

AMENAGEMENT ET ASSAINISSEMENT D'UNE VOIRIE URBAINE DU PROGRAMME D'ASSAINISSEMENT DES EAUX PLUVIALES DANS LA VILLE DE COTONOU (PAPC) CAS DE LA RUE 10.137

MEMOIRE POUR L'OBTENTION DU DIPLOME D'INGENIEUR 2iE AVEC GRADE DE MASTER

OPTION: ROUTES ET OUVRAGES D'ARTS

Présenté et soutenu publiquement le 24 juillet 2024 par Igor Gildas Géraud GONÇALVES

Matricule: 20130806

<u>Directeur de mémoire</u>: M. Issa MADOUGOU, Enseignant au département sciences et techniques de l'ingénieur

Maitre de stage: M. Adjiboicha MOUDACHIROU, Ingénieur de Génie Civil à ACEP,

Directeur Technique, Chef de Mission Adjoint sur le projet PAPC, Téléphone :

+22997901583. Email: madjiboicha@acep-ing.com

Structure d'accueil du stage : Afrique Conception et Étude des Projets (ACEP). Téléphone

(+229) 21 35 41 21; (+229) 65 00 20 61. Email: acep@acep-ing.com

Jury d'évaluation du mémoire :

Président de jury : Dr. Yohan RICHARDSON Examinateurs : Dr. Marie Thérèse GOMIS

M. Fabrice SORE

Promotion: 2022/2023

REMERCIEMENTS

- ➤ A la **Fondation 2iE** pour la formation reçue tout au long de ce cursus universitaire ;
- A l'enseignant Monsieur **Issa MADOUGOU**, mon Directeur de Mémoire, pour la spontanéité avec laquelle vous avez accepté de diriger ce travail. La rigueur qui vous caractérise dans le travail, votre amour du travail bien fait accompagné de vos conseils avisés et vos encouragements ont été un véritable soutien pour moi tout au long de mon stage. Tout cet encadrement a contribué à l'aboutissement de ce travail.
- A Monsieur Adjiboicha MOUDACHIROU, Directeur Technique, Chef de Mission Adjoint sur le projet PAPC, mon Encadrant pédagogique et Maître de stage pour le suivi dont j'ai été l'objet de votre part tout au long de ce stage. Votre disponibilité et vos conseils très enrichissants pour la correction de ce document ont permis de le finaliser;
- Aux Ingénieurs M. Lucien ALOHOUTADE, Ingénieur en Génie Civil; M. Jean marie DOVONOU, Ingénieur de conception en Génie Civil, pour votre disponibilité pendant l'exécution des travaux a été d'un apport inestimable;
- A mon père, **Dr Aimé-Paul GONÇALVES**, Architecte du Patrimoine spécialisé en matériaux locaux, Monsieur **Anicet YEHOUENOU**, Ingénieur en Génie Civil, Monsieur **Adjéhoda Ingrid TEDE**, Technicien topographe, Monsieur **Nasser ASSIFA**, Technicien en Génie Civil, **Monsieur Emmanuel YOUGBARE**, Architecte-urbaniste et Madame **Péroline GONÇALVES**, Architecte-Designer pour leur suivi rigoureux et sans repos de mon mémoire ;
- A tous mes collègues stagiaires contrôleurs d'ACEP et de l'entreprise HNRB en charge des travaux pour l'ambiance familiale qui a régné parmi nous tout au long de ce stage ;

RÉSUMÉ

Le projet d'aménagement des voiries urbaines dans plusieurs villes du Bénin, fait partie intégrante du Programme d'Adaptation des Villes aux Changements Climatiques, dont le premier objectif consiste à améliorer les conditions de vies de la population. Dans le sous bassin versant Pa3 de ce projet, il est prévu l'aménagement et le pavage de 23 rues d'une longueur totale de 5970 ml dans la zone de Vedoko. La présente étude est celle menée sur la rue 10.137 située dans une zone urbaine et les rues 10.212, 10.210, 10.204 et 10.182 du côté droit de la rue principale puis les rues 2714, 2708 et 2706 du côté gauche de la rue principale. Pour une présentation globale du projet, des études ont été effectuées afin de faire ressortir tous les éléments constituants des rues identifiées, toutes les données pour un dimensionnement des structures de chaussées, des ouvrages de drainage des eaux pluviales comme domestiques. Pour avoir toute ces informations, il a été effectué des études dans plusieurs domaines notamment :

- L'étude topographique qui a permis de connaître la configuration de la route existante et la conception de la nouvelle route à travers le tracé en plan, le profil en long et les profils en travers types. Cette étude à une vitesse de référence de 60 km car la zone du projet est une zone urbaine, un type de route R car le trafic lourd est peu important, un nombre de deux voies vu la largeur réduite du terrain, une largeur de la route de 15 m dont 9 m pour la chaussée,2m pour les caniveaux,3.16m pour les trottoirs et 0.84 m pour la pose des bordures
- Les études géotechniques disponibles qui ont été prise en compte afin de proposer une structure de chaussée
- Les études hydrauliques et hydrologiques qui ont été menées pour aboutir au dimensionnement des caniveaux trottoirs et caniveaux de rues de sections variant de 60 x 60 cm², 60 x 80 cm², 80 x 100 cm² et 100 x 100 cm².
- Et pour clore, l'estimation du coût global estimé à six cent soixante-douze million onze mille neuf cent vingt-cinq FCFA (672 011 925 FCFA).

Mots clés:

- Aménagement et assainissement
- Etude hydraulique
- Dimensionnement routier
- Voiries urbaines
- Zone urbaine

ABSTRACT

The urban road development project in several cities in Benin is an integral part of the Program for the Adaptation of Cities to Climate Change, the first objective of which is to improve the living conditions of the population. In the Pa3 sub-watershed of this project, it is planned to develop and paving 23 streets with a total length of 5970 ml in the Vedoko area. The present study is the one conducted on street 10.137 located in an urban area and streets 10.212, 10.210, 10.204 and 10.182 on the right side of the main street then streets 2714, 2708 and 2706 on the left side of the main street. For an overall presentation of the project, studies have been carried out in order to bring out all the constituent elements of the identified streets, all the data for a dimensioning of the pavement structures, the rainwater and domestic drainage works. To have all this information, studies have been carried out in several areas, including:

- The topographic study which made it possible to know the configuration of the existing road and the design of the new road through the plan layout, the longitudinal profile and the standard cross-sections. This study at a reference speed of 60 km because the project area is an urban area, a road type R because heavy traffic is low, a number of two lanes given the reduced width of the land, a width of the road 15 m including 9 m for the roadway, 2 m for the gutters, 3.16 m for the sidewalks and 0.84 m for the laying of the curbs
- The available geotechnical studies that have been taken into account in order to propose a pavement structure
- The hydraulic and hydrological studies which were carried out to lead to the dimensioning of the sidewalk gutters and street gutters with sections varying from 60 x 60 cm2, 60 x 80 cm2, 80 x 100 cm2 and 100 x 100 cm2.
- And to close, the estimate of the overall cost estimated at six hundred seventy-two million eleven thousand nine hundred and twenty-five FCFA (672,011,925 FCFA).

Keywords:

- Development and sanitation
- Hydraulic study
- Road dimensioning
- urban roads
- Urban area

SOMMAIRE

REM	IERCIEMENTS	II
RÉSU	U MÉ	III
ABS	ΓRACT	IV
	MAIRE	
	E DES ABRÉVIATIONS ET SIGLES	
	E DES FIGURES	
	'E DES TABLEAUX	
	RODUCTION	
CHA	PITRE I : PRÉSENTATION DE LA STRUCTURE D'ACCUEIL ET DU F	ROJET
•••••		3
I.	PRÉSENTATION DU BUREAU D'ÉTUDE ACEP	
1)	Historique et domaine d'activité de l'entreprise ACEP	
2)	Fiche synoptique d'ACEP.	
	DÉROULEMENT DU STAGE ET PRÉSENTATION DU PROJET	
1)	Chantier de préfabrication	
2)	Contexte et justification du projet	
3)	Localisation de la zone du projet à Cotonou	
4)	Etat initial du projet	
III.	METHODOLOGIE DE L'ÉTUDE	8
1)	Objectifs de l'étude	8
2)	Matériels utilisés	
CHA	PITRE II : METHODOLOGIES ET DONNEES DE BASE	9
I.	ÉTUDES GÉOTECHNIQUES	9
1)	Généralités	
II.	ÉTUDES TOPOGRAPHIQUES ET SOLS	12
III.	ÉTUDES HYDROLOGIQUES	14
1)	La pluviométrie	14
2)	Délimitation des sous-bassins	14
3)	DONNEES CLIMATIQUES	16
CHA	PITRE III: DIMENSIONNEMENT ET CONCEPTION TECHNIQUE	16
I.	CONCEPTION GEOMETRIQUE	17
1)	Caractéristiques dynamiques de la route	
2)	Tracé en plan	
3)	Le profil en long	
4)	Le profil en travers type	19
II.	DIMENSIONNEMENT DE LA STRUCTURE	20
1)	Type et structure des routes	
2)	Définition	
3)	Méthodologie du dimensionnement	22

4) Etude de trafic	23
5) Dimensionnement de la structure avec le logiciel ALIZE	
III. DIMENSIONNEMENT DES OUVRAGES D'ASSAINISSEMENTS	35
1) Dimensionnement hydraulique	
CHAPITRE IV : SIGNALISATION ROUTIERE, ECLAIRAGE PUBLIC I	
MATERIELS DE REALISATION	40
I. SIGNALISATION ROUTIERE	40
1) La signalisation verticale	
2) La signalisation horizontale	
II. ÉCLAIRAGE PUBLIC	
1) Candélabres	42
CHAPITRE V : ÉTUDE D'IMPACT ENVIRONNEMENTAL ET SOCIAL	ET
ESTIMATION DU COÛT DU PROJET	45
I. ÉTUDE D'IMPACT ENVIRONNEMENTAL ET SOCIAL	45
II. ESTIMATION DU COÛT DU PROJET	
CONCLUSION, RECOMMANDATIONS ET PERSPECTIVES	
REFERENCES BIBLIOGRAPHIQUES	50
A NINITENZIEC	53

LISTE DES ABRÉVIATIONS ET SIGLES

Institut International d'Ingénierie de l'Eau et de l'Environnement

ACEP: Afrique Conception et Étude des Projets

AFNOR: Association Française de NORmalisation

AFD: Agence Française de Développement

AGETUR: AGence d'Exécution des Travaux URbains

APD: Avant-Projet Définitif

ASECNA: Agence pour la Sécurité de la Navigation Aérienne en Afrique et à Madagascar

CCAG: Cahier des Clauses Administratives Générales

CCTP: Cahier des Clauses Techniques Particulières

CEBTP: Centre Expérimental de Recherches et d'Études du Bâtiment et des Travaux

Publics

DAO: Dossier d'Appel d'Offre

EIES: Étude d'Impact Environnemental et Social

ELS: Etat Limite de Service

ELU: Etat Limite Ultime

GNT: Grave Non Traitée

GTR: Garantie de Temps de Rétablissement

HNRB: HuNan Road and Bridge

<u>IDA</u>: Association Internationale de Développement

LCPC: Laboratoire Central des Ponts et Chaussées

NF: Norme Française

OPM: Optimum Proctor Modifié

MCVDD: Ministère du Cadre de Vie et du Développement Durable

PAVICC: Programme d'adaptation des Villes aux Changements Climatiques

PAPC: Programme d'Assainissement Pluviale de Cotonou

PDA: Plan Directeur d'Assainissement

PTAC : Poids Total Autorisée en Charge

RB: Rue Bitumée

SIRAT: Société des Infrastructures Routières et d'Aménagement du Territoire

TDR: Termes De Référence

TMJA: Trafic Moyen Journalier Annuel

LISTE DES FIGURES

7
13
20
21
23
34
41
41
41

LISTE DES TABLEAUX

Tableau 1: Intervenants du projet PAPC	5
Tableau 2 : Résultats in situ des essais de cisaillement des sondages carottés	.10
Tableau 3: Analyse granulométrique des sondages carottés	.11
Tableau 4: Rapport d'essai de cisaillement rectiligne	.11
Tableau 5: Valeur du coefficient de frottement f(v) à retenir et longueur de	
freinage correspondantes en alignement et en courbe	.17
Tableau 6: Paramètres fondamentaux des projets routiers pour le tracé en pla	ın
(ARP)	.18
Tableau 7: Eléments de raccordement et différentes valeurs de rayon	. 19
Tableau 8 : Classes de trafic poids lourds par jour et par sens	. 26
Tableau 9: Paramètres de dimensionnement de la structure	. 27
Tableau 10: classe du sol selon le CBR	. 27
Tableau 11: Résumé de différents facteurs d'équivalence du système " pavés	; +
lit de pose''	. 29
Tableau 12: Différents types de plates-formes en fonction de leur CBR	.31
Tableau 13: Coefficient d'agressivité selon la classe de trafic	.32
Tableau 14: Structure de chaussée choisie.	.33
Tableau 15: Différentes catégories de GNT.	.33
Tableau 16: Résultats de dimensionnement obtenus.	. 34
Tableau 17 : Proposition de la structure de chaussée par le PAPC	. 35
Tableau 18: Section hydraulique du côté gauche de la rue 10.137	.37
Tableau 19 : Section hydraulique du côté droit de la rue 10.137	.38
Tableau 20: Schéma récapitulatif de la logique des panneaux	.40
Tableau 21: Types de candélabre, avantages et inconvénients	.43
Tableau 22: Activités, impacts poitifs et négatifs et mesures d'atténuation et	de
maximisation des effets négatifs du projet sur l'environnement	
Tableau 23: Estimation globale du coût du projet	.48

INTRODUCTION

Les premières voies de communication étaient de simples sentiers qui se formaient naturellement et ne demandaient aucun entretien particulier. Voyager et se déplacer étaient compliqués car il fallait se frayer un chemin. À l'âge de pierre, les routes ne paraissaient pas nécessaires. Aussi, à l'antiquité, les routes principales reliaient les principales agglomérations. Nous devons ces constructions aux romains. Certaines routes appartenaient au domaine public tandis que des particuliers en possédaient d'autres. Le commerce amena l'essor du monde routier.

Le projet Asphaltage constitue l'une des actions prioritaires du gouvernement actuel et prend en compte les villes d'Abomey, de Cotonou et autres. Ce projet consiste à bitumer, paver des rues, réaliser des ouvrages d'assainissement ainsi qu'à procéder à un aménagement urbain dans le but de moderniser et d'améliorer le cadre de vie des habitants des différentes communes du Bénin.

L'image de l'ensemble des communes du Bénin se traduit ces dernières années par l'état de dégradation très prononcé des voies et un assainissement précaire. L'ensemble existant ne répondait pas à un minimum de norme en termes de besoin de la population. De nombreuses études de faisabilité devant permettre d'améliorer les conditions de vie des populations ont été menées dans ce contexte par des bureaux d'étude afin d'atteindre les objectifs d'amélioration des infrastructures concernées. C'est dans ce cadre qu'une mission de contrôle de travaux d'Asphaltage a été confiée au bureau d'étude ACEP. Lesdits travaux concernent les routes 10.182-10.137-10.180-10.178-10.176-10.174-10.140-10.125-10.127-10.206-10.208-10.210-10.212-10.129-10.133-10.123-10.218-10.144-10.146-10.226-10.214. L'exécution de ces travaux a été confiée aux entreprises SCET TUNISIE, HNRB et AGETUR.

Notre étude a porté sur la route numéro 10.137, annexe aux rues 10.210, 10.208, 10.212 et autres rues environnantes.

Ce mémoire sera structuré comme suit :

- La première partie sera consacrée à la présentation succincte de la société d'accueil du stage suivi du déroulement du stage et de la présentation du projet.
- Nous présenterons, dans la seconde partie du document les différentes études menées et commenterons les résultats obtenus qui serviront de base à l'étape suivante.

- La troisième étape sera consacrée à l'aménagement de la route et de son réseau de drainage.
- La quatrième étape abordera les aspects liés aux éléments de sécurité routière et de l'éclairage public.
- La dernière étape sera consacrée à une étude d'impact environnementale et sociale suivie d'une estimation sommaire du coût global du projet.

CHAPITRE I : PRÉSENTATION DE LA STRUCTURE D'ACCUEIL ET DU PROJET

I. PRÉSENTATION DU BUREAU D'ÉTUDE ACEP

Dans le cadre des activités de fin d'études en master en vue de la soutenance d'un mémoire de fin d'études en génie civil option ''Routes et ouvrages d'art'' au 2IE, nous avons eu l'honneur d'être accueillis dans le bureau d'étude et de contrôle des travaux publics nommé "Afrique Conception et Études de Projets" (ACEP). L'objectif visé était d'effectuer un stage académique d'une durée de six mois sur un chantier de travaux de génie civil. Dans ce cas-ci, nous avons effectué ce stage au sein d'une équipe de mission de contrôle pour le compte d'ACEP.

1) Historique et domaine d'activité de l'entreprise ACEP

ACEP est une société d'ingénierie installée au Bénin. Elle travaille depuis 2001 à accompagner ses clients pour la conception, l'étude et la réalisation des projets de développement dans les secteurs suivants :

• Les routes et les ouvrages d'art

Les routes et ouvrages d'art font partie des plus importantes activités d'intervention d'ACEP au regard des expériences qu'elle a capitalisées dans ce domaine. Ce secteur est constitué des routes principales auxquelles s'ajoutent les voies urbaines et les ouvrages d'art. Dans ce cadre, les rôles dévolus à ACEP concernent notamment les prestations d'étude de contrôle et de surveillance des travaux y afférant.

• Les transports urbains et voiries urbaines

Ce secteur également développé chez ACEP concerne les voiries neuves bitumées, les voiries neuves pavées auxquelles s'ajoutent la réhabilitation puis l'entretien des voiries.

• L'eau et l'assainissement

Les références techniques d'ACEP dans ce secteur lui permettent d'aborder les études de faisabilité technico-économique, les études d'avant-projet sommaire et détaillé et des missions de contrôle et de surveillance de travaux. À cela s'ajoutent les prestations d'assistance technique à la maîtrise d'œuvre. Les activités menées à ce niveau concernent surtout la gestion des ressources en eau, l'assainissement liquide (eaux pluviales et eaux usées domestiques), l'assainissement solide (déchets solides ménagers) auquel s'ajoute l'hydraulique urbaine et villageoise dans certaines localités du Bénin.

Autres domaines d'intervention

En perspective, compte tenu de ces capacités, ACEP envisage également d'étendre son champ d'action dans le développement rural et agriculture, les bâtiments et infrastructures socio-économiques, la formation, la gestion et l'évaluation du projet en caractère économique.

2) Fiche synoptique d'ACEP

Dénomination : ACEP Sas

Boîte postale: 06 BP 936 PK3-Cotonou –Bénin

Adresse Géographique: Lot 30 Parcelle A, Godomey, Abomey Calavi

<u>Téléphone</u>: (+229) 21 35 41 21

(+229) 65 00 20 61

Adresse Electronique: acep@acep-ing.com

II. DÉROULEMENT DU STAGE ET PRÉSENTATION DU PROJET

1) Chantier de préfabrication

Le projet de gestion des eaux pluviales et de résilience urbaine au Bénin appelé projet PAPC, a pour objet la construction de collecteurs d'assainissement pluvial et d'aménagement des voies connexes dans les bassins Pa3 & Y dans la ville de Cotonou. N'étant pas encore entamés, les travaux en amont étaient la préfabrication qui est une activité que nous avons suivie pour comprendre le projet dans ses moindres détails avant sa réalisation. Le lieu de déroulement de la préfabrication de certains éléments du caniveau est situé dans la commune de Godomey et est communément appelé au Bénin la base des chinois.

C'est une entreprise chinoise Hunan Road And Bridge (HRNB) qui a installé cette aire de préfabrication pour diverses constructions en particulier les éléments qui constituent une route.

2) Contexte et justification du projet

L'objectif principal du projet PAPC est de moderniser et d'augmenter le linéaire de voiries urbaines sur l'étendue du territoire Béninois. Cet objectif passe d'une part par la destruction des routes et ouvrages d'assainissement existantes et dégradées afin de les remplacer par de nouvelles structures plus adaptées aux objectifs du projet ; et d'autre part par la construction d'un réseau d'assainissement mieux adapté afin d'éviter toute d'inondation et stagnation des eaux. D'un point de vue spécifique, les objectifs à atteindre sont d'offrir le confort et la sécurité à tous les usagers de la route le plus longtemps possible.

Etant donné la superficie importante du bassin versant Pa, il a été subdivisé en sous bassins versants Pa3, Pa2 et Y prévu pour l'assainissement de plusieurs routes du Programme

D'adaptation Des Villes Aux Changements CLIMATIQUES (PAVICC). C'est ainsi que HNRB a eu la charge de l'exécution des routes dont l'assainissement est couvert par le sous-bassin versant Pa3.Le Programme D'assainissement Pluvial De Cotonou, objet de notre étude, prévoit l'aménagement et le bitumage de vingt-et-une (21) routes pour le sous bassin Pa3, d'une longueur totale de 5.5 km dans la zone de Vedoko à Cotonou, sur des rues d'emprises variant de 10 à 20m et des largeurs de chaussées variantes entre 6 à 11m. Ces travaux seront réalisés par l'entreprise HNRB avec pour Maître d'Ouvrage le Ministère de Cadre Vie et de Développement Durable. A travers ce projet, la Banque Mondiale finance les travaux dans 3 des 34 bassins versants que couvre le PAPC et soutient une approche systémique et globale visà-vis du réseau d'assainissement pluvial de Cotonou, à la fois au niveau du système global et au niveau des bassins individuels.

Les principaux intervenants sur le projet PAPC sont présentés dans le tableau 1 :

Financement	Association Internationale de
	Développement (IDA)
Préfinancement	HuNan Road and Bridge (HNRB)
Maitre de l'ouvrage	Ministère de Cadre de Vie et du
	Développement Durable (MCVDD)
Assistant au Maitre de l'ouvrage	Agence d'Exécution des Travaux Urbains
	(AGETUR)
Maître d'œuvre	SCET TUNISIE
Contrôleur du projet	Afrique Conception et Étude des Projets
	(ACEP Sas)

Tableau 1: Intervenants du projet PAPC

3) Localisation de la zone du projet à Cotonou

Etablie en Afrique occidentale avec une côte sur le Golfe de Guinée, la République du Bénin est un pays situé dans la zone tropicale entre l'équateur et le tropique de cancer. Sa superficie de 114 763 Km² (selon l'Institut National de la Statistique et de l'Analyse Économique en 2018) avec 12.864.634 habitants en 2022. Elle est limitée au Nord par le fleuve Niger, au Sud par l'océan Atlantique, à l'Ouest par le Togo, au Nord-Ouest par le Burkina Faso et à l'Est par la République Fédérale du Nigéria. Cotonou, la capitale économique du Bénin, est située dans le département du littoral. Avec ses 2 557 723 habitants lors du recensement de 2022 par

l'Organisation des Nations unies, elle est la ville la plus peuplée du pays. Elle couvre une superficie de 79 km² et abrite de nombreux services gouvernementaux et diplomatiques. Elle compte treize (13) arrondissements dont le $10^{\text{ème}}$ s'est révélé important et intéressant pour notre étude, car ce programme couvre la rue 10.137 dans le sous bassin versant Pa3 de 116 ha de superficie.

La figure 1 présente le plan de situation de cette rue

d'Assainissement des eaux

Figure 1 : Plan de situation

4) Etat initial du projet

La rue objet de notre étude fait partir d'une zone du projet dans laquelle aucune des rues du projet ne possédait de revêtement. L'environnement étant marécageux, la substance du programme consiste en un bitumage ou pavage de toutes les rues et par conséquent de la rue à étudier. Les caniveaux existants étant très défectueux, leur reprise a été envisagée. Sous le plan de l'assainissement toutes les rues étaient non assainies. La zone étant à faible déclivité par endroit ; le relief est plat et rendait impraticables les rues en saison de pluie à cause de l'état du sol et surtout du fait que l'environnement à aménager étant un ancien dépotoir d'ordure solide comme liquide.

III. METHODOLOGIE DE L'ÉTUDE

1) Objectifs de l'étude

L'objectif général est de réaliser l'étude technique de la 10.137 dans une zone résidentielle de la ville de Cotonou

Après une fixation de l'objectif principale, des objectifs spécifiques ont été établis et retenus comme suit :

- L'amélioration des conditions de circulation dans les villes ;
- Le développement du transport urbain aussi bien en termes de mobilité des personnes que de logistique urbaine ;

2) Matériels utilisés

Il s'agit de l'ensemble des documents provenant de la recherche documentaire et de la collecte d'information.

Le traitement des données s'est fait essentiellement avec des logiciels, applications et moteur de recherche de différents groupes de développeurs comme :

- Certains mémoires et thèses.
- Les articles d'études scientifiques et les normes internationales en vigueur dans la profession et le secteur en étude ;
- Les différentes pièces écrites : CCTP et CCAG du projet.
- Microsoft avec office 2013 (Microsoft Word; Microsoft Excel)
- Autodesk (AutoCAD 2018; ArchiCAD)
- Les logiciels : Global Mapper, Cype, Google Earth et Global Mapper

CHAPITRE II: METHODOLOGIES ET DONNEES DE BASE

Ce chapitre apporte toutes les données collectées pouvant nous permettre de faire ressortir lors de la réalisation du projet, les différents tracés (tracé en plan, profils en long et les profils en travées type) utilisés dans le cadre de l'étude tout en proposant une structure pouvant reprendre les diverses charges des collecteurs à construire et un bon assainissement des structures des chaussées à mettre en place.

I. ÉTUDES GÉOTECHNIQUES

1) Généralités

Le mandat du Consultant dans le cadre des études d'actualisation du Plan Directeur d'Assainissement (PDA) pluvial de Cotonou comprenait entre autres l'étude de faisabilité, le plan d'investissement, l'étude d'Avant-Projet détaillé et le DAO d'une partie des interventions à réaliser en urgence, etc. De même le Plan Directeur d'Assainissement (PDA) Pluvial a été soumis à validation et les documents finaux élaborés par le groupement de bureaux d'études IGIP/IGIP AFRIQUE a été remis au commanditaire.

