des systèmes d'irrigation se décline en deux grandes étapes que sont le design préliminaire qui englobe les calculs liés aux paramètres d'irrigation ; et le design final qui s'occupe du dimensionnement des conduites d'irrigation.

IV.3.1. Parcellisation

Dans cette étape, nous avons divisé notre périmètre en plusieurs parcelles. Le morcellement de la zone à aménager a été fait en fonction des raisons économiques (équipements moins chers, leurs disponibilité, facilité d'entretien et de gestion) et de la population bénéficiaire. L'unité parcellaire dans notre périmètre est prise égale à 0,25 ha.

IV.3.2. Design préliminaire

Cette étape consiste en la détermination des paramètres d'irrigation pour le système semicalifornien et le goutte-à-goutte. Les formules utilisées dans notre dimensionnement sont les suivantes :

IV.3.2.1. Système semi-californien

Evapotranspiration maximale

On l'obtient par la formule :

$$ETM = ETP * Kc$$

Avec

ETM: Evapotranspiration maximale (mm)

ETP: Evapotranspiration de référence de la station de Ouagadougou (mm)

Kc: Coefficient Cultural

Besoins nets (Bn)

Le besoin en eau des cultures représente la quantité d'eau qui doit être apportée aux cultures durant la période considérée. Il est donné par la formule :

$$Bn = ETM - Pe$$
[PROMOTION 2020-2021]

Avec

Bn: Besoins nets des cultures (mm)

Kc : Coefficient cultural caractéristique de la culture et de son stade végétatif

ETP: Evapotranspiration potentielle calculée selon la formule de PENMAN (mm)

Pe: Pluie efficace (mm)

Besoins bruts (Bb)

Ils représentent le volume d'eau qui doit être délivré par le réseau et prélevé sur la ressource en eau. Ce volume est obtenu grâce à la formule suivante :

$$Bb = \frac{Bn}{Eg} \ avec \ Eg = Ep * Er$$

Avec

Bb : Besoins bruts en tête de système (mm)

Eg: Efficience globale

Er: Efficience du réseau (Er est prise égale à 0,9)

Ep: Efficience de l'irrigation à la parcelle (Ep est prise égale à 0,70)

■ Débit fictif continu (DFC)

C'est le débit que devrait transporter le réseau s'il fonctionnait 24h/24, tous les jours au pas de temps considéré. Dans le cas présent de cette étude, nous considérons que l'irrigation se fait 6 jours par semaine, soit 26 jours par mois. La journée sans irrigation est considérée comme jour de repos pour l'exploitant. Elle s'exprime par la relation suivante :

$$DFC = \frac{Bb * 1000}{Nj * 24 * 3600}$$

Avec

DFC: Débit fictif continu (l/s/ha)

Bb : Besoin brut de la période considérée (m³/ha)

Nj: nombre de jours considérés dans le mois

Débit maximum de pointe (DMP)

C'est le débit effectif qu'il est nécessaire d'introduire dans le réseau pour pouvoir combler le déficit en eau. C'est le débit sur lequel le réseau devra être calibré. Il tient compte de la durée réelle de l'irrigation. Il s'exprime comme suit :

$$DMP = \frac{Bb \ (p \'eriode) * 1000}{3600 * Nh * J}$$

Avec

DMP : Débit maximum de pointe (l/s/ha)

Bb: Besoins bruts (mm/ha)

Nh: Nombre d'heures d'irrigation par jour (h) pris égal à 8 heures

J : Nombre de jours d'irrigation dans la période considérée (Nj)

Main d'eau (M)

La main d'eau est le débit maximum que l'exploitant peut facilement manier, sans gaspillage d'eau. Elle est fonction du type de culture, de l'environnement physique et humain de l'exploitation, en particulier l'habileté et à l'expérience de l'exploitant. Elle n'est pas calculée mais en pratique, elle est de l'ordre de 2 à 15 l/s pour les petits aménagements (MINISTERE DE L'AGRICULTURE, 2013).

Pour notre étude nous considérons une main d'eau de 10 l/s.

Quartier hydraulique (W)

Encore appelé unité d'arrosage, il représente la surface de l'ensemble des parcelles qui peuvent être irriguées à partir d'une même main d'eau. Il est souvent alimenté par un même canal ou maille hydraulique autour desquels s'organise un tour d'eau entre différents irrigants. Il est obtenu par la formule :

$$W = \frac{M}{DMP}$$

Avec

W: Quartier hydraulique (ha)

M: Main d'eau (l/s)

DMP : Débit maximal de pointe (l/s/ha)

■ Réserve Utile (RU)

Elle représente la quantité d'eau nécessaire et suffisante qui sera régulièrement apportée pour maintenir le sol à sa capacité de rétention. Elle est donnée par la formule :

$$RU = 0.45 * Z * Da * (\theta FC - \theta WP)$$

Avec

RU: Réserve utile (mm)

Z : Profondeur racinaire la plus élevée entre les cultures envisagées (m)

Da : Densité apparente du sol (g/cm³)

θFC : Humidité à la capacité au champ (%)

θWP : Humidité au point de flétrissement (%)

Dose d'entretien (De)

La dose d'entretien étant appliquée, le sol est amené à sa capacité de rétention (Hcr) et il suffit d'apporter, à intervalles réguliers, une quantité d'eau équivalente aux besoins en restant en deçà de la réserve utile. On l'obtient de la manière suivante :

$$De = \frac{2}{3} * RU$$

Avec

De: Dose d'entretien (mm)

RU: Réserve Utile (mm)

Fréquence d'irrigation

La fréquence d'irrigation est le nombre de fois que l'on irrigue pendant le mois. Elle est donnée par la formule :

$$N = \frac{Bb}{De}$$

Avec

N: Fréquence

Bb: Besoins bruts (mm)

D: Dose d'entretien (mm)

Dose réelle (Dr)

La dose réelle d'irrigation est calculée avec la formule suivante :

$$Dr = \frac{Bb}{N}$$

Avec

Dr: Dose réelle (mm)

Bb: Besoins bruts (mm)

Rotation ou Tour d'eau (R)

Le tour d'eau est le nombre de jours séparant deux irrigations sur la même parcelle. Il est donné par la formule suivante :

$$R = \frac{Nj}{N}$$

Avec

R: Tour d'eau (j)

Nj: Nombre de jours de la semaine (j)

N: Fréquence

Débit d'équipement (Qe)

Le débit d'équipement du réseau est égal au débit maximum de pointe de la période la plus contraignante du fonctionnement du périmètre. Il est obtenu par la relation suivante :

$$Qe = \frac{Bbmax * 1000 * A}{Tf * 3600 * Nj}$$

Avec

Qe : Débit d'équipement

Bbmax : Besoins mensuels de pointe

A : Superficie totale du périmètre irrigué (ha)

Tf: Temps de fonctionnement de la motopompe (8 heures)

IV.3.2.2. Système goutte-à-goutte

Evapotranspiration maximale

C'est la valeur maximale de l'évapotranspiration d'une culture donnée, à un stade végétatif, dans des conditions climatiques données, prise en compte par l'ET₀. Elle est donnée par la formule :

ETM = ET0 * Kc

Avec

ETM: Evapotranspiration maximale (mm)

ET0: Evapotranspiration de référence (mm)

Kc: Coefficient cultural

Evapotranspiration maximale pour l'irrigation localisée

C'est l'évapotranspiration maximale en fonction du coefficient de réduction et du taux de couverture végétale. On l'obtient de la manière suivante :

$$ETMloc = ETM * 0, 1 * GC^{0,5}$$

Avec

ETMloc: Evapotranspiration maximale localisée (mm)

ETM: Evapotranspiration maximale (mm)

GC : Coefficient de couverture végétale en (%) (Généralement pris entre 70 % et 100 %).

Nous prendrons une valeur de GC = 70 %.

Besoin net journalier (IRn)

Il s'agit de la profondeur requise pour une culture normale sur toute la surface cultivée, à l'exclusion des autres apports de sources d'eau (FAO, 1984). Il est donné par la formule :

$$IRn = ETMloc - Pe$$

Οù

IRn: Besoin net journalier (mm/j)

ETMloc: Evapotranspiration maximale localisée (mm)

Pe: Pluie efficace (mm)

Besoin en eau de lessivage (LR)

L'eau du sol et l'eau d'irrigation contiennent toutes deux du sel. Pour contrôler la salinité, deux types de conductivité électrique sont requises : celle de l'eau d'irrigation ECw et celle du sol saturé ECe.

Le besoin en eau de lessivage LR est obtenu par l'expression suivante :

$$LR = \frac{ECw}{5 * [max ECe]} * \frac{IRn}{Ea}$$

Avec

LR: Besoin en eau de lessivage (mm/j)

ECw : Conductivité de l'eau d'irrigation (dS/m)

ECe: Conductivité du sol saturé (dS/m)

IRn: Besoin net journalier (mm/j)

Ea : Efficience d'application avec Ea = Ks * EU.

Besoins bruts d'irrigation (IRg)

Ils représentent le besoin net d'irrigation par rapport à l'efficacité de l'application au champ (en tenant compte des pertes au niveau du champ) additionnée l'exigence de lixiviation. La formule qui permet de les avoir est la suivante :

$$IRg = \left(\frac{IRn}{Ea}\right) + LR$$

Avec

IRg: Besoins bruts d'irrigation (mm)

IRn: Besoin net journalier (mm)

Ea : Efficacité des applications sur le terrain

LR: Besoins en eau de lessivage (mm/j)

Réserve Utile (AM)

C'est la quantité d'eau que le sol peut absorber et restituer à la plante. Elle représente la différence de teneur en humidité sur toute la profondeur de la zone racinaire Dr entre le point de flétrissement WP et la capacité au champ FC. Elle est donnée par la formule :

$$AM = (\theta FC - \theta WP) * Dr$$

Avec

AM: Réserve utile (mm)

Dr: Profondeur racinaire propre à la culture (m)

θ : Humidité du volume (%)

Réserve Facilement Utilisable (RAM)

Encore appelée réserve facilement utilisable, elle est la quantité d'eau qu'une plante peut extraire d'un sol sans que sa production ne soit affectée de façon notable. Elle est fonction du facteur de tarissement p et de l'humidité disponible AM.

$$RAM = p * AM$$

Avec

RAM: Réserve facilement utilisable (mm)

P : Facteur de tarissement

AM: Humidité disponible (mm)

• Fréquence d'irrigation (F) et Tour d'eau (T)

La fréquence d'irrigation est le temps pris par la culture pour épuiser l'humidité du sol jusqu'à un certain niveau. Elle est obtenue par la formule :

$$F = \frac{RAM}{IRn}$$

Avec

F: Fréquence d'irrigation (j)

RAM: Humidité du sol facilement disponible (mm)

IRn: Besoin net journalier (mm/j)

Le Tour d'eau quant à lui est choisi sur la base des préférences des agriculteurs ou de considérations économiques. Il est toujours fixé inférieur ou égal à la fréquence.

$$T \leq F$$

Avec

T : Tour d'eau (j)

F : Fréquence d'irrigation (j)

Dose réelle (Da)

La profondeur d'application réelle Da est basée sur le tour d'irrigation choisi et est calculée comme suit :

$$Da = T * IRn$$

Avec

Da: Dose réelle (mm)

T: Tour d'eau (j)

IRn: Besoin net journalier (mm/j)

Dose brute (Dg)

C'est la quantité d'eau que le système fournira. Elle est donnée par la formule :

$$Dg = \left(\frac{Da}{Ea}\right) + LR * T$$

Avec

Dg: Dose brute (mm)

Da: Dose réelle (mm)

Ea: Efficience d'application

LR: Besoin en eau de lessivage (mm/j)

T: Tour d'eau (j)

Temps par poste (Ts)

Le temps par poste Ts est fonction du nombre maximum d'heures de travail par jour (Twmax) en h/j (sur la base de l'expérience locale) et le nombre de positions latérales ou de déplacements (Nsh) effectués par une rampe par jour (choisi en première approximation de telle sorte que Ts soit inférieur à 24 heures et laisse le temps nécessaire pour le déplacement latéral). Il est donné par la relation suivante :

$$Ts = \frac{Twmax}{Nsh}$$

Avec

Ts: Nombre d'heures à passer dans une position afin d'apporter la dose brute (h/j)

Twmax : Nombre maximum d'heures de travail par jour (h/j)

Nsh: Nombre de positions

Débit d'équipement (qe)

Le débit d'équipement est le débit de dimensionnement des ouvrages. Il est donné par la formule :

$$qe = \frac{Dg}{T * Twmax * 0.36}$$

Avec

Qe : Débit d'équipement (l/s/ha)

Dg: Dose brute (mm)

T: Tour d'eau (j)

Twmax : Nombre d'heures maximales de travail par jour (h/j)

IV.3.3. Design final

Cette étape englobe non seulement le dimensionnement des conduites d'irrigation mais aussi le choix des émetteurs pour l'irrigation localisée et le calage des bassins partiteurs pour le système semi-californien.

IV.3.3.1. Système semi-californien

Dimensionnement des conduites

Dans nos dimensionnements de conduite, la formule utilisée est celle de VUIBERT. Elle se présente comme suit :

$$D = 0.997 * \left(\frac{Q}{1000}\right)^{0.46}$$

Avec

Q : Débit dans les conduites (m³/s)

D : Diamètre de la conduite (mm).

Evaluation des pertes de charges des conduites

✓ Pertes de charges linéaires

La formule utilisée pour le calcul des pertes de charges est celle de Hazen-Williams décrite comme suit :

$$Jl = 1,13526 * 109 * \left(\frac{Q}{C}\right)^{1,852} * \left(\frac{1}{D}\right)^{4,871} * L$$

Avec

J1: Perte de charge linéaire dans une conduite en mCE

Q : Débit d'écoulement en m3/h

C : Coefficient de rugosité dépendant de la nature de la conduite : Conduite en PVC = 150 Conduite en PE = 140

D : Diamètre intérieur de la conduite en mm

L : Longueur de la conduite en m

✓ Pertes de charges singulières

Elles correspondent aux pertes de charges provoquées par les singularités (changement de direction, de section, branchement ou raccordement,...). Dans les calculs, elles sont évaluées à 10% des pertes linéaires.

$$Js = 0, 1 * Jl$$

Avec

Js : Perte de charges singulières dans une conduite en mCE

Jl : Perte de charges linéaires dans une conduite en mCE

✓ Pertes de charges totales

Elle représente la somme des pertes de charges linéaires et singulières.

$$Jt = Jl + Js$$

Avec

Jt: Perte de charges totales

J1 : Perte de charges linéaires dans une conduite en mCE

Js : Perte de charges singulières dans une conduite en mCE

Vitesse de l'eau dans les conduites

D'une manière générale, la vitesse dans les conduites sous pression doit être inférieure à 2 m/s Dans la pratique et suite aux calculs de vérifications réalisés sur des réseaux semi-californiens, les vitesses sont dans l'ordre de 1 m/s.

Dimensionnement des bassins partiteurs ou tampon

Le dimensionnement des bassins partiteurs se fait en fonction du débit arrivant et des débits sortants. Le calage du bassin se fait de sorte à satisfaire la charge hydraulique au bassin de répartition (Hbr) requise par l'ouvrage de prise le plus défavorisé. On a :

$$Hbr = Max(ZTN, Hpr1 + pdc; Hpr2 + pdc...)$$

Avec

Hbr : Charge hydraulique au bassin de répartition

ZTN : cote terrain naturel à l'emplacement du bassin de répartition

Hpr: charges hydrauliques requises des ouvrages de prises

Pdc: pertes de charge dans les conduites.

Le dimensionnement des bassins partiteurs passe par la détermination des paramètres suivants :

✓ Débit dans le bassin

L'équation qui le traduit est la suivante :

$$Q = mL(\sqrt{(2*g)})*h^{\frac{3}{2}} \text{ avec } h = \frac{3}{2}*hc$$

Avec

Q : Débit transité par le déversoir

m : Coefficient du déversoir

L : Longueur du déversoir

h : Hauteur de la lame d'eau déversante

hc : Hauteur critique de la lame d'eau à l'aval du déversoir

✓ Epaisseur du déversoir

Elle est donnée par la relation suivante :

$$e = 3.5 * hc$$

Avec

hc: Hauteur critique de la lame d'eau (m)

✓ Hauteur du bassin

Elle est obtenue par la formule :

$$H = Z + r + h$$

Avec

H: Hauteur du bassin (m)

Z: Hauteur du seuil (m)

r: Revanche (m)

h : Charge de l'eau sur le déversoir (m)

✓ Longueur du bassin

Elle est fonction uniquement de la charge au-dessus du déversoir. Elle est définie par l'expression :

$$Lb = k * h$$

Avec

Lb: Longueur du déversoir (m)

k : coefficient de proportionnalité

h: la charge sur le déversoir (m)

✓ Largeur du bassin

La largeur du bassin est déterminée à l'aide du diamètre de sortie de la conduite dans le bassin partiteur selon la relation suivante :

$$lb = Ds + 0.4$$

Avec

lb : Largeur du déversoir (m)

Ds : Diamètre de sortie de la conduite du bassin

Détermination de la cote de calage des prises

L'ouvrage de prise est l'ensemble constitué par la sortie de la conduite et sa fermeture et les constructions en génie civil. Il joue plusieurs rôles parmi lesquels : la dissipation de l'énergie cinétique à la sortie, l'orientation de l'écoulement à la sortie vers le ou les arroseurs.

Le calage des prises prend en considération la cote la plus élevée de la parcelle à irriguer, les pertes de charges au niveau de la prise parcellaire (prises généralement égales à 10 cm).

$$Zprise = \Sigma Pdc + Max(ZTN; Zmax parcelle)$$

IV.3.3.2. Système goutte-à-goutte

Choix des émetteurs

Le goutteur est quant à lui choisi en fonction de deux principaux facteurs : l'infiltration du sol et l'énergie. (KEITA, 2019). Il a été choisi dans le catalogue **NETAFIM 2017**.

Pluviométrie et temps d'arrosage

La pluviométrie du goutteur est fonction du type de sol, du type de cultures, l'espacement entre les goutteurs et l'espacement entre les rampes. Elle ne doit pas provoquer de ruissellement et doit être inférieure à l'infiltration du sol en place Pemitt < Vinf. Elle s'obtient comme suit :

$$Pemitt = \frac{[qav * 0,06309] * 60}{Aw * 0,092903}$$

Avec

Pemitt : Pluviométrie du goutteur (mm/h)

Qav : Débit d'un goutteur (m3/h)

Aw : Surface mouillée (Ft2)

Le temps d'arrosage (Ts) est le temps pendant lequel un ensemble de rampes fonctionne en même temps afin d'apporter au sol la dose brute Dg, avant d'ouvrir un nouvel ensemble de rampes à l'endroit suivant. La formule utilisée est :

$$Ts = \frac{Dg}{Pemitt}$$

Où

Ts: Temps d'arrosage (h)

Dg : Dose brute (mm)

Pemitt : Pluviométrie du goutteur (mm/h)

Dimensionnement des conduites

Les conduites utilisées sont en PVC. Il est léger, facile à poser. C'est une matière qui se dégrade à la lumière, les conduites doivent donc être enterrées ; ce qui convient parfaitement à notre système de goutte-à-goutte.

Le calcul des diamètres des conduites se fait avec la formule :

$$D = \left(\sqrt{\frac{Q}{V}}\right) * 18.811$$

Avec

D : Diamètre théorique de la conduite (mm)

Q : Débit transitant dans la conduite considérée (m3/h)

V : Vitesse de circulation de l'eau dans la conduite (m/s)

Notons que la vitesse V dans les conduites en PVC doit être inférieure ou égale à 1,7 m/s.

Calcul des pertes de charge

Le calcul des pertes de charge se fait avec la formule de **Calmont-Lechapt**. Cette formule dit :

$$\Delta H = a * F * L * \left(\frac{Q^n}{D^m}\right)$$

Avec

ΔH : Perte de charge le long d'une conduite (m)

L : Longueur de la conduite (m)

Q : Débit de la conduite (m3/h)

D : Diamètre réel de la conduite (m)

F : Coefficient dépendant du nombre de points de service le long de la conduite

a, m et n : Coefficients liés à la nature de la conduite

Tableau 7 : Coefficients liés à la nature de la conduite

Matériau	A	N	M
PVC	1,101.10-3	1,84	4,88

(Source: DEBOISSEZON, 1985)

Variation de pression

La variation de pression totale englobe la dénivelée totale et les pertes de charge par friction. Elle est régie par le critère de CHRISTIANSEN. On a :

$$\Delta Ptot \leq 1/5 \ Pnom$$

Avec Pnom de l'émetteur pris dans le catalogue.

IV.3.4. Dimensionnement de la station de pompage

Le dimensionnement d'une station de pompage nécessite les paramètres tels que le débit maximal à relever et la hauteur manométrique totale.

V.3.4.1. Semi-californien

IV.3.4.1.1. Hauteur Manométrique Totale

La Hauteur Manométrique Totale correspond à la charge totale exigée au niveau de la station de pompe pour le fonctionnement correct de l'installation d'irrigation. Elle s'obtient par la sommation de la hauteur manométrique d'aspiration (Hma) et la hauteur manométrique au refoulement (Hmr).

$$HMT = Hma + Hmr$$

Avec

HMT: Hauteur Manométrique Totale (m)

Hma: Hauteur manométrique à l'aspiration (m)

Hmr: Hauteur manométrique au refoulement (m)

IV.3.4.1.2. Puissance du moteur

La puissance se détermine de la manière suivante :

$$P = \frac{Q * HMT * \gamma}{367 * \eta}$$

Avec

P: Puissance du moteur (kW)

Q: Débit (m3/h)

HMT: hauteur manométrique totale (m)

V : masse volumique de l'eau (kg/dm3)

η : rendement du moteur (prendre généralement 70%)

V.3.4.2. Goutte-à-goutte

IV.3.4.2.1. Hauteur Manométrique Totale

La HMT est la pression totale que doit fournir une pompe pour que chaque point du périmètre puisse recevoir l'eau à la pression et au débit souhaités.

$$HMT(m) = Htotal(m) + \Delta Hg\acute{e}o(m) + \Delta Hfittings(m) + \Delta Hfiltre(m)$$

Avec

Htotal = Paverage +
$$\Delta$$
Hlat + Δ Hmanifold + Δ Hmain + Δ Htransport + Δ Hsuction
$$\Delta$$
Hgéo = Zmax du périmètre - Zeau
$$\Delta$$
Hfittings = 0,1 * Htotal

 Δ Hfiltre = [5; 7]

IV.3.4.2.2. Puissance utile (hydraulique) de la pompe

La puissance utile est donnée par la formule :

$$Pu = \rho * g * Qf * HMTf$$

Avec

Pu: Puissance utile (kW)

ρ: Masse volumique de l'eau en (1 kg/m3)

Q : Débit au point de fonctionnement (m3/s)

HMT: Hauteur manométrique Totale au point de fonctionnement (m)

IV.3.4.2.2. Puissance absorbée par la pompe

Elle est donnée par la formule :

$$Pabs = \frac{Pu}{e1 * e2}$$

Avec

Pu: Puissance utile (kW)

e1 : Efficience de la pompe (prise égale à 0,7)

e2 : Efficience du moteur (prise égale à 0,7)

IV.3.4.2.3. Choix de la pompe et point de fonctionnement

Le choix de la pompe consiste à choisir une pompe qui pourra fournir le débit correspondant aux besoins des cultures avec une hauteur manométrique qui pourra faire fonctionner le système. Deux paramètres sont nécessaires pour le choix : le débit et la Hauteur manométrique totale. Pour notre choix, nous avons utilisé le catalogue GRUNDFOS.

