

ETUDE DIAGNOSTIC, DE REHABILITATION ET D'EXTENSION DU SYSTEME D'ADDUCTION EN EAU POTABLE MULTI-VILLAGES DE DISSIN-MOU DANS LA COMMUNE DE DISSIN, PROVINCE DU IOBA, REGION DU SUD-OUEST AU BURKINA FASO

MEMOIRE POUR L'OBTENTION DU DIPLOME D'INGENIEUR 2IE AVEC GRADE DE MASTER

SPECIALITE : GENIE DE L'EAU DE L'ASSAINISSEMENT ET DES AMENAGEMENTS HYDRO-AGRICOLES

Présenté et soutenu publiquement le 24 janvier 2025 par

Martial Aristide Ragnagnéwendé YAMEOGO (N° d'inscription : 20190112)

Directeur de mémoire : Dr. Angelbert Chabi BIAOU, Enseignant-chercheur à 2IE, Maitre de Conférences, CAMES

Encadrant 2IE : Dr. Angelbert Chabi BIAOU, Enseignant-chercheur à 2IE, Maitre de Conférences, CAMES

Maître de stage : M. Hilaire SAWADOGO, Ingénieur hydraulicien (CAFI-B)

Structure d'accueil du stage : Compagnie Africaine d'Ingénierie – Burkina

Jury d'évaluation du mémoire :

Président: Dr Boukary SAWADOGO

Membres et correcteurs : Dr Axel BELEMTOUGRI

M. Younoussa GAMSORE

Promotion [2024/2025]

DEDICACES

Je dédie ce travail à mes parents qui ont consenti d'énormes sacrifices durant toutes mes études. Leurs amours et leurs prières m'ont été d'une force inestimable pour mener à bien mes objectifs scolaires. Je suis infiniment reconnaissant envers eux et je prie Dieu qu'ils puissent bénéficier des fruits de leurs efforts.

Je dédie également ce travail à toute ma grande famille qui de près ou de loin à œuvrer pour la bonne marche de mes études.

A vous tous aussi mes proches qui m'ont toujours soutenu, que cela soit par vos encouragements, vos conseils, et autres, ma reconnaissance ne finira jamais à votre endroit.

REMERCIEMENTS

Nous disons merci à Dieu pour ses grâces dans nos vies. Il a été le pilier par lequel tout ce travail a été possible.

Nous tenons à remercier toutes les personnes qui ont contribué à notre formation depuis le début pour que ce mémoire puisse en découler. Nous remercions particulièrement :

- ❖ L'institut 2iE, pour sa qualité d'enseignement et son engagement à former des ingénieurs leaders pour le développement durable.
- ❖ Le directeur de mémoire Monsieur Angelbert Chabi BIAOU pour sa disponibilité assurée
- Notre encadrant interne Monsieur Angelbert Chabi BIAOU, pour ses conseils, son suivi, sa disponibilité et son accompagnement pour l'aboutissement du présent rapport
- ❖ Le bureau d'étude CAFI-B à travers son Gérant Monsieur Lassina SANOU, pour l'accueil, la formation pratique qui m'ont été d'une grande richesse intellectuelle
- ❖ Notre maitre de stage Monsieur Hilaire SAWADOGO, pour son dévouement à notre apprentissage, sa disponibilité sans pareille et son soutien indéfectible
- ❖ Notre référent Monsieur Moussa ZOU, pour son accompagnement et les opportunités reçues dans le cadre de l'apprentissage
- ❖ A nos camarades pour le partage d'expériences et de de connaissances.