Les études géotechniques sont primordiales car c'est en fonction des caractéristiques des sols et des matériaux tant in situ que rapportés qu'on peut établir le type de fondation. L'étude géotechnique a pour objectifs : la reconnaissance des sols en place ; la recherche et l'identification de matériaux pour le corps de chaussée et le remblai, la reconnaissance des sols de fondation ; la recherche et l'identification des agrégats pour les bétons et le dimensionnement des structures de chaussées. L'étude géotechnique s'est déroulée en trois phases :

Phase 1 : les travaux de terrain (Sondages, recherche d'emprunts et carrières, étude des fondations)

Phase 2: les essais au laboratoire

Phase 3 : la compilation des résultats et le rapport géotechnique.

Les matériels utilisés sont disponibles dans leur laboratoire et spécifique à chaque essais (burette gradués, tamis, éprouvettes, balance, viscosimètre, grilles, tamis, moules, coupelles, Los Angeles pour ne citer que ceux-là). Certains résultats des sondages effectuées sont sur les tableaux 2, 3 et 4 suivants :

Sono	lage SC1
Angle de frottement φ(°C)	22.15
Cohésion C (Kpa)	3
Sono	lage SC2
Angle de frottement φ(°C)	31.41
Cohésion C (Kpa)	3
Sono	lage SC3
Angle de frottement φ(°C)	31.86
Cohésion C (Kpa)	2
Sono	lage SC4
Angle de frottement φ(°C)	25.32
Cohésion C (Kpa)	4
Sono	lage SC5
Angle de frottement φ(°C)	31.97
Cohésion C (Kpa)	1
Sono	lage SC6
Angle de frottement φ(°C)	31.55
Cohésion C (Kpa)	2

Tableau 2 : Résultats in situ des essais de cisaillement des sondages carottés

(Source : Rapport d'études géotechniques dans le cas du projet PDA pluvial de la ville de Cotonou, page 6)

Désignation	Profondeur	Analyse Granulométrique par			que par	Application	Symboles
		tamisage (passants aux tamis) (%)			mis) (%)		
		2mm	0.08mm	Cu	Сс		
Sondage SC1 de 3.00 m	1.00 - 3.00	100	01	2.35	1.09	Sable propre mal	Sm
						gradué	
Sondage SC2 de 3.00 m	1.00 - 3.00	100	01	2.14	1.02	Sable propre mal	Sm
						gradué	
Sondage SC3 de 3.00 m	1.00 - 3.00	100	01	1.92	1.00	Sable propre mal	Sm
						gradué	
Sondage SC6 de 3.00 m	1.00 - 3.00	100	01		1.11	Sable propre mal	Sm
						gradué	

Tableau 3: Analyse granulométrique des sondages carottés

(Source : Rapport d'études géotechniques dans le cas du projet PDA pluvial de la ville de Cotonou, page 6)

		ρs estimé 2688 kg/m3		Boite carrée de		De section (cm ²):36		
					coté(n	nm):60		
						Dat	te de	Vitesse (mm/min): 1
						l'essai :1	8/11/2018	
N°		A	vant essai			Après cor	nsolidation	Après cisaillement
	ρ kg/m ³	ρ_{d}	W	e	Sr	ρd	t100	W
		kg/m ³	(Initiale)		%	Kg/m ³	mn	%
			%					
1	2191	1899	15.37	0.413	100	1904	-	14.47
2	2191	1899	15.37	0.413	100	1905	-	14.45
3	2191	1899	15.37	0.413	100	1907	-	14.42
4	2191	1899	15.37	0.413	100	1909	-	14.38

Tableau 4: Rapport d'essai de cisaillement rectiligne

(Source : Rapport d'études géotechniques dans le cas du projet PDA pluvial de la ville de Cotonou, page 7)

II. ÉTUDES TOPOGRAPHIQUES ET SOLS

L'analyse de la cartographie disponible montre une configuration plate de la ville de Cotonou avec quelques remblais qui correspondent aux routes principales. La ville de Cotonou en particulier présente une faible inclinaison et donc possède un relief assez plat. Ainsi le relief de la ville n'est point favorable à l'écoulement gravitaire des eaux pluviales, ce qui entraîne leur stagnation puis leur infiltration provisoire. Dans le dixième arrondissement de la ville de Cotonou, les sols présents sont des sables anciens lessivés par les eaux de crue. La coupe géologique présente la constitution suivante selon une étude réalisée par le BURGEAP (Bureau Régional de Géologie Appliquée).

- des sables fins silteux, gris marins alternent avec des sables grossiers graveleux ;
- des argiles lagunaires

La nappe se trouve à environ 80cm du terrain naturel, due à l'infiltration des eaux pluviales et à la nappe phréatique, ce qui occasionne une grande teneur en eau dans le corps de chaussée et une faible capacité de rétention.

L'étude topographique nous a fourni les données nécessaires à la numérisation et à la matérialisation graphique de notre zone d'étude et lance ainsi le début de la conception (géométrique) du projet routier. La carte (figure 5) donne une idée du relief du site avec, par rapport au niveau de la mer, dans cette zone,4 m pour le niveau le plus bas et 8 m pour le niveau le plus haut.

LEGENDE

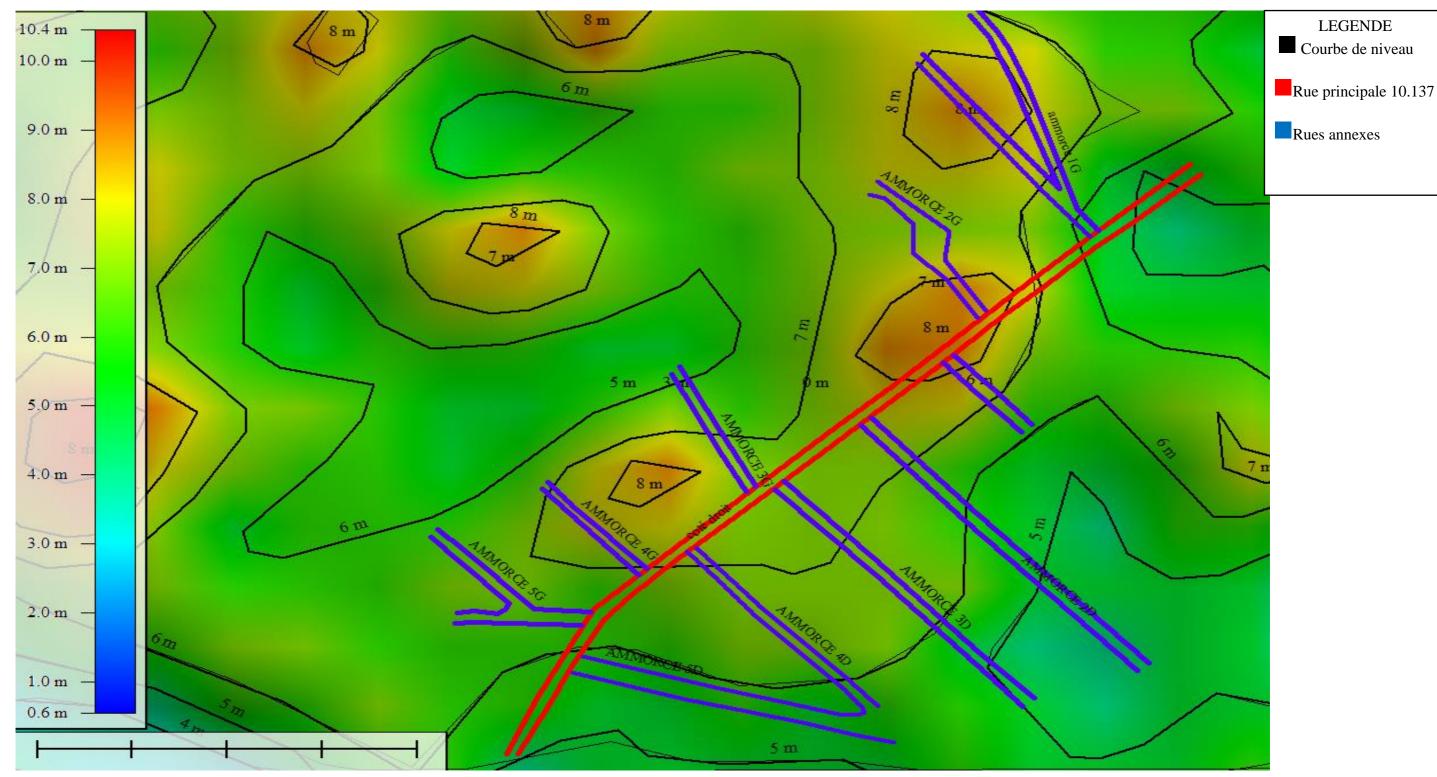


Figure 2: Relief des courbes de niveau

(Source : Global Mapper)

.....

III. ÉTUDES HYDROLOGIQUES

L'étude hydrologique met en évidence la détermination des débits de crue pour chaque bassin versant dont l'écoulement coupe notre projet. Sur l'ensemble du site étudié, les bassins versants existants ont été délimités ; leurs caractéristiques morpho métriques que sont la superficie, le périmètre la longueur de la cour d'eau principal (distance séparant l'exutoire du point le plus éloigné du bassin), la pente ont ensuite été déterminés.

1) La pluviométrie

L'alternance des différentes saisons se déroule dans la zone comme suit :

- une grande saison sèche qui dure de la mi-novembre à fin mars ;
- une grande saison pluvieuse qui dure du début avril à la mi-juillet avec 700 à 800 mm de pluie par an
- une petite saison sèche qui dure de la mi-juillet à la mi-septembre et ;
- une petite saison pluvieuse qui dure de la mi-septembre à la mi-novembre avec 400 à
 500 mm de pluie par an.

Les écarts entre le mois le plus chaud et le mois le moins chaud ne dépassent pas 4,2 degrés. Les hauteurs moyennes pluviométriques annuelles sont de 1200mm à l'ASECNA. Pendant la grande saison de pluie, la ville de Cotonou est menacée par de graves inondations (niveau bas fortement influencé par les variations du niveau des plans d'eau dépassant parfois les 1,5m de hauteur, IGN). Les pluies s'étalent sur environ 80 et 120 jours.

2) Délimitation des sous-bassins

Pour le tracé des limites d'un bassin versant, il faut au préalable :

- repérer l'exutoire ;
- repérer le réseau hydrographique ;
- repérer les points hauts puis les courbes de niveau autour de ces points hauts ;
- tracer la ligne de partage des eaux en suivant les lignes de crête puis en rejoignant,
 l'exutoire par une ligne de plus grande pente perpendiculaire aux courbes de niveau.

Grace au logiciel Global Mapper, il a été procédé à la génération de bassins versants et à l'extraction de leurs caractéristiques.

a. Méthodes de prédétermination des débits de projets

Il existe plusieurs méthodes d'évaluation de débit dont l'utilisation est conditionnée par la superficie des bassins versants dont on veut faire l'évaluation du débit. Les plus fréquentes sont les suivantes :

- la méthode rationnelle (utilisée pour le calcul des débits des bassins versants générés par Global Mapper);
- la méthode superficielle de Caquot (utilisée pour le calcul des bassins versants routiers);

b. Méthode rationnelle

Cette méthode est utilisée pour les bassins de superficie inférieure à 4 km². Elle sera retenue en raison de sa simplicité et de son adaptation pour l'estimation de débit d'apport de bassins versants dont la superficie ne dépasse pas 4 km² et en tenant compte également de données disponibles. Cette méthode est fondée sur l'application de la formule suivante :

$$Q = K \times C \times I \times A$$

Q: débit maximal à l'exutoire (m³/s)

C: coefficient de ruissellement (%)

I : *l'intensité de l'averse (mm/h)*

A: aire du bassin versant (km²),

K: facteur de conversion ($K = 0.278 \text{ si la surface est en } km^2$);

• Coefficient de ruissèlement

Le coefficient de ruissellement représente la fraction recueillie à l'exutoire de la totalité des eaux pluviales qui sont tombées sur un bassin versant. Il quantifie l'aptitude au ruissellement de la surface du bassin versant. Pour le coefficient général du projet, on peut se focaliser sur ces estimations

$$C = S'/S$$

Pour les surfaces partielles, Sj ,on peut prendre les valeurs Cj

- Parties imperméabilisées0.90

Et calculer C par la formule

$$C = \frac{\sum CiSi}{\sum Si}$$

On estime qu'en général la perméabilité des zones urbanisées (zones pavées, habitations) est peu élevée, ce qui correspond à un coefficient de ruissellement de l'ordre de 0.9 quel que soit la pente du terrain.

c. Méthode de Caquot

Dans le but de corriger les imperfections liées à la formule rationnelle, Caquot, en 1940 établit une nouvelle formule basée sur le même principe de calcul que la méthode rationnelle. La formule du type Caquot suppose que le temps de concentration t varie en fonction du débit.

$$Q = mKI^{u}C^{v}S^{w}; u = -\frac{0.41b}{1+0.287b}, K = \left[\frac{0.5^{b}a}{6.6}\right]^{1/(1+0.287b)}, v = \frac{1}{1+0.287b}, w = \frac{0.95+0.507b}{1+0.287b}, m = \left(\frac{L}{2\sqrt{5}}\right)^{\frac{0.69b}{1+0.354b}}$$

Q: Débit de pointe (m3/s) de période de retour T; I: Pente (m/m); S: Surface en (ha);
m: Coefficient correcteur de débit fonction de l'allongement du bassin.

3) DONNEES CLIMATIQUES

Le climat est de type subéquatorial avec une alternance de deux saisons pluvieuses (Avril à Juillet et Septembre à Novembre) et de deux saisons sèches (Décembre à Mars et Août). La pluviosité annuelle varie entre 1000 et 1400 mm avec environ 100 jours de pluies. Le régime pluviométrique est bimodal, avec les pics observés sur les mois de juin et octobre respectivement pour les deux saisons de pluies. La température moyenne est de 27°C, variant de 24° à 30°C en saisons des pluies et de 23 à 33°C en saisons sèches. Les écarts entre le mois le plus chaud et le mois le moins froid ne dépassent pas 3,8°C. L'humidité relative est élevée atteignant parfois 95 % en raison de la proximité de l'océan Atlantique (Adam & Boko, 1993). Cotonou est sous l'influence de vents dominants soufflant dans le sens Sud-Ouest/Nord-Est. Environ 60% des vents ont des vitesses comprises entre 2m.s⁻¹ 4m.s⁻¹. Le vent au sol est plus fort en bordure de la mer qu'à l'intérieur de la ville. La température à prendre en compte lors de certains calculs est la température moyenne de 27°C.

Ce chapitre résume les données de bases ainsi que les méthodes à utiliser afin de pouvoir mener à bien notre étude. Il est indispensable afin d'entamer le chapitre suivant qui est lié à tous les dimensionnements du projet.

CHAPITRE III: DIMENSIONNEMENT ET CONCEPTION TECHNIQUE

Ce chapitre, à l'aide des différentes données collectées, nous a permis de pouvoir faire ressortir les différents tracés (tracé en plan profils en long et en travers type) dans le cadre de l'étude et de pouvoir proposer une structure capable de reprendre les différentes charges de la chaussée concernée et enfin d'assurer un bon assainissement de la structure de chaussée à mettre en place.

I. CONCEPTION GEOMETRIQUE

C'est une démarche permettant d'améliorer avec précision les paramètres du terrain naturel notamment la pente, le relief etc. L'objectif est de favoriser la sécurité et le confort de la circulation des usagers et des biens. Elle se caractérise par un ensemble des composants relatifs aux éléments suivants :

- tracé en plan
- profils en long
- profils en travers Types

1) Caractéristiques dynamiques de la route

- vitesse de référence de 60Km car la zone du projet est une zone urbaine
- type de route : R car le trafic lourd est peu important
- largeur d'une voie : 4,5m
- nombre de voies : 2 voies vue la largeur réduite du terrain

Le calcul des paramètres cinématiques se fait à l'aide des coefficients de frottement qui sont consignés dans le tableau 5 :

Vitesse en Km/h		40	60	80	100	120	140
Alignement	F	0,46	0,46	0,42	0,38	0,34	0,31
droit	Longueur de freinage	15m	35m	60m	105m	170m	250m
	F	0,37	0,37	0,34	0,3	0,27	0,25
Courbe	Longueur de freinage	20m	45m	75m	125m	220	313m

<u>Tableau 5:</u> Valeur du coefficient de frottement f(v) à retenir et longueur de freinage correspondantes en alignement et en courbe

(Source : Cours de Routes p 53 ING Issoufou TAMBOURA)

2) Tracé en plan

Le tracé en plan nécessite une connaissance du terrain de la zone d'étude et représente une vue de dessus de la route. Le tracé en plan d'une route se caractérise par une succession de courbes et d'alignements droits séparés par des raccordements.

Les principes fondamentaux pour le choix du tracé

Pour un bon tracé, il est recommandé de suivre certains principes, tels que :

- ➤ la recherche du plus court chemin du point de vue technique et du point de vue économique
- le courage de sacrifier la longueur de la route au bénéfice de la sécurité des usagers ;
- le maintien de la fondation de la route au-dessus de la nappe phréatique par tout moyen approprié;
- ➤ l'élévation de la route, au-dessus du terrain naturel, en terrain plat afin d'avoir un meilleur drainage, et moins de risque d'inondation ;
- ➤ la recherche du profil naturel le plus doux possible

Les paramètres du tracé en plan

Les routes sont classées en fonction de leur vitesse de référence, cette dernière est la vitesse avec laquelle un véhicule peut circuler en toute sécurité sur un tronçon de route donné même en ses points les plus contraignants. La vitesse de référence permet de définir les caractéristiques d'aménagement des points particuliers d'une section de route de sorte que la sécurité du véhicule soit assurée. Elle est notée Vr.

Le tableau 6 présente quelques paramètres fondamentaux du tracé en plan.

Désignation des éléments	Vr =60 Km/h			
Designation des ciements	Rayon (m)	Devers (%)		
Rayon minimum absolu RHm*	120	7		
Rayon minimum normal RHN*	240	5		
Rayon au devers minimal "RH"*	450	2,5		
Rayon non déversé "RH"*	600	2,5		

Tableau 6: Paramètres fondamentaux des projets routiers pour le tracé en plan (ARP).

(Source cours de route, ING Issoufou TAMBOURA)

*(définition et tracés en plan : voire annexe VII)

En fonction de la catégorie de la route, les valeurs des devers et des rayons sont liés par la relation suivante (« cours de routes v2007 » H. BRUNEL, Universités d'Orléans) :

3) Le profil en long

Le profil en long résulte de la reproduction à l'échelle réduite d'une projection de l'axe de la chaussée sur un plan vertical.

Désignation des éléments	Valeurs
Vitesse de référence	Vr= 60 km/h
Rampe maxi	7%
Rayon en angle saillant (RVN2)	3000
Rayon minimal en angle saillant (RVm2)	1500
Rayon minimal en angle rentrant (RVN')	2200
Rayon minimal en angle rentrant (RVN')	1500
Rayon minimal en angle saillant pour dépassement (RVD)	6500

<u>Tableau 7:</u> Eléments de raccordement et différentes valeurs de rayon.

Le profil en long est constitué d'une succession de segment de droites (rampes et pentes) raccordés par des courbes circulaires. Pour chaque point du profil en long on doit déterminer : l'altitude du terrain naturel, l'altitude de la ligne du projet, la déclivité de la ligne du projet. La coordination du tracé en plan et du profil en long doit faire l'objet d'une étude d'ensemble, afin d'assurer une bonne insertion dans le site, respecter les règles de visibilité et autant que possible, un certain confort visuel. (Confère ANNEXE VII)

4) Le profil en travers type

Le profil en travers de notre projet est composé :

- de deux voies roulables de 4.5 mètres de large chacune
- de caniveaux de différentes dimensions rectangulaires
- de la pente transversale de la chaussée de 2.5%
- d'une pente des talus de déblai 1/3 H
- d'une pente des talus de remblais de 2/3 H

La figure 3 présente un profil en travers type

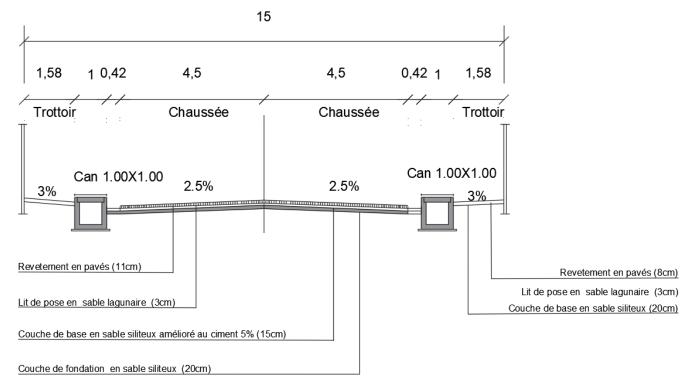


Figure 3: Profil en travers type

II. DIMENSIONNEMENT DE LA STRUCTURE

La cartographique géotechnique des sols en place des zones du projet indique qu'il s'agit des sols de faible à moyenne portance dont les CBR dépassent rarement 15. Aussi Pour les sols de très faible portance (CBR < 5), une substitution de matériaux (purge et remblais) est envisagée. Le dimensionnement de la structure des chaussées sera basé sur une plateforme de type S3 (10<CBR<15). S'agissant du trafic, aucune campagne de comptage n'a été faite dans le cadre de la présente étude, et ce, conformément aux TDRs. Conformément au guide pratique de dimensionnement des chaussées pour les pays tropicaux, le recensement des facteurs Le poids des véhicules est transmis au sol, sous forme de pressions, par l'intermédiaire des pneumatiques. Ces pressions, voisines de la pression de gonflage des pneumatiques, sont relativement importantes : 1 à 2 kg/cm² pour un véhicule léger, 6 à 7 kg/cm² pour un poids lourd. D'une manière générale, les sols ne peuvent supporter sans dommage de telles pressions. En effet, s'ils n'ont pas une capacité portante suffisante, les pneus les compriment et des ornières se forment. L'orniérage est la déformation résiduelle Wr qui s'accroît au fur et à mesure des passages des véhicules et proportionnellement à leur charge. Si le sol est résistant, il se passe deux choses imperceptibles mais qu'il faut bien comprendre qu'un sol s'affaisse sous le pneu (déformation totale : Wt). Lorsque la route s'éloigne, le sol reprend son état initial mais

pas complètement. Il reste une déformation résiduelle Wr. La différence entre la déformation totale et la déformation résiduelle s'appelle la déformation :

$$d = Wt - Wr$$

Il est pour ce faire nécessaire d'interposer entre les pneumatiques et le sol support une chaussée qui aura la capacité de répartir les charges pressantes sur une plus grande surface et de réduire ainsi les pressions transmises à ce sol support jusqu'à une valeur admissible au plus. La définition des matériaux les matériaux constitutifs de chaque couche et le calcule leur épaisseur respective s'avère donc nécessaire.

Le dimensionnement d'une chaussée fait intervenir 3 principaux paramètres à savoir La classe du trafic, la portance du sol support de la plateforme et la nature des matériaux.

1) Type et structure des routes

La structure est l'ensemble des couches de matériaux empilées les unes sur les autres pour résister aux sollicitations du trafic. Une fois empilées, les couches ne sont plus susceptibles de subir des variations et conservent donc leur épaisseur. Une structure type de route est schématisée en figure 4 :

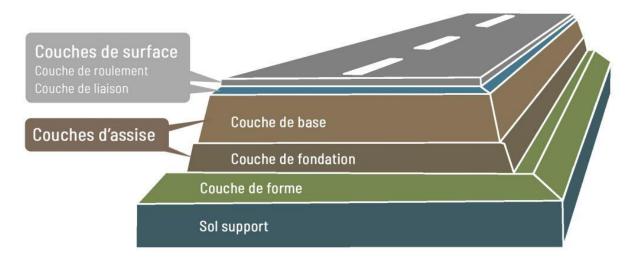


Figure 4: Nomenclature d'une chaussée.

2) **Définition**

<u>Couche de forme</u>: couche située entre la partie supérieure des terrassements et les couches de chaussées, permettant d'homogénéiser les caractéristiques du sol support, d'atteindre et de

pérenniser les performances géométriques, mécaniques, hydrauliques et thermiques prises comme hypothèses dans la conception et le calcul de dimensionnement de la chaussée.

<u>Couche de fondation</u>: Couche de matériaux située sous la couche de base et destinée à répartir les efforts dus aux charges sur le sol support.

<u>Couche de base</u>. Couche de matériaux située sous la couche de surface et destinée à répartir les efforts dus aux charges.

<u>Plateforme de chaussée</u>: surface de la couche de forme supportant les couches de chaussées. Dans le cas où la couche de forme n'est pas présente, la plateforme se confond avec I 'arase de terrassement.

<u>Couche de surface</u>: couche de la chaussée en contact avec la circulation. La couche de surface peut être mise en œuvre en une ou plusieurs couches appelées couche de roulement et couche de liaison.

Couche de roulement : couche supérieure de la chaussée en contact avec la circulation.

Couche de liaison : couche de chaussée entre la couche de roulement et I' assise.

<u>Assise de chaussée</u>: élément structurel principal d'une chaussée. L'assise peut être mise en œuvre en une ou plusieurs couches appelées couche de base, couche de fondation.

3) Méthodologie du dimensionnement

Le dimensionnement de la chaussée a été fait en plusieurs étapes. La démarche utilisée pour la détermination d'une structure de chaussée se présente comme indiqué sur la figure 5.