Le point de fonctionnement représente la performance maximale de la pompe choisie. C'est le point d'intersection de la courbe caractéristique de la pompe et celle du réseau. Cette dernière s'obtient en additionnant les débits Q pour une même perte de charge (HMT).

IV.3.4.2.4. Vérification du NPSH

Le NPSH est un critère qui permet de définir la pression nécessaire à l'aspiration pour maintenir en tout point du fluide une pression supérieure à la pression de valeur saturante. Dans notre dimensionnement, nous devons donc nous assurer que la capacité pratique d'aspiration majorée de 0,5 [m] soit inférieure à la hauteur disponible d'aspiration.

$$NPSHr + 0.5 < NPSHd$$

 $NPSH + 0.5 < 10 - (ha + \Delta Ha)$

Avec

ha: Hauteur d'aspiration ayant pour référence le plan d'eau (m)

ΔHa: Pertes de charge à l'aspiration (m)

NPSHr : Capacité pratique d'aspiration fournie par le constructeur pour éviter la dégradation des performances (m)

NPSHd: Hauteur disponible d'aspiration (m)

IV.3.5. Dimensionnement du réseau de drainage

Le drainage permet de réguler l'apport en eau dans le périmètre et assure l'évacuation hors périmètre. Ainsi, le dimensionnement du système de drainage passe par le dimensionnement des drains. Le système de drainage de notre périmètre sera composé de drains internes à ciel ouvert et de section trapézoïdale. Le débit Q transité, par les canaux de drainage a été déterminé par la formule suivante :

$$Q = A * Qs$$

Avec

Q: Débit (m3/s)

A: Superficie du bassin (ha)

Qs : Débit spécifique pour un hectare (l/s/ha)

$$Qs = \frac{P10}{t * 0.36}$$

Avec

Qs : Débit spécifique (l/s/ha)

P10 : Pluie décennale de la station de Kombissiri (déterminée par la loi de GUMBEL et égale à 91,2 mm)

t : Durée d'évacuation du débit décennal pris à 12 heures

Kr10: Coefficient de ruissellement

Les dimensions des drains sont les suivantes :

Largeur en gueule L

$$L = b + (2 * m * H)$$

Avec : la hauteur du canal (revanche R additionnée au tirant d'eau y).

♣ Tirant d'eau y

$$y = \left(\frac{2^{\frac{2}{3}} * Q}{Ks * \left(2\sqrt{1 + m^2} - m\right) * i^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

Largeur au plafond b

Elle est donnée par la formule :

$$b = 2 * y * \left(\sqrt{1+m^2}\right) - m$$

4 Pente I

La pente I des drains est considérée comprise entre 0,1% et 0,5%.

♣ Fruit de berge m

Le fruit de berge m pour un canal trapézoïdal est pris égal à 2, et Ks = 30 car les colatures seront non revêtus.

IV.3.6. Organisation de l'arrosage

L'organisation des arrosages se fait en fonction des différents paramètres calculés ci-dessus. L'arrosage est conduit de sorte à irriguer la superficie journalière prévue.

IV.3.7. Entretien et gestion du périmètre

Cette étape consiste à proposer des mesures pour une bonne gestion de l'eau et assurer la pérennité des ouvrages dans le temps.

IV.3.8. Etude économique

Le cout de l'aménagement a été évalué sur la base des différentes activités à exécuter et le matériel à utiliser. Ainsi, nous avons noté :

- Les frais de terrassement et de génie civil ;
- Les frais pour la station de pompage;
- Les frais liés à la réalisation du réseau de drainage.

Ces différents couts sont répertoriés dans un devis quantitatif et estimatif. Rappelons que notre périmètre irrigué est de 15 ha.

La Durée de Retour sur Investissement

La durée de retour sur investissement (DRI) dans sa version la plus classique, consiste à établir le rapport entre l'investissement initial et les flux financiers perçus en moyenne, sur une période donnée. Elle est donnée par la formule :

$$DRI = rac{Cout\ de\ l'am\'enagement}{Marge\ nette}$$

La Rentabilité de l'investissement

Dans les travaux d'ingénierie, la rentabilité est exprimée en pourcentage. Elle prend en compte la marge nette, le cout de l'aménagement et la DRI. Elle se calcule comme suit :

$$Rinv = \frac{Marge\ nette}{\frac{Cout\ de\ l'am\'{e}nagement}{DRI}} * 100$$

V. RESULTATS ET DISCUSSION

V.1. Détermination des paramètres de base

V.1.1. Données topographiques

Les études topographiques ont porté sur un levé d'état des lieux sur une polygonale de 3 bornes topographiques. Les levés ont été réalisés dans la cuvette et en aval du barrage. Les courbes de niveau sont équidistantes de 0,25 m et varient de 319,5 m à 324,5 m tout le long du périmètre irrigué soit une élévation relative de 5 m.

Le périmètre aura une forme rectangulaire avec environ 600 m de long et 250 m de large ; ce qui nous donne une surface brute régulière de 15 ha.

V.1.2. Etude statistique des pluies

L'analyse statistique des pluies a été faite à partir les données pluviométriques recueillies à la station synoptique de Kombissiri. Pour l'ajustement de la série de données allant de 1989 à 2018, nous avons utilisé la loi de GAUSS et celle de GUMBEL. Le récapitulatif des études statistiques des pluies est présenté dans le tableau suivant :

Tableau 8 : Analyse des pluies

Caractéristiques	Valeurs
Pluie annuelle moyenne (mm)	762,15
Pluie décennale humide (mm)	984
Pluie décennale sèche (mm)	540
Pluie quinquennale humide (mm)	907
Pluie quinquennale sèche (mm)	616
Pluie journalière décennale humide (mm)	91,2
Pluie journalière décennale sèche (mm)	42,9
Pluie journalière centennale humide (mm)	128
Pluie journalière centennale sèche (mm)	32,1

V.1.3. Etudes hydrologiques

Nos études ont montré qu'il existe un bassin versant de classe R2 et relativement perméable. Ses caractéristiques sont consignées dans le tableau suivant :

Tableau 9 : Caractéristiques du bassin versant

Caractéristiques	Valeurs
Superficie (km2)	40,62
Périmètre (km)	29,18
Longueur du rectangle équivalent (km)	10,68
Pente longitudinale (m/km)	0,004079
Indice de compacité	1,28
Indice global de pente	3,37
Dénivelée spécifique (m)	21,47
Dénivelée de drainage (m)	8,63
Point le plus haut (m)	337
Point le plus bas (m)	301

V.1.4. Evaluation de la ressource en eau du barrage

V.1.4.1. Caractéristiques du barrage

Le barrage étant encore en études APS, les caractéristiques proposées pour le barrage de Rakaye sont les suivantes :

Tableau 10 : Informations sur la digue du barrage

Informations Digue				
Type	Argile			
Côte (m)	326			
Longueur totale, évacuateur compris (m)	1106			
Largeur en crête (m)	3m50, bordure de crête incluse			
Informations Seuil 6	évacuateur			
Position	Centrale			
Longueur (m)	140			
Ouvrage de prise				
Côte (m)	322,25			

V.1.4.1. Courbe d'exploitation du barrage

Les données topographiques recueillies sur le terrain ont permis d'établir la courbe Hauteur-Volume du barrage. Le Barrage de Rakaye est à vocation agro-pastorale ; ainsi il est sollicité pour satisfaire les besoins en eau des cultures (pour une superficie réelle de 13,5 ha), les besoins en eau des animaux du village et les besoins des populations. Le barrage subit des pertes par évaporation (calculées à partir des données de la station météorologiques sur l'évaporation ELac) et des pertes par infiltration (prises égales à 2 mm/j). L'horizon du projet est pris égal à 15 ans. Le tableau 11 présente les pertes et apports mensuels dans la cuvette.

Tableau 11 : Pertes et apports dans la cuvette

Mois	Octobre	Novembre	Décembre	Janvier	Février
Besoins	18040,06	29728,04	36764,58	34886,10	26703,85
agricoles					
(m3/mois)					
Besoins	5792,60	5792,60	5792,60	5792,60	5792,60
pastoraux					
(m3/mois)					
Besoins	1151,80	1151,80	1151,80	1151,80	1151,80
humains					
(m3/mois)					
Besoins	24984,6	36672,44	43708,98	41830,50	33648,25
totaux					
(m3/mois)					
Pertes	0,13	0,16	0,17	0,17	0,16
(m3/mois)					
Volume	801373,70	720015,5	596327,6	461291,02	358169,5
restant dans					
la cuvette					

au début du mois (m3)					
Volume	720015,5	596327,6	461291,02	358169,5	272351,76
d'eau					
restant dans					
la cuvette à					
la fin du					
mois (m3)					

La courbe d'exploitation de la retenue est présentée sur la figure suivante :

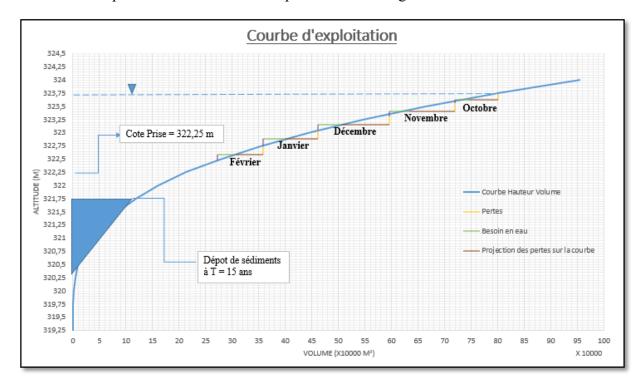


Figure 10 : Courbe d'exploitation du barrage

L'analyse de la courbe d'exploitation nous montre qu'à partir de début Octobre jusqu'à la fin de Février, l'eau varie de 323,75 m à 321,75 m; soit 2 m. Notons également qu'à la fin du mois de Février, nous nous retrouvons avec une lame d'eau de 0,5 m au-dessus de la prise d'eau. La retenue couvre donc les besoins agricoles.

V.1.2. Résultats enquêtes WASO

Pour garantir un aménagement sûr et un choix de cultures qui correspondent aux réalités des paysans, nous devons connaître le pouvoir incitatif des différents facteurs qui entrent en jeu pour le choix de nos systèmes d'irrigation et des cultures à pratiquer pour ce faire, nous avons utilisé des logiciels statistiques pour connaître les différences significatives entre les réponses anticipées pour chaque thème d'enquête. Ainsi donc, il existe deux méthodes pour analyser les données, à savoir les méthodes paramétriques et les méthodes non-paramétriques. Les méthodes paramétriques, qui testent les moyennes, exigent un certain type de distribution, comme la distribution normale ; tandis que les méthodes non-paramétriques, qui testent les médianes, n'exigent pas que les données suivent une certaine distribution (RUMSEY 2009; SAPORTA 2006). Les méthodes non paramétriques sont une alternative aux méthodes paramétriques.

Le modèle One-way ANOVA (analyse des variances à un facteur) a été utilisé pour ce qui est du test paramétrique ; le test de Mann-Whitney ainsi que le test de Kruskal-Wallis ont été utilisés dans le cas des tests non-paramétriques. Le logiciel MINITAB nous a permis de mener tous ces tests. Cependant, il faut noter que chaque test a des conditions d'application (MONTGOMERY 2008). Ces conditions sont présentées en Annexe 4.

V.1.2.1. Les spéculations pratiquées par les populations

• QTE 1.1 : Quelles sont les différentes spéculations pratiquées ?

Les conditions d'application du test d'ANOVA sont remplies pour cette question. L'histogramme et le graphe de la probabilité normal des résidus montrent que la distribution est normale. De plus l'homoscédascité est respectée et le test de Levene donne P-value= 0,076 > 0.05.

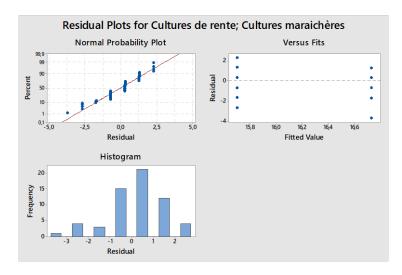


Figure 11 : Graphe des résidus pour QTE 1.1 (Cultures de rente, cultures maraichères)

La normalité des résidus (A, B) et l'homoscédasticité (C) sont vérifiées, prouvant ainsi la validité d'ANOVA.

Tableau 12: One-way ANOVA pour QTE 1.1

	QTE.1.1 ANOVA							
Source DF Adj SS Adj MS F-Value P-Value								
Factor	1	16,02	16,017	9,09	0,004			
Error	58	102,17	1,761					
Total	59	118,18						

Les cultures sont significativement différentes (p<5%) quant à leur pouvoir incitatif.

Tableau 13 : Informations groupées utilisant le test de Tukey à 95% d'intervalle de confiance, QTE 1.1

Équipements	Taille N	Moyenne	σ	IC à 95%	Groupe
Cultures de					
rente	30	16,733	1,112	(16,248; 17,218)	A
Cultures	20	15.7	1 512	(15 215, 16 195)	D
maraichères	30	15,7	1,512	(15,215; 16,185)	В

Les moyennes qui ne partagent pas une même lettre sont significativement différentes. Parmi les deux types de cultures, les cultures de rente sont les plus pratiquées par les populations, et sont significativement différentes aux cultures maraichères.

54

Au vu de ces résultats, il ressort que les deux types de cultures respectivement avec des moyennes de 16,733 et 15,7 sur 20 sont parfaitement maitrisés par les populations avec un léger avantage pour les cultures de rente telles que le maïs, le mil.

Ces résultats pourraient se justifier par le fait que les agriculteurs considèrent les cultures comme le maïs comme étant des produits de consommation de base dont la demande est forte et la conservation très facile.

❖ QTE 1.2 : Dans quelle période de l'année les activités agricoles sont effectuées essentiellement ?

Dans cette question, nous étudions le pouvoir incitatif des différentes saisons de l'année où les populations sont habituées à cultiver. Cette question vient en complément à la question précédente. Le test d'ANOVA a été appliqué pour cette question car les saisons remplissent les conditions d'application.

Tableau 14: One-way ANOVA pour QTE 1.2

QTE.1.2 ANOVA							
Source DF Adj SS Adj MS F-Value P-Value							
Factor	1	992,27	992,267	611,82	0,000		
Error	58	94,07	1,622				
Total	59	1086,33					

Les saisons sont significativement différentes (p<5%) quant à leur pouvoir incitatif; ce qui est confirmé par le test de Tukey (Tableau 15)

Tableau 15 : Informations groupées utilisant le test de Tukey à 95% d'intervalle de confiance, QTE 1.2

Équipements	Taille N	Moyenne	σ	IC à 95%	Groupe
Saison sèche	30	9,1	0,960	(8,635; 9,565)	В
Saison pluvieuse	30	17,233	1,524	(16,768; 17,699)	A

Les moyennes qui n'ont pas les mêmes lettres sont significativement différentes. La saison pluvieuse est la plus propice pour la culture et est significativement différente de la saison sèche.

Les résultats montrent que la saison pluvieuse est la plus propice pour les activités agricoles. Cela parait logique d'ailleurs compte tenu du contexte climatique du pays en général. Il est plus facile pour les paysans de faire leur agriculture lorsqu'il pleut.

V.1.2.2. Les équipements de labour utilisés

❖ QTE 2 : Quels sont les équipements de labour que vous utilisez ?

Cette question se focalise sur le pouvoir incitatif des équipements de labour. Elle met l'accent sur l'équipement de labour le plus utilisé par les paysans

Les conditions de validité du test d'ANOVA sont vérifiées pour cette question. Le graphe de normalité nous indique que les résidus des distances sont alignés sur la droite. Ce qui prouve que la normalité est vérifiée. Quant à l'homoscédasticité, elle est vérifiée par le graphe de Versus fits et confirmé par le test de Levene car P-value 0,752 > 0,05. L'indépendance des réponses est aussi vérifiée puisque les questions ont été soumises aux enquêtés de façon aléatoire.

Tableau 16: One-way ANOVA QTE.2

QTE.2 ANOVA						
Source DF Adj SS Adj MS F-Value P-Value						
Factor	4	3044,7	761,183	589,38	0	
Error	145	187,3	1,291			
Total	149	3232				

Les équipements de labour sont significativement différents (p<5%) quant à leur pouvoir incitatif. Ceci est confirmé par le test de comparaison de Tukey.

Tableau 17 : Informations groupées utilisant le test de Tukey à 95% d'intervalle de confiance, QTE 2

Equipements	Taille N	Moyenne	σ	IC à 95%	Groupe
Houe	30	16,267	1,285	(15,857; 16,677)	A
Charrue aux bœufs	30	15,9	1,094	(15,490; 16,310)	A
Charrues à disque	30	10,467	0,973	(10,057; 10,877)	В
Tracteurs	30	10,433	1,04	(10,023; 10,843)	В
Autres	30	3,933	1,258	(3,523; 4,343)	С

Les moyennes qui n'ont pas les mêmes lettres sont significativement différentes. La houe et la charrue aux bœufs sont les plus utilisés, et sont significativement différents de la charrue à disque et tracteurs.

Au vu de ces résultats, on en déduit que l'équipement de labour le plus utilisé est la houe ; ce qui est tout à fait normal compte tenu de l'agriculture encore très rudimentaire ici au Burkina Faso. Suit ensuite la charrue à bœufs avec une moyenne de 15,9/20. Cela parait normal aussi puisque la zone d'enquête est à dominance agriculteurs et éleveurs. Les populations utilisent donc souvent leur bétail pour les aider dans leurs activités agricoles.

Les charrues à disques et tracteurs viennent ensuite avec des moyennes respectives de 10,467 et 10,433 sur 20. Cela confirme notre analyse plus tôt. L'agriculture étant encore très peu mécanisée, difficile pour tous les paysans d'avoir un tracteur. La réponse anticipée "Autres" vient en dernière position avec une moyenne de 3,933 sur 20. Cela se justifie juste par le fait que la population ne connait ou n'utilise pas d'autres équipements de labour.

V.1.2.3. Les types d'engrais utilisés

QTE 3 : Quels sont les types d'engrais que vous utilisez dans la production de vos cultures ?

Cette question se focalise sur le pouvoir incitatif des types d'engrais utilisés par les paysans pour la production des cultures. Les types d'engrais comparés sont le NPK et la fumure organique. Les résidus de ces deux facteurs ne suivent pas une distribution normale et le test de Levene n'est pas respecté (P-value = 0,028<0,05); ce qui invalide l'utilisation d'ANOVA. L'analyse se fera donc avec les tests non-paramétriques de Kruskal-Wallis et Mann-Whitney afin d'identifier les différences entre les médianes.

Tableau 18 : Test de Kruskal-Wallis sur le QTE 3

Type	NPK	Fumure			
d'engrais		organique			
Médiane	15	10			
DF = 1 p-value = 0,000					

Il existe une différence significative entre les médianes de ces deux types d'engrais (p<5%).

Tableau 19 : Test de Mann-Whitney sur QTE 3

	N	NPK-Fumure organique
η1 - η2	30	5
p-value	30	0,000

On remarque que P-value<0,05. Les médianes sont donc significativement différentes l'une de l'autre.

On retient donc de ces résultats que les deux types d'engrais sont significativement différents. Les populations ont un penchant vers les engrais de type NPK vu qu'ils sont les plus utilisés ici au Burkina-Faso. Très peu d'entre eux arrivent à utiliser la fumure organique pour nourrir leurs sols pour les activités agricoles.

V.1.2.4. Les habitudes d'arrosage

❖ QTE 4 : Quelles techniques d'irrigation vous semblent la plus adaptée et la plus efficiente pour vous ?

Cette question se focalise sur le pouvoir incitatif sur les techniques d'irrigation que les paysans préfèrent et jugent plus aptes à mettre en place. Les systèmes d'irrigation comparés sont : Irrigation par aspersion, irrigation goutte-à-goutte, irrigation gravitaire, et autres systèmes qu'utiliseraient les populations.

La comparaison de ces différents systèmes a été faite avec les tests non-paramétriques étant donné que les conditions de validité du test d'ANOVA n'ont pas été remplies.

Tableau 20 : Test de Kruskal-Wallis sur le QTE 4

Type d'irrigation	Irrigation de surface	Irrigation goutte-à- goutte	Irrigation par aspersion	Autres		
Médiane	10	14				
DF = 3 p-value = 0,000						

P-value<0,05. Les médianes sont significativement différentes.

Tableau 21 : Test de Mann-Whitney sur le QTE 4

	N	Irrigation de	Irrigation	Irrigation	Goutte-à-	Goutte-à-	Aspersion
		surface -	de surface -	de surface	goutte -	goutte -	- Autres
		Goutte-à-goutte	Aspersion	- Autres	Aspersion	Autres	
η1 - η2	30	0	5	1	5	1	-4
p-value	30	0,7506	0,000	0,000	0,000	0,0011	0,000

Irrigation de surface - Goutte-à-goutte : p-value = 0,7506>0,05. Les médianes des deux types d'irrigation ne sont pas significativement différentes et sont égales à 16,00. Par contre, Irrigation de surface – Aspersion : p-value = 0,000<0,05. Les médianes sont significativement différentes. Il en est de même pour (Irrigation de surface – Autres), (Goutte-à-goutte - Aspersion), (Goutte-à-goutte - Autres) et (Aspersion - Autres).

Il ressort que des différents systèmes d'irrigation, les plus appréciés des populations sont l'irrigation de surface et le goutte-à-goutte. Cela confirme les habitudes d'arrosage ici au Burkina Faso. Les populations maitrisent beaucoup plus l'irrigation de surface même si cela demande beaucoup d'eau. Le facteur « autres » vient avec une moyenne de 14,07. Une moyenne à ce niveau se manifeste par le fait que les populations utilisent toujours leurs arrosoirs pour arroser leurs cultures; c'est pénible vu le travail à faire sous le soleil et très pénible aussi pour le dos à force de rester constamment courbé pour arroser. Le goutte-à-goutte et le semi-californien viennent donc pour pallier à cela.

V.1.2.5. Les types de cultures souhaitées

❖ QTE 5 : Si l'aménagement hydro-agricole se fait, quelles sont les cultures que vous souhaitez mettre en place ?

Cette question vient en association à la précédente afin de trouver les cultures qui seront mises en place.

Les tests de Kruskal Wallis et de Mann-Whitney seront utilisés pour cette analyse car les conditions de validité du test d'ANOVA ne sont pas vérifiées. Les résultats de ces tests sont consignés dans les tableaux suivants :

Tableau 22 : Test de Kruskal-Wallis sur le QTE 5

Cultures	Cultures	Cultures	Arboriculture			
	maraichères	de rente				
Médiane	16	16	11			
DF = 2 p-value = 0,000						

P<0.05. Il existe une différence significative entre les médianes.