RESUME

Le présent mémoire porte sur l'étude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso. L'étude est passée par l'élaboration d'un diagnostic, l'évaluation des besoins en eaux, le dimensionnement des réseaux d'adductions et de distribution, l'étude financière et environnementale. Le diagnostic a révélé une desserte insuffisante en eau avec des forages en baisse de régimes et des équipements hydrauliques en mauvais états. La population totale des deux localités à savoir Dissin et Mou, en 2050, horizon du projet est estimée à 25 949 habitants pour une demande journalière de 868,08 [m³/j]. Deux forages de capacité 15 [m³/h] et 09 [m³/h] alimenteront deux réservoirs de 150 [m³] et 50 [m³] par deux conduites de refoulement en PEHD, PN16 DN125 long de de 6225 [m] et PN16 DN 110 long de 8993 [m]. Deux pompes GRUNDFOS SP18-17 et SP9-32 ont été retenues, et sera alimentée par une source d'énergie alliant le solaire d'une puissance crête de 15 [Kwc] et 20 [Kwc] et les groupes électrogènes de 15 [kva] et 25 [kva], pour un pompage maximal de 16 [h] par jour. Pour couvrir la demande en eau à partir de 2030 jusqu'en 2050, il faudra trois forages supplémentaires d'au moins 10 [m³/h] chacun. Le réseau de distribution est de type mixte. Le débit à l'adduction est de 54,25 [m³/h] et celui de la distribution est de 93,42 [m³/h]. Le coût global pour la réalisation du projet s'élève à 701 911 300 [FCFA] avec un prix de vente du mètre cube d'eau à 350 [FCFA]. La gestion par affermage a été retenue pour l'AEP-MV.

Mots clés:

- 1. Alimentation en eau potable multi-village
- 2. Affermage
- 3. Réhabilitation
- 4. Réseau mixte
- 5. Energie

ABSTRACT

This thesis concerns the diagnostic, rehabilitation and extension study of the multi-village drinking water supply system of Dissin-Mou in the commune of Dissin, Ioba province, South-West region in Burkina Faso. The study involved the development of a diagnosis, the assessment of water needs, the sizing of the supply and distribution networks, the financial and environmental study. The diagnosis of the current system revealed insufficient water supply with drilling at low speeds and hydraulic equipment in poor condition. The total population of the two localities, namely Dissin and Mou, in 2050, the project horizon is estimated at 25 949 inhabitants for a daily demand of 868.08 [m³/j]. Two boreholes of capacities 15 [m³/h] and 09 [m³/h] will supply two reservoirs of 150 [m3] and 50 [m3] via two HDPE discharge pipes, PN16 DN125 6225 [m] long and PN16 DN 110 8993 [m] long. Two GRUNDFOS SP18-19 and SP9-32 pumps were selected, and will be powered by an energy source combining solar with a peak power of 15 [Kwc] and 20 [Kwc] and the generators of 15 [kva] and 25 [Kva] for a maximum pumping of 16 [h] per day. To cover water demand from 2030 to 2050, three additional boreholes of at least 10 [m³/h] each will be required. The distribution network is of mixed type. The supply flow rate is 54.25 [m³/h] and that of the distribution is 93.42 [m³/h]. The overall cost for carrying out the project amounts to 701,911,300 [FCFA] with a selling price per cubic meter of water 350 [FCFA]. Management by leasing was chosen for the AEP-MV.

Key words:

- 1. Multi-village drinking water supply
- 2. Leasing
- 3. Rehabilitation
- 4. Mixed network
- 5. Energy