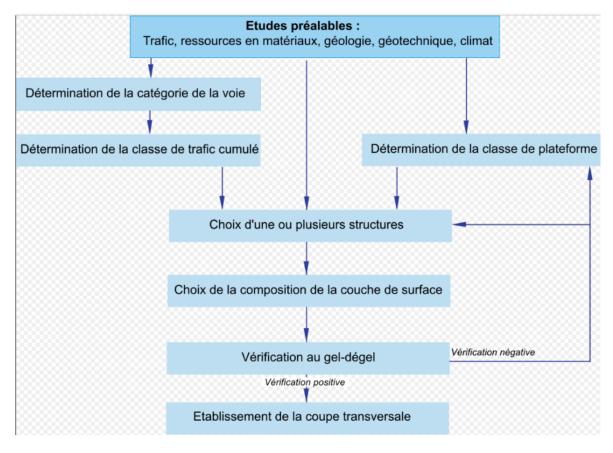


Figure 5: Synoptique de la démarche de détermination d'une structure de chaussée.

4) Étude de trafic

Le comptage du trafic routier ou les études de flux, est une opération qui consiste à enregistrer les différentes catégories de véhicules qui transitent par un point donné d'un tronçon de route. Il nous renseigne sur : le volume et la nature du trafic ce qui nous permet de savoir si un trafic est normal, généré ou induit ou dévié ; la classe de trafic, le choix des caractéristiques techniques pour le dimensionnement des tronçons à aménager et / ou à bitumer ; le taux de saturation de certains tronçons en zones urbaines en vue de justifier certains investissements. Pour ce faire, plusieurs méthodes sont utilisées ; le comptage manuel de trafic et le comptage à capteur pneumatique. Les rues se situent dans une zone résidentielle où le trafic des véhicules poids lourd n'est pas récurrent. Cependant pour des raisons de sécurité, et aux vues de la proximité du port et de l'incivisme des conducteurs, nous allons considérer les véhicules poids lourds pour notre étude.

Le trafic ou encore volume de circulation, représente le nombre de véhicule (légers ou lourds) passant dans une section de route, dans une direction et pendant une unité de temps donnée. Le trafic est un paramètre important dans le dimensionnement des chaussées. Le passage des véhicules impose à la chaussée des efforts par l'intermédiaire des pneumatiques et ce volet consiste donc à déterminer le volume de trafic que va supporter la route au cours de sa durée de vie.

Dans le cas d'espèce, le trafic considéré est celui des poids lourds du fait de leur agressivité qui est beaucoup plus importante que celle des véhicules légers.

La durée de vie de l'ouvrage est le nombre d'années pendant lesquelles la route sera exploitable sans qu'une réhabilitation soit nécessaire. La durée de vie d'une route des paramètres économiques, de la structure de la route, et du taux de croissance. La durée de vie de notre projet est de quinze (15) ans.

Le taux de croissance des trafics nous permet de prendre en compte dans le calcul du trafic l'accroissement qu'aura le nombre de véhicules sur le tronçon étudié. Ce taux découle des considérations économiques et sociales de la zone d'influence de la route et son rôle. Il tient compte également des trafics induits et déviés qui passeraient sur la route étudiée. Le taux de croissance moyen annuel est égal au taux de croissance moyen des différentes catégories de véhicules ; il est de 5% conformément à la prescription du CCTP.

Le coefficient d'agressivité : Le Coefficient d'agressivité moyen est calculé en fonction de l'agressivité des poids lourds :

$$CAM = \frac{1}{NPL} \left[\sum_{j=1}^{3} K_j * n_{ij} \left(\frac{P_i}{P_0} \right)^a \right]$$

NPL: nombre de poids lourds pendant la période de comptage;

Kj: Coefficient correspondant au type d'essieu

n_{ij} : Nombre d'essieu élémentaire de type j et de classe de charge

P₀: Essieu de référence 13T; *PPii* Charge de l'essieu.

Il existe néanmoins des coefficients définis en fonction du type de chaussée et du matériau à utiliser (norme NF P98-086 annexe C) lorsque le CAM n'est pas disponible. Le Bénin dispose d'un réseau routier bien développé avec des niveaux relativement élevés de trafic. La densité du réseau classé de route du pays (75 km / 1 000 km2) est comparable à celle des pays à faible revenu moyen (88 km / 1 000 km2), mais seulement un tiers de celle de la moyenne pour les pays à revenu intermédiaire de l'Afrique sub-saharien (278 km / 1 000 km2). Le Trafic de plus de 2.000 véhicules par jour est concentré dans les corridors nord-sud. Il est beaucoup plus élevé que la moyenne de 1100 véhicules dans les pays à faibles revenus non fragiles et à proximité des niveaux de trafic enregistrés dans les pays à revenus intermédiaires. Le Bénin gagne des scores élevés pour l'état de ses routes rurales et l'accessibilité rurale. Le réseau rural, 66 pour cent de ce qui est dans un état passable ou bon, a atteint la moyenne des pays à revenus intermédiaires. L'amélioration de la fiabilité du réseau rural accroît le potentiel d'accessibilité rurale. L'Indice d'accès rural SIG pour le Bénin indique qu'environ 28 pour cent de la population rurale vit moins de deux kilomètres d'une route praticable en toute saison, plus élevé que la moyenne de 25 pour cent à faible revenu non fragiles pays. Avec un trafic moyen journalier de 63 véhicules sur les routes rurales, le maintien de l'ensemble du réseau rural en terre est une politique cohérente avec les niveaux de trafic. (Voire Etude sur l'entretien routier dans les pays de l'union économique et monétaire Ouest africaine (UEMOA) : bilan des 50 dernières années et perspectives, Annexe 6 : commentaires sur les reseaux routiers par **pays, Aout 2015**)

Le trafic exprime pour une voie de circulation le nombre de passages de véhicules dans une période déterminée et pour une voie de circulation. Les chaussées sont dimensionnées par rapport au trafic poids lourds (PL), car seuls les véhicules lourds, plus de 50 KN ou 5 Méga grammes (Mg) ou 5 tonnes de charge utile (CU), soit environ plus de 90KN ou 9 Méga grammes (Mg) ou 9 tonnes de poids total en charge autorisé (PTCA), ont un effet significatif sur la fatigue des chaussées.

Cet effet est très largement fonction de la charge par essieu des véhicules : un essieu chargé à 130KN ou 13 Méga grammes (Mg) ou 13 tonnes est en moyenne 4 à 5 fois plus agressif qu'un essieu chargé à 100 KN ou 10 Méga grammes (Mg) ou 10 tonnes. Les véhicules légers par contre ont un effet négligeable sur les chaussées, ils provoquent uniquement une usure de la

couche de roulement et éventuellement une pollution de celle-ci. Ainsi donc, le seul trafic qui sera pris en compte est le trafic lourd : utilitaires et transport

La classe de trafic (Ti) est déterminée à partir du trafic poids lourds (P.T.C.A. > 35 KN où 3,5 Méga grammes (Mg) ou 3,5 tonnes) journalier moyen (MJA) de la voie la plus chargée pendant l'année de mise en service.

P.T.C.A. = Poids Total en Charge Autorisé

On distingue donc, six classes de trafic en fonction du nombre total de poids lourds :

- soit par voie de circulation,
- soit sur la voie la plus chargée,
- soit sur la voie concernée,

Le tableau 8 montre ces classes de trafic en fonction de la moyenne journalière annuelle

Les classes de trafic Poids Lourds (PL)	La Moyenne Journalière Annuelle (MJA)
ТО	T0 ≥ 750 PL/jour/sens
T1	300 PL/jour/sens ≤ T1 < 750 PL/jour/sens
T2	150 PL/jour/sens ≤ T2 < 300/jour/sens
Т3	50 PL/jour/sens ≤ T3 < 150 PL/jour/sens
T4	25 PL/jour/sens ≤ T4 < 50 PL/jour/sens
T5	T5 < 25 PL/jour/sens

Tableau 8 : Classes de trafic poids lourds par jour et par sens

Conformément au tableau 8, nous sommes donc en présence d'un trafic de classe T₃

Classe de trafic	Trafic en nombre cumulé de PL
T1	< 5.10 ⁵
T2	5.10 ⁵ - 1,5.10 ⁶
Т3	1,5.10 ⁶ - 4.10 ⁶
T4	$4.10^6 - 1.10^7$
Т5	$1.10^7 - 2.10^7$

Tableau 8 : Classe du trafic en fonction du nombre cumulé de PL (CEBTP)

Comme matériau du béton bitumineux, **le CAM proposé est de 0,8** (Annexe C de la norme NF P98-086). Les paramètres de dimensionnement de la structure sont consignés ci-après dans le tableau 9 :

PARAMETRES	SYMBOLES	VALEURS
Nombre de poids lourds par jour et par sens (PL)	TMJA	63
Durée de vie de la structure (ans)	n	15
Taux d'accroissement géométrique	I ou r	5%
Coefficient d'agressivité moyen	CAM	0.8
Essieu de référence	P0	13T

Tableau 9: Paramètres de dimensionnement de la structure

a. Classe du sol

La cartographique géotechnique (voire chapitre 2, page 22) des sols en place des zones du projet indique qu'il s'agit des sols de faible à moyenne portance dont les CBR dépassent rarement 15. Il est compris entre 10 et 15, ce qui correspond à **un sol de classe S3** conformément au tableau 11.

Classe	Valeur CBR
S1	CBR<5
S2	5 <cbr<10< td=""></cbr<10<>
S3	10 <cbr<15< td=""></cbr<15<>
S4	15 <cbr<30< td=""></cbr<30<>
S5	CBR>30

Tableau 10: classe du sol selon le CBR

b. Proposition d'une structure de chaussée suivant la méthode CEBTP

La couche de base repose sur essentiellement deux types : une route en béton bitumineux et une route en pavé Le choix du revêtement pavé a été volontairement adopté aux regards de l'expérience locale, les limitations de vitesses induites par ce type de revêtement, compatible avec la circulation en agglomération, la facilité d'entretien par le personnel et du matériel disponible. En outre, ce choix technique parait approprié pour faire aux différences tolérées par

les blocs pavés et le béton bitumineux. La question est de déterminer avec le revêtement pavé, quelles sont les structures types possibles. Aussi les tendances qui consistent à l'application d'une formule mathématique donnent l'illusion d'un résultat rigoureux alors que les paramètres d'entrée ne sont pas toujours précis. Les auteurs des études ont conclu que les chaussées revêtues en pavés de béton ont un comportement qui s'apparente à celui des chaussées souples. Ainsi les méthodes de dimensionnement présentées dans la littérature dérivent généralement des méthodes utilisées pour les chaussées souples (Shackel (1990) ; Interlocking Concrete Pavement Institute (1995) ; Ishai et coll. (2003) ; CMA (2004) ; Leong et Tighe (2005). D'une manière générale, ces méthodes sont utilisées en convertissant l'ensemble « la couche de pavés et de lit de pose » en une couche unique d'un matériau connu par un facteur d'équivalence. De ce fait, la couche unique est caractérisée par un module combiné du système "pavés + lit de pose" et il est alors possible d'avoir recours aux méthodes de dimensionnement usuelles utilisées pour les chaussées souples. Ainsi, sur la base d'un pavé de 100mm et un lit de pose variant entre 30 et 50mm, le CMA1 (2004) a recensé divers facteurs d'équivalence et le matériau correspondant, présentés au tableau 11 :

Davis	Companyandanas
Pays	Correspondance
Argentine	2,5 fois l'épaisseur de sous-fondation granulaire
Australie	2,1 à 2,9 fois l'épaisseur de fondation de pierres concassées 1,1 à 1,5 fois l'épaisseur d'enrobé bitumineux
USA	165 mm de revêtement d'enrobé bitumineux 2 à 2,85 fois l'épaisseur de fondation granulaire
Royaume uni	225 mm de sol stabilisé au ciment 160 mm de béton bitumineux coulé
Israël	0,8 cm d'épaisseur de pavés équivaut à 1 cm d'épaisseur d'enrobé bitumineux et que le lit de pose n'a pas de valeur structurale
Interlocking Concrete Pavement Institute (1995),	Pavé de 80 mm de hauteur reposant sur un lit de pose de 25 mm est comparable à une épaisseur d'enrobé bitumineux de 105 mm avec un module de 3100 MPA

<u>Tableau 11:</u> Résumé de différents facteurs d'équivalence du système '' pavés + lit de pose'' (Adapté de CMA 2004).

Il ressort de ce tableau que quel que soit la référence, un pavé d'épaisseur donné a une équivalence supérieure à un béton bitumineux de même épaisseur. De ce pas nous passons à la discussion sur le cas de dimensionnement des chaussées en revêtement pavé pour le pays le Bénin.

Au Bénin Les routes en revêtement pavé ont été construites de façon continue et soutenue depuis le début des années 1990. Cette période correspondant à l'ère du Renouveau démocratique au Bénin. L'objectif, en adoptant les routes en pavé étaient de créer des chantiers de travaux à haute intensité de main d'œuvre pour le résorber le problème de chômage, surtout celui des jeunes.

Deux tendances existent :

- Celle développée par le Ministère en charge des Travaux publics sur les contre allers
 (Trafic local) des axes routiers principaux bitumés et qui consiste à utiliser les pavés de 11 cm
 ; Dans ce cas les pavés sont utilisés en remplacement du béton bitumineux, ce qui suggère un surdimensionnement et ou un prolongement de la durée de vie de l'infrastructure
- L'autre, généralement adoptée sur certains axes (collecteurs et dessertes), qui relèvent du Ministère en Charge du l'Urbanisme consiste à adopter des revêtements pavés et une couche de sable argileux (silteux) ou de latérite appelée « couche de base » dont l'épaisseur varie de 20cm à 30cm pour les chaussées en fonction de la portance du sol. Cette couche de silteux ou de latérite est appelé « couche de base », justement parce que venant juste après la couche de roulement qu'est l'ensemble pavé + lit de pose et aucune couche de fondation n'est mise en œuvre. À l'analyse des faits, et considérant que la plupart des chaussées réalisées sur la base de ces structures « tiennent dans le temps », nonobstant les affaissements précoces enregistrés çà et là ; on pourrait émettre l'hypothèse que « les pavés+ lit de sable » jouent à la fois le rôle de couche de roulement et contribuent à la formation de la couche de base. La couche de silteux ou de latérite pourrait être assimilable à une couche de fondation en considérant certaines ou la combinaison de certaines équivalences dans le tableau 11 du CMA ci-dessus. Toutefois il convient de rester prudent sur cette déduction puisqu'elle n'a pas été suffisamment documentée.

5) Dimensionnement de la structure avec le logiciel ALIZE

Le logiciel Alizé-LCPC est un outil de dimensionnement et d'expertise du comportement mécanique des chaussées. Il met en œuvre la méthode rationnelle de dimensionnement mécanique des structures de chaussées, développée par le LCPC et le SETRA. La méthode de dimensionnement des chaussées, avec le logiciel ALIZE, comporte un dimensionnement mécanique et un dimensionnement au gel de la structure.

Le trafic lié aux véhicules légers aura un impact négligeable en raison du dimensionnement avec les poids lourds. La vérification porte sur la comparaison entre :

- Des valeurs admissibles de ces mêmes grandeurs, fonction de la résistance mécanique des matériaux sous chargements répétés auxquelles sont associées divers coefficients d'ajustement rendant compte notamment du caractère probabiliste de la démarche de dimensionnement et des discontinuités des chaussées rigides. Les sollicitations calculées dans la chaussée doivent alors être inférieures ou égales aux sollicitations admissibles. La détermination de l'épaisseur minimale des couches se fait par itérations successives de façon à respecter ce critère.
- Des grandeurs mécaniques (contraintes, déformations) représentatives du comportement de la structure de chaussées au passage d'un essieu de référence, et calculées en utilisant un modèle élastique linéaire ;

Pour le cas du dimensionnement au gel, n'étant pas dans un pays dans lequel il neige, cette partie n'a pas été prise en compte. Le calcul des sollicitations induites dans la structure par la charge de référence (demi-essieu à roues jumelées chargé à 65 kN - NF P 98-082) à 1 'aide d'un modèle élastique linéaire multicouches, homogène et isotrope (modèle de *Burmister*) pour lequel la rigidité des matériaux est caractérisée par un module d'Young et un coefficient de Poisson.

Calcul du module de Young du sol support

$$E = 5 * CBR = E = 5 * 15$$

 $E = 75 MPa$

Le tableau 12 illustre les différents types de plates-formes en fonction de leur CBR

Туре	Examen visuel (essieu de 13 t)	Indice portant CBR	Type de sol		
P0	Circulation impossible sol inapte très	CBR = 3	Argiles fines saturées, Sols tourbeux,		
	déformable		Sols tourbeax,		
			Faible densité sèche,		
			Sol contenant des matières organiques, etc.		
P1		3 = CBR = 6	Limons plastiques,		
			Argileux et argilo plastiques, Argiles à silex,		
			Alluvions grossières, très sensibles à l'eau		
P2 ou PF1	Déformable	6 = CBR = 10	Sables alluvionnaires,		
			Argileux ou fins limoneuses,		
			Graves argileuses ou limoneuses,		
			Sols marneux contenant moins de 35% de fines		
P3 ou PF2	Peu	10 = CBR = 20	Sables alluvionnaires		
	déformable		Propres avec fines < 5%,		
			Graves argileuses		
			ou limoneuses avec fines < 12%		
P4 ou PF3	Très peu	20 = CBR = 50	Matériaux insensibles à l'eau,		
	déformable		Sables et graves propres		
CBR > 50	Très peu	CBR > 50	Matériaux rocheux saints, etc.,		
	déformable		Chaussées existantes		

Tableau 12: Différents types de plates-formes en fonction de leur CBR

Nous prenons une plate-forme type PF2 car notre CBR est compris entre 10 et 15.

- Le trafic considéré : TMJA = 63 Pl/jr
- La température moyenne prise en compte pour le dimensionnement des chaussées au Bénin est de 27°C :
- Le risque de calcul est de 5 % pour toutes les sections indépendamment du trafic
- Le coefficient de poisson de la plate-forme est pris égal à 0,35 ;
- Le projet a une durée de vie de 15 ans ;
- Le taux d'accroissement est de 5%;
- Toutes les couches sont collées ;
- Matériaux bitumineux : CAM = 0,8 car trafic de type T3+;

Coefficient d'agressivité							
Cas d'un trafic faible							
Classe	T5	T4	Т3-	T3+			
Tous matériaux (CAM) 0.4 0.5 0.7 0.8							

Tableau 13: Coefficient d'agressivité selon la classe de trafic

(Source : chaussée aide-mémoire ALIZE page 7)

HYPOTHESES ET CARACTERISTIQUE DES MATERIAUX

Les données du chargement standard considérées sont :

- Essieu à roues jumelées supportant une charge de 13t;
- > Pression verticale de 0,6620 MPa;
- Rayon de contact de 0,125m; Entraxe jumelage de 0,375m

a. Simulation de la structure de chaussée

Pour mener à bien le dimensionnement de la structure à l'aide du logiciel, il convient de définir le module d'élasticité et le coefficient de poisson de chacune des couches.

Couches	Matériaux	Module d'élasticité (MPa)	Coefficient de poisson (Nu)	Epaisseur (cm)
Couche de roulement	BB	E=1990 (Module à une température de 27°)	0,35	5
Couche de base	GNT1	E=600	0.35	20
Couche de fondation	GNT2	E=400	0,35	20
Plateforme	Sol Pf2	E=50	0.35	

Tableau 14: Structure de chaussée choisie.

Par ailleurs, en raison de la proximité de la nappe phréatique, nous avons jugé utile de mettre en place un géotextile filtrant et anti-contaminant pour éviter la contamination des couches formant la structure de la chaussée par le sol in situ.

La catégorie des GNT est définie en fonction du trafic, de la propreté du sable et des caractéristiques intrinsèques du matériau. Les différents types de catégories de GNT sont présentés par le tableau 16 :

Critère	Emploi en catégorie 1		Critère Emploi en catégorie 1 Emploi en catégorie		atégorie 2	Emploi en catégorie 3
Trafic	T3	T < T3	T3	T4-T5	T5	
d/D	0/14 ou 0/20		0/14 ou 0/20 0/31,5		Jusqu'à 0/60	
Propreté du sable	ь		c		35 ≤ ES ≤45	
Caractéristiques intrinsèque	C	D	С	D	LA < 50 et M _{DE} < 45	
Ic	100	≥ 60	≥ 60	≥ 30		
Fines					$I_p \leq 6$	

Tableau 15: Différentes catégories de GNT.

(Source: logiciel ALIZE LCPC)

b. Module de Young et Coefficient de Poisson

A défaut de pouvoir mesurer les paramètres d'entrée que sont le module de Young E et le coefficient de Poisson ν , le coefficient de Poisson a été prix égale à 0,35 (ν = 0,35) pour les matériaux granulaires. Pour les chaussées urbaines, en couche de fondation, la GNT est de classe A, catégorie 2 et son module est égal à 2,5 fois celui de la plateforme

Après simulation sur ALIZE nous obtenons les résultats présentés par la Figure 6 :

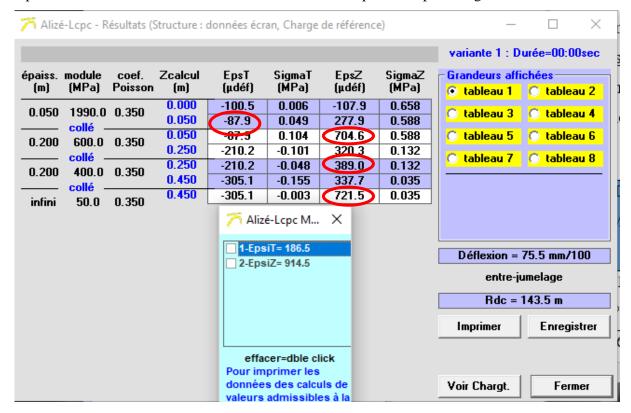


Figure 6 : Simulation sur ALIZE

Résultats obtenus

Les résultats obtenus sont consignés dans le tableau 16 :

Couches Epaisseur		Valeur obtenue	Valeur admissible	Vérification
	(cm)			
Roulement	5	$\varepsilon_t = -87.9 \mu \text{déf}$	$\varepsilon_t adm = 186.5 \mu d \acute{e} f \mu d \acute{e} f$	Ok
Base	20	$\varepsilon_z = 704.6 \mu \text{déf}$	$\varepsilon_{z,}$ adm = 914.5 μ déf	Ok
Fondation	20	$\varepsilon_z = 389 \mu \text{déf}$	$\varepsilon_{z,}$ adm = 914.5 μ déf	Ok
Plateforme		$\varepsilon_z = 721,5 \mu \text{déf}$	$\varepsilon_{z,}$ adm = 914.5µdéf	Ok

<u>Tableau 16:</u> Résultats de dimensionnement obtenus.

La structure ainsi modélisée peut supporter les différentes charges qui lui seront soumises.

Pour la chaussée :

Couche de revêtement : 5 cm de béton bitumineux

Couche de base : 20 cm de grave non traité type 1

Couche de fondation : 20 cm grave non traité type 2

Pour le trottoir:

- Couche de revêtement : 5 cm de béton bitumineux
- Couche de base et de fondation : 40 cm de grave non traité

 Outre la proximité de la nappe phréatique par endroit, l'entreprise a préféré opter pour

 l'application des matériaux type GNT car :
 - ➤ le projet étant en milieu urbain, une structure ayant une couche de base en GNT permettrait une remise en circulation quasi-immédiate après mise en œuvre ;
 - ➤ la réalisation du sol ciment dans une zone fortement urbanisée n'est pas une solution appropriée aux regards des contraintes environnementales avec un matériau très volatile comme le ciment ;
 - le sable silteux est un produit qui se raréfie au Bénin.

La structure que nous proposons est similaire à celle proposée par l'entreprise à la différence que du géotextile sera posé sur la plateforme en raison de la forte proportion de matériaux fins dans couche de plateforme et de la proximité de la nappe phréatique. En effet, en cas de remontée d'eau, surtout en période pluvieuse

Couches de la chaussée	Chaussée	Trottoir
Couche de roulement	Pavé de 11 cm + 3 cm de sable (lit de pose)	Pavé de 8 cm +3 cm de sable (lit de pose)
Couche de base	20 cm de sable argileux amélioré au ciment	20 cm de sable argileux
Couche de fondation	20 cm de sable argileux	

Tableau 17: Proposition de la structure de chaussée par le PAPC.

III. DIMENSIONNEMENT DES OUVRAGES D'ASSAINISSEMENTS

1) Dimensionnement hydraulique

Sections hydrauliques

Le dimensionnement hydraulique du caniveau revient à rechercher la largeur d'écoulement (b) qui est égale à la largeur au plafond du canal, et la profondeur d'écoulement (y).

La recherche est faite en se basant sur le fait que ces deux paramètres doivent donner une section garantissant l'écoulement du débit d'apport (Qa) avec une vitesse (V) suffisante pour l'autocurage, mais pas trop élevée afin d'éviter une dégradation trop rapide des parois des caniveaux.

Le dimensionnement des caniveaux a été fait à l'aide de ces débits, et en utilisant la formule de Manning-Strickler.

Le dimensionnement hydraulique des caniveaux tient compte des considérations et critères suivants :

Vitesses admissibles : entre 0,6 et 2m/s ; Pente minimale : 0,1% ; Remplissage maximal des fossés/caniveaux : 70%.

La formule adoptée pour le dimensionnement des fossés est celle de Manning Strickler suivante

$$Q=K_s*R_h^{\frac{2}{3}}*I^{\frac{1}{2}}*S$$

Q : débit de l'eau, calculé par la formule rationnelle (m3/s);

Ks: - coefficient de rugosité du caniveau (égale à 70 pour les parois en béton);

Rh: rayon hydraulique (m); $R_H = \frac{Am}{Pm}$

(Am section mouillée en m^2)

Pm périmètre mouillé m

I : pente du caniveau (m/m)

Le dimensionnement par tronçon s'est fait en considérant pour chaque tronçon une surface propre et une surface de transit.