Tableau 23 : Test de Mann-Whitney sur le QTE 5

	N	Cultures	Cultures	Cultures de
		maraichères –	maraichères -	rente -
		Cultures de	Arboriculture	Arboriculture
		rente		
η1 - η2	30	0	5	5
p-value	30	0,5298	0,000	0,000

Cultures maraichères – Cultures de rente : p-value = 0,5298>0,05. Les médianes des deux types de cultures ne sont pas significativement différentes et sont égales à 16,00. Par contre, Cultures maraichères - Arboriculture : p-value = 0,000<0,05. Les médianes sont significativement différentes. Il en est de même pour (Cultures de rente – Arboriculture).

Les cultures de rente sont les préférées des populations avec une moyenne de 16,27/20. Cela confirme nos résultats obtenus à la QTE 1.1. Les cultures maraichères viennent avec une moyenne de 16 sur 20. La population s'y connait et utilise ces cultures pour leur propre consommation et la vente. Quant à l'arboriculture, la population ne la pratique pas réellement; d'où la faible moyenne de 10,8/20.

V.1.2.6. Les Difficultés rencontrées lors des campagnes agricoles

* QTE 6 : Quelles sont les difficultés que vous rencontrez ?

Cette question parle des difficultés rencontrées par les populations pour l'atteinte de leurs objectifs agricoles.

Les conditions d'application du test d'ANOVA sont remplies pour cette question. L'histogramme et le graphe de la probabilité normale des résidus montrent que la distribution est normale. De plus l'homoscédascité est respectée et le test de Levene donne P-value= 0,181>0,05.

Tableau 24 : One-way ANOVA pour QTE 6

	QTE.6 ANOVA							
Source	DF	Adj SS	Adj MS	F-Value	P-Value			
Factor	4	826,9	206,733	153,67	0,000			
Error	145	195,1	1,345					
Total	149	1022,0						

Les difficultés rencontrées sont significativement différentes (p<5%) quant à leur pouvoir incitatif. Ceci est confirmé par le test de comparaison de Tukey.

Tableau 25 : Informations groupées utilisant le test de Tukey à 95% d'intervalle de confiance, QTE 6

Difficultés	Taille N	Moyenne	σ	IC à 95%	Groupe
Insuffisance équipements	30	16,033	1,351	(15,615; 16,452)	A
Manque intrants	30	11,767	1,104	(11,348; 12,185)	C
Destruction par les		11,707	1,10.	(11,6 10, 12,100)	-
animaux	30	16,700	0,794	(16,281; 17,119)	A
Conservation non effective	30	13,867	1,252	(13,448; 14,285)	В
Autres	30	10,633	1,217	(10,215; 11,052)	D

Les moyennes qui n'ont pas les mêmes lettres sont significativement différentes.

Il ressort de ces résultats que le problème principal rencontré par les populations est la destruction des cultures par les animaux; cela se voit avec la moyenne de 16,7/20. Vient ensuite l'insuffisance d'équipements agricoles; cela est dû au niveau très faible de mécanisation de l'agriculture. Il se pose également le problème de conservation des cultures ; qui est une phase vraiment importante car sans conservation dans la durée, les cultures seront détruites et il s'agira d'une perte pour l'économie du village.

V.1.2.7. Les solutions appropriées pour pallier aux difficultés rencontrées

* QTE 7 : Quelles sont les solutions appropriées pour pallier aux difficultés rencontrées ?

L'objectif de cette question est de faire ressortir les solutions applicables pour pallier aux difficultés énoncées dans la QTE 6. Les résultats sont présentés dans les tableaux ci-après :

Tableau 26 : One-way ANOVA pour QTE 7

QTE.7 ANOVA						
Source	DF	Adj SS	Adj MS	F-Value	P-Value	
Factor	4	5869,0	1467,25	1215,72	0,000	
Error	145	175,0	1,21			
Total	149	6044,0				

Les solutions appropriées sont significativement différentes (p<5%) quant à leur pouvoir incitatif. Ceci est confirmé par le test de comparaison de Tukey.

Tableau 27 : Informations groupées utilisant le test de Tukey à 95% d'intervalle de confiance, QTE 7

Solutions	Taille N	Moyenne	σ	IC à 95%	Groupe
Mise à					
disposition					
d'équipements	30	17,2	1,324	(16,804; 17,594)	A
Mise à					
disposition					
d'intrants	30	17,93	1,143	(17,537; 18,330)	A
Création					
d'enclos	30	17,63	1,098	(17,237; 18,030)	A
Amélioration					
des conditions					
de					
conservation	30	17,33	0,922	(16,937; 17,730)	A
Autres	30	1,9	0,960	(1,504; 2,296)	В

Les moyennes qui n'ont pas les mêmes lettres sont significativement différentes.

Toutes les solutions proposées sont du gout des populations avec de fortes moyennes. Le facteur « Autres » a été peu coté parce que les paysans n'ont pas trouvé d'autres réelles solutions. La mise en place de ces différentes solutions aidera les paysans à améliorer leur productivité. Les sols seront plus riches ; les équipements plus modernes seront mis à disposition et rendront la culture moins dure et pour finir les cultures seront mieux conservées après récolte. Cela contribuera à augmenter les bénéfices des paysans et sera un grand pas dans l'atteinte de l'autosuffisance alimentaire.

V.1.2. Etudes pédologiques et aptitude du sol

Les études de sol effectuées nous ont montré que le sol en présence est de type **Sablo-limoneux**. Ce type de sol a été donné par la classification de SAVVA & FRENKEN (2001). Cette classification donne le type de sol en fonction de la vitesse d'infiltration :

Type de sol	Vitesse d'infiltration de base (mm/h)
Argile	1-7
Argilo-limoneux	7–15
Sable fin-limoneux	15-25
Sablo-limoneux	25-40
Sableux	>40

Figure 12 : Classification des types de sols selon SAVVA & FRENKEN

<u>Source</u>: Irrigation par aspersion V2.29 (KEITA, 2019)

Les résultats obtenus aux différents points de mesure sont consignés dans le tableau ci-après :

Tableau 28 : Récapitulatif des résultats de MINITAB et SPAW

Points	Ksat (mm/h)	Humidité au point de flétrissement θwp (%)	Humidité à la capacité au champ θ _{FC} (%)	Type de sol
1	27,1407	4,7	29	Sablo-limoneux
2	39,4328	4	25,7	Sablo-limoneux
3	22,7557	4,2	31,3	Sable-fin limoneux
4	61,2436	3,8	20,7	Sableux
5	30,4669	4,1	28,4	Sablo-limoneux
6	30,9003	4,1	28,4	Sablo-limoneux
7	36,0389	4	26,6	Sablo-limoneux
8	53,2785	4,4	21,6	Sableux
9	26,1896	4,7	29,3	Sablo-limoneux
10	31,2127	4,6	27,8	Sablo-limoneux
11	12,5911	11	33,4	Argilo-limoneux
12	20,6401	5,8	31,1	Sable-fin limoneux
13	20,7325	5,8	31,1	Sable-fin limoneux
14	22,9602	5,2	30,5	Sable-fin limoneux
15	17,518	5,3	32,7	Sable-fin limoneux
16	24,5991	4,2	30,7	Sable-fin limoneux
17	16,7127	5,8	32,9	Sable-fin limoneux
18	15,4242	8,4	32,5	Sable-fin limoneux
19	44,2178	4,5	23,9	Sableux
20	23,2079	4,7	30,6	Sable-fin limoneux
Moyenne	28,863165	5,7	27,8	Sablo-limoneux

V.1.3. Choix des cultures

V.1.3.1. Préférences des populations

Les cultures proposées par les populations à l'issue des enquêtes menées sont entre autres :

- Cultures maraichères : Tomate, Oignon, Chou, Laitue, Piment, Concombre.
- ♦ Cultures céréalières : Maïs, Sorgho, Petit mil, Haricot.

V.1.3.2. Spéculations retenues et caractéristiques

Pour la mise en valeur de notre périmètre, nous avons retenu cinq (5) cultures dont trois (3) pour le semi-californien et deux (2) pour le goutte-à-goutte. Il s'agit notamment de (Tomate, Oignon, Laitue) et (Maïs, Haricot). Les caractéristiques des cultures sont détaillées ci-dessous et dans le tableau 29.

Tomate (Solanum lycopersicon)

Au Burkina-Faso, la tomate est la deuxième plus importante culture maraichère, après l'oignon. Elle se cultive surtout en période sèche. En respectant toutes les étapes de la technique de production, le rendement potentiel à l'hectare peut atteindre les 40 à 50 tonnes et celui commercial entre 20 et 35 tonnes, ainsi il est très bénéfique pour la production en masse et en tout temps si l'on suit correctement son évolution. Par ailleurs, elle s'exporte très bien vers les pays limitrophes. De ce fait, elle constitue une spéculation pourvoyeuse des devises (MAHRH, Analyse de la filière maraichage au Burkina Faso, 2007). Son cycle est de 135 jours.

Laitue (*Lactuca sativa*)

La culture de la laitue est pratiquée dans toutes les provinces du pays. C'est un légume qui est indifférent quant aux conditions climatiques et pousse remarquablement dans les sols souples. Son rendement moyen est de 20 à 40 tonnes par hectare. Compte tenu de son cycle végétatif, il est possible d'en faire au moins 2 récoltes par an. Son cycle a une durée de 90 jours.

• Oignon bulbe (*Allium cepa*)

L'oignon est un légume qui présente un avantage certain du point de vue conservation par rapport autres légumes (chou, tomate, aubergine, etc.). C'est la culture maraichère la plus importante au Burkina-Faso. Le rendement moyen d'une plantation d'oignon est de 25 tonnes à l'hectare, si toutefois le sol est bien adapté. Son cycle a une durée de 150 jours.

Maïs (Zea mays)

Le maïs est l'un des produits céréaliers les plus cultivés et les plus consommés au Burkina Faso. C'est également « la deuxième filière porteuse du pays juste après le coton selon les études du Programme de croissance économique dans le secteur agricole ». Son rendement moyen est de 8 à 9 tonnes à l'hectare. Son cycle a une durée de 140 jours.

■ Haricot (*Vigna unguiculata*)

Le haricot encore appelé niébé est une légumineuse très prisée au Burkina-Faso pour la lutte contre la pauvreté et l'insécurité alimentaire. Il est cultivé en association avec céréales telles que le maïs, le sorgho et le mil. Le rendement moyen est de 750 kilogrammes à l'hectare. Son cycle végétatif a une durée de 110 jours.

Le tableau 29 montre les caractéristiques des cultures (coefficient cultural et profondeur racinaire) en fonction de stade végétatif.

KENNETH GBETOFIA

Cultures		Initial	Développement	Mi-saison	Arrière-	Durée (j)	
					saison		
Tomate	Durée (j)	30	40	40	25	135	
	Kc	0,45	0,75	1,15	0,8		
	Profondeur		1,1				
	racinaire						
Laitue	Durée (j)	20	30	30	10	90	
	Kc	0,45	0,6	1	0,9		
	Profondeur		0,5				
	racinaire						
Oignon	Durée (j)	15	25	70	40	150	
	Kc	0,5	0,75	1,05	0,85		

	Profondeur		0,4					
	racinaire							
Maïs	Durée (j)	25	40	45	30	140		
	Kc	0,40	0,75	1,15	0,7			
	Profondeur		1,7					
	racinaire							
Haricot	Durée (j)	20	30	40	20	110		
	Kc	0,35	0,75	1,1	0,5			
	Profondeur		0,7					
	racinaire							

V.2. Evaluation des besoins en eau des cultures

Les besoins en eau ont été estimés pour une campagne sèche à partir du mois d'octobre, juste avant le début de la saison sèche. Nous avons considéré que les semis se font le 1^{er} Octobre. Cette date a été choisie en fonction des habitudes culturales des populations. Aussi, en se projetant à la date de récolte, la conservation sera plus aisée et en matière de vente, les bénéfices seront plus élevés et on atteindra une rentabilité plus facilement.

Il ressort donc de nos calculs que le mois de Décembre est le mois le plus contraignant pour toutes les cultures (tous systèmes d'irrigation confondus).

Les besoins mensuels de ces cultures en fonction du système d'irrigation sont consignés dans le tableau suivant :

Tableau 30 : Besoins de pointe mensuels des cultures

Systèmes	Semi-californien			Goutte	-à-goutte
Cultures	Tomate	Laitue	Oignon	Mais	Haricot
BMP (mm)	184,28	161,02	187,86	166,47	160,89

Les cultures considérées pour notre dimensionnement sont les plus contraignantes (Oignon pour le semi-californien et Maïs pour le goutte-à-goutte)

V.3. Méthodologie de conception des systèmes d'irrigation

V.3.1. Parcellisation

La parcellisation nous a permis d'avoir 54 parcelles de 0,25 ha chacune. Dans le sens de la longueur, elles sont espacées de 2,75 m et de 1,43 m dans le sens de la largeur ; espaces servant de pistes piétonnes. Notons qu'avec la présence de deux systèmes d'irrigation, 36 parcelles sont allouées pour le semi-californien et 18 pour le goutte-à-goutte. La figure 13 présente le plan de parcellisation.

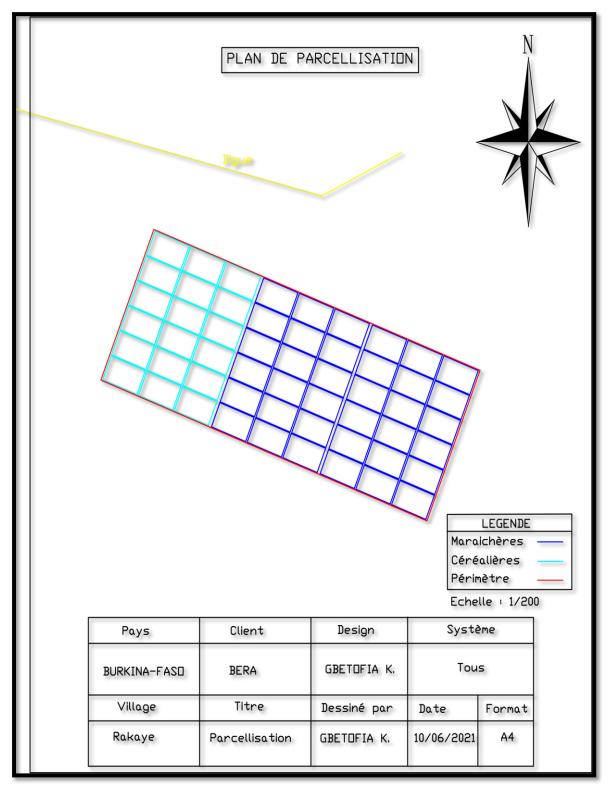


Figure 13 : Plan de parcellisation

V.3.2. Dimensionnement préliminaire

Comme énoncé plus tôt, les deux cultures considérées pour nos dimensionnements sont l'oignon et le maïs. Le calcul des déficits hydriques de ces deux cultures se présente dans les tableaux suivants :

Tableau 31 : Déficit hydrique de l'oignon

Oignon							
Mois	Octobre	Novembre	Décembre	Janvier	Février		
Durée	31	30	31	31	28		
ETO (mm/j)	5,47	5,67	5,77	6,01	6,68		
Kc équivalent	0,63	0,96	1,05	0,97	0,85		
ETM (mm)	3,45	5,44	6,06	5,83	5,68		
Pe (mm/j)	0,62	0,04	0,02	0,01	0,02		
BN (mm/j)	2,82	5,41	6,04	5,81	5,66		

Tableau 32 : Déficit hydrique du maïs

	Maïs						
Mois	Octobre	Novembre	Décembre	Janvier	Février		
Durée	31	30	31	31	17		
ET0 (mm/j)	5,47	5,67	5,77	6,01	6,68		
Kc	0,47	0,75	1,10	0,96	0,7		
GC (%)	70	70	70	70	70		
ETMloc (mm/j)	2,17	3,62	5,39	4,91	3,97		
Pe (mm/j)	0,62	0,04	0,02	0,01	0,02		
Bn ou IRn (mm/j)	1,55	3,58	5,37	4,90	3,95		

Les résultats des calculs des paramètres d'irrigation pour les deux systèmes d'irrigation au mois de pointe sont consignés dans le tableau ci-après :

Tableau 33 : Dimensionnement préliminaire semi-californien

Paramètres	Valeurs
Système d'irrigation	Semi-
	californien
Débit Fictif Continu DFC (l/s/ha)	1,11
Débit Maximal de Pointe DMP	3,98
(l/s/ha)	
Main d'eau M (l/s)	10
Quartier hydraulique W (ha) choisi	3
Réserve Utile RU (mm)	20,88
Dose d'entretien De (mm)	13,92
Fréquence N calculée (j)	21,42
Tour d'eau R retenu (j)	3
Nombre de postes retenu	3

Tableau 34 : Dimensionnement préliminaire goutte-à-goutte

Paramètres	Valeurs
Système d'irrigation	Goutte-
	à-goutte
Fréquence F calculée (j)	40,6
Tour d'eau T (j)	3
Dose réelle Da (mm)	16,12
Dose brute Dg (mm)	21,35
Temps par poste Ts (h/j)	5,5
Débit d'équipement qe (l/s/ha)	0,9

V.2.2. Dimensionnement final

V.2.2.1. Dimensionnement et configuration des réseaux d'irrigation

Les parcelles destinées pour le maraichage sont approvisionnées de façon gravitaire. Les parcelles destinées aux cultures de rente comportent un porte-rampe au milieu de la parcelle dans le sens de la longueur.

V.2.2.2. Choix du goutteur

Le goutteur est quant à lui choisi en fonction de deux principaux facteurs : l'inflitration du sol et l'énergie. (KEITA, 2019). Il a été choisi dans le catalogue NETAFIM 2017.

Figure 14: Goutteur choisi

Tableau 35 : Caractéristiques du goutteur choisi

Caractéristiques					
Gamme	UNIRAM AS				
Concepteur	NETAFIM (2017)				
Dispositif	ANTI-SIPHON				
	Autorégulant				
Pluviométrie P (mm/h)	5,33				
Débit (l/h):	1				
Ø (mm):	16				
Ecartement entre les distributeurs (cm):	50				
Pression de service du distributeur (bar):	0,5 à 3,5				

V.2.2.3. Calage des Ouvrages de prises

Le calage des Ouvrages de prises prend en considération la cote la plus élevée dans la parcelle à irriguer. Dans notre cas, nous n'avons pas effectué de planage. Ainsi la prise sera calée à 1,45 m au-dessus du terrain naturel.

Tableau 36 : Calage des prises

N° nrigo	Cote TN	Cote	PDC	Cote	H élévation
prise	(m)	max parcelle	(m)	calage prise	(m)
		(m)		(m)	(222)
1	324,11	324,04	0,1	324,21	0,10
2	323,08	322,67	0,1	323,18	0,10
3	322,00	321,79	0,1	322,10	0,10
4	321,01	320,91	0,1	321,11	0,10
5	320,75	320,50	0,1	320,85	0,10
6	320,21	321,56	0,1	321,66	1,45
7	324,23	324,12	0,1	324,33	0,10
8	323,31	323,31	0,1	323,41	0,10
9	322,73	322,76	0,1	322,86	0,13
10	322,46	322,67	0,1	322,77	0,31
11	321,65	320,88	0,1	321,75	0,10
12	320,67	321,15	0,1	321,25	0,58
13	324,47	324,09	0,1	324,57	0,10
14	324,05	323,81	0,1	324,15	0,10
15	323,65	323,39	0,1	323,75	0,10
16	323,19	323,04	0,1	323,29	0,10
17	322,63	323,21	0,1	323,31	0,68
18	320,72	320,71	0,1	320,82	0,10

V.2.2.4. Dimensionnement des conduites d'irrigation

Le bloc alloué au semi-californien est subdivisé en 3 sous-blocs. Il existe une station de pompage qui alimente un unique bassin partiteur à trois sorties ; chaque sortie alimentant un sous-bloc. Nous avons opté pour des prises doubles en tête de parcelle : ce qui nous donne 6 prises sur chaque rampe. La conduite de refoulement et de distribution sont en PVC et enterrée à 1 m de profondeur.

La conduite d'aspiration en polyéthylène est plongée dans l'eau directement à la cote 322,25 m. Les prises parcellaires sont situées le long des conduites secondaires à une équidistance de 63 m correspondant au début de chaque parcelle.

Le récapitulatif du dimensionnement des conduites est présenté dans le tableau ci-après.

Tableau 37 : Caractéristiques des conduites

Conduites	Longueur (m)	Débit (m3/h)	Vitesse (m/s)	Dth (mm)	DN (mm)
Rampe	408	14,4	0,73	78,64	90
Aspiration	30	43,2	0,66	130,35	160
Refoulement	301,64	43,2	0,42	164,32	200

Le périmètre alloué pour le goutte-à-goutte est de forme rectangulaire avec 250 m de long et 200 m de large. Avec une superficie réelle de 4,5 ha, il comporte 18 parcelles de 0,25 ha. Une conduite de transport puise l'eau depuis la prise d'irrigation du barrage qui à son tour alimente une conduite principale. Cette dernière alimente 3 conduites secondaires placées au milieu de deux blocs de parcelles sur le sens de la largeur. Chacune des conduites secondaires alimente 6 porte-rampes. A l'échelle parcellaire, notons que chaque parcelle a un porte-rampe au milieu dans le sens de la longueur. Sur chaque porte-rampe sont accrochées 104 rampes dont 52 de part et d'autre. Une rampe comporte 63 goutteurs.

Le tableau 39 donne les détails sur le dimensionnement des conduites

Tableau 38 : Caractéristiques des conduites

Conduites	Longueur (m)	Débit (m3/h)	Vitesse (m/s)	Dth (mm)	DN (mm)
Rampe	31,5	0,072	0,04	3,87	25
Porte-rampe	40,7	7,49	0,44	39,48	75
Secondaire	197,25	44,92	0,37	96,70	200
Primaire	167,15	134,78	1,11	167,5	200
Transport	88	134,78	1,11	167,5	200
Aspiration	30	134,78	1,73	120,22	160

V.2.3. Dimensionnement et calage des ouvrages

V.2.3.1. Dimensionnement du bassin partiteur

C'est dans cet ouvrage que l'eau pompée est réceptionnée pour la répartition dans les conduites secondaires (rampes). Ici, nous avons opté pour un unique bassin partiteur de type 1 à trois départs. Un compartiment principal se rempli et alimente les autres. Ces derniers reçoivent chacun du premier compartiment le débit attendu par des conduites secondaires respectives. Les détails des calculs et les figures schématisant le bassin sont trouvées en annexe... Pour l'heure, les caractéristiques du bassin tampon sont mentionnées dans le tableau ci-après :

Tableau 39 : Caractéristiques du bassin partiteur

Paramètres	Symbole	Valeurs	Unité
Débit entrant	Qe	0,012	m3/s
Débit sortant	Qs	0,004	m3/s
Hauteur critique	hc	0,043	m
de la lame			
déversante			
Diamètre	De	200	mm
entrant extérieur			
Diamètre	Ds	90	mm
sortant			

Hauteur du seuil	S	0,441	m
Hauteur du	Н	0,8	m
bassin			
Cote TN	CTN	324,44	m
Longueur du	Lb	0,5	m
bassin			
Largeur du	lb	1	m
bassin			

V.2.3.2. Dimensionnement de la station de pompage

Nous avons opté pour deux systèmes de pompage différents. Les caractéristiques souhaitées sont d'une part une HMT = 3 m pour un débit de 43,2 m3/h et d'autre part ; une HMT de 25 m pour un débit de 135 m3/h.