LISTE DES ABREVIATIONS

2iE	Institut International d'Ingénierie de l'Eau et de l'Environnement	
AEP	Approvisionnement en eau potable	
AEP-MV	Adduction en eau potable multi-village	
AEPS	Adduction d'eau potable simplifiée	
APD	Avant-projet détaillé	
APS	Avant-Projet Sommaire	
BF	Borne Fontaine	
BP	Branchement Privé	
CAFI-B	Compagnie Africaine d'Ingénierie-Burkina	
DAO	Dossier d'appel d'offres	
DGEP	Direction Générale de l'Eau Potable	
DN	Diamètre Nominal	
GE	Groupe Electrogène	
GPS	Global Positionning System	
HMT	Hauteur Manométrique Totale	
INO	Inventaire national des ouvrages hydauliques	
INSD	Institut National de la Statistique et de la Démographie	
mCE	Mètre Colonne d'Eau	
MEEA	Ministère de l'Environnement, de l'Eau et de l'Assainissement	
ODD	Objectifs de développement Durable	
OMD	Objectifs du Millénaire pour le Développement	
ONBAH	Office National des Barrages et des aménagements hydroagricoles	
ONEA	Office National de l'Eau et de l'Assainissement	
PEHD	Polyéthylène Haute Densité	
PMH	Pompe à motricité humaine	
PN	Pression Nominale	
PN-AEP	Programme national d'approvisionnement en eau potable	
PVC	PolyChlorure de Vinyle	
RGPH	Recensement général de la population et de l'habitation	
TN	Terrain Naturel	

Etude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso

T	
UTM	Universal Transverse Mercator

SOMMAIRE

DEDICACES	i
REMERCIEMENTS	ii
RESUME	iii
ABSTRACT	iv
LISTE DES ABREVIATIONS	v
LISTE DES TABLEAUX	3
LISTE DES FIGURES	4
INTRODUCTION	8
I. PRESENTATION DE LA STRUCTURE D'ACCUEIL ET DE LA ZONE D'ETU	7 DE 9
I.1. Présentation de la structure d'accueil	9
I.2. Présentation de la zone d'étude	10
II. PRESENTATION DU PROJET	15
II.1. Contexte et justification	15
II.2. Objectifs de l'étude et résultats attendus	16
III. METHODOLOGIE DE CONCEPTION	23
III.1. Matériels utilisés	23
III.2. Méthodologie de conception	23
III.3. Etude financière	41
IV. ETUDE DE FAISABILITE TECHNIQUE	41
Introduction	41
IV.1. Variante N°1	41
IV.2. Variante N°2	44
Conclusion	47
IV.3. Dimensionnement du réseau de distribution et d'adduction	47
IV.4. Pose des conduites dans les tranchées	51
IV.5. Calcul de la HMT et sélection de la pompe	51
IV.6. Vérification et protection des conduites contre le phénomène de coup de bélier	54
IV.7. Dimensionnement des sources d'énergie	54
IV.8. Traitement de l'eau	56
IV 9. Ouvrages annexes du réseau	57

IV.10. Mode de gestion de l'AEP-MV	57
Conclusion	58
V. ETUDE DES COÛTS	58
Introduction	58
V.1. Evaluation du coût de réalisation du projet	58
V.2. Amortissement des investissements initiaux	59
V.3.Charges d'exploitation	60
V.4.Prix de vente du mètre cube d'eau	60
Conclusion	61
VI. EVALUATION DES IMPACTS ENVIRONNEMENTAUX ET SOCIAUX	61
Introduction	61
VI.1. Contexte et législation	62
VI.2. Identification et évaluation des impacts	63
VI.3. Mesures d'atténuation	64
VI.4. Analyse des risques	64
Conclusion	65
CONCLUSION	66
RECOMMANDATIONS	67
Bibliographie	68
Annexe	i