Grace à cela, les calculs de la section hydraulique du côté gauche et droit de la rue 10.137 peuvent être effectués :

Tronçons du	Linéaire	Pente	Q10(m3/s)	Dénivelée	Taux remplissage	Section caniveaux
côté gauche	(m)			Н		(cm2)
X1-X2	58	1.1%	0.00137337	0.638	0.7%	CAN 60x60
T1-X2	95.2		0.00172668	1.0472		
T2-X3	127		0.00202096	1.397		
X2-X3	19		0.00275838	0.209		
X3-X4	60		0.00464446	0.66		
T3-X4	98		0.00241551	1.078		
T4-X5	99		0.03100985	1.089		
X4-X5	12		0.00628212	0.132		
X5-X6	78		0.00825035	0.858		
T5-X6	74		0.00322767	0.814		
T6-X7	74		0.00169145	0.814		
X6-X7	12		0.0099261	0.132		
X7-X8	66		0.01025092	0.726		
T7-X8	65		0.00178539	0.715		
T8-X9	86		0.00134495	0.946		
X8-X9	13		0.01093326	0.143		
X9-X10	32		0.0113562	0.352		
T9-X10	93		0.00154141	1.023		
T10-X11	214		0.00222044	2.354		
X10-X11	13		0.01196567	0.143		CAN 100x100
X11-X12	82		0.0136237	0.902		

Tableau 18: Section hydraulique du côté gauche de la rue 10.137

Les sections des caniveaux ainsi calculées seront appliquées sur les deux côtés de la chaussée. Par soucis de commodité et pour faciliter l'exécution, les sections des caniveaux ont été harmonisées. La hauteur des caniveaux étant variable à cause de la pente.

	Linéaire	Pente			Taux remplissage	Section de caniveau
Tronçons	(m)		Q10(m3/s)	Н		en cm ²
Y1-Y2	177	1.1%	0.0018624	1.947	0.7%	CAN 60x60
O1-Y2	49	_	0.00172951	0.539		CAN 60x60
O2-Y3	213	_	0.00250224	2.343		CAN 60x60
Y2-Y3	10		0.00283246	0.11		CAN 60x60
Y3-Y4	48	_	0.00523083	0.528		CAN 60x60
O3-Y4	208	_	0.00260038	2.288		CAN 60x60
O4-Y5	206	-	0.00235712	2.266	-	CAN 60x60
Y4-Y5	11		0.0073515	0.121		CAN 60x60
						CAN 60x60
Y5-Y6	53		0.00896212	0.583		
O5-Y6	182	_	0.00228468	2.002		CAN 60x60
O6-Y7	181		0.00233043	1.991		CAN 60x60
Y6-Y7	8		0.01052386	0.088		CAN 60x60
Y7-Y8	54	_	0.01178127	0.594		CAN 60x60
O7-Y8	188		0.00239179	2.068		CAN 60x60
O8-Y9	265		0.00139711	2.915	_	CAN 60x60
Y8-Y9	51		0.01271742	0.561		CAN 60x60
Y9-Y10	91	_	0.0131983	1.001		CAN 60x60
O9-Y10	146		0.00161161	1.606		CAN 60x60
O10-Y11	152		0.00236147	1.672		CAN 60x60
Y10-Y11	11		0.01393346	0.121		CAN 100x100
Y11-Y12	58		0.01488534	0.638		CAN 100x100

Tableau 19 : Section hydraulique du côté droit de la rue 10.137

CONCLUSION PARTIELLE

La conception géométrique, le dimensionnement de la structure et des ouvrages d'assainissement sont des éléments fondamentaux dans la construction d'une route : le premier permet de déterminer la géométrie adéquate de la route qui prend en compte la sécurité, le confort, le drainage, le coût , le second assure sa capacité à reprendre toutes les charges qui lui seront administrées tout au long de son service et rassure sur sa pérennité tandis que le troisième

joue son rôle au niveau de l'assurance d'une voie plus ou moins praticable quel que soit la saison de l'année .

Les présentes routes, dont la vitesse de référence est de 60km/h, sont constituées d'alignements droits de moins de 1 km. Elles ont un devers de 7% et une déclivité maximale en rampe égale à 7. Pour reprendre l'ensemble des charges qui leur sont soumises, elles sont constituées d'une couche de roulement pavée de 11cm d'épaisseur pour la chaussée et 8 cm pour le trottoir et d'une couche d'assise en sable silteux amélioré de 5% de 20 cm d'épaisseur. Un lit de pose de sable lagunaire de 3 cm sera posé avant la mise en place des pavés.

Nous aurons des caniveaux trottoirs de gauche et de droite de la rue 10.137 et respectivement de gauche des caniveaux de dimensions 100x 100 cm² pour raison que le point le plus haut se retrouve vers le côté gauche et les lignes d'écoulements ont tendance à converger vers le côté gauche et nous avons du côté droit un caniveau de dimension 60 x 60 cm² car les eaux de ruissellement sont repris en majorité par le côté gauche et déversés sur une autre rue qui est connecté à un collecteur de dimension 2x1.25x1.50..Il n'y aura pas de caniveaux de rue sur la voie principale 10.137 ,cependant, ils seront placés sur les 5 amorces de part et d'autre de cette rue donc 10 caniveaux de rue variant selon la longueur de chaque début d'amorce. Aussi, à la porte des riverains, plusieurs coulés sur place de caniveaux seront effectués afin que le niveau du sol de leur entrée soit identique au niveau du sol de la chaussée.

En raison de l'importance que revêt l'assainissement des chaussées, en particulier des chaussées pavées, il est important d'éviter les inondations et de ce fait une dégradation précoce de la chaussée. Notre choix de solutions d'assainissement s'est porté après calcul sur des caniveaux.

CHAPITRE IV : SIGNALISATION ROUTIERE, ECLAIRAGE PUBLIC ET MATERIELS DE REALISATION

Le maintien de la sécurité au niveau des routes passe par le confort des usagers de jour comme de nuit. Par conséquent, les routes doivent être aménagées de façon judicieuse pour garantir un éclairage pouvant faciliter la vue aux usagers. Il est donc important que les usagers comprennent et respectent les langages conventionnels universellement reconnus pour leur utilisation.

I. SIGNALISATION ROUTIERE

La signalisation routière est en général l'information donnée à l'usager de la route à titre préventif de tout éventuel danger qui pourrait survenir dans la circulation. Elle permet d'informer les usagers, conducteurs comme piétons, des règles à respecter lors de leurs déplacements. Elle peut être verticale comme horizontale, permanente ou temporaire.

1) La signalisation verticale

Lors de chaque déplacement, les usagers croisent des panneaux de signalisation, aussi nommés « éléments de signalisation verticales ». Ce type de signalisation répond à trois missions fondamentales comme avertir des dangers à l'aide des panneaux triangulaires, signaler une interdiction ou une obligation, à l'aide des panneaux ronds ou donner des indications et des informations lors d'un trajet.

FORME	COULEUR	ANNONCÉ À	SIGNIFIE
\triangle	Rouge et blanc	50 m en agglomération, 150 m en dehors	Danger
0	Rouge et blanc	À l'endroit	Ordre, interdiction ou prescription
	Bleu foncé et blanc	À l'endroit	Obligation
	Bleu foncé et blanc	À l'endroit ou avant en fonction des besoins	Indication
	Blanc	À l'endroit	Localisation
	Vert ou bleu	À l'endroit où il faut changer de direction	Direction

Tableau 20: Schéma récapitulatif de la logique des panneaux

(Source : Antoine Levesque, Ornikar.com)

a. Les panneaux triangulaires

Les panneaux triangulaires, permanents comme temporaires, servent à indiquer un danger. Lors d'une conduite en agglomération, ces panneaux sont situés 50 mètres en amont du danger, alors que sur les routes hors agglomération, ils se trouvent 150 mètres avant le danger qu'ils montrent aux usagers.

Figure 7: Panneaux triangulaires rouges, jaunes et blancs

(Source : Ornikar.com)

b. Les panneaux ronds d'interdiction ou d'obligation

Il existe deux types de panneaux ronds :

• Les panneaux ronds rouges et blancs qui informent une interdiction

Figure 8: Panneaux ronds rouges et blancs

(Source : Ornikar.com)

• Les panneaux ronds bleus et blancs qui indiquent une obligation

Figure 9: Panneaux ronds bleus et blancs

(Source: Ornikar.com)

2) La signalisation horizontale

Elle permet de canaliser et de guider les flux de circulation, de préciser les règles de prescription, de matérialiser le stationnement et guider visuellement les usagers, en particulier la nuit grâce aux plots. Dans le cas de notre projet la signalisation horizontale sera constituée comme suit :

- des marquages longitudinaux discontinus lignes d'axe : une ligne longitudinale continue interrompue sur une longueur de 2,50m environ par une ligne T'2 de largeur 2u (car la traversée de la chaussée est autorisée dans les deux sens)
- des marquages transversaux continues lignes complétant les panneaux "stop" et discontinues "cédez le passage"
- la bande de passage pour piétons : positionnée suivant les points de fortes traversées de la route et aux environs des écoles.

Quant aux rives de chaussées, elles sont généralement matérialisées en milieu urbain par des bordures de trottoir.

Pour la signalisation verticale :

Les panneaux triangulaires temporaires seront mis au nombre de quatre lors des travaux afin de barricader la zone le temps des travaux. Les panneaux triangulaires permanents seront mis au nombre de deux lors dont un en début et fin de la rue. Les panneaux ronds rouges seront mis au nombre de dix dont un à chaque amorce si possible. Les panneaux ronds bleus seront mis pour

Pour la signalisation horizontale, aucune ligne ne pourra être dessinées car la route pratiquée est pavée et non bitumée

Pour ce qui est des feux tricolores, il est prévu deux feux tricolores dont un en début et à la fin de la rues

II. ÉCLAIRAGE PUBLIC

L'éclairage public est l'ensemble des moyens d'éclairage mis en œuvre dans les espaces publics et très généralement en bordure des voiries et places nécessaires à la sécurité ou à l'agrément de l'homme. L'éclairage public représente à l'heure actuelle un poste de dépenses non négligeable à l'échelle d'une commune soit environ 20% de ses dépenses. Il est donc important de connaître les différentes technologies existantes ainsi que leurs efficacités.

1) Candélabres

La plupart des projets au Bénin, optent pour l'utilisation des lampes à incandescence dont le confort visuel est élevé et la durée de vie de 1000heures en moyenne. Le candélabre est un ensemble composé de trois éléments principaux : le mât, la crosse et le luminaire. Le luminaire accueille les différentes technologies de lampes. Il existe plusieurs types de candélabres dont les avantages et les inconvénients sont présentés dans le Tableau 22 :

Types de candélabre	Description	Avantages	Inconvénients
Lampes à vapeur de	Contient un	Prix peu élevé	Rendement lumineux
mercure (VM)	mélange d'argon et		faible (25-50 lm/W),
	de vapeur de		ultraviolets, pollution.
	mercure.		
Lampes à	Contient de la		
halogénures/iodures	vapeur de mercure	Rendement lumineux	Monté en flux d'une
métalliques (HM/IM)	dans laquelle sont	élevé, indice de rendu	dizaine de minute sur les
	ajoutés des	des couleurs	faibles puissances.
	halogénures	intéressant	
	métalliques		
Lampes à sodium basse	Contient un	Rendement lumineux	Faible indice de rendu des
pression (SBP)	amalgame de	élevé (150 lm/W),	couleurs, pollution si
	sodium avec du	variation de puissance	présence de mercure.
	mercure et du	possible (60-50% du	
	xénon comme gaz	flux), durée de vie,	
	d'allumage	prix.	
Lampes LED (Diode	Composant	Rendement lumineux	Coût encore élevé à
Electroluminescentes)	électronique qui	intéressant, variation	l'achat.
	émet une quantité	de puissance sur une	
	de lumière	très large plage,	
	proportionnelle à	allumage instantané.	
	l'intensité du		
	courant qui la		
	traverse		

Tableau 21: Types de candélabre, avantages et inconvénients

(Source : Alec, 154, rue Jeanne d'Arc,54000 NANCY, Tel.: 09 61 44 71 77, info@alecnancy.fr)

Pour notre projet, nous avons opté pour les Lampes LED ayant un cout élevé mais pouvant avoir le moins d'impact sur l'environnement. Deux ont été placé à chaque amorce ce qui fait un total 20 lampes LED à commander pour l'éclairage.

CHAPITRE V : ÉTUDE D'IMPACT ENVIRONNEMENTAL ET SOCIAL ET ESTIMATION DU COÛT DU PROJET

D'une manière générale, l'impact est le changement durable qui s'observe dans un milieu où le projet a été réalisé. C'est aussi l'ensemble des changements durables positifs et négatifs prévus ou non sur des personnes et l'environnement en lien avec le projet. L'impact traduit également le résultat d'une comparaison entre deux états : un état existant et celui qui résulte de l'action envisagée.

Le présent chapitre sera consacré à l'étude d'impact environnemental et social qui sera suivi d'une estimation sommaire du projet.

I. ÉTUDE D'IMPACT ENVIRONNEMENTAL ET SOCIAL

Les études d'impact permettent de réduire les effets négatifs des projets (travaux, ouvrages, aménagements, etc.) sur les espaces naturels dans l'intérêt des parties prenantes notamment le maitre d'ouvrage, les autorités administratives et le public.

Dans ce cadre, les études permettent d'assister le maitre d'ouvrage dans la conception des projets respectueux de l'environnement, d'appuyer les autorités administratives afin qu'elles statuent sur le projet en connaissance de cause. Par ailleurs, elles permettent de sensibiliser le public sur les conséquences que pourrait entrainer le projet sur l'environnement. Selon son importance et le type d'impact, le projet est soumis à plusieurs types d'études d'impact.

Le tableau 22 qui suit présente les trois phases de construction du projet (phase de préparation, phase des travaux et aménagements et phase d'exploitation) de même que les impacts positifs et négatifs, leur importance, les mesures d'atténuation et les dispositifs de maximisation y afférents. Ces mesures s'appliqueront au secteur de notre étude pour atteindre les objectifs.

N°	Activités par phase	Impacts positifs	Impacts négatifs	Mesures d'atténuation	on	Mesures de maximisation	
		1-PHASE D	E PREPARATIO	N			
	Études	Meilleurs choix	Climat de	Veiller à		Faire un suivi	
	Techniques	techniques pour les	suspicion et	l'information	des	environnemental et	
		ouvrages et rues à	d'inquiétude	riverains sur le	es	social	
		aménager	dans le milieu	enjeux du proj	et	conformément aux	
			d'accueil du			exigences en la	
			projet			matière	
	Étude d'impact	Prise de conscience des		Mettre sur pie	d un	Créer un comité de	
	environnemental et	enjeux du projet par les		comité de mis	e en	suivi des opérations	
	social	groupes cibles		œuvre du PAF	2	et des	
		concernés				dédommagements	
	2-PHASE DES TRAVAUX ET AMENAGEMENT						
	Installation de	Opportunités	Dégradation du	Veiller à une	Prioriser la main		
	chantier/signalisation	d'augmentation de	paysage	conception	d'œ	uvre locale	
	de l'entreprise	revenus pour les		architecturale			
		populations (locations,		qui s'intègre			
		restauration, commerce)		au paysage			
	Décapage et mis en	Création d'emplois			Sens	sibiliser les	
	dépôt	pour les ouvriers			chau	iffeurs sur le respect	
					du c	ode de la route	
		3 -PHASE D	'EXPLOITATIO	N			
	Mise en services des	Facilité d'écoulement	Risques de	Prévoir des	Insta	aller un comité de	
	ouvrages	des eaux pluviales	déversements	bacs à	suiv	i environnemental	
			des déchets et	ordures	pour	e les entretiens dans	
			eaux usées dans	publiques	les c	quartiers pour éviter	
			le bassin de		le re	jet de déchets de	
			rétention		tout	es sortes dans le	
L			aménagés		bass	in	

Entretiens courant et	Animation des places	Risques	Signaler les	Installer des poubelles
périodique des	publiques	d'accidents	lieux	dans les places publiques
ouvrages		pendant les	d'entretien	
		entretiens		

<u>Tableau 22:</u> Activités ,impacts poitifs et négatifs et mesures d'atténuation et de maximisation des effets négatifs du projet sur l'environnement.

(Source: Plan d'assurance qualité, PAPC-BM_T01/210810/PDG-AGETUR).

Les études d'impact environnemental et social occupent une place prépondérante dans la stabilité et le cadre de vie des populations. La sensibilisation de toutes les parties prenantes en vue de l'attente de ses objectifs est prise en compte au terme de cette étude.

Il a été suggéré au cours de cette étude de pouvoir créer des signalisations de jours comme de nuit pour un travail d'une durée plus importante, de trouver un endroit acceptable et facile d'accès pour garer les engins de constructions tout en faisant minutieusement attention à l'entrée et la sortie lors des exécutions, de pouvoir, après l'exécution de chaque travail sur une rue, de faire un reboisement fréquent afin de ne pas détruire complètement la flore existante

II. ESTIMATION DU COÛT DU PROJET

L'évaluation qui suit aborde les rubriques principales liées aux travaux d'ouvrages d'assainissement et nivèlement du site ainsi que la voirie. Les prix unitaires sont de certains projets réalisés et en cours de réalisation au Bénin tels que : le projet de construction du Marché internationale de Malanville (volet voirie et assainissement) et celui du projet de construction du palais du roi de Nikki et de l'arène de la Gaani (volet voirie et assainissement).

N°	DESIGNATIONS	Montant partiel
100	Travaux Préparatoires	60 750 000
200	Terrassements	231 145 000
300	Assainissement Et Drainage	90 307 650
400	Chaussées Et Trottoirs	468 000
500	Allées De Circulation Intérieure	9 180 000
600	Autres Ouvrages	1 165 000
700	Espace Verts	9 846 000
800	Equipements Sanitaires	2 900 000
900	Imprévus Physico-Financiers	163 739 981
	Total General HT	569 501 631
	TVA	102 510 294
	Total General TTC	672 011 925

Tableau 23: Estimation globale du coût du projet

(Source : Ouvriers du Monde Nouveau (OMN) ; projet de construction du palais du roi de Nikki et de l'Arène de la Gaani)

CONCLUSION, RECOMMANDATIONS ET PERSPECTIVES

Dans le cadre du projet intitulé « Étude technique des travaux d'aménagement et d'assainissement d'une voirie urbaine : cas de la rue 10.137 du projet PAPC dans la ville de Cotonou au Bénin », les objectifs fixés étaient de procéder au dimensionnement d'une route fonctionnnelle comportant une tructure de chaussée pouvant resister au trafic durant toute sa durée de vie. A cela s'ajoutent une proposition d'aménagement et un assainissement de meme que des dispositifs de sécurité conformes aux normes, une étude d'impact environnementale et une étude financière conséquente.

Les dites études permettent d'avoir les résultats ainsi que suit :

- une structure de chaussée ayant 20cm d'épaisseur de couche de fondation en graves concassés 0/60. 15cm de couche de base en concassée 0/20 et une couche de roulement en béton bitumineux semi grenu 0/10 en raison de la classe du sol support, du trafic, de la durée de vie du projet de meme que des matériaux disponibles. Par ailleurs, nous jugeons necessaire au préalable la pose d'un géotextile afin d'éviter l'apparition éventuelle de mauvaise herbes.
- des ouvrages hydrauliques de sections respectives 60 x var (60 à 100) cm², 80 x var (80 à 100) cm² pour les caniveaux fermés avec dalles amovibles et de section 0,60 x 0,80 cm². Le dimensionnement a été fait selon un débit de crue décénale et du réseau d'assainissement de la ville et d'écoulement des eaux des rues environnates. Tous ces ouvrages hydrauliques sont en béton armé et ont été calculés en conséquence.
- des propositions sont faites pour garantir la sécurité routière aux usagers.
- des propositions sont faites pour atténuer des effets négatifs du projet sur l'environnement.
- une évaluation du coût des travaux envisagés est proposée.

Au regard de tout ce qui précede, nous recommandons au maitre d'ouvrage de mettre en place un système de sensibilisation permanente des usagers de la route et les populations environnantes pour son utilisation judicieuse.

Par ailleurs compte tenu de l'importance de cet ouvrage mis à la disposition des populations, il serait judicieux d'envisager la mise en place d'autres du genre dans l'environnement en vue d'améliorer leur cadre de vie.

REFERENCES BIBLIOGRAPHIQUES

- 1- **BAEL 91 modifié 92,**Béton Armé aux États Limites 91 modifié 99 et DTU associés ,2^{ème} édition vols. Eyrolles, 2000.
- 2- **BAEL 91 révisé 99,** Étude de Structure en Béton Armé : édition CASTEILLA HUSSON. J-M, (2002).
- 3- Cahier des charges fiscales des marchés publics et autres régimes d'exeption, par le Ministère des Finances ,Mise à jour Mai 1997
- 4- **CEBTP**, Guide pratique de dimensionnement des chaussées pour les pays tropicaux, Ministère des relations extérieures de coopération et du Développement ,1980
- 5- Cahier des clauses techniques Générales Fascicule n°29-12, relatif aux travaux ,constructions, entretiens des des voies, places et espaces publics, pavés et dallés en béton ou en roche naturelle; (Décret n°92-72 du 16 janvier 1992).
- 6- **Georges JEUFFROY**, Conception et construction des chaussées Tome 1, 5^{ème} édition, revue et corrigée.
- 7- **Guide technique SETRA-LCPC**; Conception et dimensionnement des structures de chaussée; Guide technique, République Française, Ministère de l'Equipement, des transports et du tourisme, Décembre 1994.
- 8- **Issoufou TAMBOURA**, Cours des Pont et Ouvrages d'Arts, Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE), 2015
- 9- LCPC, Catalogue des structures types de chaussées neuves, 1998.
- 10-Michel FAURE, Routes, vol. II. Aléas, 1998.
- 11- **Ministère de l'Environnement et du Cadre de Vie**, Guide Général de Réalisation des Études et Notices d'Impact sur l'Environnement, 2007.
- 12-**Patrick HESSOU**, Cours de méthodologie de recherche ; Institut universitaire du Bénin, période 2008-2010.
- 13-PDA PLUVIAL DE COTONOU, Rapport D'avant- Projet annexes, Version révisée définitive de Mai 2019
- 14-Projet De Gestion Des Eaux Pluviales Et De Résilience Urbaine Au Bénin 019/ACVDT/AGETUR/PAPC BM_TO1/2020, émis le 31 décembre 2020
- 15-**Roger COQUAND**, Eyrolles, Routes (Circulation Tracé Construction), en Construction et Entretien, 6ème édition, 1978.

- 16-SIRAT S.A, Société des Infrastructures Routières et de L'Aménagement du Territoire, Plan De Gestion Environnementales Et Sociales De Chantier (PGES-C) des Bassins Pa3 Et Y, Mars 2022.
- 17-BABILOTTE, C. & SOULIE, C. CETE de Lyon Dimensionnement des structures de chaussées communautaires du Grand LYON : Guide technique communautaire. Parution initiale en 1994
- 18-MICHAUT, J.P. Vers une méthode explicite de vérification de la tenue des chaussées au gel/dégel. Revue générale des routes et des aérodromes n° 728, Avril 1995
- 19-Laboratoire Central Des Ponts Et Chaussées Et Le Service D'études Techniques des Routes Et Autoroutes Conception de dimensionnement des structures de chassées : Guide technique national. Décembre 1994.

ANNEXES

ANNEXE I : PRESENTATION DES ENTREPRISES ET SOCIETES EXECUTANTES DU PROJET
ANNEXE II : DONNEES RECUEILLIES SUR TERRAIN55
ANNEXE III : ÉTUDE HYDROLOGIQUE63
ANNEXE IV : ÉTUDE DES OUVRAGES HYDRAULIQUES72
ANNEXE V : PLANS DE FERRAILLAGE CANIVEAUX92
ANNEXE VI : PROFILS EN TRAVERS TYPES, PROFIL EN LONG96
ANNEXE VII : MATERIELS DE REALISATION DES ROUTES 100
ANNEXE VIII : ÉTUDES D'IMPACT ENVIRONNEMENTALES ET SOCIALES 101
ANNEXE IX : DEVIS ESTIMATIF ET QUANTITATIF DETAILLE 102

Annexe I : Présentation des entreprises et sociétés exécutantes du projet

L'Agence d'Exécution des Travaux Urbains (AGETUR) est une société avec Conseil d'administration ayant pour objet social de recevoir la délégation de maîtrise d'ouvrage pour tout type de projet, d'assurer la gestion concédée des équipements et infrastructures publics, d'entreprendre toute opération immobilière. Cette agence est en charge du projet PAPC en sa qualité de maître d'ouvrage délégué.

L'Association internationale de développement (IDA) est l'une des institutions les plus importantes et les plus efficaces luttant contre l'extrême pauvreté dans les pays les plus pauvres du monde. Cette association est l'entité de la Banque mondiale qui aide les 74 pays les plus pauvres du monde ; elle est aussi la principale source de financement concessionnel des services sociaux de base dans ces pays. Elle vise à réduire la pauvreté en accordant des dons ainsi que des crédits assortis d'un taux d'intérêt nul ou faible, et fournit des conseils sur l'action à mener au titre de programmes conçus pour stimuler la croissance économique, accroître la résilience et améliorer la vie des populations pauvres dans le monde entier. Elle a aidé à améliorer la situation de centaines de millions de personnes. Au cours de la décennie qui a pris fin en 2021, 395,9 millions d'enfants ont été vaccinés, 974,9 millions de personnes ont bénéficié de services de santé essentiels, et 113,3 millions d'êtres humains ont eu accès à des services d'eau améliorés. Le financement de ce projet est assuré par cette association. Le maitre d'œuvre et la réalisation des travaux est confié au groupement SCET TUNISIE/ACEP/LINER ENVIRONNENT.

Le tableau présente les objectifs spécifiques tout le long du projet.