V.2.3.2.1. Semi-californien

Avec une HMT = 3 m et un débit Q = 43,2 m3/h, nous proposons une motopompe thermique de marque **HONDA WB 30** sélectionnée dans le catalogue VAUDAUX de HONDA.

Motopompe thermique HONDA WB 30

Caractéristiques techniques

Marque: HONDA Moteur marque: HONDA Moteur modèle: GX160 Cylindrée (cm3): 163 Puissance (W): 3600 Démarrage: Lanceur

Diamètre de sortie : DN80 - 76mm - 3 "

Capacité réservoir (L): 3,10

Pression (bar): 2,3 Débit (m3/h): 66 Aspiration max (m): 7,5 Hauteur max (m): 23 Régime (tr/min): 3600

Poids (kg): 26

Dimensions: 510 x 385 x 455

Accessoires de série : Crépine et raccords

Garantie: 2 ans

Figure 15: Motopompe thermique HONDA

V.2.3.2.2. Goutte-à-goutte

Avec une HMT = 26 m et un débit Q = 135 m3/h, nous avons choisi deux pompes GRUNDFOS de type **NB 80-160 2-poles, 50 Hz ISO 9906** (GRUNDFOS, 2016) pour notre aménagement où l'une d'elle est une pompe de secours en cas de panne.

V.2.3.2.2.1.Point de fonctionnement

Le Point de Fonctionnement d'une Pompe est l'intersection entre la Courbe Caractéristique de la pompe et la courbe caractéristique du réseau. Le tableau suivant comporte les débits et HMT utilisés pour déterminer le point de fonctionnement.

Tableau 40 : Données de courbes conduite et pompe équivalente

	Courbe Conduite							
HMT	0	20	40	60	80	100	120	140
(m)								
Q	24,116	24,16	24,26	24,41	24,60	24,84	25,13	25,48
(m3/h)								
			Courbe	Pompe équ	uivalente			
HMT	0	20	40	60	80	100	120	140
(m)								
Q	26,75	27,5	28	28,25	28	27,5	26,5	25
(m3/h)								

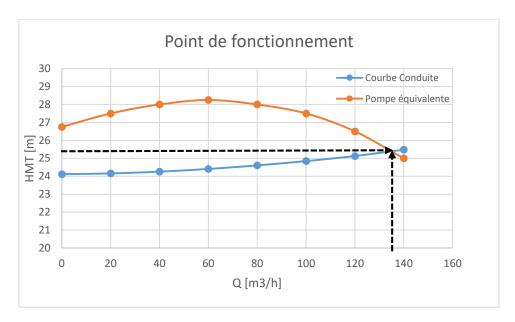


Figure 16 : Point de fonctionnement

Les caractéristiques du point de fonctionnement sont présentées dans le tableau suivant :

Tableau 41 : Caractéristiques du point de fonctionnement

Point de fonctionnement : Pompe centrifuge NB 80-160 2-poles, 50 Hz ISO 9906			
Débit (m3/h)	HMT (m)	Puissance abs (kW)	Rendement (%)
135	25,5	19,14	49

V.2.3.2.2. Vérification du NPSH

On a alors:

NPSHr + 0.5 (m)	NPSHd (m)	Observation
7	8,69	Respectée

La condition est vérifiée car NPSH requis + 0,5 < NPSH disponible alors aucun risque de cavitation.

V.2.3. Dimensionnement du réseau de drainage

Notre réseau de drainage est constitué de drains internes et d'une colature de ceinture. Les drains internes recueillent l'eau directement des parcelles et la colature empêche les eaux sauvages d'atteindre le périmètre. Les caractéristiques sont présentées dans le tableau suivant :

Tableau 42 : Caractéristiques des drains

Caractéristiques	Drains internes
Pente I	0,003
Fruit de berge m	2
Coefficient de rugosité Ks	30
Revanche r (m)	0,2
Largeur au plafond b (m)	0,2
Tirant d'eau y (m)	0,3
Largeur en gueule L (m)	1,4

Les résultats plus détaillés sont présents dans l'annexe 8

V.2.4. Organisation de l'arrosage

Pour un arrosage uniforme, nous avons opté pour des fréquences d'arrosage communes de 3 jours. Le périmètre est divisé en 6 blocs (3 blocs de 3 ha pour les cultures maraichères et 3 blocs de 1,5 ha pour les cultures de rente). L'arrosage des cultures de rente se fera bloc après bloc chaque jour. Pour les cultures maraichères par contre, un bloc sera arrosé par jour durant les 8 heures de travail. Le récapitulatif de l'arrosage est présenté dans le tableau suivant :

Système	Blocs	1 ^{er} jour	2eme jour	3eme jour
d'irrigation		d'arrosage	d'arrosage	d'arrosage
Goutte-à-goutte	Bloc 4	6h – 10h	6h – 10h	6h – 10h
	Bloc 5	11h - 15h	11h - 15h	11h - 15h
	Bloc 6	16h - 20h	16h - 20h	16h - 20h
Semi-	Bloc par jour	Bloc 1 de 6h –	Bloc 2 de 6h –	Bloc 3 de 6h –
californien		14h	14h	14h

V.2.5. Description des procédures d'entretien du périmètre

L'entretien du périmètre se fera principalement à travers la distribution de l'eau sur le périmètre l'entretien des pistes et des ouvrages hydrauliques.

V.2.5.1. La gestion de l'eau

Elle comprend les activités :

- Distribution de l'eau (volumes / débits) sur le réseau (station de pompage, conduites de transport, distribution, etc.);
- Surveillance du bon fonctionnement des conduites et équipement du réseau ;
- Sensibilisation des exploitants dans le cadre de la Gestion de l'Eau ;
- Contrôle de la quantité d'eau utilisée par jour par les mesures et enregistrement des volumes d'eau distribués ;
- Vérification du respect du calendrier d'irrigation ;
- Surveillance des équipements présents sur le périmètre.

V.2.5.2. Entretien des pistes et des infrastructures hydrauliques

Les pistes doivent subir un remblai régulier afin de maintenir ou de corriger les profils pour les maintenir à un niveau et à une qualité convenable. Les ouvrages hydrauliques quant à eux feront surtout l'objet de maintenances régulières. Deux types de maintenance sont proposés :

- La maintenance préventive : Elle se fera de façon périodique par le groupement d'agriculteurs. Elle consistera aux travaux de nettoyage des drains, des conduites d'irrigation, de la station de pompage, du réservoir, des conduites.
- La maintenance corrective : Elle survient à la suite d'un dommage inattendu ou une panne et nécessitant une intervention rapide pour assurer la fonctionnalité de l'infrastructure. De façon générale, des professionnels sont mieux indiqués pour s'en occuper.

V.2.6. Etude économique

Les prix présentés dans les devis en annexe proviennent de certaines quincailleries du Burkina-Faso, des catalogues de vente et des sites de vente.

Une synthèse a été faite dans le Tableau 44. Pour plus de détails cf. Annexe 9.

Tableau 43 : Synthèse du cout du projet

Désignation	Montant (FCFA)
Pompage et Station de tête	18 622 393
Réseau de distribution	105 275 444
Installation de chantier et	15 775 000
autres	
Drainage	8 598 000
Total HT	148 270 837
TVA	26 688 751
Total TTC	174 959 588
Cout à l'hectare	9 884 722

Les paramètres permettant de vérifier la rentabilité du projet ont été calculés par la suite, on a :

Tableau 44 : Rentabilité de l'investissement

Coût	174 959 588
aménagement	
Marge brute (gain)	80 381 250
Charges	6 128 400
exploitation	
DRI (an)	2,36
Rinv (%)	84,88

On constate de ce tableau que le projet sera rentable à près de 85 % sur une durée de retour sur investissement de 2,36 ans.

VI. NOTICE D'IMPACT ENVIRONNEMENTAL ET SOCIAL

Ce projet d'aménagement hydro-agricole n'est pas de refus auprès de la population de Rakaye sur le plan socioéconomique. Cependant, comme toute action humaine, ce projet a des répercussions sur l'environnement. Ainsi, il est nécessaire de faire une Notice d'Impact sur l'Environnement (NIE) pour identifier et évaluer les impacts puis proposer des mesures d'atténuation.

VI.1. IDENTIFICATION ET EVALUATION DES IMPACTS ET EFFETS DU PROJET SUR L'ENVIRONNEMENT

L'impact désigne l'ensemble des modifications qualitatives, quantitatives et fonctionnelles de l'environnement (négatives ou positives) engendrées par la réalisation de l'aménagement.

Tableau 45: Matrice de Léopold – Evaluation des impacts

Phase du	Source	Description					Mi	lieu Récepteur			
projet	d'impact	de l'impact		Mi	lieu bio	physique		Milieu socio-économique			
	•	1	Air	Eau	Fau	Flore	Sol	Economie	Santé et		Qualité de
					ne				Sécurité		vie
Phase de	Etudes et	Réduction									
prospection	aménage	de la surface									
	ments	de foret et									
	prélimina	fouilles									
	ires	(levés									
		topographiq									
		ues,									
		enquêtes)									
Phase de	Destructi	Erosion et									
réalisation	on du sol	déstructurati									
		on du sol									
	Installati	Creusement									
	on des	et									
	conduites	remblaieme									
	et	nt des									
	équipeme	tranchées,									
	nts	décapage du									
	d'irrigati	sol									
	on	T 1									
	Transport	Implantation de tracé de									
	et manutent	voies de									
	ion des	circulation,									
	équipeme	déforestatio									
	nts	n									
Phase	Utilisatio	Rejet de									
d'exploitati	n	pesticides									
on	d'intrants	pesticides									
on	chimique										
	S										
	Irrigation	Augmentati									
	migution	on du									
		rendement									
		des cultures									
		et									
		diminution							1		
		des pertes							1		
		d'eau									
	Récolte	Création de									
	et vente	profits et									

amélioration				
des				
conditions				
de vie des				
populations				

VI.2. EVALUATION DE L'IMPORTANCE DES IMPACTS IDENTIFIES

VI.2.1. Méthodologie d'évaluation des impacts

La méthode utilisée pour évaluer l'importance des impacts est celle de FECTEAU, méthode qui évalue l'importance d'un impact en combinant trois indicateurs de caractérisation que sont l'Intensité de l'impact, la Portée ou influence spatiale et la durée des impacts.

Le tableau 47 présente la matrice de FECTEAU

Tableau 46 : Matrice de FECTEAU

		Critère	
Importance	Intensité	Portée	Durée
	Forte	Régionale	Long terme
	Forte	Régionale	Moyen terme
	Moyenne	Régionale	Long terme
Majeure	Forte	Locale	Long terme
	Forte	Régionale	Courte terme
	Moyenne	Régionale	Moyen terme
	Moyenne	Régionale	Courte terme
	Faible	Régionale	Long terme
	Faible	Régionale	Moyen terme
	Forte	Locale	Moyen terme
	Forte	Locale	Courte terme
	Moyenne	Locale	Long terme
	Moyenne	Locale	Moyen terme
	Faible	Locale	Long terme
	Forte	Ponctuelle	Long terme
	Forte	Ponctuelle	Moyen terme
Modéré	Moyenne	Ponctuelle	Long terme
	Faible	Régionale	Courte terme
	Moyenne	Locale	Courte terme
	Faible	Locale	Moyen terme
	Faible	Locale	Courte terme
	Forte	Ponctuelle	Courte terme
	Moyenne	Ponctuelle	Courte terme
	Moyenne	Ponctuelle	Moyen terme
	Faible	Ponctuelle	Long terme
	Faible	Ponctuelle	Moyen terme
Mineure	Faible	Ponctuelle	Courte terme

VI.2.2. Evaluation des impacts par phase

Le tableau 48 récapitule l'évaluation des impacts par phase.

Tableau 47 : Evaluation des impacts par phase

Phase	Milieu	Impact potentiel	Nature	Intens ité	Portée	Durée	Importance
Réalisation	Sol	Pollution du sol par les déchets du chantier	Négative	Faible	Ponctuelle	Court terme	Mineure
		Tassement	Négative	Faible	Ponctuelle	Court terme	Modérée
		Destruction du sol dans les zones d'emprunt	Négative	Forte	Ponctuelle	Long terme	Majeure
	Air	Altération de la qualité de l'air par l'émission de gaz et de poussières	Négative	Faible	Ponctuelle	Court terme	Mineure
	Eaux de surface	Diminution de l'infiltration de l'eau	Négative	Moye nne	Ponctuelle	Long terme	Modérée
	Faune	Destruction des habitats et éloignement de la faune	Négative	Moye nne	Locale	Court terme	Mineure
	Flore	Destruction de la végétation et du couvert végétal	Négative	Moye nne	Locale	Court terme	Mineure
	Populat ion	Risque de propagation des IST/SIDA	Négative	Moye nne	Régionale	Long terme	Majeure
		Création d'emploi et amélioration des revenus	Positive	Moye nne	Locale	Moyen terme	Modérée
		Risque de recrudescenc e du COVID-19	Négative	Moye nne	Régionale	Moyen terme	Modérée
		Risque d'accidents de travail	Négative	Moye nne	Locale	Court terme	Mineure

Exploitation	Sol	Pollution du	Négative	Moye	Locale	Long	Modérée
		sol par la		nne		terme	
		salinisation					
		et la					
		calcification					
		dues aux					
		engrais					
	Eaux	Pollution de	Négative	Moye	Locale	Moyen	Modérée
	souterr	la nappe		nne		terme	
	aines	Phréatique					
		(eaux de					
		drainage)					
	Flore	Développem	Positive	Moye	Ponctuelle	Moyen	Mineure
		ent des		nne		ne	
		cultures de					
		contre-saison					
		et					
		augmentatio					
		n des					
		surfaces					
		cultivables					
	Populat	Intensificatio	Positive	Moye	Locale	Moyen	Modérée
	ion	n des		nne		terme	
		activités					
		économiques					
		et					
		commerciale					
		S				_	
		Propagation	Négative	Faible	Ponctuelle	Court	Mineure
		des maladies				terme	
		hydriques					
		Réduction de	Positive	Moye	Locale	Moyen	Modérée
		l'exode rural		nne		terme	
		Risques	Négative	Moye	Locale	Moyen	Modérée
		conflits		nne		terme	
		d'intérêt liés					
		à la propriété					
		foncière					

VI.3. PLAN DE GESTION ENVIRONNEMENTAL ET SOCIAL (PGES)

Dans ce volet de la notice d'impact environnemental et social, il s'agira pour nous de :

- Proposer un plan de mise en œuvre des mesures d'atténuations et de compensations ;
- Proposer un plan de suivi-surveillance et de bonification ;
- Prévoir un budget pour la bonne gestion des actions mise en place ;
- Prévoir des mesures de bonification d'impact positif.

VI.3.1. Mesures d'atténuation et compensations

L'idée est de réduire voir d'éliminer les impacts négatifs en favorisant ou maximisant les impacts positifs. Ainsi, nous proposons les solutions suivantes :

- Arrosage des sites et entretien périodique des engins de terrassement ;
- Port de masque de protection pour les travailleurs ;
- Aménagement des zones d'emprunts par des dispositifs de lutte antiérosive ;
- Collecte et élimination des déchets liquides et solides dans les chantiers
- Mise en place d'un système de traitement des eaux usées ;
- Remplacement des espèces ligneuses abattues sur l'emprise par des plantations d'arbres;
- Instauration d'un comité de gestion des conflits ;
- Respect des conditions d'hygiène et des gestes barrières ;
- Sensibiliser les exploitants sur les maladies hydriques et les moyens de préventions qui sont le port des gants, chaussures de sécurité, cache-nez pendant les travaux et de limiter l'utilisation excessive des engrais et pesticides afin d'éviter la pollution de la nappe et la salinisation rapide des sols.

VI.3.2. Suivi et Surveillance environnementale

Suivi environnemental

Le suivi environnemental est une démarche qui permet mesurer les impacts réels d'une activité ou d'un projet, les comparer aux impacts prévus et évaluer l'efficacité des mesures d'atténuation et de bonification retenues.

Dans le cadre de notre étude, les paramètres de suivi engloberont principalement :

- Le reboisement de la forêt ;
- Le respect des mesures établies ;
- Les cas de maladies enregistrés.

Surveillance environnementale

Le programme de surveillance environnementale décrit les moyens et mécanismes proposés par l'initiateur de projet pour assurer le respect des exigences légales et environnementales. Dans cette phase, il faudra vérifier que :

- Toutes les exigences et conditions en matière de protection de l'environnement soient efficacement respectées avant, pendant et après les travaux ;
- Les mesures de protection de l'environnement prescrites ou prévues soient mises en place et permettent d'atteindre les objectifs fixés ;
- Les risques et incertitudes puissent être gérés et corrigés si nécessaire.

VII. CONCLUSION - PERSPECTIVES

Au terme de cette étude, il faut noter que le projet de réalisation de ce périmètre s'inscrit objectivement dans l'actuelle politique d'atteinte de l'autosuffisance alimentaire et lutte contre la pauvreté en milieu rural. Ainsi, les techniques d'irrigation appliquées conviennent bien aux populations compte tenu de leur maitrise du système et l'important rendement des cultures.

Chacun des systèmes a sa station de pompage, son réseau de distribution et ses accessoires. Ainsi nous avons opté d'une part pour une motopompe thermique diesel et d'autre part pour une pompe monocellulaire centrifuge.

Le coût de l'hectare aménagé est de huit cents vingt-deux mille quatre cents (882 400) FCFA/TTC pour le semi-californien et de vingt-six millions six cents vingt-deux mille huit cents trente-huit (26 622 838) FCFA / TTC pour le goutte-à-goutte. On retient donc de cela que les systèmes d'irrigation sous pression représentent une véritable alternative dans un contexte comme celui du Burkina où les pluies sont peu fréquentes. Le choix des cultures rentables et de techniques d'optimisation permettront aux populations d'améliorer leurs conditions de vie et de travail. L'étude de rentabilité du projet montre que la durée de retour sur investissement est de deux ans et demi avec un retour sur investissement de 90 %. Il faut noter que l'adhésion de la population au projet est totale. C'est la raison pour laquelle des programmes de suivi et de surveillance ont été élaborés afin de permettre leur inclusion dans l'utilisation et la gestion des ouvrages qui seront installés.

Comme perspectives, nous espérons que l'Etat puisse appuyer les exploitants dans la production de biofertilisants et de la fumure organique.

VIII.RECOMMANDATIONS

Pour la réussite de ce projet d'aménagement et un fonctionnement optimal, nous recommandons :

- La mise en place d'un programme de suivi, de gestion et de maintenance et son respect rigoureux ;
- La réalisation d'études complémentaires sur le sol pour améliorer de façon optimale l'apport des engrais ;
- La réalisation de séminaires de formations pour les exploitants pour améliorer leurs connaissances des techniques d'irrigation et les équipements.
- Le respect de tous les protocoles en vigueur au Burkina-Faso en matière d'aménagement hydro-agricole ;
- La rotation de cultures avec la mise en place de cultures hivernales sur le périmètre irrigué pour fertiliser les terres cultivables.

IX. Bibliographie

Abderahim, A. 2016. 'Etude de conception d'un système irrigué de type semi-californien sur le site de Sakoani dans la province de Tapoa au Burkina. 91 P.''.

Banazaro, J. D. 2021. ''Etude technique d'aménagement d'un périmètre irrigué à Guibaré dans la région du Centre-Nord (BURKINA-FASO). 134 P.''

Bera. 2021. "Mémoire technique APS pour la réalisation du barrage de Rakaye. 45 P."

Biaou, O. D. 2017. "Améliorer la disponibilité des coupeurs de canne à sucre sur un périmètre industriel : Cas de la SN SOSUCO. 100 P."

Boudoug, P. F. 2020. "Etude Technique et Détaillée de l'Aménagement En Aval du Barrage de Toemighin, Province du Zoundwéogo, BURKINA-FASO. 128 P."

Compaore, M. L. 1998. "Cours de drainage et d'assainissement agricole 2iE".

Fao. 1996. "Crues et Apports: Manuel pour l'estimation des crues décennales et des apports annuels pour les petits bassins versants non jaugés d'Afrique sahélienne et tropicale sèche. 265 P."

Fao. 2015. "Rapport AQUASTAT Profil de Pays – Burkina-Faso. 20 P."

Grundfos. 2016. "Livret technique de pompes GRUNDFOS. 144 P."

Insd. 2006. "Recensement Général de la Population et de l'Habitat. 52 P."

Insuco. 2017. "Notice communale de Doulougou. 14 P."

Keita, Amadou. 2019. "Localized Irrigation 2iE. 197 P."

Keita, Amadou, Mahamadou Koita, Dial Niang, and Bruno Lidon. 2019. "WASO: An Innovative Device to Uncover Independent Converging Opinions of Irrigation System Farmers. 11 P."

Lo, M. 2017. "Cours de barrage 2iE. 140 P."

Mahrh. 2007. "Analyse de la filière maraichage au Burkina-Faso. 127 P."

Ministère de l'agriculture. 2013. "Manuel technique d'aménagement des terres suivant le mode d'irrigation par réseau semi californien au Burkina Faso. 136 P."

Netafim. 2017. "Catalogue General BD Irrigation. 144 P."

Rutabara, Héritier. 2017. 'La perception de l'entretien du réseau de drainage et sa solution selon les agriculteurs - Etude de cas de Baguinéda Amont (OPIB / Mali). 116 P.''

Statistique Canada. 2003. "Méthodes et pratiques d'enquetes. 422 P."

Thiombiano, P. F. 2018. Proposition d'aménagement hydro-agricole au goutte-à-goutte et par micro aspersion à Sidi Kompenga (Province de la Gnagna). 117 P."

Vaudaux. 2015. "Catalogue HONDA INDUSTRIE. 35 P."

Yoni E. 2019, "Rapport EIES AEPS Bazéga. 117 P."