Objectifs spécifiques		Activités	Résultats	
Analyses	et	Exploitations des résultats	Classe des sols de plateforme	
interprétations	des	des essais géotechniques	Caractérisation des matériaux	
données géotechniques			d'assise	
Dimensionnement	des	Étude du trafic	Classe du trafic	
routes		Choix de la classe du sol	Choix des matériaux	
		Pré dimensionnement	Détermination des épaisseurs de	
		Simulation avec ALIZE-	chaussées	
		LCPC		
		Comparaison des résultats		

Aménagement de la route	Conception géométrique de	Profils en long	
	la route	Profils en travers type	
	Choix de normes	Tracé en plan	
Assainissement routier	Étude hydraulique et	Débit des bassins versants	
	hydrologique	Section des ouvrages	
	Dimensionnement Béton	Sections des aciers	
	Armé des ouvrages		
	(Éléments de caniveaux)		
Étude des impacts	Analyse du site du projet	Relever les différents impacts	
environnementaux et	Analyse des effets du projet	négatifs et positifs du projet	
sociaux liés au projet	sur l'environnement	Proposer des mesures	
	Analyse des impacts liés à	d'atténuations des effets du	
	l'exécution du projet sur les	projet sur l'environnement	
	êtres vivants		
Estimation du coût du	Métré	Calcul du coût des travaux	
projet	Evaluation des prix		

<u>Tableau</u>: Résumé des chapitres du projet et des démarches

Annexe II : Données recueillies sur terrain

	Classeme	nt selon la nature		
Paramètres de nature, premier niveau de classification	Classe	Paramètres de nature, deuxième niveau de classification	Sous classe fonction de la nature	
	A (Sols fins)	VBS ≤ 2,5 ou IP ≤ 12	A1 (limons peu plastique, sables fins peu pollués, etc)	
Dmax \leq 50 mm et tamisat à 80 μ m $>$ 35%		2,5 <vbs 6="" ou<br="" ≤="">12<ip 25<="" td="" ≤=""><td>A2 (sables fins argileux, limons, argiles peu plastique, etc)</td></ip></vbs>	A2 (sables fins argileux, limons, argiles peu plastique, etc)	
		6 <vbs 8="" ou<br="" ≤="">25<ip 40<="" td="" ≤=""><td colspan="2">A3(Argiles,limons très plastique, etc)</td></ip></vbs>	A3(Argiles,limons très plastique, etc)	
		VBS > 8 ou IP > 40	A4(Argiles,limons très plastique, etc)	
	B (Sols sableux et graveleux avec fines)	tamisat à 80 μm≤12% tamisat à 2mm >70% 0,1 <vbs 0,2<="" td="" ≤=""><td colspan="2">B1 (sables silteux)</td></vbs>	B1 (sables silteux)	
$Dmax \leq 50 \ mm \ et$ tamisat à 80 $\mu m > 35\%$		tamisat à 80 µm≤12% tamisat à 2mm >70% VBS > 0,2	B2 (sables argileux, peu silteux)	
		tamisat à 80 μm≤12% tamisat à 2mm <70% 0,1 <vbs 0,2<="" td="" ≤=""><td>B3 (graves silteuse)</td></vbs>	B3 (graves silteuse)	
	D (Sols insensibles à l'eau)	Dmax ≤ 50mm et 2mm >70%	D1 (sables alluvionnaires propres, sables de dune, etc)	
VBS≤0,1 et tamisat à 80 μm > 12%		Dmax ≤ 50mm et tamisat à 2mm ≤ 0,2	D2 (sables alluvionnaires propres, sables, etc)	
		Dmax > 70%	D3 (graves alluvionnaires grossières propres, dépôts glaciaires, etc)	

Tableau : Classification des sols selon la norme GTR

Rayon minimal absolu

C'est le rayon en dessous duquel on ne devrait pas descendre. Il correspond à la plus faible valeur à admettre pour un tracé avec le dévers maximal qui est de δ =7%.

Rayon au devers minimal

C'est le rayon qui permet de déverser la chaussée à une valeur minimale de 2% (chaussée rigide) ou de 2.5% (chaussée souple). Ce rayon correspond au dévers minimal que doit présenter toute chaussée. Le devers normal est de δ =2.5%.

Rayon non déversé

C'est le rayon à partir duquel même en courbe, la chaussée garde son profil en travers comme dans un alignement droit. Il est fixé à 92 m pour notre tronçon. Au-delà de 92m, la courbe tend à devenir un alignement droit et le profil de la chaussée est en toit : devers gauche=2.5% et devers droit=-2.5%.

Dans le cas du présent projet, les rues annexes étant de petites longueurs, les raccordements progressifs et les raccordements circulaires sont inexistants ; nous ne sommes en présence que d'alignements droits. Ils doivent être conformes à la norme NF EN 13383-1 qui spécifie les caractéristiques des granulats naturels, artificiels et recyclés ou les mélanges de ces granulats destinés à être utilisés comme enrochement. Ils doivent notamment être durs à moyennement durs, insensibles à l'eau, sains, non évolutifs, et non friables et leur masse volumique doit être d'au moins 2.3 t/m3. Ils seront de la classe granulaire de catégorie déclarée CP 80/125 mm, avec au plus 10 % de passant en masse au tamis de 80 mm, et avec au plus 30 % de refus en masse au tamis de 125 mm, sans aucun élément supérieur à 180 mm. Aucun granulat ne devra dépasser dans sa plus grande dimension 0.5 fois l'épaisseur du Matelas. Il devra utiliser des matériaux naturels criblés ou concassés dont les dimensions minimales et maximales aux tamis à mailles carrées sont les suivantes : d = 5 mm et D = 20 mm.

Les données qui suivent complètent les précédentes et se résument aux aspects pédologiques de même qu'aux caractéristiques hydrogéologiques et morphologiques.

• Caractéristiques hydrogéologiques

La nappe phréatique est peu profonde (moins d'un mètre par endroits), et se trouve de ce fait très influencée par les eaux de pluies et des lixiviats entraînant une contamination des eaux souterraines par des polluants de toute sorte. Les zones de très basses altitudes correspondent à des marécages constituant des axes de convergence des eaux de surface, des écoulements hypodermiques et des nappes phréatiques.

• Caractéristiques géomorphologiques

La ville de Cotonou, située dans le domaine margino-littoral du bassin sédimentaire côtier, présente une morphologie reposant essentiellement sur un substratum géologique large de 5 km environ avec une altitude maximale ne dépassant pas 7 m et constitué d'une alternance de cordons dunaires exondés séparés par des dépressions marécageuses (Oyédé, 1991). Le relief est peu accidenté avec des dépressions longitudinales parallèles à la côte et des bas-fonds d'écoulement des eaux pluviales qui communiquent avec le lac Nokoué. La ville de Cotonou

est divisée en deux par le chenal appelé « Lagune de Cotonou » qui communique entre le lac et la mer.

LEGENDE

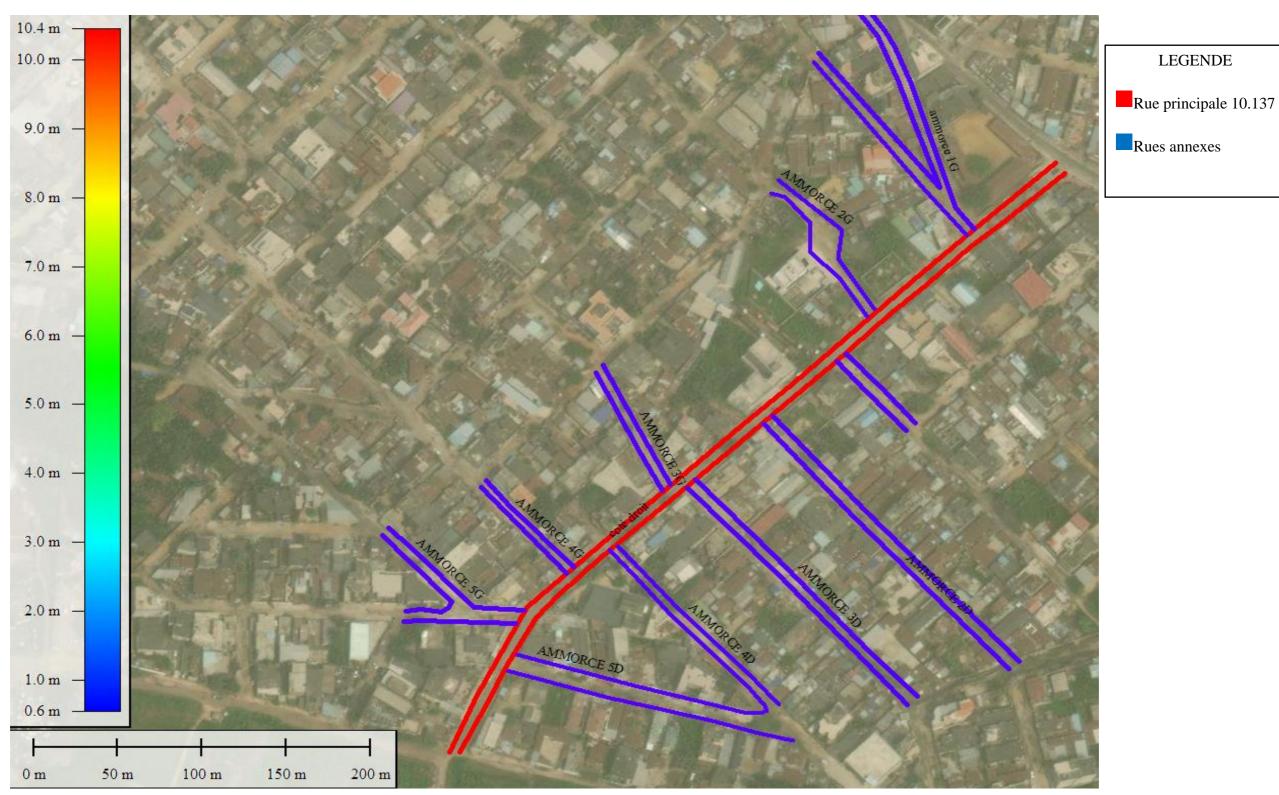


Figure: Vue de la rue 10.137 et ses rues annexes

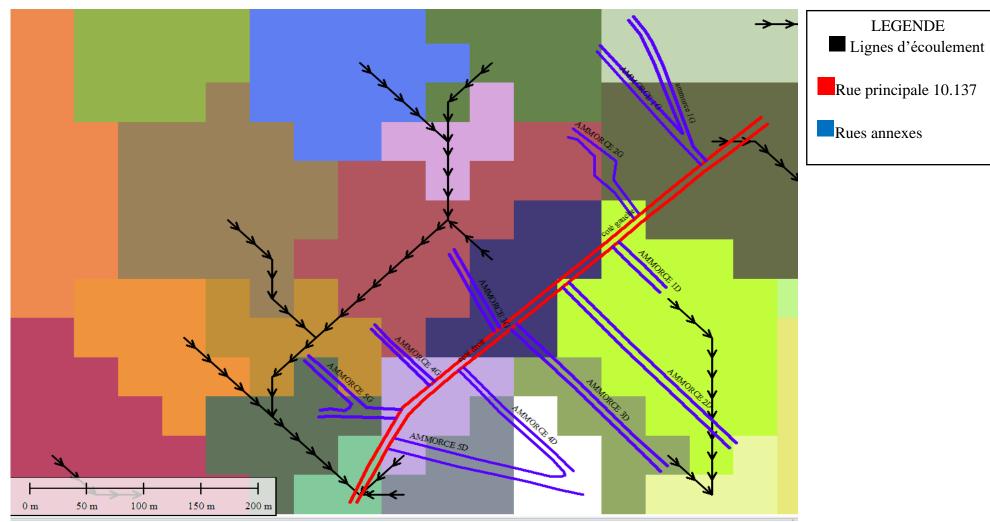


Figure: Sous bassins versants dans la zone

Essais			Matériaux			
Module Tamis (mm)			Graviers con	Sable lagunaire de Cocotomey Zounga		
	48	50	100	100	100	
	47	40	100	100	100	
	46	31,5	100	100	100	
	45	25	100	100	100	
	44	20	95	100	100	
	43	16	62	100	100	
	42	14	18	92	100	
	41	12,5	13	82	100	
	40	10	7	63	100	
	39	8	2	39	100	
Analyse	38	6,3	1	21	100	
granulométrique (NF EN 933 - 1)	37	5	0	11	100	
(11 21 935 - 1)	36	4	0	5	99	
	35	2,5	0	5	93	
	34	2	0	5	89	
	32	1,25	0	4	83	
	31	1	0	4	81	
	29	0.630	0	3	72	
	28	0,5	0	3	61	
	26	0,315	0	3	42	
	22	0,250	0	2	37	
	23	0.160	0	2	8	
	20	0.08	0	0	1	
	19	0,063	0	0	1	
Classe	granulaire		15/20	5/15	0/2	
	Equivalent de sable (%) (NF EN 933-8+A1)			-	97	
Masse volumique réelle (Mg/m³) (NF EN 1097-6) Masse volumique en vrac (Mg/m³) (NF EN 1097-3) Los Angeles (%) (P18-573)			2,68	2,74	2,62	
			1,47	1,48	1,48	
			-	27	-	

Tableau : Résultats des essais sur matériaux

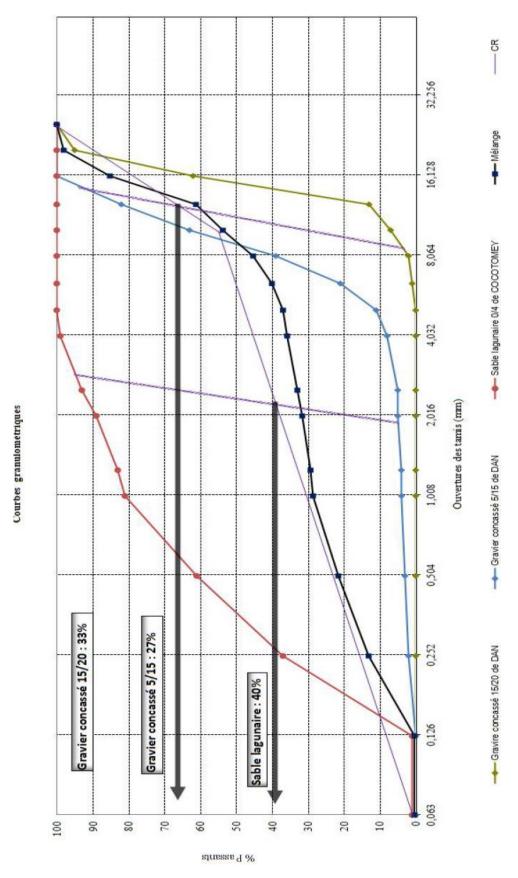


Tableau: Courbe granulométrique

Matériaux	% volume absolu	Volume absolu en Litres	Masse volumique réelle en Mg/m³	Masse volumique en vrac en Mg/m³	Poids en kg	Volume apparent en Litres
Gravier concassé 15/20 de DAN	33	250	2,68	1.47	670	456
Gravier concassé 5/15 de DAN	27	204	2,74	1,48	559	378
Sable lagunaire 0/4 de Cocotomey Zounga	40	303	2,62	1,48	794	536
Ciment type Portland 42.5	-	-	-	-	150	48
Eau	-	-	-	-	138	138

Tableau: Composition au m3

Constituants	%volume absolu	Masse volumique en vrac en Mg/m³	Poids en kg	Volume en L
Gravier concassé 15/20 de DAN	33	1,47	223	152
Gravier concassé 5/15 de DAN	27	1,48	186	126
Sable lagunaire 0/4 de Cocotomey Zounga	40	1,48	265	179
Ciment de type Portland 42.5	-	-	50	16,12
Eau	-	-	46	46

Tableau: Composition par paquet de ciment

Annexe III : Étude hydrologique

Cette annexe présente les tableaux effectués selon la méthode rationnelle, la méthode de KIRPICH sur les différents tronçons de la rue 10.137 afin de déterminer le débit décennal.

Troncons	S(km2)	Stotale	ı	Н	Tc min	Te	a	h	I(mm/h)	r	Q10(m3/s)	Ks	I(cm/m)		h	h	S=b*h	V=Q/S	Τp
Y1-Y2	0.004371	4371	177	1.947	5.72479608		5.5	0.4	2.73689843	0.56	, ,	70	0.011	8.3101E-05	0.02950211	0.11800842	0.0034815	,	5.5146216
O1-Y2	0.00274	2740		0.539	2.14318901	2.14318901	5.5	0.4	4.05451116	0.56	0.00172951	70	0.011	7.7172E-05	0.02869436	0.11477746	0.00329347	0.52513225	1.5551638
O2-Y3	0.006215	6215		2.343	6.5958515	-	5.5	0.4	2.58615376	0.56		70		0.00011165	0.0329571	0.1318284	0.00434468		6.16393511
Y2-Y3	0.006841	6841	10	0.11	0.6354194	6.15004101	5.5	0.4	2.65957036	0.56	0.00283246	70	0.011	0.00012639	0.03452529	0.13810117	0.00476798	0.59405847	0.280556
Y3-Y4	0.014225	14225	48	0.528	2.1096481	8.27358321	5.5	0.4	2.36202905	0.56	0.00523083	70	0.011	0.0002334	0.043455	0.17382001	0.00755335	0.69251758	1.15520533
O3-Y4	0.006412	6412	208	2.288	6.47707497	6.47707497	5.5	0.4	2.60502035	0.56	0.00260038	70	0.011	0.00011603	0.03343605	0.13374419	0.00447188	0.58149714	5.96162288
O4-Y5	0.005795	5795	206	2.266	6.42937706	6.42937706	5.5	0.4	2.6127336	0.56	0.00235712	70	0.011	0.00010518	0.03222693	0.12890771	0.0041543	0.56739247	6.05107312
Y4-Y5	0.020637	20637	11	0.121	0.6834801	8.95706332	5.5	0.4	2.28821291	0.56	0.0073515	70	0.011	0.00032803	0.04937042	0.19748168	0.00974975	0.7540188	0.24314159
Y5-Y6	0.027543	27543	53	0.583	2.27578648	11.2328498	5.5	0.4	2.09009828	0.56	0.00896212	70	0.011	0.0003999	0.05317775	0.21271099	0.01131149	0.7923023	1.11489433
O5-Y6	0.005408	5408	182	2.002	5.84810396	5.84810396	5.5	0.4	2.71366764	0.56	0.00228468	70	0.011	0.00010194	0.03185193	0.12740771	0.00405818	0.56298233	5.38797258
O6-Y7	0.005507	5507	181	1.991	5.82350674	5.82350674	5.5	0.4	2.71824662	0.56	0.00233043	70	0.011	0.00010399	0.03208963	0.12835851	0.00411898	0.56577976	5.33187446
Y6-Y7	0.032951	32951	8	0.088	0.53570329	11.7685531	5.5	0.4	2.05150916	0.56	0.01052386	70	0.011	0.00046958	0.05647958	0.22591833	0.01275977	0.82476826	0.16166157
Y7-Y8	0.039628	39628	54	0.594	2.30856283	14.0771159	5.5	0.4	1.90966512	0.56	0.01178127	70	0.011	0.00052569	0.05892139	0.23568555	0.01388692	0.84837189	1.06085552
O7-Y8	0.005718	5718	188	2.068	5.99502816	5.99502816	5.5	0.4	2.68686718	0.56	0.00239179	70	0.011	0.00010672	0.03240389	0.12961554	0.00420005	0.56946759	5.50221536
O8-Y9	0.00371	3710	265	2.915	7.79549265	7.79549265	5.5	0.4	2.41894093	0.56	0.00139711	70	0.011	6.234E-05	0.02648731	0.10594925	0.00280631	0.49784737	8.87152752
Y8-Y9	0.045346	45346	51	0.561	2.20979332	16.2869092	5.5	0.4	1.80147077	0.56	0.01271742	70	0.011	0.00056746	0.0606353	0.2425412	0.01470656	0.86474484	0.98294892
Y9-Y10	0.050811	50811	91	1.001	3.44133648	19.7282457	5.5	0.4	1.66850419	0.56	0.0131983	70	0.011	0.00058892	0.06148513	0.24594052	0.01512168	0.87280593	1.73769061
O9-Y10	0.003566	3566		1.606	4.94072188	4.94072188	5.5	0.4	2.9029966	0.56	0.00161161		0.011	7.1911E-05	0.02794465	0.11177859	0.00312361	0.51594498	4.71626514
O10-Y11	0.00529	5290	152	1.672			5.5	0.4	2.86744015	0.56		70	0.011	0.00010537	0.03224924	0.12899695	0.00416005	0.5676543	4.46281005
Y10-Y11	0.054377	54377	11	0.121	0.6834801	20.4117258	5.5	0.4	110 1002707	0.56		70	0.011	0.00062172	0.06274772	0.25099089	0.01574911	0.88471408	
Y11-Y12	0.060774	60774	58	0.638	2.43827613	22.850002	5.5	0.4	1.57328787	0.56	0.01488534	70	0.011	0.00066419	0.06432214	0.25728854	0.01654935	0.89945187	1.07472862

Tableau : Débits de dimensionnement des tronçons Y1 à Y12 pour le côté droit de la rue 10.137

Troncons	S(km2)	Stotale(m2)	Linéaire (m) H		Tc min	Te	а	b	I(mm/h)	С	Q10(m3/s)	Ks	(cm/m)		h	b	S=b*h	V=Q/S	Тр
X1-X2	0.002291	2291	58	0.638	2.43827613	2.43827613	5.5	0.4	3.85061	0.56	0.00137337	70	0.011	6.1281E-05	0.02631759	0.10527038	0.00277046	0.49571845	1.95003165
T1-X2	0.003352	3352	95.2	1.0472	3.5621954	3.5621954	5.5	0.4	3.30883868	0.56	0.00172668	70	0.011	7.7046E-05	0.02867679	0.11470716	0.00328943	0.52491783	3.0226953
T2-X3	0.004285	4285	127	1.397	4.4408931	4.4408931	5.5	0.4	3.02952515	0.56	0.00202096	70	0.011	9.0177E-05	0.03042007	0.12168028	0.00370152	0.54598131	3.87681161
X2-X3	0.005643	5643	19	0.209	1.03826204	4.06095734	5.5	0.4	3.13986748	0.56	0.00275838	70	0.011	0.00012308	0.03418387	0.13673548	0.00467415	0.59013554	0.53659989
X3-X4	0.011513	11513	60	0.66	2.5023392	6.56329654	5.5	0.4	2.59127723	0.56	0.00464446	70	0.011	0.00020724	0.0415601	0.1662404	0.00690897	0.6722364	1.48757194
T3-X4	0.004731	4731	98	1.078	3.64207111	3.64207111	5.5	0.4	3.27961845	0.56	0.00241551	70	0.011	0.00010778	0.03252403	0.13009611	0.00423125	0.5708743	2.86110853
T4-X5	0.006347	6347	99	1.089	3.67046761	0.01285763	5.5	0.4	31.3832775	0.56	0.03100985	70	0.011	0.00138368	0.08470094	0.33880378	0.028697	1.08059543	1.52693595
X4-X5	0.016244	16244	12	0.132	0.73052339	7.29381993	5.5	0.4	2.48416635	0.56	0.00628212	70	0.011	0.00028031	0.04654423	0.18617691	0.00866546	0.72496133	0.27587678
X5-X6	0.024541	24541	78	0.858	3.0585307	10.3523506	5.5	0.4	2.15946963	0.56	0.00825035	70	0.011	0.00036814	0.05155288	0.20621153	0.0106308	0.7760796	1.67508592
T5-X6	0.005801	5801	74	0.814	2.93780346	2.93780346	5.5	0.4	3.57399215	0.56	0.00322767	70	0.011	0.00014402	0.03625846	0.14503385	0.0052587	0.6137769	2.00941633
T6-X7	0.00304	3040	74	0.814	2.93780346	2.93780346	5.5	0.4	3.57399215	0.56	0.00169145	70	0.011	7.5474E-05	0.02845597	0.11382388	0.00323897	0.52221966	2.3617137
X6-X7	0.030342	30342	12	0.132	0.73052339	11.082874	5.5	0.4	2.10136614	0.56	0.0099261	70	0.011	0.00044291	0.05525453	0.22101814	0.01221225	0.81279853	0.24606344
X7-X8	0.034182	34182	66	0.726	2.69160659	13.7744806	5.5	0.4	1.92633846	0.56	0.01025092	70	0.011	0.0004574	0.05592577	0.22370308	0.01251077	0.81936789	1.34249829
T7-X8	0.003084	3084	65	0.715	2.66035253	2.66035253	5.5	0.4	3.71866463	0.56	0.00178539	70	0.011	7.9665E-05	0.02903864	0.11615455	0.00337297	0.52932423	2.04663471
T8-X9	0.002531	2531	86	0.946	3.29573123	3.29573123	5.5	0.4	3.41335905	0.56	0.00134495	70	0.011	6.0013E-05	0.02611205	0.10444821	0.00272736	0.49313401	2.90657976
X8-X9	0.037266	37266	13	0.143	0.7766532	14.5511338	5.5	0.4	1.88453391	0.56	0.01093326	70	0.011	0.00048785	0.05729371	0.22917486	0.01313028	0.83267516	0.26020551
X9-X10	0.040304	40304	32	0.352	1.54703524	16.0981691	5.5	0.4	1.80988965	0.56	0.0113562	70	0.011	0.00050672	0.05811501	0.23246003	0.01350942	0.84061375	0.63445707
T9-X10	0.002971	2971	93	1.023	3.49904823	3.49904823	5.5	0.4	3.33259638	0.56	0.00154141	70	0.011	6.8779E-05	0.0274818	0.10992721	0.003021	0.51023209	3.03783324
T10-X11	0.005523	5523	214	2.354	6.61952778	6.61952778	5.5	0.4	2.58244979	0.56	0.00222044	70	0.011	9.9078E-05	0.03151308	0.12605231	0.0039723	0.55898243	6.3806418
X10-X11	0.043275	43275	13	0.143	0.7766532	16.8748223	5.5	0.4	1.77609833	0.56	0.01196567	70	0.011	0.00053392	0.05926554	0.23706215	0.01404962	0.85167215	0.25440149
X11-X12	0.052792	52792	82	0.902	3.17781104	20.0526333	5.5	0.4	1.65765491	0.56	0.0136237	70	0.011	0.0006079	0.06222094	0.24888375	0.01548578	0.87975549	1.55346193