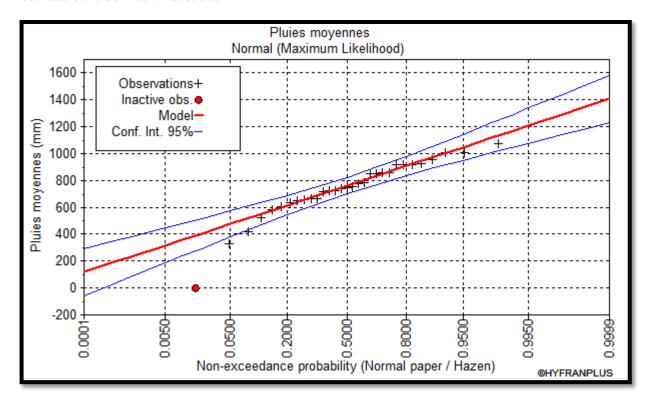
X. ANNEXES

Annexe 1 : Données pluviométriques de Kombissiri de 1989 à 2018	82
Annexe 2 : Caractéristiques du bassin versant	86
Annexe 3 : Enquêtes WASO	87
Annexe 4: Essais d'infiltration	99
Annexe 5 : Besoins en eau des cultures	111
Annexe 6 : Les paramètres d'irrigation	113
Annexe 7 : HMT et choix de pompes	121
Annexe 8 : Réseau de drainage	122
Annexe 9: Devis	123
Annexe 10 : Etude financière	128
Annexe 11 : Plans	130

Annexe 1 : Données pluviométriques de Kombissiri de 1989 à 2018

Année	Jan	Fév	Mar	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Déc
1989	0	0	11,4	0	44,7	84,2	186,4	340,3	169,3	12	0	10,2
1990	0	0	0	17,8	58,7	280,4	101,4	125,7	126,9	0	15	15,5
1991	0	0	29,7	42,2	229	98	146,2	299,4	25,8	49,5	0	0
1992	0	0	0	35,7	46,7	72,1	222,8	327,1	171,2	29,2	13,1	0
1993	0	1,7	3,9	0,5	17,7	131,4	196,5	262,6	125,7	41,7	0	0
1994	0	0	0	10,4	11,6	80,4	233,6	420,9	179,9	72	0	0
1995	0	0	0	9,3	107	65,2	144,5	253,1	73	126,4	0	0
1996	0	0	0	30,2	56,3	38,1	221,3	257,8	125,8	28,2	0	0
1997	0	0	0	0	0	0	181,7	161,7	40,3	35,8	0	0
1998	0	0	0	100,8	142,8	133,1	101,9	130,1	262,1	136,8	0	0
1999	0	0	0	50	82,7	179,5	152,7	193,5	186,2	6,6	0	0
2000	0	0	0	0	118,3	126,2	176,6	142,5	37,1	36,8	0	0
2001	0	0	0	0	67,4	62,2	262,6	190,3	0	0	0	0
2002	0	0	0	17,8	76,1	52,8	100,5	184,1	212,5	25	0	0
2003	0	6,2	0	35,4	46	58,9	221,8	192,5	77,5	8,5	0	0
2004	0	0	0	46	49,9	60,9	267,7	123,2	163,6	11,9	26,8	0
2005	0	0	0	0	94,5	137,9	208,8	246,1	165	8,2	0	0
2006	0	0	0	4,7	20,8	161,4	134,4	167,6	128,8	40,9	0	0
2007	0	0	0	62,2	0	44,2	77	185,9	157,2	0	0	0
2008	0	0	0	0	47	73,2	201,3	235,2	151,6	17,5	0	0
2009	0	0	0	8,2	66,5	125,2	112,1	237,6	204,8	100,2	0	0
2010	0	0	0	60,9	25,1	148,8	146,8	241,7	57,4	44,1	0	0
2011	0	0	0	21,2	40	103,9	171	169,8	145,2	10,2	0	0
2012	0	0	0	0	49,5	36,3	244,5	0	0	0	0	0
2013	0	0	0	34,6	110,3	97,5	158	207,5	101,5	6,9	0	0
2014	23	0	0	15	78,5	159	190,1	258,3	192,5	36,7	0	0
2015	0	2	0	0	33,6	184	208,5	268,8	196,9	31,6	0	0
2016	0	0	11	39,4	107,2	69,6	317,7	396,1	121,8	11,8	0	0
2017	0	0	0	57,2	115	207,6	181,4	238,2	97,8	21,1	0	0
2018	0	17,4	32,6	7	37,1	113	0	265,5	116,3	17,4	0	0

Source: ANAM 2020


♦ Valeurs moyennes mensuelles des données

Les valeurs moyennes des paramètres climatologiques collectées, sont déterminées et présentées ainsi qu'il suit :

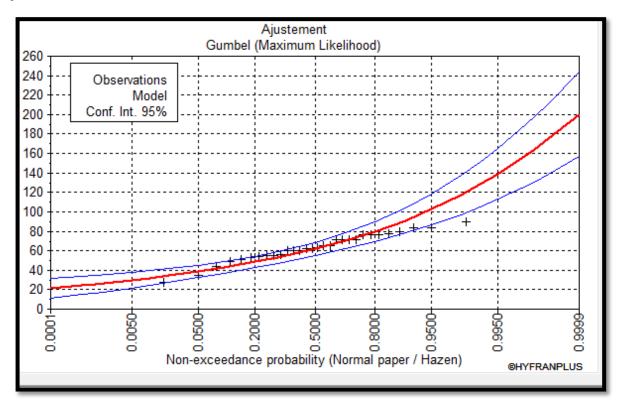
Pluviométries mensuelles

Kombissiri	Janv	Fév	Mars	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov	Déc	Total
Moyenne (mm)	0,77	0,91	2,95	23,55	66	106,67	175,66	224,10	127,12	32,23	1,83	0,86	762,15
` ′													

Nous utilisons la loi normale pour ajuster les données des pluies moyennes mensuelles. Les résultats sont donnés ci-dessous :

♦ Ajustement des pluies moyennes annuelles

Sur la base des résultats du test d'adéquation, nous pouvons conclure que l'échantillon provient d'une loi de GUMBEL au niveau de signification de 5%. L'ajustement ainsi réalisé, permet de déterminer les valeurs de la pluviométrie moyenne annuelle pour différentes périodes de retour données dans les tableaux ci-après :


Pour la station de Kombissiri,

T	q	XT	Ecart-type	Intervalle d	le confiance
10000.0	0.9999	1410	90.4	1230	1580
2000.0	0.9995	1330	81.3	1170	1490
1000.0	0.9990	1300	77.1	1150	1450
200.0	0.9950	1210	66.6	1080	1340
100.0	0.9900	1160	61.7	1040	1290
50.0	0.9800	1120	56.4	1010	1230
20.0	0.9500	1050	49	951	1140
10.0	0.9000	984	43	899	1070
5.0	0.8000	907	37	835	980
3.0	0.6667	836	33.1	771	901
2.0	0.5000	762	31.6	700	824
1.4286	0.3000	671	33.8	605	737
1.2500	0.2000	616	37.0	543	688
1.1111	0.1000	540	43	455	624
1.0526	0.0500	477	49.0	380	573
1.0204	0.0200	406	56.4	295	516

1.0101	0.0100	358	61.7	237	479
1.0050	0.0050	315	66.6	185	446
1.0010	0.0010	226	77.1	74.9	377
1.0005	0.0005	191	81.3	32.0	351
1.0001	0.0001	117	90.4	60	294

♦ Pluviométrie maximale journalière

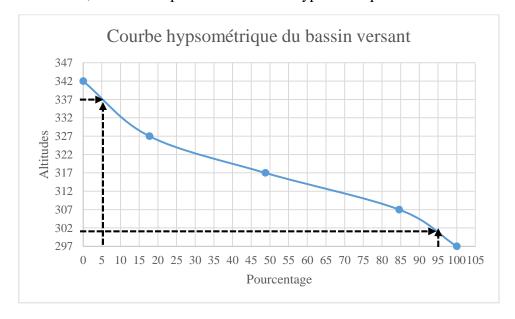
Nous utilisons la loi de GUMBEL pour ajuster les données de la pluviométrie maximale journalière. Les résultats sont donnés ci-dessous :

♦ Ajustement de la pluviométrie maximale journalière

Sur la base des résultats du test d'adéquation, nous pouvons conclure que l'échantillon provient d'une loi de GUMBEL au niveau de signification de 5%. L'ajustement ainsi réalisé, permet de déterminer les valeurs de la pluviométrie maximale journalière pour différentes périodes de retour données dans les tableaux ci-après :

Pour la station de Kombissiri,

T	q	XT	Ecart-type	Intervalle de confiance	
10000.0	0.9999	200	22.2	157	244
2000.0	0.9995	175	18.5	139	211
1000.0	0.9990	164	17.0	131	197
200.0	0.9950	139	13.3	113	165
100.0	0.9900	128	11.8	105	151
50.0	0.9800	117	10.2	97	137
20.0	0.9500	102	8.21	86.4	119
10.0	0.9000	91.2	6.69	78.1	104


5.0	0.8000	79.5	5.19	69.3	89.6
3.0	0.6667	70.1	4.11	62.1	78.2
2.0	0.5000	61.7	3.34	55.2	68.3
1.4286	0.3000	53.1	2.90	47.4	58.8
1.2500	0.2000	48.5	2.87	42.9	54.1
1.1111	0.1000	42.9	3.03	37	48.9
1.0526	0.0500	38.8	3.29	32.4	45.2
1.0204	0.0200	34.6	3.63	27.5	41.7
1.0101	0.0100	32.1	3.87	24.5	39.6
1.0050	0.0050	29.9	4.09	21.8	37.9
1.0010	0.0010	25.7	4.55	16.8	34.6
1.0005	0.0005	24.2	4.72	15.0	33.5
1.0001	0.0001	21.2	5.08	11.3	31.2

Annexe 2 : Caractéristiques du bassin versant

Les données sur le bassin versant ci-dessous ont été trouvées à partir du Logiciel ArcGIS :

Cote	Cote	Surface	Pourcentage
minimale	maximale	(km2)	(%)
(m)	(m)		
297	307	6,24	15,4
307	317	14,54	35,84
317	327	12,59	31,03
327	342	7,2	17,73

Grace à ces données, nous avons pu tracer la courbe hypsométrique du bassin versant.

Annexe 3 : Enquêtes WASO

♦ Questionnaire administré à Rakaye

Thème d'enquête (TE1) : Spéculations pratiquées

Question 1 : Quelles sont les différentes spéculations pratiquées ?

Code	Spéculations	Note sur 20	Observation
1	Cultures de rente		
2	Cultures maraichères		

Question 2 : Dans quelle période de l'année les activités agricoles sont effectuées essentiellement ?

Code	Spéculations	Note sur 20	Observation
1	Saison sèche		
2	Saison pluvieuse		

Thème d'enquête (TE2) : Equipements de labour utilisés

Question : Quels sont les équipements de labour que vous utilisez ?

Code	Equipements	Note sur 20	Observation
1	Houe		
2	Charrues aux bœufs		
3	Charrues à disque		
4	Tracteurs		
5	Autres		

Thème d'enquête (TE3): Types d'engrais utilisés

Question: Quels sont les types d'engrais que vous utilisez dans la production de vos cultures ?

Code	Types d'engrais	Note sur 20	Observation
1	NPK		
2	Fumure organique		

Thème d'enquête (TE4) : Habitudes d'arrosage

Question : Quelles techniques d'irrigation vous semblent la plus adaptée et la plus efficiente pour vous ?

Code	Degré de maitrise	Note sur 20	Observation
1	Irrigation de surface		
2	Irrigation goutte-à-		
	goutte		
3	Irrigation par		
	aspersion		
4	Autres		

KENNETH GBETOFIA

Thème d'enquête (TE5) : Types de cultures souhaités

Question : Si l'aménagement hydro-agricole se fait, quelles sont les cultures que vous souhaitez mettre en place ?

Code	Types de cultures	Note sur 20	Observation
	souhaités		
1	Cultures maraichères		
2	Cultures de rente		
3	Arboriculture		

Thème d'enquête (TE6) : Difficultés rencontrées lors des campagnes agricoles

Question : Quelles sont les difficultés que vous rencontrez ?

Code	Difficultés	Note sur 20	Observation
1	Insuffisance		
	d'équipements		
2	Manque d'intrants		
3	Destruction des		
	cultures par les		
	animaux		
4	Conservation non		
	effective des		
	produits		
5	Autres		

Thème d'enquête (TE7) : Solutions appropriées pour pallier aux difficultés rencontrées

Question : Quelles sont les solutions appropriées pour pallier aux difficultés rencontrées ?

Code	Solutions	Note sur 20	Observation
1	Mise à disposition		
	d'équipements		
2	Mise à disposition		
	fréquente d'intrants		
3	Création d'enclos		
	pour les animaux		
4	Amélioration des		
	conditions de		
	conservation des		
	produits		
5	Autres		

♦ Liste des paysans enquêtés

Liste (Liste des paysans enquêtés					
ID du	Nom village	Noms	Prénoms	Temps d'enquête		
sondé				(min)		
PE1	Rakaye-Yarcé	SANE	Bibéta	30		
PE2	Rakaye-Yarcé	SANFO	Boureima	25		
PE3	Rakaye-Yarcé	SANA	Adama	35		
PE4	Rakaye-Yarcé	ZOUNGRANA	Mouni	15		
PE5	Rakaye-Yarcé	SANFO	Mariam	50		
PE6	Rakaye-Yarcé	ZOUANGA	Bibata	25		
PE7	Rakaye-Yarcé	SANFO	Moctar	60		
PE8	Rakaye-Yarcé	SANFO	Boukary	45		
PE9	Rakaye-Yarcé	ZOUANGA	Boureima	20		
PE10	Rakaye-Yarcé	SANFO	Awa	25		
PE11	Rakaye-Yarcé	CONGO	Issaka	30		
PE12	Rakaye-Yarcé	DERRA	Seydou	35		
PE13	Rakaye-Yarcé	OUEDRAOGO	Seydou	45		
PE14	Rakaye-Yarcé	SAKANDE	Ibrahim	55		
PE15	Rakaye-Yarcé	SINI	Alimata	50		
PE16	Rakaye-Yarcé	SANA	Amado	35		
PE17	Rakaye-Yarcé	SANA	Asséta	40		
PE18	Rakaye-Yarcé	DABO	Amidou	25		
PE19	Rakaye-Mossi	KOUANDA	Ablass	30		
PE20	Rakaye-Mossi	SANE	Awa	30		
PE21	Rakaye-Mossi	SOUDE	Idrissa	20		
PE22	Rakaye-Mossi	TIEMTORE	Seydou	45		
PE23	Rakaye-Mossi	YERBANGA	Mahamadi	50		
PE24	Rakaye-Mossi	YERBANGA	Souleymane	25		
PE25	Rakaye-Mossi	KOUANDA	Fatoumata	35		
PE26	Rakaye-Mossi	BAGAYA	Asséta	50		
PE27	Rakaye-Mossi	DABO	Sayouba	35		
PE28	Rakaye-Mossi	CONGO	Daouda	30		
PE29	Rakaye-Mossi	SAKANDE	Issa	25		
PE30	Rakaye-Mossi	ZOUNGRANA	Alimatou	40		

♦ Les tests et leurs conditions d'utilisation

* ANOVA et ses conditions d'utilisation

Bien qu'ANOVA se définisse comme une analyse des variances, elle utilise un seul test statistique pour comparer simultanément toutes les moyennes afin de vérifier s'il existe une différence entre elles (MATHEWS 2005). En effet, la procédure d'ANOVA est basée sur un test hypothétique appelé F-test, qui compare combien les populations diffèrent entre elles comparativement à la variabilité dans chaque population (RUMSEY 2009). Si toutes les conditions de la limite centrale sont réunies –i.e. tous les échantillons proviennent d'une même

population (MONTGOMERY 2008; MATHEWS 2005), le ratio F est égal à 1. Par contre, si une ou plusieurs moyennes sont différentes des autres, le ratio F sera plus grand que 1. La conclusion sur la différence des moyennes peut aussi se baser sur le niveau de signification (P-value). Les conditions requises pour valider l'utilisation d'ANOVA sont (RUMSEY 2009; Montgomery 2008; MATHEWS 2005):

- Les populations échantillonnées suivent une distribution normale ;
- Les populations échantillonnées sont homoscédastiques (même variance) ;
- Les observations sont indépendantes.

Ces conditions ont été vérifiées par l'analyse des graphes des résidus¹ car ANOVA n'est pas particulièrement sensible à la déviation de certaines de ces conditions (Montgomery 2008; Mathews 2005). Par ailleurs, Mathews ajoute que si la condition d'homoscédasticité est vérifiée, un seul graphe de tous les résidus combinés est suffisant pour tester la normalité de tous les traitements² en même temps. En plus, le test de Levene a permis de conclure sur l'homoscédasticité des populations lorsque cette condition n'était pas bien appréciée à partir des graphes des résidus. En fin, la condition d'indépendance des observations n'a pas été vérifiée dans cette étude, car l'ordre de passage des enquêtés ainsi que l'ordre de succession des questions aux thèmes d'enquêtes a été rendu aléatoire (Mathews 2005).

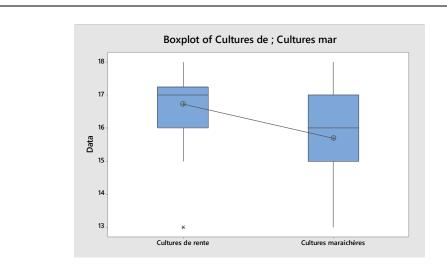
Bien qu'ANOVA indique s'il y existe ou pas une différence significative entre les moyennes des populations comparées, elle n'indique pas quelles paires de moyennes sont différentes. Des méthodes d'analyse post-ANOVA existent, permettant d'identifier la différence significative entre chaque paire de moyennes (RUMSEY 2009; MONTGOMERY 2008). Le test post-ANOVA adopté dans cette étude est le test de Tukey. Ce test a été choisi car il implique peu de calculs, est facile à rapporter et est assez populaire (MATHEWS 2005).

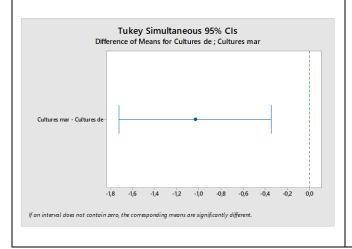
Les tests non-paramétriques et leurs conditions d'application

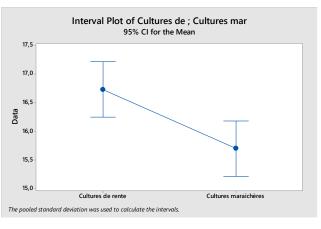
Les tests non-paramétriques testent les médianes. Les tests utilisés ici sont ceux de Kruskal-Wallis et Mann-Whitney. Ils comparent deux ou plusieurs médianes et exigent que :

- Les échantillons aléatoires proviennent des populations indépendantes ;
- Toutes les populations aient une même distribution ;
- Les variances des populations soient les mêmes.

Le test de Mann-Whitney compare les médianes de deux populations tandis que le test de Kruskal-Wallis compare les médianes de deux ou plusieurs populations. Le test de Kruskal-Wallis est similaire à ANOVA. Il indique seulement s'il existe ou pas une différence significative entre les médianes. Ainsi, pour identifier les médianes significativement différentes, nous avons fait recours au test de Mann-Whitney entre chaque paire de médianes (RUMSEY 2009).

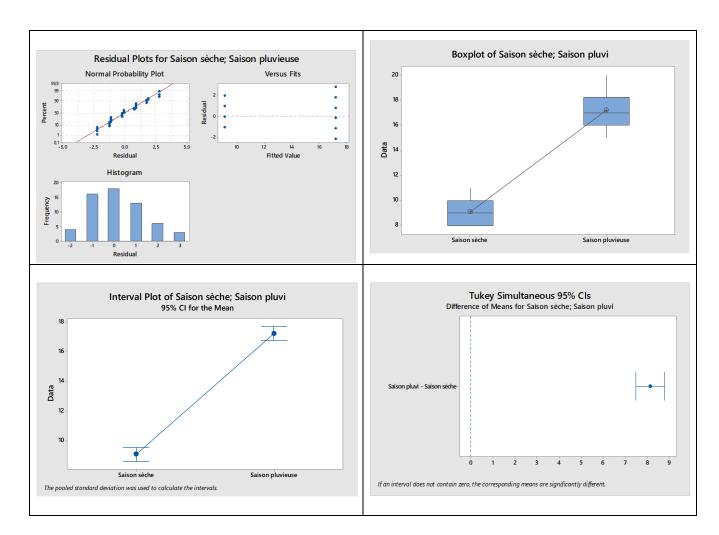

¹ Un résidu est l'écart entre l'estimation du modèle (ANOVA) et la valeur réelle (Montgomery 2008)


² Un traitement correspond à une réponse anticipée dans le cas de cette étude

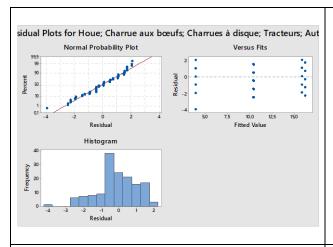

♦ Graphes des résultats d'enquête

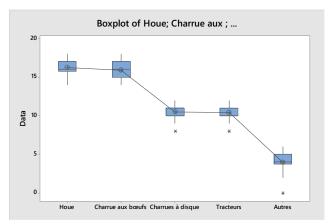
QTE.1.1 : Quelles sont les différentes spéculations pratiquées ?

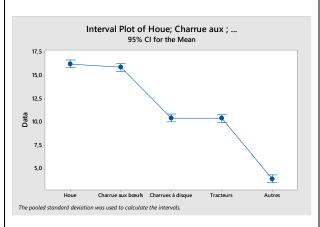
Variable	Moyenne	Ecart-type	Variance	Médiane
Cultures de	16.73	1.11	1.24	17
rente				
Cultures	15.7	1.51	2.28	16
maraichères				

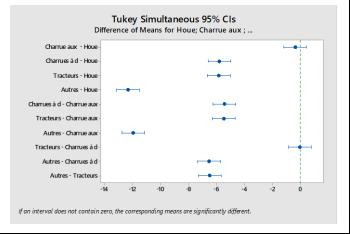


QTE.1.2 : Dans quelle période de l'année les activités agricoles sont effectuées essentiellement ?

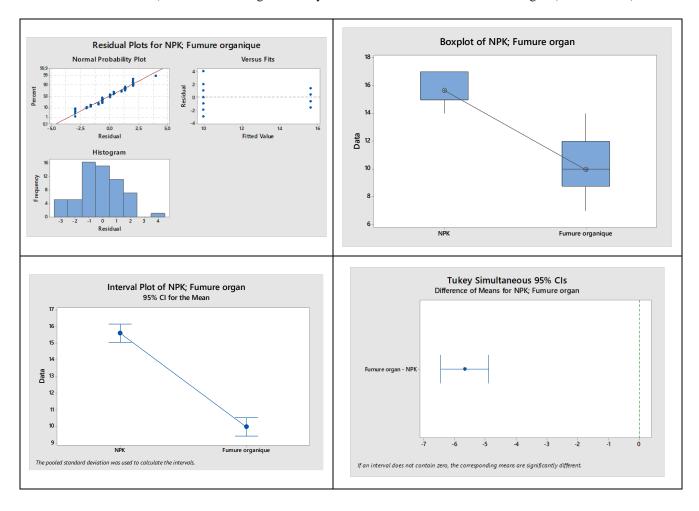

Variable	Moyenne	Ecart-type	Variance	Médiane
Saison sèche	9.1	0.96	0.92	9
Saison	17.23	1.52	2.32	17
pluvieuse				

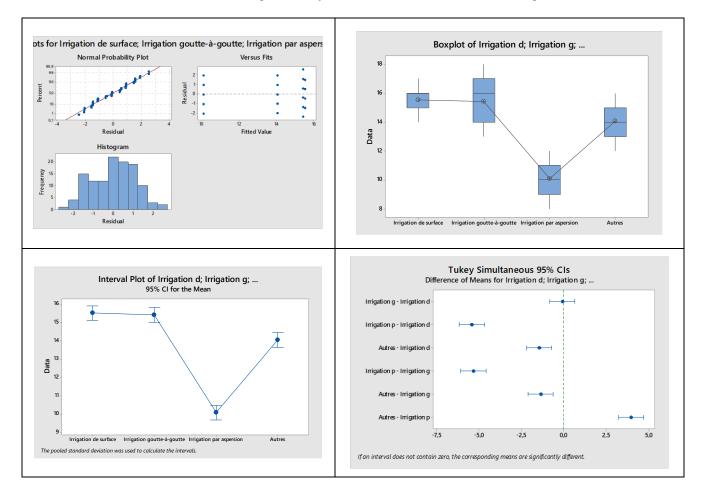



QTE.2 : Quels sont les équipements de labour que vous utilisez ?