Tableau : Débits de dimensionnement des tronçons X1 à X12 pour le côté gauche de la rue 10.137

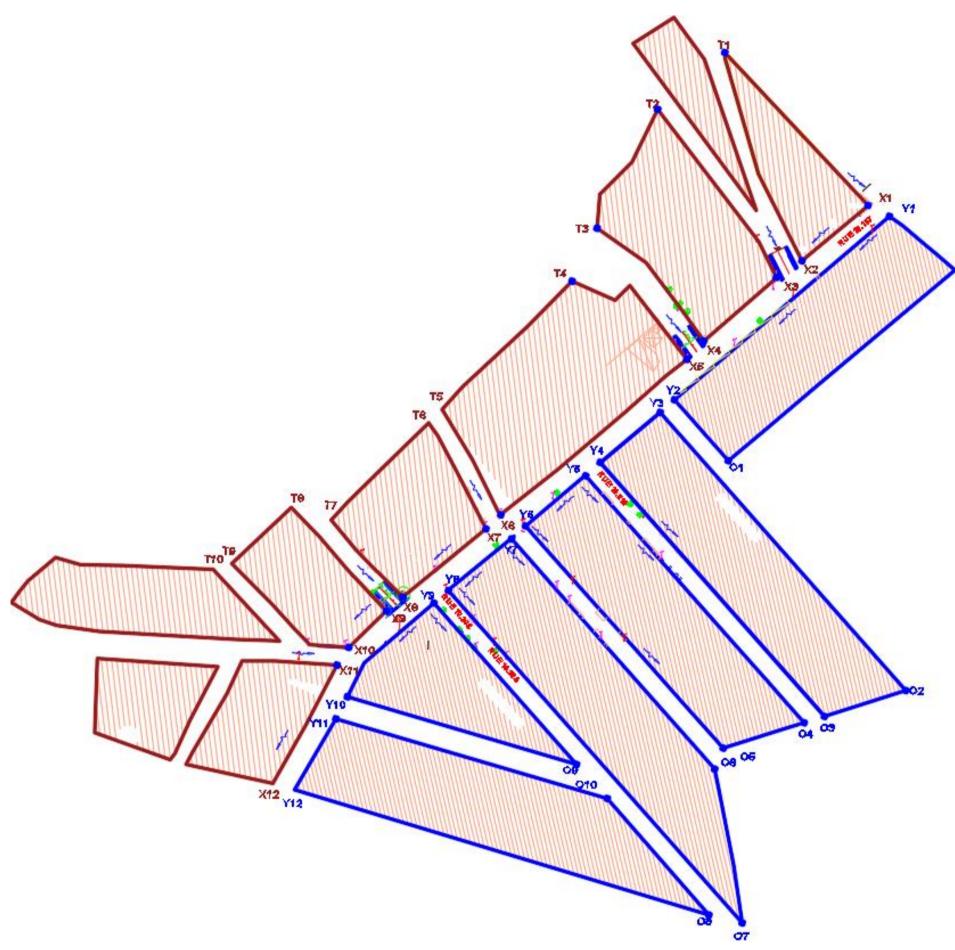


Figure : Vue complète au-dessus de la rue 10.137

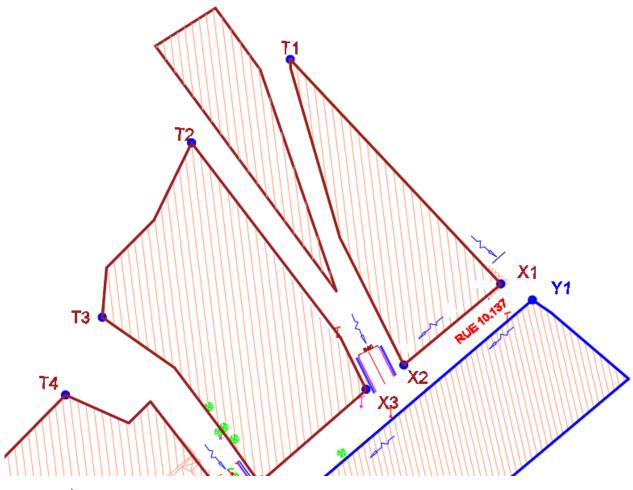


Figure : 1ère partie de la vue au-dessus de la rue 10.137

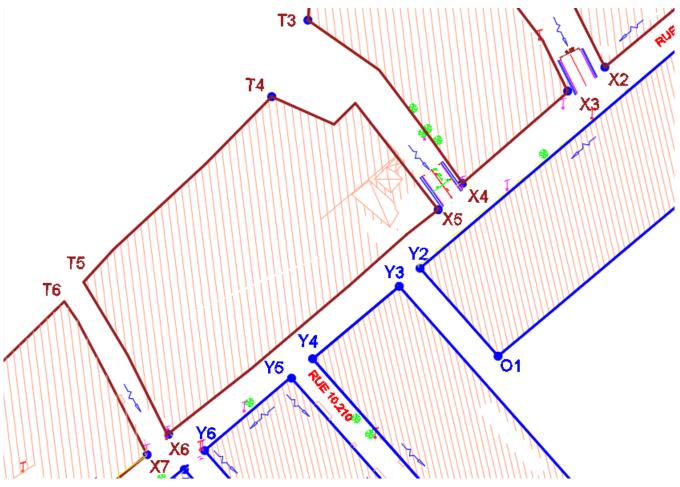


Figure: 2ème partie de la vue au-dessus de la rue 10.137

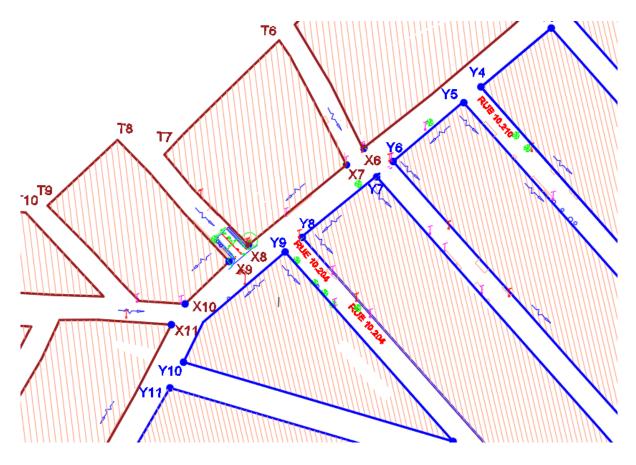


Figure: 3ème partie de la vue au-dessus de la rue 10.137

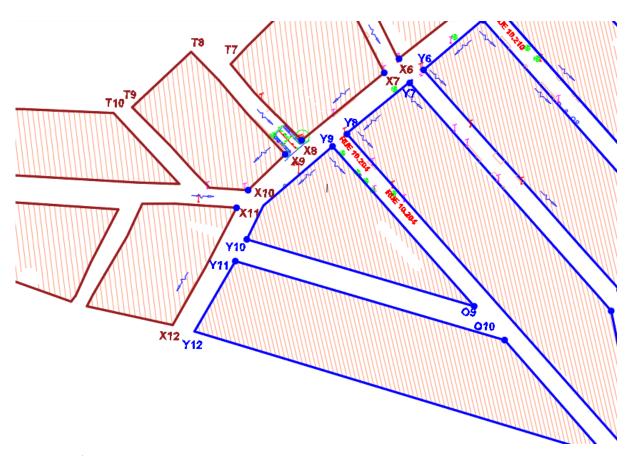


Figure : 4ème partie de la vue au-dessus de la rue 10.137

A ceci s'ajoute le calcul des coefficients de ruissellement en fonction de la pente choisie et de la couverture végétale.

Nature de la couverture végétale	Valeur de C			
	Pente	Pente	Pente	Pente
	Moins de 5%	De 5% à 10%	De 10% à 30%	Plus de 30%
Plateforme et chaussées de routes	0.9	0.9	0.9	0.9
Terrain dénudé ou à végétation non couvrante	0.8	0.85	0.9	0.9
Terrain attaqué par l'érosion				
Petite brousse	0.65	0.7	0.75	0.8
Culture couvrante, céréales				
Prairies	0.3	0.35	0.45	0.5
Brousse dense, savane				
Foret ordinaire en futaies	0.25	0.25	0.3	0.45
Grande forêt primaire	0.18	0.2	0.25	0.3

Tableau : Coefficients de ruissellement en fonction de la pente

(Source : Assainissement des agglomérations ; Louis COLOMBET avec la collaboration du cabinet d'études *Marces Merlin*)

Pour les surfaces plus importantes, et suivant le degré d'urbanisation, les valeurs suivantes peuvent convenir en première approximation :

Le tableau ci-dessous présente les résultats obtenus suite aux calculs des paramètres cinématiques.

Désignation		Notation (unité)	Valeur
Vitesse du vél	nicule	V(Km/h)	60
Distance ou lo	ngueur	d0(m)	35
élémentaire d	e freinage		
Distance d'ar	rêt en	d1(m)	70
alignement dr	oit		
Distance d'ar	rêt en	d2(m)	80
courbe			
Distance de	Minimale	dd(m)	250
visibilité de	Normale	dn(m)	350
dépassement			
Distance de vi	sibilité de	dMd(m)	120
manouvre de			
dépassement			
Distance de vi	sibilité	dv(m)	67
dans un virag	e		

<u>Tableau</u>: Résultats des calculs des paramètres cinématiques. (Source cours de route, ING Issoufou TAMBOURA)

Tc est le temps de concentration en minute. Il peut être calculé à l'aide de nombreuses formules dont celle de KIRPICH et celle de RICHARDS qui est plus difficile et longue d'emploi. La

carte topographique de la zone ne présentant pas de variation de côte, nous adopterons la formule de KIRPICH en supposant une dénivelée H=0.5~m

Annexe IV : Étude des ouvrages hydrauliques

Hypothèses de calcul

Réglementation

Les actions à prendre en compte dans le calcul des caniveaux sont définies par les textes réglementaires normatif en particulier le titre 2 du fascicule 61 du cahier des prescriptions communes (CPC) « Conception, calcul et épreuves des ouvrages d'arts ». Les sollicitations sont déterminées à partir de la METHODE DES TRANCHEES. Le calcul du ferraillage se fera suivant les règles techniques de conception et de calcul des ouvrages et constructions en béton armé de la méthode des états limites dites règles B.A.E.L 91 modifié 99.

Matériaux

Le Béton

Béton B25

Résistance à la compression à 28 jours : fc28 = 25MPa

Résistance à la traction à 28 jours : ft28 = 0,6 + 0,06 fc28 = 2,1 MPa

Contrainte à l'état limite du béton $f_{bc} = \frac{0.85*f_{c28}}{y_h \theta}$

 $f_{bc} = \frac{0.85 * 25}{1 * 1.5} = 14.17 Mpa$

Poids volumique béton armé: 25kN/m³

Contrainte limite de béton comprimé à l'ELS : $\sigma_{bc} = 0$, 6 * fc28

 $\sigma_{bc} = 0.6 * 25 = 15 MPa$.

L'acier

Nuance: Haute Adhérence Fe 400/ Fissuration préjudiciable

Limite d'élasticité Fe=400MPa

Enrobage: 3cm

Coefficient de sécurité $\gamma s = 1,15$

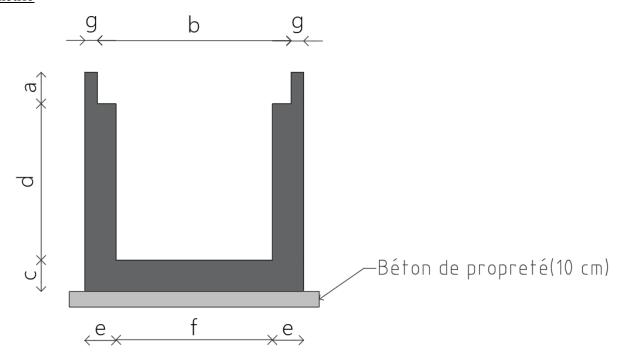
Coefficient d'adhérence : $\eta = 1.6$

Contrainte limite de traction des aciers à l'ELS, pour une fissuration préjudiciable

$$\sigma_s = min\left[\frac{2}{3}fe; max(0.5fe; 110\sqrt{\eta * f_{t28}})\right]$$

$$\sigma_s = 210,63 Mpa$$

$$\sigma_{st} = \frac{fe}{\gamma_s} = \frac{400}{1.5} = 347,83 MPa$$


Remblais

Angle de frottement interne $\phi = 35^{\circ}$

Coefficient de poussée des terres Ka = 0.33

Poids volumique moyen pris pour les matériaux de remblai y compris le bitume :20 kN/m3

Géométrie

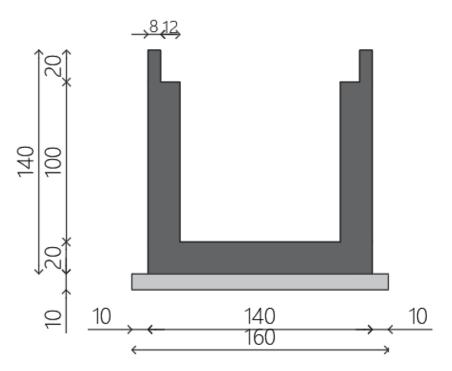


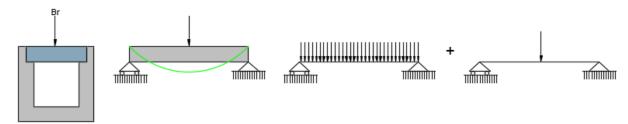
Figure: Représentation et dimensions des parties du caniveau 100*100

Epaisseur de la lèvre de feuillure a = 20 cm

Portée de la dalle amovible b = 124 cm

Epaisseur de la dalle amovible c = 20 cm

Hauteur hydraulique du caniveau d = 100 cm


Epaisseur du voile e = 20 cm

Largeur hydraulique du caniveau f = 100 cm

Redent de la feuillure g = 8 cm

> Calcul des armatures

Cas 1 : La roue est appliquée en charge ponctuelle à mi-travée de la dalle amovible.

Les charges à considérer sur la dalle amovible sont :

- Son poids propre
- La charge concentrée d'une roue isolée de 10T (voir Titre II de Fascicule 61) :
 dans tout ce qui suit cette roue sera désignée par Br.

La dalle amovible sera dimensionnée en flexion simple et les charges à considérer ont les valeurs suivantes :

• Le poids propre de la dalle amovible au mètre linéaire

$$Pd = c * \gamma b * h * 1ml = 0.20 * 25 * (0.5) * 1ml = 2.5 kN/ml$$

- La charge concentrée d'une roue isolée de 100 kN (voir Titre II de Fascicule 61) $Br = 100 \times 1 = 100 kN/ml$
- Coefficient de majoration dynamique de la dalle amovible

$$C = 1 + \frac{0.4}{(1 + 0.2L)} + \frac{0.6}{(1 + 4\left(\frac{G}{S}\right))} = 1,90$$

Longueur de l'élément porteur L (m) : portée dalle amovible = 0.8 m

G charge permanente : Poids propre de la dalle amovible

S charge Maximale : Poids de la roue isolée

- Calcul des sollicitations
- A l'Etat Limite Ultime (ELU)

$$Pu_{d} = 1,35Pd = 1,35 \times 2,5 = 3,38 \, kN$$

$$Pu_{Br} = 1,5B_{r} = 1,5 \times 100 = 150 \, kN$$

$$Mu_{d} = \frac{Pu_{d} * l^{2}}{8} + \frac{Pu_{Br} * l}{4}$$

$$Mu_{d} = \frac{3.38 * 0.8^{2}}{8} + \frac{150 * 0.8}{4} = 30.3kN.m$$

$$Mu = Mu_{d} * c = 30.3 * 1.9 = 57.57 \, kN.m$$

• A l'Etat Limite de Service (ELS)

$$Pser_d = Pd = 1 * 2.5 = 2.5 kN$$

$$Pser_{Br} = Br = 1 * 100 = 100 \, kN$$

$$M_{serd} = \frac{Pser_d * l^2}{8} + \frac{Pser_{Br} * l}{4}$$

$$M_{serd} = \frac{2.5 * 0.8^2}{8} + \frac{100 * 0.8}{4} = 20.2 \, kN. \, m$$

$$M_{ser} = M_{serd} * c = 20.2 * 1.9 = 38.38 \, kN. \, m$$

Calcul des sections d'acier

• A l'Etat Limite Ultime (ELU)

Moment réduit

$$\mu_u = \frac{M_u}{b * d^2 * f_{bu}} = \frac{57.57 * 10^{-3}}{0.5 * (0.9 * 0.2)^2 * 14.17} = 0.251 \, MN. m$$

Moment résistant ultime

$$\begin{split} \mu l &= \frac{1}{10^4} (3440 \% + 49 f c_{28} - 3050) K*\Theta \\ \% &= \frac{M_u}{M_{ser}} = \frac{57.57}{38.38} = 1.50 \\ \mu l &= \frac{1}{10^4} ((3440*1.5) + (49*25)) - (3050*1) \\ \mu l &= 0.334 > \mu_u \rightarrow Pas \ d'acier \ comprim\'e: A' = 0 \\ M_{ru} &= u*b*d^2*fbu = 0.334*(0.9*0.2)^2*0.5*14.17 \\ M_{ru} &= 0.077 MN. m \end{split}$$

Moment résiduel

$$Mres = Mru - Mu = 0,077 - 0,058$$

$$Mres = 0.019 MN.m$$

Position du bras de levier

$$\alpha_u = 1,25(1 - \sqrt{1 - 2\mu_u} = 1,25(1 - \sqrt{1 - 2 * 0.334} = 0,530$$

$$z_u = d(1 - 0.4\alpha_u) = 0.18(1 - 0.4 * 0.53) = 0.142 m$$

Section d'acier tendu

$$A_{st} = \frac{1}{\sigma_{st}} \left(\frac{Mru}{Zu} + \frac{Mres}{d - d'} \right) = \frac{1}{3477.83} \left(\frac{0.077}{0.142} + \frac{0.019}{0.15} \right)$$

$$A_{st} = 10.90 \ cm^2$$

- Condition de non fragilité

$$A_{stmin} = 0.23 * b_0 * d * \frac{f_{c28}}{f_e} = 0.23 * 0.18 * 0.5 * \frac{25}{400} = 12.93 cm^2/ml$$

 $A_{st} > A_{stmin} \ donc \ on \ retient \ une \ section \ d'acier \ de \ A_{st} = 12.93 cm^2/ml$

A l'Etat Limite de Service (ELS)

$$\overline{\alpha_{ser}} = \frac{n * \overline{\sigma_{bc}}}{n * \overline{\sigma_{bc}} + \sigma_{st}} = \frac{15 * 15}{15 * 15 + 201.63}$$

$$\overline{\alpha_{ser}} = 0.527$$

Fibre neutre

$$\gamma_{ser} = \overline{\alpha_{ser}} * d = 0.527 * 0.18 = 0.0949 \text{ m}$$

$$z_{ser} = d - \frac{\gamma_{ser}}{3} = 0.18 - \frac{0.095}{3} = 0.148m$$

Moment réduit

$$M_{serb} = \frac{1}{2}b_0 * z_{ser} * \overline{\alpha_{ser}} * \gamma_{ser} = \frac{1}{2} * 0.5 * 0.148 * 0.094 * 15$$

$$M_{serb} = 0.0522 \, kN. m$$

$$M_{ser} < M_{serb} \rightarrow Pas \ d'acier \ comprimé$$

$$A_{st} = \frac{M_{ser}}{Z_{ser} * \sigma_s} = \frac{38.38 * 10^{-3}}{0.148 * 201.63} = 12.86 cm^2$$

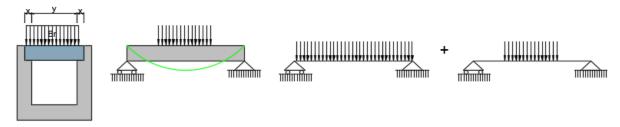
Condition de non fragilité

$$A_{stmin} = 0.23 * b_0 * d * \frac{f_{c28}}{f_e} = 0.23 * 0.5 * 0.18 * \frac{2.1}{400}$$

$$A_{stmin} = 10.8cm^2$$

$A_{st} > A_{stmin} \rightarrow La \; section \; retenue \; est \; A_{st} = 12.86 \; cm^2 \; / ml$

	1	2	3	4	5	6	7	8	9
на 6	0,28	0,57	0,85	1,13	1,41	1,70	1,98	2,26	2,54
на 8	0,50	1,01	1,51	2,01	2,51	3,02	3,52	4,02	4,52
HA 10	0,79	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07
HA 12	1,13	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18
HA 14	1,54	3,08	4,62	6,16	7,70	9,24	10,78	12,32	13,85
HA 16	2,01	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,10
HA 20	3,14	6,28	9,42	12,57	15,71	18,85	21,99	25,13	28,27
HA 25	4,91	9,82	14,73	19,63	24,54	29,45	34,36	39,27	44,18
HA 32	8,04	16,08	24,13	32,17	40,21	48,25	56,30	64,34	72,38
HA 40	12,57	25,13	37,70	50,27	62,83	75,40	87,96	100,53	113,10



Aciers retenus: 7HA10 e = 20cm, 7HA12 e = 25cm

Cas 2 : La charge de la roue est partiellement répartie

Conformément à la fascicule 62, l'impact de la roue Br à 30x60, ce qui en réalité transforme la charge ponctuelle Br en charge partiellement répartie sur la dalle amovible telle que schématisée ci-après.

Les charges à considérer sur la dalle amovible sont :

- Son poids propre
- La charge concentrée d'une roue isolée de 10T sur une longueur de 0,6m soit la longueur d'effet de la roue isolée sur le caniveau (m) : y
- La dalle amovible sera dimensionnée en flexion simple et les charges à considérer ont les valeurs suivantes :
- Le poids propre de la dalle amovible au mètre linéaire

$$Pd = c * \gamma * b * h * 1ml = 0.20 * 25 * (0.5) * 1ml = 2.5 kN/ml$$

- La charge concentrée d'une roue isolée de 100 kN (voir Titre II de Fascicule 61) $Br = 166.67 \ kN/ml$
- Coefficient de majoration dynamique de la dalle amovible

$$C = 1 + \frac{0.4}{(1 + 0.2L)} + \frac{0.6}{(1 + 4(\frac{G}{s}))} = 1,90$$

- Calcul des sollicitations
- A l'Etat Limite ultime (ELU)

Moment de flexion due à la roue Br

$$M \ maxBr = Br \frac{2x + y}{2l} \left[x + \frac{y(2x + y)}{4l} \right] = 7.5 \ kN$$

Moment de flexion dû au poids propre de la dalle amovible

$$\begin{split} M_d &= \frac{P_d * l^2}{8} = \frac{2.5 * 0.8^2}{8} = 0.2 \ kN.m \\ Mu_d &= 1.35 M_d + 1.5 M_{Br} = (1.35 * 0.2) + (1.5 * 7.5) \\ Mu_d &= 11.52 kN.m \\ Mserd &= Md + MBr = 0.2 + 7.5 = 7,70 \ kN.m \\ Mu &= Mud * c = 11,52 * 1,9 = 21,888 \ kN.m \\ Mser &= Mserd * c = 7,70 * 1,90 = 11,44 \ kN.m \\ \mu_u &= \frac{M_u}{b * d^2 * f_{bu}} = \frac{21.888 * 10^{-3}}{0.5 * (0.9 * 0.2)^2 * 14.17} = 0.0954 \ MN.m \\ \mu_u &< 0.186 \rightarrow pas \ d'aciercomprimé \ au \ pivot \ A \rightarrow A' = 0 \\ \alpha_u &= 1,25(1 - \sqrt{1 - 2\mu_u} = 1,25(1 - \sqrt{1 - 2 * 0.0954} = 0,126 \\ z_u &= d(1 - 0.4\alpha_u) = 0.18(1 - 0.4 * 0.126) = 0.171 \ m \\ A_{st} &= \frac{M_u}{z_{cor} * \sigma_c} = \frac{21.888 * 10^{-3}}{0.171 * 347.83} = 3.68 \ cm^2/ml \end{split}$$

Condition de non fragilité

$$A_{stmin} = 0.23 * b_0 * d * \frac{f_{c28}}{f_a} = 0.23 * 0.5 * 0.18 * \frac{2.1}{400} = 1.09 cm^2$$

 $A_{st} > A_{stmin}$ donc on retient une section d'acier de $A_{st} = 3.68$ cm²

• A l'Etat Limite de service (ELS)

$$\overline{\alpha_{ser}} = \frac{n * \overline{\sigma_{bc}}}{n * \overline{\sigma_{bc}} + \sigma_{st}} = \frac{15 * 15}{15 * 15 + 201.63}$$

$$\overline{\alpha_{ser}} = 0.527$$

Fibre neutre

$$\gamma_{ser} = \overline{\alpha_{ser}} * d = 0.527 * 0.18 = 0.0949 \text{ m}$$

$$z_{ser} = d - \frac{\gamma_{ser}}{3} = 0.18 - \frac{0.095}{3} = 0.148m$$

Moment réduit

$$M_{serb} = \frac{1}{2}b_0 * z_{ser} * \overline{\alpha_{ser}} * \gamma_{ser} = \frac{1}{2} * 0.5 * 0.148 * 0.094 * 15$$

$$M_{serb} = 0.0522 \, kN.m$$

$$M_{ser} < M_{serb} \rightarrow Pas \ d'acier \ comprimé$$

$$A_{st} = \frac{M_{ser}}{z_{ser} * \sigma_s} = \frac{14.63 * 10^{-3}}{0.148 * 201.63} = 4.9 cm^2$$

- Condition de non fragilité

$$A_{stmin} = 0.23 * b_0 * d * \frac{f_{c28}}{f_e} = 0.23 * 0.5 * 0.18 * \frac{2.1}{400}$$

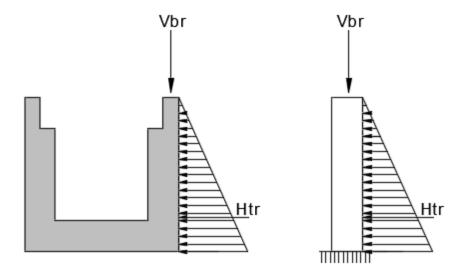
$$A_{stmin} = 1.09cm^2$$

$$A_{st} < A_{stmin} \rightarrow La \ section \ retenue \ est \ A_{st} = 4.90 \ cm^2/ml$$

$$A_{stmin} = \max(A_{st} \text{ à } l'ELU; A_{st} \text{ à } l'ELS) = 4.90 \text{ } cm^2/ml$$

	1	2	3	4	5	6	7	8	9
на 6	0,28	0,57	0,85	1,13	1,41	1,70	1,98	2,26	2,54
на 8	0,50	1,01	1,51	2,01	2,51	3,02	3,52	4,02	4,52
HA 10	0,79	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07
HA 12	1,13	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18
HA 14	1,54	3,08	4,62	6,16	7,70	9,24	10,78	12,32	13,85
HA 16	2,01	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,10
HA 20	3,14	6,28	9,42	12,57	15,71	18,85	21,99	25,13	28,27
HA 25	4,91	9,82	14,73	19,63	24,54	29,45	34,36	39,27	44,18
HA 32	8,04	16,08	24,13	32,17	40,21	48,25	56,30	64,34	72,38
HA 40	12,57	25,13	37,70	50,27	62,83	75,40	87,96	100,53	113,10

Aciers retenus:
$$4 HA8 e = 15 cm$$
, $3HA12 e = 25 cm$


Au terme du calcul de la dalle amovible suivant ces deux cas, nous pouvons conclure que la charge ponctuelle est plus agressive et la dalle amovible est plus ferraillée. Nous allons ferrailler la dalle amovible sous charge ponctuelle car elle offre plus de sécurité.

Piédroit

Cas 1 : La roue est appliquée sous forme de charge ponctuelle sur la dalle amovible.

Les charges à considérer sur le piédroit :

- Son poids propre
- Le poids de la dalle amovible chargée
- La charge *Vbr*
- La poussée des terres

Les pieds droits étant calculés en flexion composée, on a

$$Pd = b * d * y * h * 1ml$$

$$Pd = 0.2 * 25 * 0.8 * 0.5$$

$$Pd = 2KN/ml$$

Coefficient de majoration dynamique (piédroits et radier) : C = 1 + (0.4/(1 + 0.2 *

$$L) + (0.6/(1 + 4 * (G/S))) = 1.639$$

Charge:
$$Vbr = \frac{Br}{2} * c * 1 = \frac{100}{2} * 1.639 * 1 = 81.95 \ kN/ml$$

Poussée des terres :
$$Ht = y * Ka * \frac{(d+c)^2}{2} * 1 = 20 * 0.33 * \frac{(1.15+0.2)^2}{2} * 1$$

$$Ht = 6.014 \ kN/ml$$

• A l'Etat Limite ultime (ELU)

$$Nu = 1.35 \times (Pd + Pp) + 1.5VBr$$

$$Nu = 1.35 \times (2 + (0.2 * 1.35 * 25)) + (1.5 * 81.95)$$

$$Nu = 134.7354 \ kN/ml$$

$$Pu = 1.35 * Ht = 1.35 * 6.014 = 8.119 \ kN/ml$$

$$Mu = \frac{Pu * l^2}{3} = \frac{8.119 * 1.35^2}{3}$$

$$Mu = 4.932 \, kN. \, m$$

• A l'Etat Limite de service (ELS)

$$Nser = (Pd + Pp) + VBr = (2 + (0.2 * 1.35 * 25) + 81.95$$

$$Nser = 90.70 \, kN/mL$$

$$Pser = Ht = 6.014 \, kN/mL$$

$$Mser = \frac{Pser * l^2}{3} = \frac{6.014 * 1.35^2}{3}$$

$$Mser = 3.654 \, kN. \, m$$

• A l'Etat Limite ultime (ELU)

Sollicitations ultimes corrigées pour le flambement

Elancement géométrique :

$$Lf = 0.7L_0 = 0.7 * 1.55$$

$$Lf = 0.95 \, m$$

Pièce chargée de façon excentrée :

$$\frac{Lf}{h} < max\{15; 20xe1/h\} = 4.75 < 15$$

Excentricité du second ordre

$$\alpha = 10\left(1 - \frac{Mu}{1.5Mser}\right) = 10\left(1 - \frac{4.932}{1.5 * 3.654}\right) = 1$$

$$e2 = 3 * \frac{Lf^2}{10^4 * h} * (2 + (\alpha * \varphi))$$

$$e2 = 3 * \frac{0.95^2}{10^4 * 0.2} * (2 + (1 * 2))$$

$$e2 = 0.00542 \ m = 0.542 \ cm$$

$$ea = \max(0.02; \frac{L}{250})$$

$$ea = 0.02 cm$$

$$e1 = \frac{Mu}{Nu} + ea = \frac{4.932}{134.735} + 0.02 = 0.05661 cm$$

Sollicitations corrigées pour le calcul en flexion composée :

$$Nu = Ni = 134.735 \, kN/mL$$

$$M = Nu(e1 + e2)$$

$$M = 134.735(0.5661 + 0.00542)$$

$$M = 8.35761 \, kN/mL$$

$$e0 = e1 + e2$$

$$e0 = 0.5661 + 0.00542$$

$$e0 = 0.06203 m$$

$$ea = e0 + \left(d - \frac{h}{2}\right)$$

$$ea = 0.06203 + \left((0.2 * 0.9) - \frac{0.2}{2} \right)$$

$$ea = 0.142 m$$

$$Mu_A = Nu * e_a$$

$$Mu_A = 134.735 * 0.142$$

$$Mu_A = 19.1324 \ kN/mL$$

Moment réduit de référence à l'ELU

• Moment réduit

$$\mu_{BC} = 0.8 * \frac{h}{d} * \left(1 - 0.4 \frac{h}{d}\right)$$

$$\mu_{BC} = 0.8 * \frac{0.2}{0.27} * \left(1 - 0.4 \frac{0.2}{0.27}\right)$$

$$\mu_{BC} = 0.329$$

• Moment réduit agissant

$$\mu_{uA} = \frac{M_{uA}}{b * d^2 * f_{bu}} = \frac{19.134 * 10^{-3}}{1.55 * 0.27^2 * 14.17}$$

$$\mu_{uA} = 0.0926$$

$$\mu_{uA} < \mu_{BC} \rightarrow section \ partiellement \ comprimée$$

Moment réduit de référence à l'ELS

$$Nser = Ng + Nq$$

$$Nser = 90.70.m$$

$$Mser = Mg + Mq$$

$$Mser = 3.654.m$$

$$e_{ser} = \frac{Mser}{Nser} = \frac{3.654}{90.70}$$

$$e_{ser} = 0.04028 \, m$$

Sollicitations ramendées au centre de gravité des aciers tendus

$$ea = e0 + \left(d - \frac{h}{2}\right)$$

$$ea = 0.06203 + \left(0.27 - \frac{0.2}{2}\right)$$

$$ea = 0.232 m$$

$$Mser_A = Nser * ea$$

$$Mser_A = 90.7 * 0.232$$

$$Mser_A = 21.04 \text{ KN.m}$$

Moment réduit :

$$Y_M = \frac{Mu}{Mser}$$

$$Y_M = \frac{4.932}{3.654}$$

$$Y_M = 1.35$$

$$10^4 \mu_{tu} = (3440 * \theta * Y_M) + (49 * \frac{fc28}{\theta} - 3100)$$

$$10^4 \mu_{tu} = (3440 * 1 * 1.35) + (49 * \frac{25}{1} - 3100)$$

$$10^4 \mu_{tu} = 0.277$$

On a

 $\mu_{uA} < \mu_{BC} \rightarrow Section \ partiellement \ comprimée$

$$\mu_{tA} < \mu_{tu} \rightarrow pas \ d'acier \ comprimé$$

Paramètre de déformation

$$\alpha_{uA} = 1.25 \left(1 - \sqrt{1 - 2\mu_{uA}} \right) = 1.25 \left(1 - \sqrt{1 - 2 * 0.2084} \right) = 0.295$$

$$z_{uA} = d \left(1 - 0.4\alpha_{uA} \right) = 0.27 * \left(1 - 0.4 * 0.295 \right) = 0.238 \, m$$

$$A_{st} = \frac{Mu}{Zu * \sigma_s} = \frac{19.1342 * 10^{-3}}{0.238 * 347.83} = 2.311 \, cm^2/ml$$

Section théorique d'acier

$$Au = A - \frac{N_{uA}}{\sigma s} = 0.0002311 - \frac{134.735 * 10^{-3}}{347.83}$$

$$Au = -1.56 cm^2$$

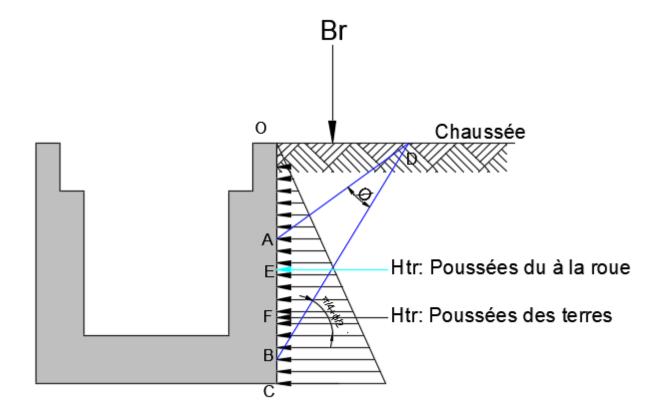
Condition de non fragilité

$$A_{stmin} = 0.23 * b_0 * d * \frac{f_{t28}}{f_e} = 0.23 * 1.55 * 0.27 * \frac{2.1}{400}$$

$$A_{stmin} = 5.05 cm^2/ml$$

$$A_u < A_{stmin} \rightarrow La \ section \ retenue \ est \ A_{st} = 5.05 \ cm^2 \ /ml$$

	1	2	3	4	5	6	7	8	9
на 6	0,28	0,57	0,85	1,13	1,41	1,70	1,98	2,26	2,54
НА 8	0,50	1,01	1,51	2,01	2,51	3,02	3,52	4,02	4,52
HA 10	0,79	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07
HA 12	1,13	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18
HA 14	1,54	3,08	4,62	6,16	7,70	9,24	10,78	12,32	13,85
HA 16	2,01	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,10
HA 20	3,14	6,28	9,42	12,57	15,71	18,85	21,99	25,13	28,27
HA 25	4,91	9,82	14,73	19,63	24,54	29,45	34,36	39,27	44,18
HA 32	8,04	16,08	24,13	32,17	40,21	48,25	56,30	64,34	72,38
HA 40	12,57	25,13	37,70	50,27	62,83	75,40	87,96	100,53	113,10


Tableau : Sections des barres indépendantes

Aciers retenus: 6HA8e = 15 cm, 4HA10e = 20 cm

Cas 2 : La roue est appliquée sous forme de charge ponctuelle sur le remblai.

Les charges à considérer sur le piédroit :

- Le poids propre du pied droit
- Le poids de la dalle amovible
- Le poids de la roue sur le remblai
- La poussée des terres

Angle de frottement interne du sol Fi : $\phi = 35^{\circ}$

Distance de l'axe de la surface d'impact de la roue au piédroit : OD=0.15 m

Zone du piédroit soumis à aucune poussée de roue :

$$OA = OD * \tan(\pi \phi / 180) = 0.11 m$$

$$OB = OD * \tan((\pi \phi / 180)/2) + (\pi/4) = 0.29 m$$

Angle longitudinal de diffusion de la poussée de la roue :

$$a = (180 * a \tan(0.5))/\pi = 26.55^{\circ}$$

Hauteur de la paroi influencée

$$AB = 0B - 0A = 0.29 - 0.11 = 0.18m$$

$$AE = AB/3 = 0.06m$$

$$EC = (c + d + OA + AE) *0.5 c=0.2$$
 (épaisseur de la dalle amovible)

d = 1,15 Hauteur hydraulique

Distance de l'axe de la surface d'impact de la roue au	OD	0.15	m
piédroit			
Zone du piédroit soumis à aucune poussée de roue	OA	0.11	m
	OB	0.29	m
Hauteur de paroi influencée	AB	0.18	m
	AE	0.06	m
	EC	0.76	m
Angle longitudinal de diffusion de la poussée de la		26.55	Degré °
roue			

Résultats de calcul des sollicitations :

Résultante Hbr des poussées latérales dues à Br :

$$HBr = Br * \tan((\pi /4) - (\pi \phi/180)/2) = 17.63994 \, kN$$

Moment d'encastrement dû à
$$Hbr : Mbr = Hbr * EC = 13,406 kN / ml$$

Résultante Ht des poussées latérales des terres : $Ht = 6,014 \, kN/ml$

Moment d'encastrement dû à $Ht: Mt = 4,932 \ kN.m$

SOLLICITATIONS

Moment d'encastrement dû à ces poussées à l'ELU:

$$Mu = 1.35 * Mbr + 1.5 * Mt = 26.77 kN.m$$

Moment d'encastrement dû à ces poussées à l'ELS :

$$Mser = Mbr + Mt = 18,338 kN.m$$

Moment réduit

$$\mu_u = \frac{M_u}{b * d^2 * f_{bu}} = \frac{26.77 * 10^{-3}}{0.35 * (0.9 * 0.2)^2 * 14.17} = 0.043 \, MN. \, m$$

$$\mu_{\nu} < 0.186 \rightarrow Pas\ d'aciercomprimé\ A' = 0$$

$$\alpha_u = 1,25(1 - \sqrt{1 - 2\mu_u} = 1,25(1 - \sqrt{1 - 2 * 0.043} = 0,054)$$

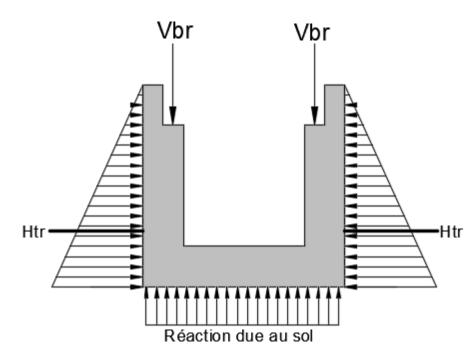
$$z_u = d(1 - 0.4\alpha_u) = 0.27(1 - 0.4 * 0.054) = 0.26 m$$

$$A_{st} = \frac{M_u}{z_u * \sigma_s} = \frac{26.77 * 10^{-3}}{0.26 * 347.83} = 2.96 \text{ cm}^2(Acier \text{ th\'eorique})$$

Condition de non fragilité

$$A_{stmin} = 0.23 * b_0 * d * \frac{f_{t28}}{f_e} = 0.23 * 1.55 * 0.27 * \frac{2.1}{400}$$

$$A_{stmin} = 5.05 \ cm^2$$


 $A_u < A_{stmin} \rightarrow La \; section \; retenue \; est \; A_{st} = 5,05 \; cm^2/ml$

	1	2	3	4	5	6	7	8	9
на 6	0,28	0,57	0,85	1,13	1,41	1,70	1,98	2,26	2,54
НА 8	0,50	1,01	1,51	2,01	2,51	3,02	3,52	4,02	4,52
HA 10	0,79	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07
HA 12	1,13	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18
HA 14	1,54	3,08	4,62	6,16	7,70	9,24	10,78	12,32	13,85
HA 16	2,01	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,10
HA 20	3,14	6,28	9,42	12,57	15,71	18,85	21,99	25,13	28,27
HA 25	4,91	9,82	14,73	19,63	24,54	29,45	34,36	39,27	44,18
HA 32	8,04	16,08	24,13	32,17	40,21	48,25	56,30	64,34	72,38
HA 40	12,57	25,13	37,70	50,27	62,83	75,40	87,96	100,53	113,10

Aciers retenus: 6HA8e = 15 cm et 4HA10e = 20 cm

Radier

Cas 1

Les charges à considérer sont :

- Le poids propre du caniveau
- La réaction due au sol

Le radier sera dimensionné en flexion simple

• Poids propre des pieds droits

$$Pp = 25 * 0.2 * 1.35 * 2$$

$$Pp = 13.5 \, kN/ml$$

• Poids propre de la dalle amovible

$$Pd = 25 * 0.2 * 1.35$$

$$Pd = 6.75 \, kN/ml$$

$$Vbr = 100 * 1 = 100 \ kN/ml$$

- A l'Etat Limite Ultime (ELU)

$$Pu = \frac{1.35(Pd + Pp) + 1.5 * Vbr}{0.8}$$

$$Pu = \frac{1.35(6.75 + 13.5) + 1.5 * 100}{0.8} = 221.67 kN$$

$$Mu = \frac{P_u * l^2}{24} = \frac{221.67 * 0.8^2}{24} = 5.91 kN. m$$

- A l'Etat Limite de service (ELS)

$$Pser = Pd + Pp + VBr$$

$$Pser = 6.75 + 13.5 + 100$$

$$Pser = 120.25 \, kN$$

$$Mser = \frac{P_{ser} * l^2}{24} = \frac{120.25 * 0.8^2}{24} = 3.21 \text{ kN.m}$$

- A l'Etat Limite ultime (ELU)

Moment réduit

$$\mu_u = \frac{M_u}{b * d^2 * f_{bu}} = \frac{5.91 * 10^{-3}}{1 * 0.18^2 * 14.17} = 0.0129 \text{ MN. m}$$

$$\mu_u < 0.186 \rightarrow Pas\ d'aciercomprimé\ A' = 0$$

$$\alpha_u = 1,25(1 - \sqrt{1 - 2\mu_u}) = 1,25(1 - \sqrt{1 - 2 * 0.0129}) = 0,0162$$

$$z_u = d(1 - 0.4\alpha_u) = 0.27(1 - 0.4 * 0.0162) = 0.134 m$$

$$A_{st} = \frac{M_u}{z_u * \sigma_s} = \frac{5.91 * 10^{-3}}{0.134 * 347.83} = 1.26 \text{ cm}^2(Acier \text{ th\'eorique})$$

- Condition de non fragilité

$$A_{stmin} = 0.23 * b_0 * d * \frac{f_{t28}}{f_e} = 0.23 * 1 * 0.18 * \frac{2.1}{400}$$

$$A_{stmin} = 2.174 \ cm^2$$

 $A_u < A_{stmin} \rightarrow La$ section retenue est $A_{st} = 2.174$ cm²

A l'Etat Limite de Service (ELS)

$$\overline{\alpha_{ser}} = \frac{n * \overline{\sigma_{bc}}}{n * \overline{\sigma_{bc}} + \sigma_{st}} = \frac{15 * 15}{15 * 15 + 201.63}$$

$$\overline{\alpha_{ser}} = 0.527$$

Fibre neutre

$$\gamma_{ser} = \overline{\alpha_{ser}} * d = 0.527 * 0.18 = 0.0949 \text{ m}$$

$$z_{ser} = d - \frac{\gamma_{ser}}{3} = 0.18 - \frac{0.0948}{3} = 0.148 \, m$$

Moment réduit

$$M_{serb} = \frac{1}{2}b_0 * z_{ser} * \overline{\alpha_{ser}} * \gamma_{ser} = \frac{1}{2} * 1 * 0.148 * 0.527 * 15$$

$$M_{serb} = 5.85 \, kN. \, m$$

 $M_{ser} < M_{serb} \rightarrow Pas d'acier comprimé$

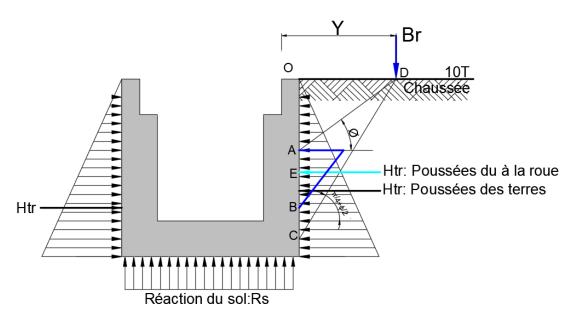
$$A_{st} = \frac{M_{ser}}{z_{ser} * \sigma_s} = \frac{3.21 * 10^{-3}}{0.148 * 201.63} = 1.076 \text{ cm}^2/\text{ml}$$

- Condition de non fragilité

$$A_{stmin} = 0.23 * b_0 * d * \frac{f_{c28}}{f_e} = 0.23 * 1 * 0.18 * \frac{2.1}{400}$$

$$A_{stmin} = 2.174 \ cm^2/ml$$

$A_{st} < A_{stmin} \rightarrow La \; section \; retenue \; est \; A_{st} = 2.174 \; cm^2/ml$


	1	2	3	4	5	6	7	8	9
на 6	0,28	0,57	0,85	1,13	1,41	1,70	1,98	2,26	2,54
НА 8	0,50	1,01	1,51	2,01	2,51	3,02	3,52	4,02	4,52
HA 10	0,79	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07
HA 12	1,13	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18
HA 14	1,54	3,08	4,62	6,16	7,70	9,24	10,78	12,32	13,85
HA 16	2,01	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,10
HA 20	3,14	6,28	9,42	12,57	15,71	18,85	21,99	25,13	28,27
HA 25	4,91	9,82	14,73	19,63	24,54	29,45	34,36	39,27	44,18
HA 32	8,04	16,08	24,13	32,17	40,21	48,25	56,30	64,34	72,38
HA 40	12,57	25,13	37,70	50,27	62,83	75,40	87,96	100,53	113,10

Aciers retenus: 4HA8e = 15 cm; 2HA10e = 20 cm

Cas 2:

Réaction du sol à l'ELU

$$Rsu = -((2*f+c)*e-g*c) \phi/d + 2*e)*1,35$$

$$Rsu = -((2*0,6+0,2)*0,2-0,1*0,2) 25/0,6+2*0,2)*1,35 = -1,35$$

SOLLICITATIONS

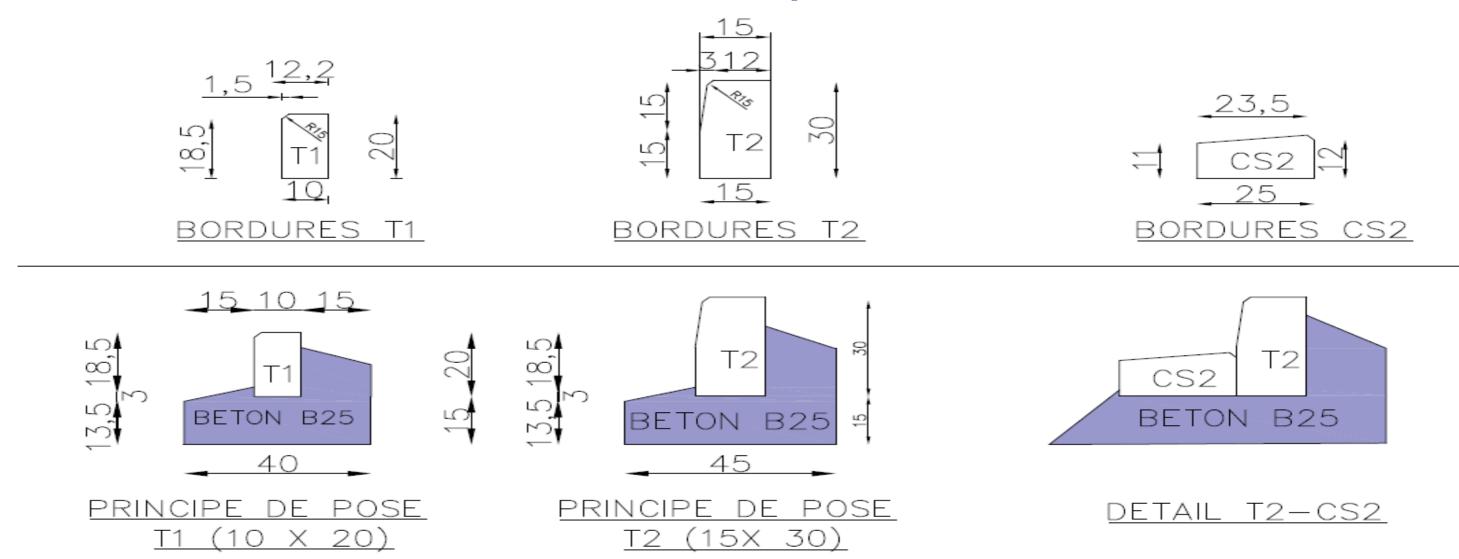
Moment d'encastrement à droite du radier à l'ELU:

$$M_{du} = Mu = 1.35 * Mbr + 1.5 * Mt = 15.69867 kN.m$$

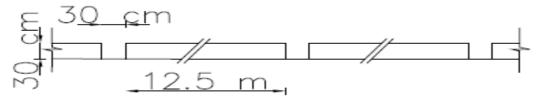
Moment d'encastrement à gauche du radier à l'ELU (dû à la poussée des terres)

$$M_{gu} = Mu_t = 0.608 \, kN. \, m$$

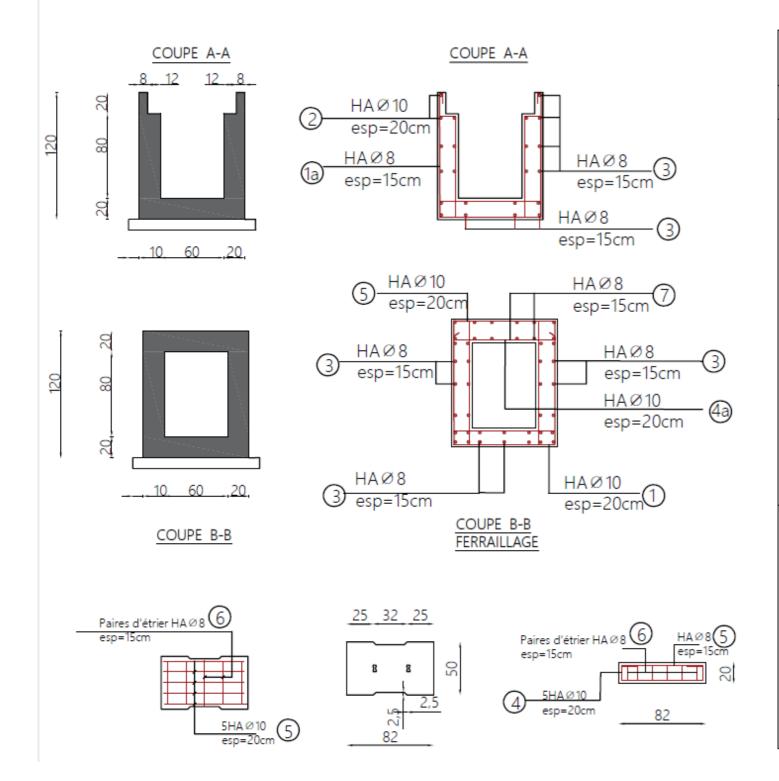
Le moment maximal sur le radier est :


$$M_{du} = 15.69867 \ kN.m$$

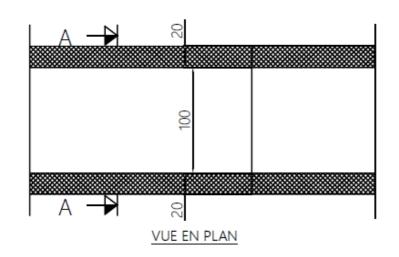
On adoptera donc pour le radier, le même ferraillage que le piédroit.