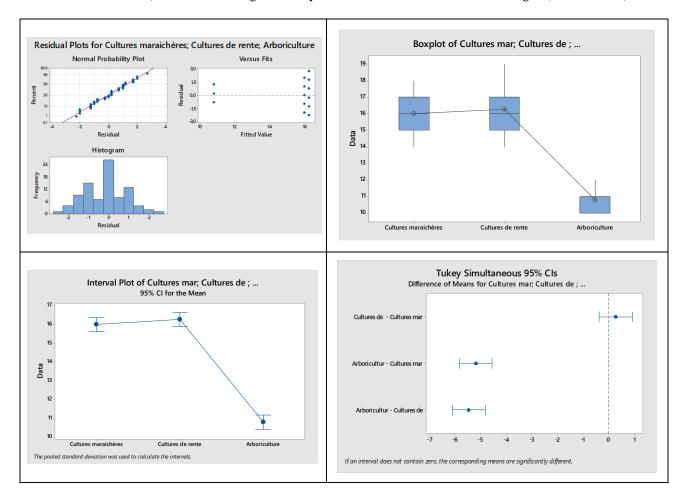

Variable	Moyenne	Ecart-type	Variance	Médiane
Houe	16.27	1.28	1.65	16
Charrue aux bœufs	15.9	1.09	1.20	16
Charrue à	10.47	0.97	0.95	10
disque				

Tracteurs	10.43	1.04	1.08	10
Autres	3.93	1.26	1.58	4

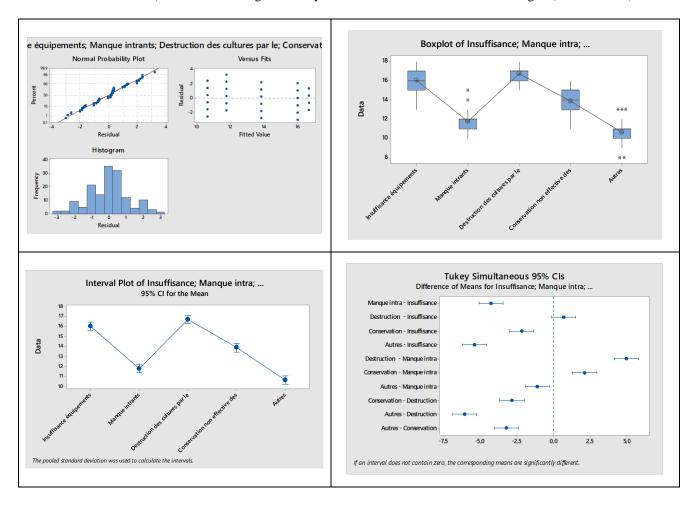



QTE.3: Quels sont les types d'engrais que vous utilisez dans la production de vos cultures?

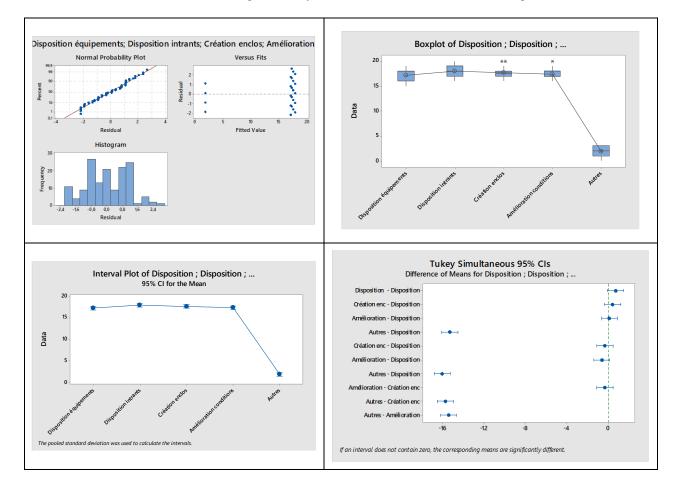
Variable	Moyenne	Ecart-type	Variance	Médiane
NPK	15.63	1	1	15
Fumure	9.97	1.88	3.55	10
organique				


QTE.4 : Quelles techniques d'irrigation vous semblent la plus adaptée et la plus efficiente pour vous ?

Variable	Moyenne	Ecart-type	Variance	Médiane	
Irrigation de surface	15.53	0.90	0.81	16	
Irrigation goutte-à-goutte	15.43	1.43	2.05	16	
Irrigation par aspersion	10.1	0.96	0.92	10	
Autres	14.07	1.05	1.10	14	

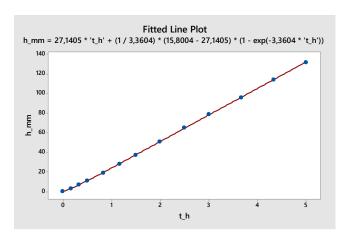

QTE.5 : Si l'aménagement hydro-agricole se fait, quelles sont les cultures que vous souhaitez mettre en place ?

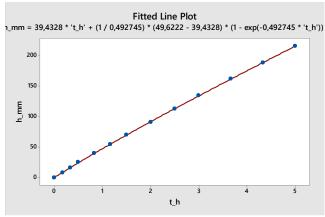
Variable	Moyenne	Ecart-type	Variance	Médiane
Cultures	16	1.17	1.38	16
maraichères				
Cultures de	16.27	1.23	1.51	16
rente				
Arboriculture	10.8	0.61	0.37	11


QTE.6: Quelles sont les difficultés que vous rencontrez?

Variable	Moye	Ecart-type	Variance	Médiane
	nne			
Insuffisance	16.03	1.35	1.83	16
d'équipements				
Manque	11.76	1.10	1.22	12
d'intrants				
Destruction des	16.7	0.79	0.63	17
cultures par les				
animaux				
Conservation non	13.87	1.25	1.57	14
effective des				
produits				
Autres	10.63	1.22	1.48	11

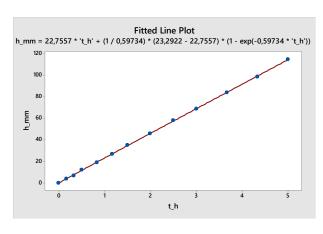
QTE.7: Quelles sont les solutions appropriées pour pallier aux difficultés rencontrées ?

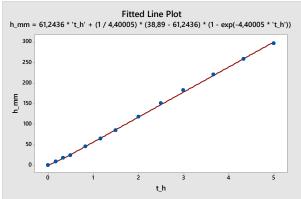

Variable	Moye	Ecart-type	Variance	Médiane
	nne			
Mise à disposition	17.2	1.33	1.75	18
d'équipements				
Mise à disposition	17.93	1.14	1.31	18
fréquente				
d'intrants				
Création d'enclos	17.63	1.10	1.21	17.5
pour les animaux				
Amélioration des	17.33	0.92	0.85	17
conditions de				
Conservation des				
produits				
Autres	1.9	0.96	0.92	2



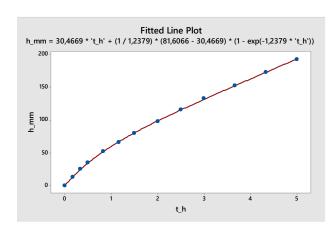
Annexe 4: Essais d'infiltration

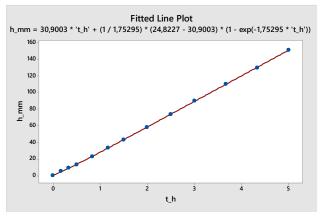
♦ Courbes de régression Ksat Point d'infiltration 1


Point d'infiltration 2

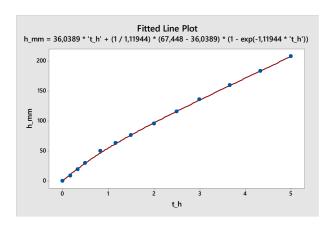


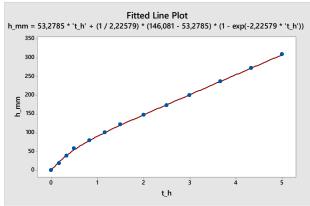
Point d'infiltration 3


Point d'infiltration 4

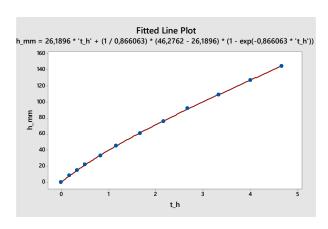


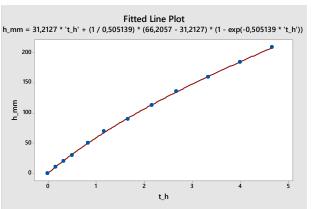
Point d'infiltration 5


Point d'infiltration 6

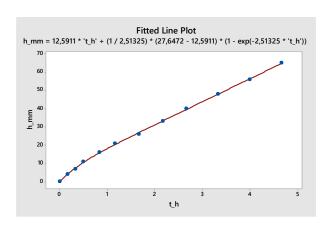


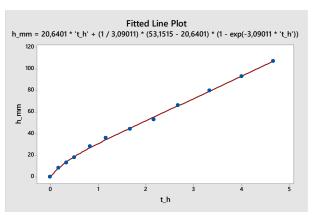
Point d'infiltration 7


Point d'infiltration 8

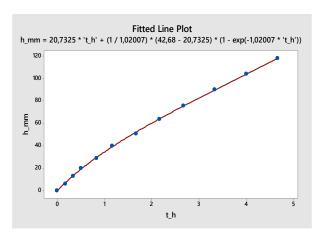


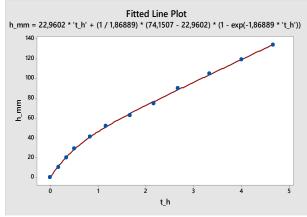
Point d'infiltration 9


Point d'infiltration 10

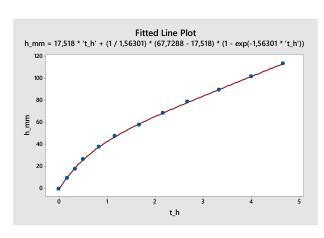


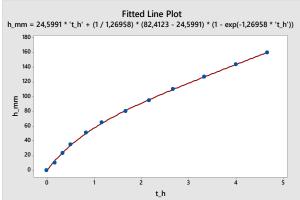
Point d'infiltration 11


Point d'infiltration 12

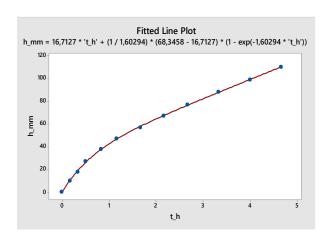


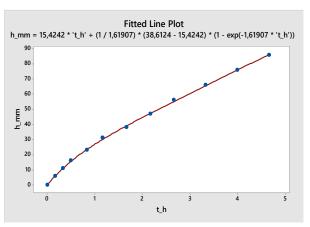
Point d'infiltration 13


Point d'infiltration 14

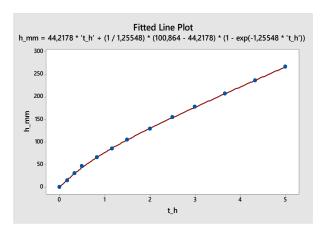


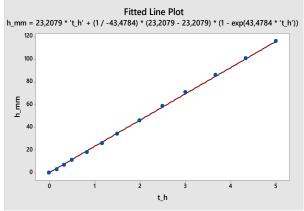
Point d'infiltration 15


Point d'infiltration 16



Point d'infiltration 17


Point d'infiltration 18



Point d'infiltration 19

Point d'infiltration 20

♦ Résultats in-situ des points d'infiltration Résultats du point d'infiltration 1

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	8	80	0	0	0	27,140
10	10	0,17	0,17	8,3	83	3	3	18,00	5
20	10	0,17	0,33	8,4	84	4	7	24,00	
30	10	0,17	0,50	8,4	84	4	11	24,00	
50	20	0,33	0,83	8,8	88	8	19	24,00	
70	20	0,33	1,17	8,9	89	9	28	27,00	
90	20	0,33	1,50	8,9	89	9	37	27,00	
120	30	0,50	2,00	9,4	94	14	51	28,00	
150	30	0,50	2,50	9,4	94	14	65	28,00	
180	30	0,50	3,00	9,4	94	14	79	28,00	
220	40	0,67	3,67	9,7	97	17	96	25,50	
260	40	0,67	4,33	9,8	98	18	114	27,00	
300	40	0,67	5,00	9,8	98	18	132	27,00	

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	8	80	0	0	0	39,432
10	10	0,17	0,17	8,8	88	8	8	48,00	8
20	10	0,17	0,33	8,8	88	8	16	48,00	
30	10	0,17	0,50	8,9	89	9	25	54,00	
50	20	0,33	0,83	9,5	95	15	40	45,00	
70	20	0,33	1,17	9,6	96	15	55	45,00	

90	20	0,33	1,50	9,5	95	15	70	45,00	
120	30	0,50	2,00	10,1	101	21	91	42,00	
150	30	0,50	2,50	10,2	102	22	113	44,00	
180	30	0,50	3,00	10,2	102	22	135	44,00	
220	40	0,67	3,67	10,7	107	27	162	40,50	
260	40	0,67	4,33	10,7	107	27	189	40,50	
300	40	0,67	5,00	10,7	107	27	216	40,50	

Résultats du point d'infiltration 3

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	8	80	0	0	0	22,755
10	10	0,17	0,17	8,4	84	4	4	24,00	7
20	10	0,17	0,33	8,3	83	3	7	18,00	
30	10	0,17	0,50	8,5	85	5	12	30,00	
50	20	0,33	0,83	8,7	87	7	19	21,00	
70	20	0,33	1,17	8,7	87	8	27	24,00	
90	20	0,33	1,50	8,8	88	8	35	24,00	
120	30	0,50	2,00	9,1	91	11	46	22,00	
150	30	0,50	2,50	9,2	92	12	58	24,00	
180	30	0,50	3,00	9,1	91	11	69	22,00	
220	40	0,67	3,67	9,5	95	15	84	22,50	
260	40	0,67	4,33	9,5	95	15	99	22,50	
300	40	0,67	5,00	9,6	96	16	115	24,00	

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	6,5	65	0	0	0	61,243
10	10	0,17	0,17	7,4	74	9	9	54,00	6
20	10	0,17	0,33	7,3	73	8	17	48,00	
30	10	0,17	0,50	7,2	72	7	24	42,00	
50	20	0,33	0,83	8,6	86	21	45	63,00	
70	20	0,33	1,17	8,4	84	20	65	60,00	
90	20	0,33	1,50	8,5	85	20	85	60,00	
120	30	0,50	2,00	9,8	98	33	118	66,00	
150	30	0,50	2,50	9,8	98	33	151	66,00	
180	30	0,50	3,00	9,7	97	32	183	64,00	
220	40	0,67	3,67	10,3	103	38	221	57,00	
260	40	0,67	4,33	10,3	103	38	259	57,00	
300	40	0,67	5,00	10,4	104	39	298	58,50	

Résultats du point d'infiltration 5

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	5	50	0	0	0	30,466
10	10	0,17	0,17	6,3	63	13	13	78,00	9
20	10	0,17	0,33	6,2	62	12	25	72,00	
30	10	0,17	0,50	6	60	10	35	60,00	
50	20	0,33	0,83	6,7	67	17	52	51,00	
70	20	0,33	1,17	6,5	65	14	66	42,00	
90	20	0,33	1,50	6,4	64	14	80	42,00	
120	30	0,50	2,00	6,8	68	18	98	36,00	
150	30	0,50	2,50	6,8	68	18	116	36,00	
180	30	0,50	3,00	6,7	67	17	133	34,00	
220	40	0,67	3,67	7	70	20	153	30,00	
260	40	0,67	4,33	7	70	20	173	30,00	
300	40	0,67	5,00	7	70	20	193	30,00	

Résultats du point d'infiltration 6

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	4	40	0	0	0	30,900
10	10	0,17	0,17	4,5	45	5	5	30,00	3
20	10	0,17	0,33	4,4	44	4	9	24,00	
30	10	0,17	0,50	4,4	44	4	13	24,00	
50	20	0,33	0,83	5	50	10	23	30,00	
70	20	0,33	1,17	5	50	10	33	30,00	
90	20	0,33	1,50	5	50	10	43	30,00	
120	30	0,50	2,00	5,5	55	15	58	30,00	
150	30	0,50	2,50	5,6	56	16	74	32,00	
180	30	0,50	3,00	5,6	56	16	90	32,00	
220	40	0,67	3,67	6	60	20	110	30,00	
260	40	0,67	4,33	6	60	20	130	30,00	
300	40	0,67	5,00	6,1	61	21	151	31,50	

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	5	50	0	0	0	

10	10	0,17	0,17	5,9	59	9	9	54,00	36,038
20	10	0,17	0,33	6	60	10	19	60,00	9
30	10	0,17	0,50	6,1	61	11	30	66,00	
50	20	0,33	0,83	7	70	20	50	60,00	
70	20	0,33	1,17	6,5	65	13	63	39,00	
90	20	0,33	1,50	6,3	63	13	76	39,00	
120	30	0,50	2,00	7	70	20	96	40,00	
150	30	0,50	2,50	7	70	20	116	40,00	
180	30	0,50	3,00	7	70	20	136	40,00	
220	40	0,67	3,67	7,4	74	24	160	36,00	
260	40	0,67	4,33	7,4	74	24	184	36,00	
300	40	0,67	5,00	7,4	74	24	208	36,00	

Résultats du point d'infiltration 8

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	5	50	0	0	0	53,278
10	10	0,17	0,17	6,8	68	18	18	108,00	5
20	10	0,17	0,33	7	70	20	38	120,00	
30	10	0,17	0,50	7	70	20	58	120,00	
50	20	0,33	0,83	7,2	72	22	80	66,00	
70	20	0,33	1,17	7,2	72	21	101	63,00	
90	20	0,33	1,50	7,1	71	21	122	63,00	
120	30	0,50	2,00	7,5	75	25	147	50,00	
150	30	0,50	2,50	7,6	76	26	173	52,00	
180	30	0,50	3,00	7,7	77	27	200	54,00	
220	40	0,67	3,67	8,7	87	37	237	55,50	
260	40	0,67	4,33	8,6	86	36	273	54,00	
300	40	0,67	5,00	8,6	86	36	309	54,00	

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	12	120	0	0	0	26,189
10	10	0,17	0,17	11,2	112	8	8	48,00	6
20	10	0,17	0,33	11,3	113	7	15	42,00	
30	10	0,17	0,50	11,3	113	7	22	42,00	
50	20	0,33	0,83	10,9	109	11	33	33,00	
70	20	0,33	1,17	10,8	108	12	45	36,00	
100	30	0,50	1,67	10,4	104	16	61	32,00	
130	30	0,50	2,17	10,5	105	15	76	30,00	

ſ	160	30	0,50	2,67	10,4	104	16	92	32,00
	200	40	0,67	3,33	10,3	103	17	109	<mark>25,50</mark>
Ī	240	40	0,67	4,00	10,2	102	18	127	27,00
Ī	280	40	0,67	4,67	10,2	102	18	145	27,00

Résultats du point d'infiltration 10

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	13	130	0	0	0	31,212
10	10	0,17	0,17	12	120	10	10	60,00	7
20	10	0,17	0,33	12	120	10	20	60,00	
30	10	0,17	0,50	12	120	10	30	60,00	
50	20	0,33	0,83	11	110	20	50	60,00	
70	20	0,33	1,17	11	110	20	70	60,00	
100	30	0,50	1,67	11	110	20	90	40,00	
130	30	0,50	2,17	10,7	107	23	113	46,00	
160	30	0,50	2,67	10,7	107	23	136	46,00	
200	40	0,67	3,33	10,6	106	24	160	<mark>36,00</mark>	
240	40	0,67	4,00	10,6	106	24	184	36,00	
280	40	0,67	4,67	10,5	105	25	209	37,50	

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	13	130	0	0	0	12,591
10	10	0,17	0,17	12,6	126	4	4	24,00	1
20	10	0,17	0,33	12,7	127	3	7	18,00	
30	10	0,17	0,50	12,6	126	4	11	24,00	
50	20	0,33	0,83	12,5	125	5	16	15,00	
70	20	0,33	1,17	12,5	125	5	21	15,00	
100	30	0,50	1,67	12,5	125	5	26	10,00	
130	30	0,50	2,17	12,3	123	7	33	14,00	
160	30	0,50	2,67	12,3	123	7	40	14,00	
200	40	0,67	3,33	12,2	122	8	48	12,00	
240	40	0,67	4,00	12,2	122	8	56	12,00	
280	40	0,67	4,67	12,1	121	9	65	13,50	

Résultats du point d'infiltration 12

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	13	130	0	0	0	20,640
10	10	0,17	0,17	12,2	122	8	8	48,00	1
20	10	0,17	0,33	12,5	125	5	13	30,00	
30	10	0,17	0,50	12,5	125	5	18	30,00	
50	20	0,33	0,83	12	120	10	28	30,00	
70	20	0,33	1,17	12,2	122	8	36	24,00	
100	30	0,50	1,67	12,2	122	8	44	16,00	
130	30	0,50	2,17	12,1	121	9	53	18,00	
160	30	0,50	2,67	11,7	117	13	66	26,00	
200	40	0,67	3,33	11,6	116	14	80	21,00	
240	40	0,67	4,00	11,7	117	13	93	19,50	
280	40	0,67	4,67	11,6	116	14	107	21,00	

Résultats du point d'infiltration 13

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	13	130	0	0	0	20,732
10	10	0,17	0,17	12,4	124	6	6	36,00	5
20	10	0,17	0,33	12,3	123	7	13	42,00	
30	10	0,17	0,50	12,3	123	7	20	42,00	
50	20	0,33	0,83	12,1	121	9	29	27,00	
70	20	0,33	1,17	11,9	119	11	40	33,00	
100	30	0,50	1,67	11,9	119	11	51	22,00	
130	30	0,50	2,17	11,7	117	13	64	26,00	
160	30	0,50	2,67	11,8	118	12	76	24,00	
200	40	0,67	3,33	11,6	116	14	90	21,00	
240	40	0,67	4,00	11,6	116	14	104	21,00	
280	40	0,67	4,67	11,6	116	14	118	21,00	