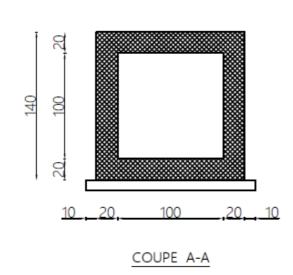


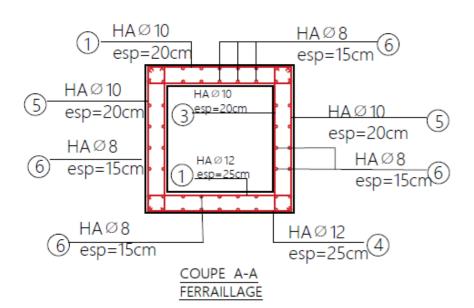
Annexe V : Plans de ferraillage caniveaux

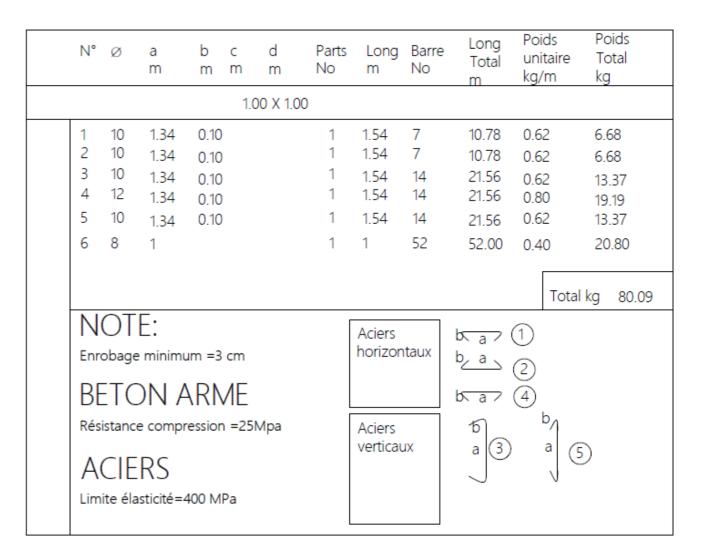

Muret H=30cm avec avaloirs tous les 12.5m

PLAN DE COFFRAGE ET FERRAILLE DES CANIVEAUX TROTTOIR 60 X 80

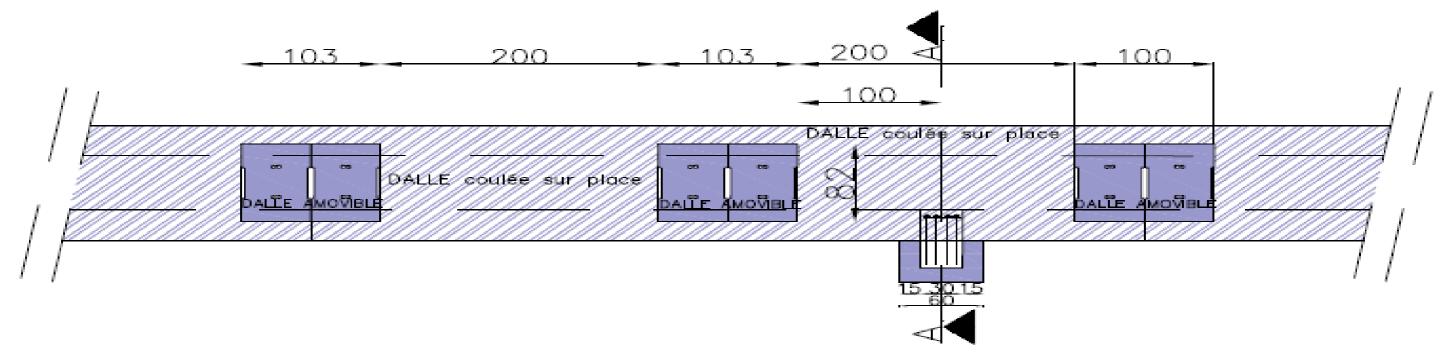



N°	Ø	a m	b m	c m	d m	Parts No	Long m	Barre No	Long Total m	Poids unitaire kg/m	Poids Total kg
1 3 4a 5 7	10 8 10 10 8	0.94 1.00 0.94 0.94 1.00	1.14 0.10	0.14	0.25	1 1 1 1	4.00 1.00 1.14 1.94 1.00	5 15 5 7 12	20 15 5.70 6.58 12.00	0.62 0.40 0.62 0.62 0.40	12.40 6.00 3.53 4.08 4.80 kg 30.81
1a 2 3 4 5	10 10 8 10 10	0.94 0.25 1.00 0.76 0.76 0.39	1.14 0.14 0.14 0.14			1 1 1 1 1	3.42 0.64 1.00 1.54 0.76 1.26	5 10 17 10 10	17.10 6.40 17.00 15.40 07.06 12.60	0.62 0.62 0.40 0.62 0.62 0.40	10.60 03.97 06.80 09.55 04.71 05.04
BE Rés	ETC istand	E: e minim ON / e comp RS asticité=	ARN pression	/ E n =25N	Λpa		Aciers horizon Aciers verticau		a b a c c c b b b a	4 6 5 7 13	kg 40.67



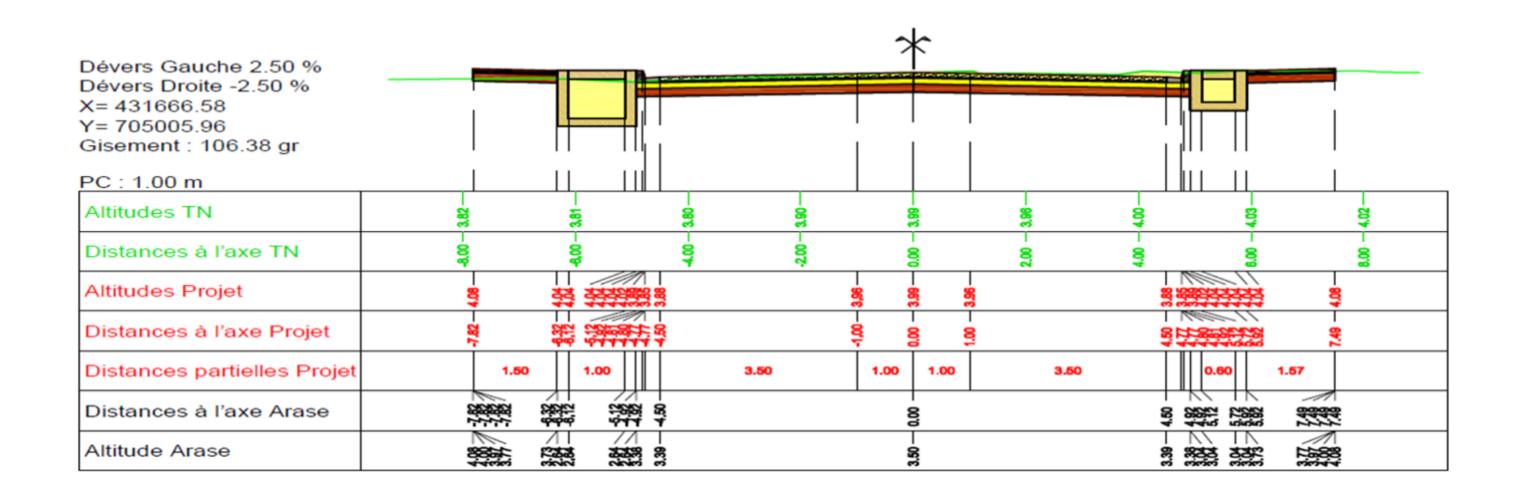


PLAN DE COFFRAGE ET FERRAILLAGE CANIVEAU DE RUE 100 X 100





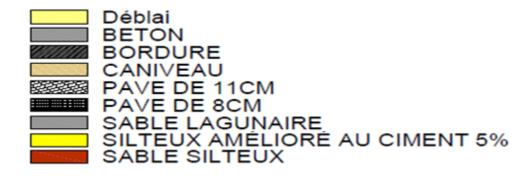
VUE EN PLAN GENERALE DU CANIVEAU AVEC AVALOIR

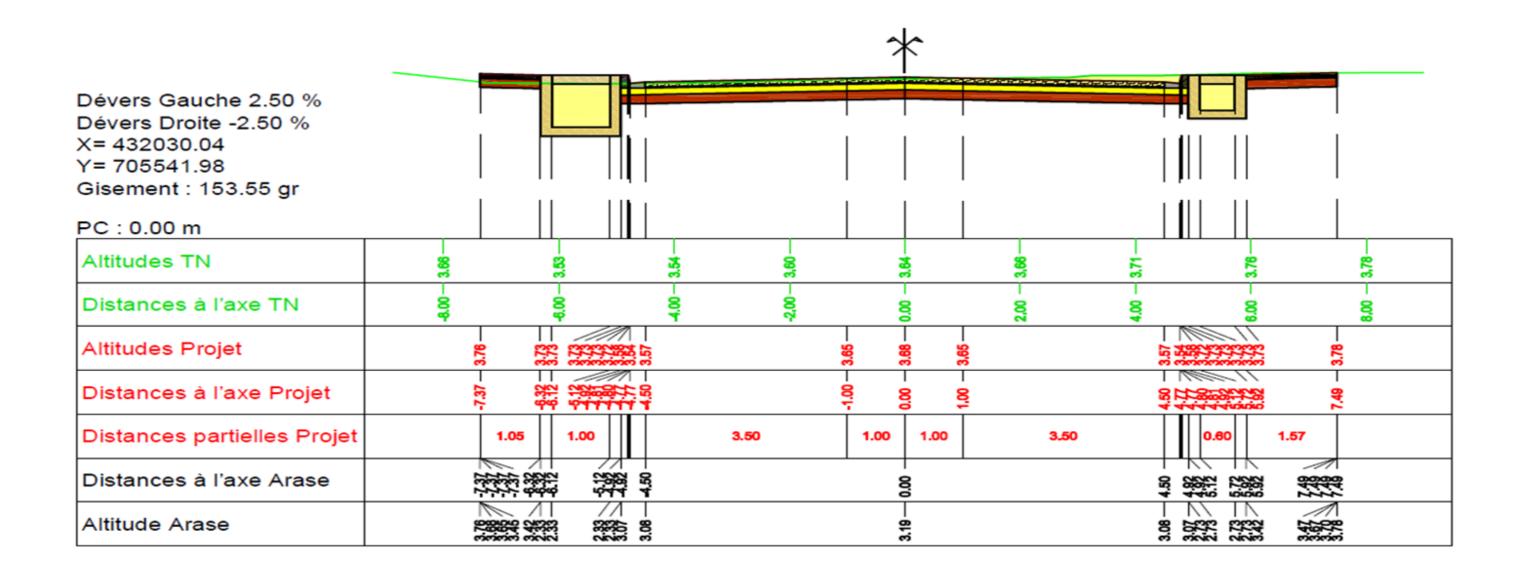


Annexe VI: Profils en travers types, profil en long

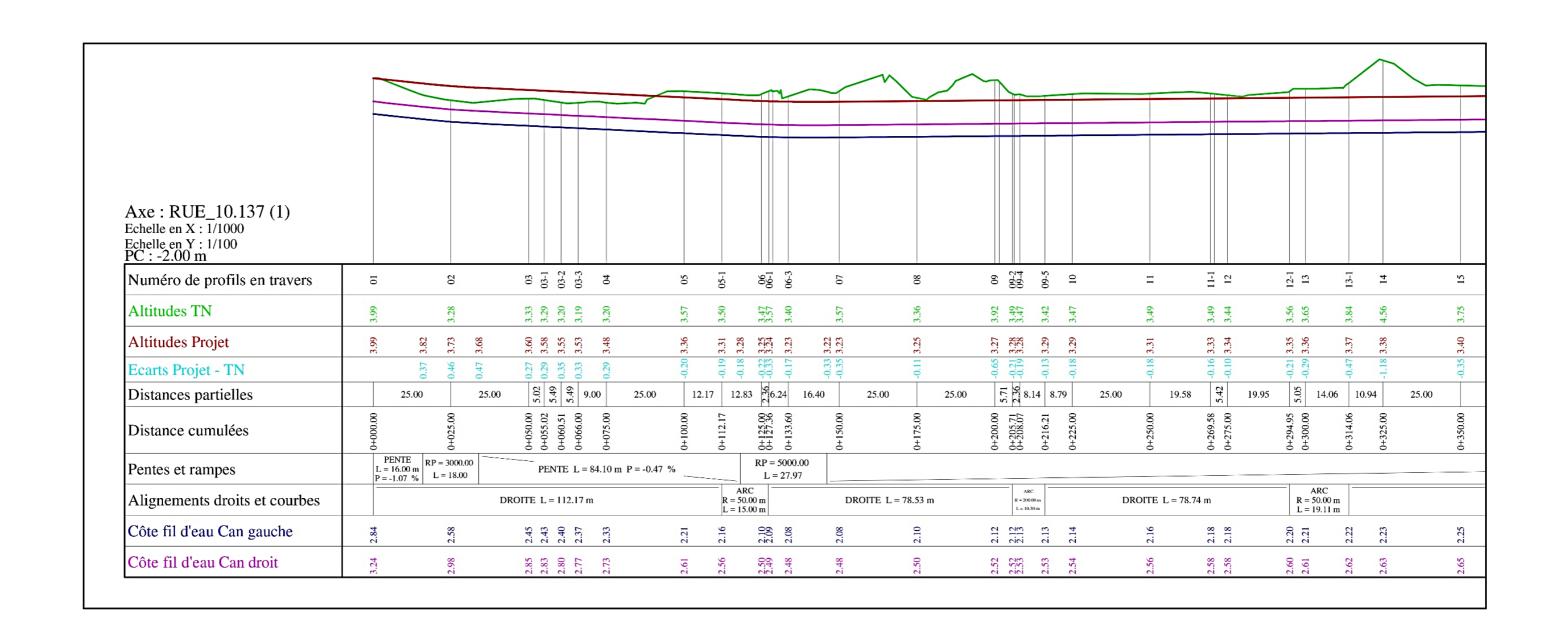
Axe: RUE_10.137
Profil no: 1
Abscisse: 0+000.00

Echelle des longueurs : 1/100 Echelle des altitudes : 1/100





Axe: RUE_10.137
Profil no: 50
Abscisse: 0+675.00


Echelle des longueurs : 1/100 Echelle des altitudes : 1/100

			~																										
	=		\rightarrow		\rightarrow			$\widehat{}$			+-	+	_															$\overline{}$	
					+		\perp		+-			+														\pm			=
					+																								
Axe : RUE_10.137 (Suite et f	in)																												
Echelle en X : 1/1000																													
Echelle en Y : 1/100 PC : -2.00 m																													
Numéro de profils en travers	15	,	1-51		17		18-1		61	2	20	20-1	21		22	Ī	1-77	24		25		26	7-97	27		28		29	30
Altitudes TN	3.75	, 00	4.19		3.86		3.59		3.65		3.97	3.98	3.98		3.90	Í	5.79	3.94		3.86	200	3.96	5.95	3.83		3.64		3.57	3.89
Altitudes Projet	3.40		3.42		4.6		3.46		3.49		3.51	3.52	3.53		3.55	i	200	3.59		3.62	5	3.64	t n	3.66		3.68	3.70	3.72	3.89
Ecarts Projet - TN	-0.35		-0.51		-0.41		-0.13		-0.16		-0.46	-0.46	-0.45		-0.35	1	-0.22	-0.35		-0.25		-0.32		-0.17		0.04		0.15	
Distances partielles	1	17.09	7.91	25.00		25.00	4.01	20.99	2	25.00	14.17	7 10.8	83	25.00	2	24.08	25.9	2	25.00	20.	37	2 9. 7.77	17.23		25.00		25.00	16.40	0
Distance cumulées	0+350.00	1 20	0+367.09		400.00		0+425.00		+450.00		75.00	0+489.17	500.00		525.00	-	80.94	75.00		00.00	7	0+625.00	11.7	650.00		675.00		700.00	16.40
Distance cumulees	0+3	7534	0+37		0+40		0+47		0+45		0+47	0+48	0+20		0+52		1	0+57		0+0	3	0+62		9+0		29+0			0+71
Pentes et rampes					RAMP	E L = 548.4	8 m P = 0	0.09 % —																			R	P = 10.90 RAN L = 10.90 P = 1.	0.95 m
Alignements droits et courbes									DROI	TE L = 300)6.31 m											ARC R = 2000.00 m 1. = 12.40 m			DROITE	L = 83.	.63 m		
Côte fil d'eau Can gauche	2.25	700	2.27		2.29		2.31		2.33		2.36	2.37	2.38		2.40	!	74.7	2.44		2.46	9	2.49	64.7	2.51		2.53		2.56	2.74
	2.65		2.67		2.69		2.71		2.73	1	2.76	2.77	2.78		2.80	- 197	78.7	2.84		2.86	٥	2.89	0	2.91		2.93		2.96	3.14

Annexe VII: Matériels de réalisation des routes

Les matériels de terrassement destinés aux travaux qui sont présents sur le chantier sont fonction des besoins et de la nature des travaux effectués. Leur liste est remise à jour mensuellement et transmise à la mission de contrôle.

• Matériels pour le terrassement général pour la couche de forme

- Bulldozers
- Niveleuses
- Chargeuses
- Pelles hydrauliques
- Camion-citerne à gasoil
- Camions bennes
- Camions citernes à eau
- Pompe à eau
- Compacteur à cylindre
- Compacteur pneumatique

• Matériels pour la couche de fondation

- Camions bennes
- Camions citernes à eau
- Chargeur
- Niveleuses
- Compacteur dynamique vibrant
- Compacteur pneumatique
- Citerne à gasoil
- Pompe à eau
- Citerne à gasoil

• Matériel pour assainissement en béton de l'ouvrage d'art

- Bétonnière
- Grue
- Camion Hijab

- Compresseurs
- Vibreurs
- Moules préfabriquées
- Compacteur Boma
- Camions bennes
- Camion-citerne à eau
- Petits matériel (truelle, marteau, brouette, seau, auge, etc.)
- Pompe à eau

• Moyens de communication

Plusieurs solutions sont envisagées concernant la communication entre la base, le chantier et les véhicules, à savoir :

- Téléphones portables
- Radio HF pour les communications de courtes distances.

Annexe VIII: Études d'impact environnementales et sociales

Particularités de l'environnement direct de la route

- Certaines espèces d'arbres rares sont à protéger notamment par endroits les mangroves à Rhizophora racémisa (palétuvier rouge) et Avicennisa africanus (palétuvier blanc)
- Un réseau électrique sur lequel il ne faut pas empiéter à moins de 100 m de rayon

•	Nombre	
Jeune arbres	Plante ornementale	7
Essence forestière	Acacia	20
Fruitier	Cocotier	6
	Palmier à huile	2

Tableau: Arbres affectés par le projet

Source : Espace 2020, 2018

Annexe IX : Devis estimatif et quantitatif détaillé

Cette annexe présente les détails du devis estimatif et quantitatif de la rue 10.137.

N°	DESIGNATIONS	Unités	Quantité	Prix Unitaires	Montant partiel
100	TRAVAUX PREPARATOIRES				
101	Installation de chantier	FF	1	20 000 000	20 000000
102	Repli de chantier	FF	1	5 000 000	5 000 000
103	Débroussaillage, décapage et dessouchage	m ²	55000	150	8 250 000
104	Travaux topographiques	m^2	55000	500	27 500 000
	TOTAL POSTE 100				60 750 000
200	TERRASSEMENTS				
201	Déblais en terrain meuble et mis dépôt	m^3	6100	2 500	15 250 000
202	Remblais provenant des déblais en terrain meuble	m^3	9760	4 000	39 040 000
203	Remblais d'emprunt en sable lagunaire d'épaisseur 10 cm pour couche de base bien compacté	m^3	450	8 500	3 825 000
204	Remblais d'emprunt en graveleux latéritiques bien compacté	m^3	7686	7 000	53 802 000
205	Purge des terres de mauvaise tenue	m^3	650	10 000	6 500 000
206	Remblais d'accès aux ouvrages de franchissement	m^3	0	6 000	-
207	Couche de surface en graveleux latéritique d'épaisseur 20 cm y compris toutes sujétions	m ³	16104	7 000	112 728 000
	TOTAL POSTE 200				231 145 000
300	ASSAINISSEMENT ET DRAINAGE				
301	Construction de caniveau fermé en BA avec Dalle amovible, de largeur b (60 à	ml	716.4	88 000	63 043 200

	80) et de hauteur h (60 à 80) y compris toutes sujétions				
302	Construction de caniveau fermé en BA avec Dalle amovible, de largeur b (80 à 100 cm) et de hauteur h (80 à 100 cm) y compris toutes sujétions	ml	75	97 000	7 275 000
303	Construction de caniveau fermé en béton armé dosé à 350 kg/m³ de section rectangulaire (60x1var) recouvert de Dalles amovibles	ml	0	400 000	-
304	Dalle amovible coulée de 1 m de large	ml	740.35	27 000	19 989 450
305	Préfabrication et pose de dalles amovibles en béton armé de 15 cm d'épaisseur sur caniveau en moellons				
	TOTAL POSTE 300				90 307 650
400					
401	Fourniture, transport, mise en œuvre de matériaux pour couche de base				
401	_	m ³	0	6 000	-
	matériaux pour couche de base Couche de base en graveleux	m^3 m^3	0	6 000	-
402	matériaux pour couche de base Couche de base en graveleux latéritiques Mise en œuvre de sable lagunaire pour				-
402	matériaux pour couche de base Couche de base en graveleux latéritiques Mise en œuvre de sable lagunaire pour lit de pose Compactage de matériaux pour couche	m ³	0	4 000	-
402 403 404	matériaux pour couche de base Couche de base en graveleux latéritiques Mise en œuvre de sable lagunaire pour lit de pose Compactage de matériaux pour couche de chaussée Profilage et réglage de matériaux pour	m^3 m^2	0	4 000	-
402 403 404 405	matériaux pour couche de base Couche de base en graveleux latéritiques Mise en œuvre de sable lagunaire pour lit de pose Compactage de matériaux pour couche de chaussée Profilage et réglage de matériaux pour couche de chaussée Mise en œuvre de bordures	m^3 m^2	0 0	4 000	- 468 000
402 403 404 405 406	matériaux pour couche de base Couche de base en graveleux latéritiques Mise en œuvre de sable lagunaire pour lit de pose Compactage de matériaux pour couche de chaussée Profilage et réglage de matériaux pour couche de chaussée Mise en œuvre de bordures préfabriquées	m ³ m ² m ²	0 0 0	4 000 225 225	- - - 468 000 468 000

501	Mise en œuvre de béton armé dosé à 350kg/m3 pour fondation	m^3	57.375	160 000	9 180 000
502	Fourniture et mise en œuvre de la couche d'assise du dallage en matériau sélectionné	m ³	0	7 500	-
	TOTAL POSTE 500				9 180 000
600	AUTRES OUVRAGES				
601	Installation de barrière de pluie	U	8	110 000	880 000
602	Panneaux de signalisation	U	3	95 000	285 000
	TOTAL POSTE 600				1 165 000
700	ESPACE VERTS				
701	Déblai de terre dans les fosses de plantation et réglage du fond de fouille	m3	794.4	2 500	1 986 000
702	Apport de terre végétale dans les fosses de plantations	m3	1020	7 000	7 140 000
703	Production et fournitures des essences végétales telles que : Termina lia capta ; Temin alia mentali ; Khaya senegalensis ; Blaga sapide, Ficus benjamina	U	240	2 000	480 000
704	Mise en terre de rangée des plants (file d'essences végétales) avec la pose de piquets tuteurs y compris toutes les sujétions	U	240	1 000	240 000
	TOTAL POSTE 700				9 846 000
800	EQUIPEMENTS SANITAIRES				
801	Fourniture et pose de poubelles a bac simple suivant indication du plan	U	5	180 000	900 000
802	Fourniture et pose de poubelles a bacs jumelés suivant indication du plan	U	5	250 000	1 250 000

803	Fourniture et pose de dispositif de lavage de main suivant les indications du plan	U	5	150 000	750 000
	TOTAL POSTE 800				2 900 000
900	Imprévus physico-financiers				
901	Déplacement des réseaux				
902	Plan de gestion environnemental				
903	Plan d'action de réinitialisation				163 739 981
904	Maitrise d'ouvrage délégué				103 737 701
905	Contrôle et surveillance des travaux				
906	Audits et divers				
	TOTAL POSTE 900				163 739 981
	TOTAL GENERAL HT				569 501 631
	TVA				102 510 294
	TOTAL GENERAL TTC				672 011 925