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	13	130	0	0	0	22,960
10	10	0,17	0,17	12	120	10	10	60,00	2
20	10	0,17	0,33	12	120	10	20	60,00	
30	10	0,17	0,50	12,1	121	9	29	54,00	
50	20	0,33	0,83	11,8	118	12	41	36,00	

70	20	0,33	1,17	11,9	119	11	52	33,00	
100	30	0,50	1,67	11,9	119	11	63	22,00	
130	30	0,50	2,17	11,8	118	12	75	24,00	
160	30	0,50	2,67	11,5	115	15	90	30,00	
200	40	0,67	3,33	11,5	115	15	105	22,50	
240	40	0,67	4,00	11,6	116	14	119	21,00	
280	40	0,67	4,67	11,5	115	15	134	22,50	

Résultats du point d'infiltration 15

Temps	Delta	Delta T	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	(h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	13	130	0	0	0	17,518
10	10	0,17	0,17	12	120	10	10	60,00	
20	10	0,17	0,33	12,2	122	8	18	48,00	
30	10	0,17	0,50	12,1	121	9	27	54,00	
50	20	0,33	0,83	11,9	119	11	38	33,00	
70	20	0,33	1,17	12	120	10	48	30,00	
100	30	0,50	1,67	12	120	10	58	20,00	
130	30	0,50	2,17	11,9	119	11	69	22,00	
160	30	0,50	2,67	12	120	10	79	20,00	
200	40	0,67	3,33	11,9	119	11	90	16,50	
240	40	0,67	4,00	11,8	118	12	102	18,00	
280	40	0,67	4,67	11,8	118	12	114	18,00	

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	13	130	0	0	0	24,599
10	10	0,17	0,17	12	120	10	10	60,00	1
20	10	0,17	0,33	11,7	117	13	23	78,00	
30	10	0,17	0,50	11,8	118	12	35	72,00	
50	20	0,33	0,83	11,4	114	16	51	48,00	
70	20	0,33	1,17	11,6	116	14	65	42,00	
100	30	0,50	1,67	11,5	115	15	80	30,00	
130	30	0,50	2,17	11,5	115	15	95	30,00	
160	30	0,50	2,67	11,5	115	15	110	30,00	
200	40	0,67	3,33	11,3	113	17	127	25,50	
240	40	0,67	4,00	11,3	113	17	144	25,50	
280	40	0,67	4,67	11,4	114	16	160	24,00	

Résultats du point d'infiltration 17

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	13	130	0	0	0	16,712
10	10	0,17	0,17	12	120	10	10	60,00	7
20	10	0,17	0,33	12,2	122	8	18	48,00	
30	10	0,17	0,50	12,1	121	9	27	54,00	
50	20	0,33	0,83	11,9	119	11	38	33,00	
70	20	0,33	1,17	12,1	121	9	47	27,00	
100	30	0,50	1,67	12	120	10	57	20,00	
130	30	0,50	2,17	12	120	10	67	20,00	
160	30	0,50	2,67	12	120	10	77	20,00	
200	40	0,67	3,33	11,9	119	11	88	16,50	
240	40	0,67	4,00	11,9	119	11	99	16,50	
280	40	0,67	4,67	11,9	119	11	110	16,50	

Résultats du point d'infiltration 18

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	15	150	0	0	0	15,424
10	10	0,17	0,17	14,4	144	6	6	36,00	2
20	10	0,17	0,33	14,5	145	5	11	30,00	
30	10	0,17	0,50	14,5	145	5	16	30,00	
50	20	0,33	0,83	14,3	143	7	23	21,00	
70	20	0,33	1,17	14,2	142	8	31	24,00	
100	30	0,50	1,67	14,3	143	7	38	14,00	
130	30	0,50	2,17	14,1	141	9	47	18,00	
160	30	0,50	2,67	14,1	141	9	56	18,00	
200	40	0,67	3,33	14	140	10	66	15,00	
240	40	0,67	4,00	14	140	10	76	15,00	
280	40	0,67	4,67	14	140	10	86	15,00	

Résultats du point d'infiltration 19

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	8	80	0	0	0	44,217
10	10	0,17	0,17	9,5	95	15	15	90,00	8
20	10	0,17	0,33	9,5	95	15	30	90,00	
30	10	0,17	0,50	9,6	96	16	46	96,00	
50	20	0,33	0,83	9,9	99	19	65	57,00	

70	20	0,33	1,17	10	100	20	85	60,00	
90	20	0,33	1,50	10	100	20	105	60,00	
120	30	0,50	2,00	10,4	104	24	129	48,00	
150	30	0,50	2,50	10,5	105	25	154	50,00	
180	30	0,50	3,00	10,4	104	24	178	48,00	
220	40	0,67	3,67	10,9	109	29	207	43,50	
260	40	0,67	4,33	10,9	109	29	236	43,50	
300	40	0,67	5,00	11	110	30	266	45,00	

Résultats du point d'infiltration 20

Temps	Delta	Delta	Tcum	Hauteur	Hauteur	Delta	Hcum	i instan	Ksat
(min)	Temps	T (h)	ou t (h)	d'eau	d'eau	Н	ou h	(mm/h)	(mm/h)
	(min)			(cm)	(mm)	(mm)	(mm)		
0	0	0	0	8	80	0	0	0	23,2079
10	10	0,17	0,17	8,3	83	3	3	18,00	
20	10	0,17	0,33	8,4	84	4	7	24,00	
30	10	0,17	0,50	8,4	84	4	11	24,00	
50	20	0,33	0,83	8,7	87	7	18	21,00	
70	20	0,33	1,17	8,7	87	8	26	24,00	
90	20	0,33	1,50	8,8	88	8	34	24,00	
120	30	0,50	2,00	9,2	92	12	46	24,00	
150	30	0,50	2,50	9,3	93	13	59	26,00	
180	30	0,50	3,00	9,2	92	12	71	24,00	
220	40	0,67	3,67	9,5	95	15	86	22,50	
260	40	0,67	4,33	9,5	95	15	101	22,50	
300	40	0,67	5,00	9,5	95	15	116	22,50	

Annexe 5: Besoins en eau des cultures

	Tomate							
Mois	Oct	Nov	Dec	Jan	Fév			
Nombre de jours	31	30	31	31	28			
ET0 (mm/j)	169,59	170,13	178,93	186,43	186,94			
Kc	0,46	0,75	1,03	1	0,8			
ETM (mm)	78,01	127,60	184,29	186,43	149,56			
Pe (mm)	0,62	0,04	0,02	0,01	0,02			
BN (mm)	77,39	127,56	184,28	186,42	149,54			
BB (mm)	122,83	202,48	292,50	295,90	237,36			
Besoin en m3/ha	1228,3	2024,8	2925,0	2959,0	2373,6			
Besoins totaux	11510,8							
(m3/ha)								

	Laitue			
Mois	Oct	Nov	Dec	
Nombre de jours	31	30	31	
ET0 (mm/j)	169,59	170,13	178,93	
Kc	0,5	0,75	0,9	
ETM (mm)	84,79	127,60	161,03	
Pe (mm)	0,62	0,04	0,02	
BN (mm)	84,17	127,56	161,02	
BB (mm)	133,60	202,48	255,58	
Besoin en m3/ha	1336,0	2024,8	2555,8	
Besoins totaux	5916,7			
(m3/ha)				

		Oignon			
Mois	Oct	Nov	Dec	Jan	Fév
Nombre de jours	31	30	31	31	28
ET0 (mm/j)	169,59	170,13	178,93	186,43	186,94
Kc	0,63	0,96	1,05	0,97	0,85
ETM (mm)	106,84	163,33	187,87	180,84	158,90
Pe (mm)	0,62	0,04	0,02	0,01	0,02
BN (mm)	106,21	163,29	187,86	180,82	158,88
BB (mm)	168,59	259,20	298,18	287,02	252,20
Besoin en m3/ha	1685,9	2592,0	2981,8	2870,2	2522,0
Besoins totaux	12651,9				
(m3/ha)					

Maïs							
Mois	Octobre	Novembre	Décembre	Janvier	Février		
Durée	31	30	31	31	17		

ET0 (mm/j)	5,47	5,67	5,77	6,01	6,68
Kc	0,47	0,75	1,10	0,96	0,7
GC (%)	70	70	70	70	70
ETMloc (mm/j)	2,17	3,62	5,39	4,91	3,97
Pe (mm/j)	0,62	0,04	0,02	0,01	0,02
Bn ou IRn (mm/j)	1,55	3,58	5,37	4,90	3,95
Bb (mm/j)	2,05	4,74	7,12	6,49	5,24
Besoin en m3/ha	637,01	1422,33	2206,25	2012,00	890,28
Besoins totaux (m3/ha)			7167,87		

		Haricot			
Mois	Octobre	Novembre	Décembre	Janvier	
Durée	31	30	31	31	
ET0 (mm/j)	5,47	5,67	5,77	6,01	
Kc	0,49	0,88	1,06	0,50	
GC (%)	70	70	70	70	
ETMloc (mm/j)	2,29	4,23	5,21	2,56	
Pe (mm/j)	0,62	0,04	0,02	0,01	
Bn ou IRn (mm/j)	1,66	4,20	5,19	2,54	
Bb (mm/j)	2,18	5,51	6,82	3,34	
Besoin en m3/ha	677,29	1653,76	2113,06	600,71	
Besoins totaux (m3/ha)	5044,82				

Annexe 6 : Les paramètres d'irrigation

Nous avons utilisé les paramètres du mois le plus contraignant (Décembre) et de la culture la plus contraignante pour le calcul de nos paramètres d'irrigation.

♦ Dimensionnement préliminaire Semi-californien

Paramètres	Valeurs
Superficie parcellaire (ha)	0,25
BMP, Besoins Net BN (mm/j)	6,06
BB (période) (mm/mois)	298,18
Fréquence des arrosages N (j)	21,42
Tour d'eau R (j)	3
Efficience globale Eg	0,63
Dose d'humectation (mm)	20,48
Dose d'entretien (mm)	13,92
Temps de travail par jour (h/j)	8
Débit Fictif Continu DFC (l/s/ha)	1,11
Débit maximal de pointe DMP (l/s/ha)	3,98
Main d'eau (l/s)	10
Quartier hydraulique W (ha)	2,51
Quartier hydraulique retenu W (ha)	3
Débit d'équipement Qe (l/s)	12
Temps d'irrigation d'une parcelle de 0,25 ha	2 h 18 min
(h)	
Nombre de postes par jour	3,48
Nombre de postes retenu	3

♦ Dimensionnement préliminaire Goutte-à-goutte

Paramètres	Valeurs
Superficie parcellaire (ha)	0,25
Longueur parcelle Lp (m)	63
Largeur de la parcelle lp (m)	40
BMP, Besoins Net BN (mm/j)	5,37
BB (période) (mm/mois)	220,72
Fréquence des arrosages F (j)	40,60
Tour d'eau T (j)	3
Efficience globale Eg	0,90
Dose brute (mm)	21,35
Dose réelle (mm)	16,12
Temps de travail par jour (h/j)	22
Temps par poste d'arrosage Ts (h/j)	5,5
Nombre d'exploitants (pers) (Nbre de	18
parcelles)	
Longueur périmètre (m)	250
Largeur périmètre (m)	200
Superficie brute Abrute (ha)	5
Superficie nette Anette (ha)	4,5

Débit d'équipement qe (l/s/ha) 0,90		
	Débit d'équipement qe (l/s/ha)	0,90

[PROMOTION 2020-2021]

♦ Dimensionnement des conduites d'irrigation Semi-californien

	N° de prise	Longueur partielle (m)	Longueur cumulée (m)	Côte TN (m)	Côte max TN (m)	Débit rampe (l/s)	D theo (mm)	D int (mm)	D ext (mm)	Vitesse (m/s)	Pdc linéaire Jl(m/m)	Pdc linéaire Jl(m)	sį	Pdc totale Jl+Js (m)	DPdc(m)	Pression minimale imposée (m)	Delta z	Charge d'eau requise (m)	Hauteur (m)
Principal	BP	30,09	30,09	324,44		4	78,64	83,6	90	0,73	0,01	0,22	0,02	0,24		1		325,68	1,24
	Prise 1	63	93,09	324,11	324,04	4	78,64	83,6	90	0,73	0,01	0,68	0,07	0,75	0,51	1	-0,40	328,06	3,95
	Prise 2	63	156,09	323,08	322,67	4	78,64	83,6	90	0,73	0,01	1,14	0,11	1,25	0,51	1	-1,77	326,17	3,09
pe 1	Prise 3	63	219,09	322,00	321,79	4	78,64	83,6	90	0,73	0,01	1,60	0,16	1,76	0,51	1	-2,65	324,71	2,71
Rampe	Prise 4	63	282,09	321,01	320,91	4	78,64	83,6	90	0,73	0,01	2,06	0,21	2,26	0,51	1	-3,53	323,35	2,34
	Prise 5	63	345,09	320,75	320,50	4	78,64	83,6	90	0,73	0,01	2,52	0,25	2,77	0,51	1	-3,94	323,18	2,43
	Prise 6	63	408,09	320,21	321,56	4	78,64	83,6	90	0,73	0,01	2,97	0,30	3,27	0,51	1	-2,88	324,21	4,00

	$ m N^\circ$ de prise	Longueur partielle (m)	Longueur cumulée (m)	Côte TN (m)	Côte max TN (m)	Débit rampe (l/s)	D theo (mm)	D int (mm)	D ext (mm)	Vitesse (m/s)	Pdc linéaire Jl(m/m)	Pdc linéaire Jl(m)	şį	Pdc totale Jl+Js (m)	DPdc(m)	Pression minimale imposée (m)	Delta z	Charge d'eau requise (m)	Hauteur (m)
Principal	BP	0	0	324,44		4	78,64	83,6	90	0,73	0,01	0,00	0,00	0,00		1		325,44	1,00
	Prise 1	63	63	324,23	324,04	4	78,64	83,6	90	0,73	0,01	0,46	0,05	0,51	0,51	1	-0,32	328,02	3,79
	Prise 2	63	126	323,31	322,67	4	78,64	83,6	90	0,73	0,01	0,92	0,09	1,01	0,51	1	-1,13	326,79	3,48
pe 2	Prise 3	63	189	322,73	321,79	4	78,64	83,6	90	0,73	0,01	1,38	0,14	1,52	0,51	1	-1,68	326,17	3,44
Rampe 2	Prise 4	63	252	322,46	320,91	4	78,64	83,6	90	0,73	0,01	1,84	0,18	2,02	0,51	1	-1,77	326,31	3,86
	Prise 5	63	315	321,65	320,50	4	78,64	83,6	90	0,73	0,01	2,30	0,23	2,53	0,51	1	-3,56	324,22	2,57
	Prise 6	63	378	320,67	321,56	4	78,64	83,6	90	0,73	0,01	2,76	0,28	3,03	0,51	1	-3,29	324,01	3,35

	N° de prise	Longueur partielle (m)	Longueur cumulée (m)	Côte TN (m)	Côte max TN (m)	Débit rampe (l/s)	D theo (mm)	D int (mm)	D ext (mm)	Vitesse (m/s)	Pdc linéaire Jl(m/m)	Pdc linéaire Jl(m)	sį	Pdc totale J1+Js (m)	DPdc(m)	Pression minimale imposée (m)	Delta z	Charge d'eau requise (m)	Hauteur (m)
Principal	BP	29,42	29,42	324,44		4	78,64	83,6	90	0,73	0,01	0,21	0,02	0,24		1		325,68	1,24
	Prise 1	63	92,42	324,47	324,09	4	78,64	83,6	90	0,73	0,01	0,67	0,07	0,74	0,51	1	-0,35	328,46	4,00
	Prise 2	63	155,42	324,05	323,81	4	78,64	83,6	90	0,73	0,01	1,13	0,11	1,25	0,51	1	-0,63	328,27	4,22
pe 3	Prise 3	63	218,42	323,65	323,39	4	78,64	83,6	90	0,73	0,01	1,59	0,16	1,75	0,51	1	-1,05	327,96	4,31
Rampe	Prise 4	63	281,42	323,19	323,04	4	78,64	83,6	90	0,73	0,01	2,05	0,21	2,26	0,51	1	-1,40	327,65	4,46
	Prise 5	63	344,42	322,63	323,21	4	78,64	83,6	90	0,73	0,01	2,51	0,25	2,77	0,51	1	-1,23	327,76	5,14
	Prise 6	63	407,42	320,72	320,71	4	78,64	83,6	90	0,73	0,01	2,97	0,30	3,27	0,51	1	-3,73	323,86	3,14

Conduite	Longueur	Cote (m)	Débit (l/s)	Vitesse	Dth (mm)	DN (mm)	PDC totale	Hauteur
	(m)			(m/s)			(m)	(m)
Transport	301,64	324,44	12	0,42	164,32	200	0,33	1,33
Aspiration	30	322,25	12	0,66	130,35	160	0,10	1,10

Goutte-à-goutte

		Dime	ensionnement des conduit	tes		
Rampes	ΔH admissible (m)	3	D rampe (mm)	3,871271862	ΔH simple (m)	0,00515283
	P amont (m)	17,145	commercial D lat	25	Facteur de	0,3597
			(mm)		correction	
	P aval (m)	14,04	V (m/s)	0,037782386	ΔH rampe (m)	0,002
	delta P (m)	3,105			ΔP reliquat	-0,313
	V limit pvc pipes (m/s)	1,7	ΔH rampe (m/m)	0,000163582	PN	
_						
Porte-rampes	ΔH admissible (m)	2,998	D porte-rampe (mm)	39,47938153	ΔH simple (m)	0,149571821
	P amont (m)	17,22147656	commercial D (mm)	75	factor of correction	0,3556
	P aval (m)	14,1961967	V (m/s)	0,43659646	ΔH porte-rampe (m)	0,053
	delta P (m)	3,02527986			ΔP reliquat	-0,028
	V limit pvc pipes (m/s)	1,7	ΔH simple (m/m)	0,003674983	Q porte rampe (m3/h)	7,488
Secondaires	ΔH admissible (m)	3,026	D secondaire (mm)	96,70434012	ΔH secondaire (m)	0,161901573
	P amont (m)	16,61226909	commercial D (mm)	200	Facteur de correction	0,435
	P aval (m)	12,9284103	V (m/s)	0,368378263	ΔH secondaire (m)	0,070
	delta P (m)	3,683858788			ΔP reliquat	-1,902
	V limit pvc pipes (m/s)	1,7	ΔH secondaire (m/m)	0,000820794	Q secondaire (m3/h)	44,928

Principale	ΔH admissible (m)	4,928	D main (mm)	167,4968304	ΔH simple (m)	0,969652833
_	P amont (m)	18,58489037	commercial D (mm)	200	Facteur de correction	0,535
	P aval (m)	13,54502543	V (m/s)	1,105134788	ΔH main (m)	0,518764266
	delta P (m)	5,039864937			ΔP reliquat	0,184464266
	V limit pvc pipes (m/s)	1,7	ΔH simple (m/m)	0,005801094	Q main (m3/h)	134,784
						•
Transport	ΔH admissible (m)	4,743967338	D transport (mm)	167,4968304	ΔH simple (m)	0,514618617
	P amont (m)	18,49930884	commercial D (mm)	200	Facteur de correction	1
	P aval (m)	13,69667483	V (m/s)	1,105134788	ΔH transport (m)	0,514618617
	delta P (m)	4,802634004			ΔP reliquat	0,338618617
	V limit pvc pipes (m/s)	1,7	ΔH simple (m/m)	0,005847939	Q transport (m3/h)	134,784

Rampes										
Nombre de points de	F valeur	Dénivelée	Q rampe	L rampe						
service			(m3/h)	(m)						
63,00	0,3597	0,32	0,072	31,5						

Porte-rampes								
Nombre de points	F	Dénivelée	L porte-rampe					
de service	valeur							
104,00	0,3556	0,0814	40,7					

Secondaires									
Nombre de points de	F valeur	Dénivelée	L						
service			secondaire						
			(m)						
6,00	0,435	1,9725	197,25						

	Principale		
Nombre de points de	F valeur	Dénivelée	L
service			principale
			(m)
3	0,535	0,3343	167,15

Transport						
Nombre de points de	F valeur	Dénivelée	L transport			
service			(m)			
1	1	0,176	88			

Annexe 7: HMT et choix de pompes

Détermin	ation de la HMT				
Sem	Semi-californien				
Ha (m)	1,10				
Ja (m)	0,1				
Hma (m)	1,20				
Hr (m)	1,33				
Jr (m)	0,3340				
HMr (m)	1,67				
Q (m3/h)	43,2				
Sigma	1				
n	0,7				
HMT (m)	2,87				
P (kW)	0,236				

Détermination de la HMT Goutte-à-				
goutte				
ΔH géom. (m)	2			
H total (m)	16,92			
ΔH fittings (m)	1,67			
ΔH filtres (m)	5			
HMT (m)	25,61			
Q (m3/h)	134,78			
E1	0,8			
E2	0,5			
P (kW)	23,98			
P (HP)	31,97			

Annexe 8 : Réseau de drainage

Drains internes									
Blocs		Bloc A			Bloc B		Bloc C		
Paramètres	Drain	Drain	Drain	Drain	Drain	Drain	Drain	Drain	Drain
	1	2	3	1	2	3	1	2	3
t(h)	12,00	12,00	12,00	12,00	12,00	12,00	12,00	12,00	12,00
P10 (mm)	91,20	91,20	91,20	91,20	91,20	91,20	91,20	91,20	91,20
Qs (l/s/ha)	21,11	21,11	21,11	21,11	21,11	21,11	21,11	21,11	21,11
A (ha)	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Q (m3/s)	0,032	0,032	0,032	0,032	0,032	0,032	0,032	0,032	0,032
m	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
K	30,00	30,00	30,00	30,00	30,00	30,00	30,00	30,00	30,00
I	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
y(m)	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Y choisie (m)	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Revanche	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20
Y total					0,30				
b(m)	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
b choisie (m)	0,20								
Largeur en gueule					1,4				

Annexe 9 : Devis

♦ Semi-californien

N°	Désignation	Unité	Quantité	Prix	Prix Total
				Unitaire	
1	INSTALLATION ET IMPLANTATION				
1.1	Installation de chantier, Amené et repli du matériel	ff	1	600000	600000
1.2	Implantation des ouvrages et parcellement du périmètre	ha	10	100000	1000000
1.4	Mise en place du plan de gestion environnementale et sociale	ff	1	10000000	10000000
SOUS-					11600000
TOTAL					
1					
2	STATION DE POMPAGE, REFOULEMENT				
2.1	Construction de l'abri pour motopompes conformément aux plans plateforme y compris	U	1	2000000	2000000
	toutes sujétions				
2.2	Fournitures et pose de conduites PVC DN 200 PN6 pour conduite de refoulement y	ml	302	10000	3020000
	compris, déblai, lit de sable, remblai toutes sujétions de pose et de raccordements				
2.3	Coude PVC pression DN 200 PN 6	U	3	25000	75000
2.4	Rehausse en PVC pression DN 200 PN 6	ml	2	20000	40000
2.5	Robinet vanne papillon DN 200	U	2	17500	35000
2.6	Regard de vanne 1,5m x 1,5m y compris sur le refoulement y compris toutes sujétions	U	2	15000	30000
2.7	Partiteur principal y compris toute suggestion de mise en œuvre conformément aux plans	U	1	450000	450000
2.8	Fourniture, pose et essais de groupe motopompe HONDA WB30	U	2	500000	1000000
2.9	Fourniture et pose de tuyau d'aspiration annelé en PE PN6 DE 160	ml	30	32500	975000
2.10	Fourniture et pose d'une crépine à bride DN 160	U	1	72000	72000
2.11	Fourniture et pose d'un clapet anti-retour DN 160	U	1	60000	60000
2.12	Fourniture et pose de vanne manuelle du circuit de refoulement	U	1	75000	75000
2.13	Pièces de raccordement DN 160 et ventouses	lot	1	30000	30000

2.14	Fourniture et pose des accessoires de contrôle et protection	U	1	100000	100000
2.15	Kit de pièces de rechange	U	1	200000	200000
SOUS-					8162000
TOTAL					
2					
3	RESEAUX DE DISTRIBUTION				
3.1	Fourniture et pose de conduite PVC évacuation DN 90 y compris, déblai, lit de sable,	ml	1194	7500	8955000
	remblai toutes suggestions de pose et de raccordements au réseau				
3.2	Té PVC DN 90 évacuation	U	1	9000	9000
3.3	Coude PVC DN 90 évacuation	U	2	3500	7000
3.4	Bouchon galvanisé pour conduite DN90	U	12	9000	108000
3.5	Réducteur PVC DN 200/90 évacuation	U	3	18000	54000
3.6	Rehausse en PVC évacuation (DN 90)	ml	4	9500	38000
3.7	Coude PVC DN 200 évacuations	U	3	15000	45000
3.8	Prise parcellaire y compris toute suggestion de mise en œuvre et de raccordement au réseau d'irrigation	U	12	10000	120000
SOUS-					9336000
TOTAL					
3					
4	AMENAGEMENTS INTERNES / TRAVAUX DE TERRASSEMENT				
4.1	Débroussaillage et sous solage de l'emprise du périmètre y compris abattage et	ha	10	100000	1000000
4.2	dessouchage des arbres gênants Planage sommaire et labour croisé du périmètre	ha	10	50000	500000
		-			
4.3	Buttes de matérialisation de l'axe des conduites	ml	1496	500	748000
SOUS-					2248000
TOTAL 4					
4	TOTAL HT				31346000

TVA -18%		5642280
TOTAL TTC		36988280
Cout total à l'hectare		822400

♦ Goutte-à-goutte

Goutte-a-		TT 1.7	0	ъ.	3.6
N°	Désignation	Unité	Quantité	Prix	Montant
				Unitaire	
I	Installation du chantier				
I.1	Amenée et repli du matériel de chantier	Forfait	1	3000000	3000000
I.2	Installation du chantier	Forfait	1	1000000	1000000
I.3	Implantation des ouvrages et du réseau d'irrigation	ha	5	35000	175000
	Sous-total I				4175000
II	Terrassement				
II.1	Débroussaillage et dessouchage des arbres	ha	5	200000	1000000
II.2	Fouilles en rigoles pour pose de conduites	m3	398	2500	995000
II.3	Pose de lit de sable d'épaisseur 10 cm pour conduites PVC	m3	39,8	6000	238800
	Sous-total II				2233800
III	Réseau de distribution				
III.1	Rampes PEHD DN25	ml	1872	1800	3369600
III.2	Porte-rampe PEHD DN75	ml	720	5000	3600000
III.3	Conduites secondaires PVC DN200	ml	592	6600	3905550
III.4	Conduites primaires DN200	ml	167	6600	1103190
III.5	Conduite de refoulement DN200	ml	88	6600	580800
	Sous-total III				12559140
IV	Goutteurs et autres appareillages				
IV.1	UNIRAM AS	U	117936	560	66044160
IV.2	Compteur d'eau	U	1	230000	230000
IV.3	Clapet anti-retour	U	1	11460	11460
IV.4	Té égal cannelé en PEHD	U	58968	260	15331680

IV.5	Ventouse	U	20	19380	387600
IV.6	Té en PVC de 200		9	30000	270000
IV.7	Réducteur en PVC 200/110	U	9	17000	153000
IV.8	Réducteur en PVC 110/75	U	9	14600	131400
IV.9	Vanne d'arrêt φ75	U	9	36376	327384
IV.10	Té PEHD de 75	U	52	3000	156000
IV.11	Réducteur 75/50	U	104	2000	208000
IV.12	Réducteur 50/25	U	104	940	97760
IV.13	Coude 90° PVC φ200	U	1	13860	13860
IV.14	Bouchon en PVC pression φ200	U	1	18000	18000
	Sous-total IV				83380304
\mathbf{V}	Filtre, injecteur de fertilisant, dégrilleur				
V.1	Filtre à disque	U	1	360393	360393
V.5	Dégrilleur	U	1	700000	700000
V.6	Injecteur de fertilisants	U	1	3000000	3000000
	Sous-total V				4060393
VI	Pompes et accessoires				
VI.1	Pompe centrifuge NB 80-160 y compris accessoires d'aspiration	U	1	4500000	4500000
	(tuyaux, crépine, clapet de pied etc)				
VI.2	Robinet vanne papillon DN 200 mm à monter sur le corps de pompe	U	1	400000	400000
	y compris toutes sujétions de pose et d'essai				
VI.3	Abri de la station de pompage	U	1	1500000	1500000
	Sous-total VI				6400000
	Total Hors-Taxe				112808637
	TVA (18%)				20305555
	Total Toutes Taxes Comprises				133114192
	Cout à l'hectare				26622838

♦ Drainage

1	DRAINAGE ET DIVERS	Unité	Quantité	Prix	Prix total
				unitaire	
1.1	Bassins de vidange sur conduites	U	1	150000	150000
	secondaires (DN 90) y compris té				
	et bouchons				
1.2	Déblai pour réalisation de canaux	m3	2112	4000	8448000
	en terre pour drains				
SOUS-					8598000
TOTAL					

Annexe 10 : Etude financière

L'objectif de cette étude est de faire une étude de la rentabilité de l'exploitation 15 ha irrigables avec la ressource à mobiliser grâce au barrage de Rakaye-Kassiri.

I. Production prévisionnelle

Les cultures prises en compte par l'exploitation du périmètre regroupent les cultures maraichères et les cultures de rente. Les productions de chaque culture sont consignées dans le tableau ci-dessous :

Cultures	Production (t/ha)	Sup (ha)	Production totale (t)
Oignon	25	9	225
Tomate	35	9	315
Laitue	40	9	360
Mais	9	4,5	40,5
Haricot	0,75	4,5	3,375

Pour la commercialisation, il existe deux prix dans l'année : les prix de l'abondance correspondant au moment où le produit est largement disponible et le prix de pénurie lorsque le produit manque sur le marché.

- Pour l'oignon, 20% de la production sera vendue immédiatement après récolte et 80% conservés pour être vendue en période hivernale qui est une période de pénurie où la vente est plus intéressante. Le kilogramme d'oignon à la récolte est vendu à 150 FCFA/Kg et à 350 FCFA/Kg après conservation.
- ➤ Pour la tomate, elle est le plus souvent vendue fraîche à raison de 400 FCFA/Kg en période de manque et de 200 FCFA/Kg en période d'abondance. Concernant le présent projet, la récolte de tomate se fait pratiquement en saison sèche donc 80% des récoltes seront vendues à la récolte et le reste en conserve.
- En période de récolte, le chou est vendu à 325 F CFA/kg et en période de manque à 650 F CFA/kg les périodes favorables et défavorables sur le marché sont les mêmes pour tous les produits maraichers.
- Le maïs quant à lui, étant très utilisé pour la vente, 60% de la production sera vendue immédiatement après récolte et 40% conservés pour être vendue plus tard. Le kilogramme de maïs à la récolte est vendu à 175 FCFA/Kg et à 350 FCFA/Kg après conservation.
- ➤ Pour le haricot, 80% de la production sera vendue immédiatement après récolte et 20% conservés pour être vendue en période hivernale qui est une période de pénurie où la vente est plus intéressante. Le kilogramme de haricot à la récolte est vendu à 175 FCFA/Kg et à 350 FCFA/Kg après conservation.

Le Revenu annuel par spéculation est consigné dans le tableau suivant :

Cultures	Production totale (kg)	Vente à la récolte (%)	Vente après conservation (%)	PU récolte (F/kg)	PU après conservation (F/kg)	Gain annuel (F/an)
Oignon	225000	20	80	150	350	69 750 000
Tomate	315000	80	20	200	400	75 600 000
Laitue	360000	80	20	150	300	140 400 000

KENNETH GBETOFIA

Mais	40500	60	40	175	350	9 922 500
Haricot	3375	80	20	175	350	708 750

L'exploitation du périmètre engendrera un gain minimum de 80 381 250 F CFA et un gain maximum de 151 031 250 F CFA respectivement pour les associations Oignon – Maïs - Haricot et Laitue – Maïs - Haricot. Les données sur les prix de vente des spéculations sont issues du plan régional de développement de la filière Cultures maraîchères au Burkina-Faso (Mars 2011).

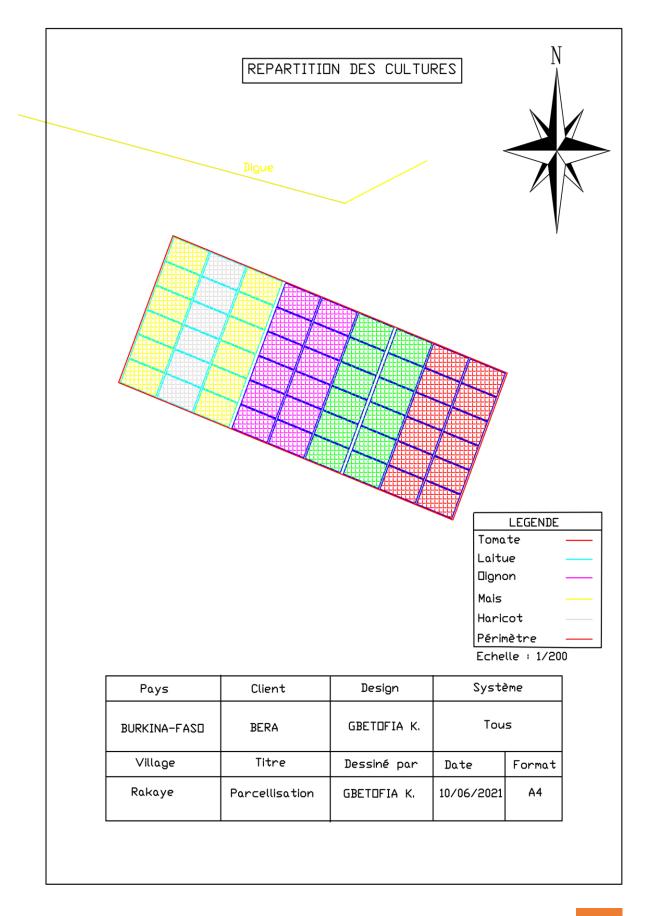
II. Les charges d'exploitation

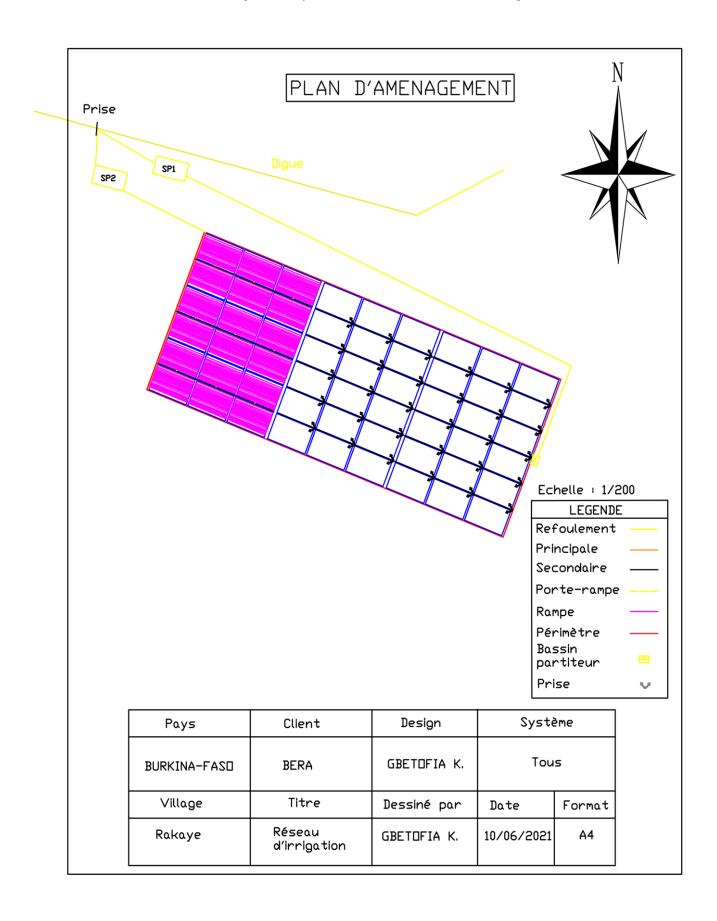
Les charges d'exploitation considérées sont les intrants, les frais de maintenance, et la consommation du groupe électrogène. Les intrants ont été évalués pour tout le cycle de croissance des différentes spéculations pour tout le périmètre :

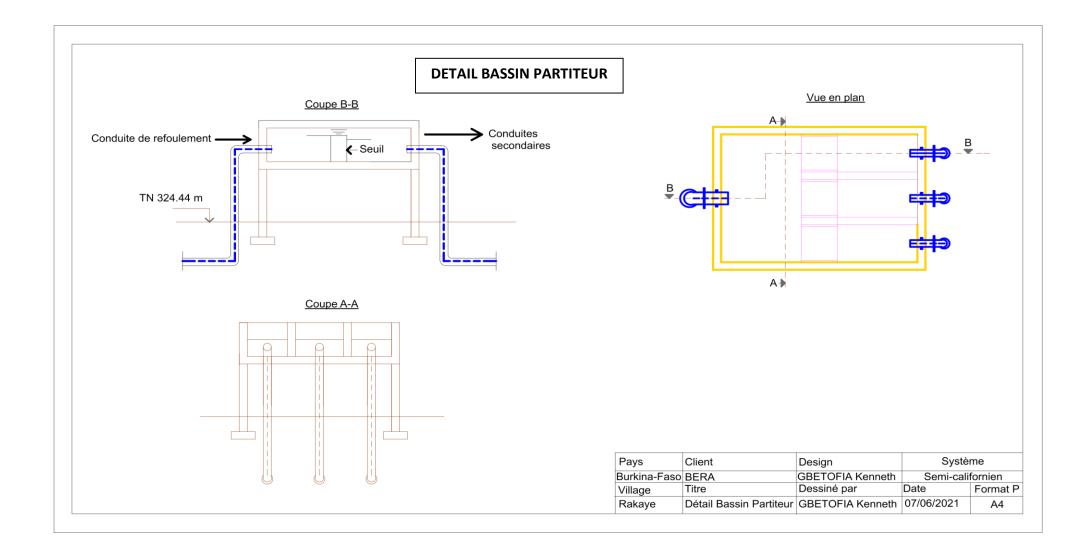
Culture	Semence	PU	NPK (kg)	PU (NPK)	Urée	PU	Sous	Total
	(kg)	(semence)			(kg)	(urée)	Total	intrants
							intrants	ĺ
Oignon	21	60000	2010	400	502	400	2264800	2 992 800
Tomate	2	65000	2010	400	252	400	1034800	1 762 800
Laitue	1	55000	1500	400	1000	400	1055000	1 783 000
Mais	20	33000	120	400	50	400	728000	863 000
Haricot	30	2500	50	400	100	400	135000	-

Les charges sur les achats des engrais et semences s'élèvent à 2 992 800 F CFA au maximum et à 863 000 F FCA au minimum.

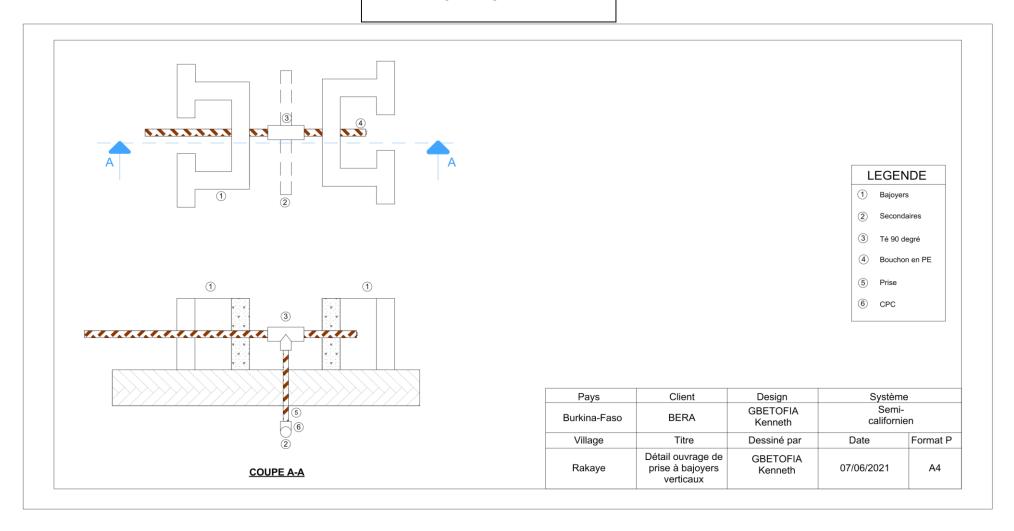

En considérant une durée de pompage de 8h la consommation du groupe électrogène est de 1,5 l/h. En prenant le prix d'un litre de Carburant à 600 FCFA, le prix annuel de consommation du carburant est de 2 412 000 CFA. Nous considérons les charges annuelles d'entretien de la motopompe comme égales à 30% des charges de cette dernière. On obtient donc une charge totale sur l'exploitation du périmètre évaluée à 6 128 400 F CFA au maximum et à 3 998 600 F CFA au minimum.

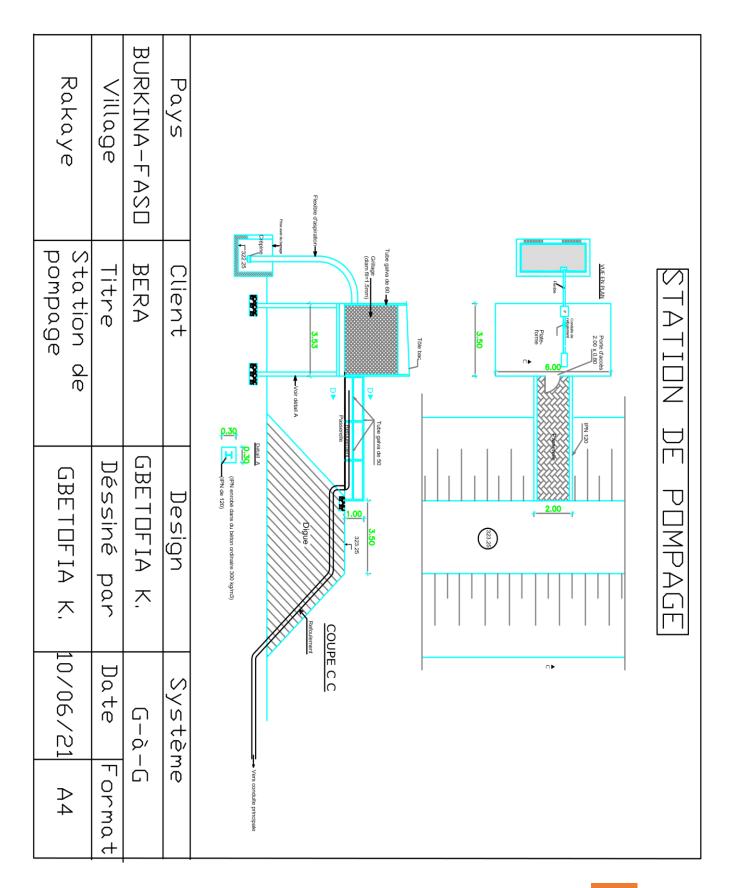

Les paramètres permettant de vérifier la rentabilité du projet ont été calculés par la suite, on a :

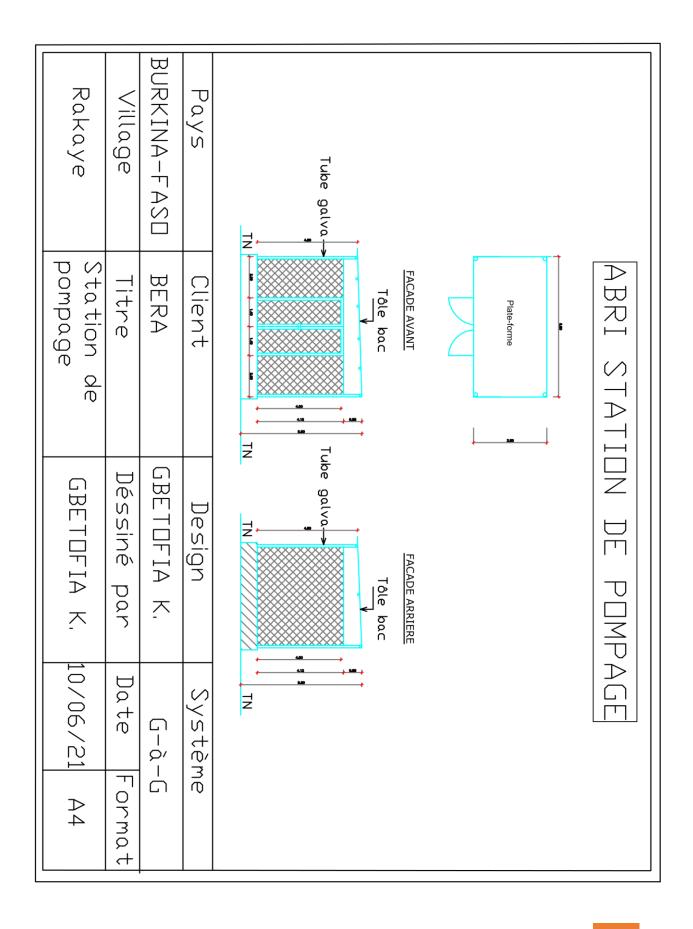

Coût	174 959 588 F CFA			
aménagement				
Marge brute (gain)	80 381 250 F CFA			
Charges	6 128 400 F CFA			
exploitation				
DRI (an)	2,36			
Rinv (%)	84,88			


Le projet sera rentable à près de 90 % sur une durée de retour sur investissement de près de deux ans et demi.

Annexe 11: Plans







DETAIL PRISE PARCELLAIRE TYPE 2

Etude Technique Détaillée pour l'Aménagement hydro-agricole de 15 ha (10 ha en Semi-Californien et 5 ha en Goutte-A-Goutte) en Aval du Barrage de Rakaye-Kassiri dans la Commune de Doulougou (Burkina-Faso) [PROMOTION 2020-2021] KENNETH GBETOFIA [JUILLET