2

LISTE DES TABLEAUX

Tableau 1: Coordonnées UTM du site de Dissin-Mou	11
Tableau 2: Disfonctionnements constaté sur le réseau	19
Tableau 3: Consommations spécifiques selon le PN-AEP	25
Tableau 4: Evolution de la population variante n°1	
Tableau 5: Besoins en eau de la population de Dissin-Mou	
Tableau 6: Caractéristiques du réservoir unique aux deux localités	44
Tableau 7: Evolution de la population variante n°2	
Tableau 8: Synthèse des besoins en eau de Dissin	45
Tableau 9: Synthèse des besoins en eaux de Mou	
Tableau 10: Caractéristiques du réservoir de Dissin	46
Tableau 11: Caractéristiques du réservoir de Mou	46
Tableau 12: Débit d'adduction et débits de forages supplémentaires	
Tableau 13: Linéaire des conduites de distributions	49
Tableau 14: Caractéristiques colonne montante et exhaure	50
Tableau 15: Dimensions des fouilles nécessaires	51
Tableau 16: Détermination de la HMT	51
Tableau 17: Caractéristiques de la pompe du forage de 15m3/h	52
Tableau 18: Caractéristiques de la pompe du forage de 09m3/h	52
Tableau 19: Vérification du coup de bélier conduite de Dissin	54
Tableau 20: Vérification du coup de bélier conduite de Mou	54
Tableau 21: Résultat des paramètres du champ solaire et de l'onduleur	55
Tableau 22: Caractéristiques du groupe éléctrogène	55
Tableau 23: Caractéristiques du filtre doseur	56
Tableau 24: Caractéristiques du bac de preparation	56
Tableau 25: Vérification du temps de contact et de séjour	57
Tableau 27: Coût de réalisation du projet	59
Tableau 28: Coûts des amortissements annuels	59
Tableau 29: Evaluation des charges d'exploitation	60
Tableau 30: Fixation du prix de vente de l'eau	60
Tableau 31: Critères d'évaluation des impacts	64

LISTE DES FIGURES

Figure 1: Carte de localisation de la commune de Dissin	11
Figure 2: Evolution du débit d'adduction en fonction des années	48
Figure 3: Point de fonctionnement de la pompe SP18-17	53
Figure 4: Point de fonctionnement de la pompe SP9-32	53

Liste des Images

Image 1 : Tableau synoptique de l'AEP de Dissin, source VERGENT BURKINA	18
Image 2 : Toiture dégradée au niveau de la BF3 et plateforme d'accès haute	21
Image 3 : Toiture dégradée au niveau de la BF10	21
Image 4 : Regard tête de forage en bon état	21
Image 5: équipement hydromécanique de la tête de forage en bon état	21
Image 6 : Local technique en bon état	22
Image 7: By pass enterré en bon état	22
Image 8: Système de chloration type Dosatron fonctionnel	22
Image 9: Onduleur de la pompe type GRUNDFOS CIU 903	22

Fiche signalétique

	Région : Sud-Ouest	
	Province: Ioba	
Localisation	Commune: Dissin	
	Village: Dissin-Mou	
	Source d'approvisionnement en eau :	
Ressource en eau	- Forage 1: 15 m ³ /h	
Ressource en eau	- Forage 2: 09 m ³ /h	
	Capacité du réservoir 1: 150 m ³	
	Capacité du réservoir 2: 50 m ³	
	Hauteur sous radier des 02 réservoirs : 15 m	
	Nombre de forage : 02	
	Ouvrage d'exhaure : deux (02) pompes	
	Caractéristiques minimales de la pompe	
	$Q = 15 \text{ m}^3/\text{h},$	
	HMT = 138m,	
	P = 9.2 kW	
Caractéristiques du réseau		
d'adduction	Caractéristiques minimales de la pompe prévue pour le forage	
	existant:	
	$Q = 9 \text{ m}^3/\text{h},$	
	HMT = 154 m,	
	P = 7.5 kW	
	Conduite de refoulement pour le forage de 9m³/h:	
	conduites PEHD, PN16, DN 110, longueur totale: 8993 m.	
	Conduite de refoulement pour le forage de 15m³/h:	
	conduites PEHD, PN16, DN 125, longueur totale : 6225 m	
	Source d'énergie pour le forage de 9m³/h : hybride (panneaux	
	solaires/groupe électrogène)	
	Puissance crête du champ solaire : 15 Kwc	
	Puissance de l'onduleur : 14 kva	
	Puissance du groupe électrogène : 15 kva	
Source d'énergie	The second of th	
Source a energie	Source d'énergie pour le forage de 15m³/h: hybride (panneaux	
	solaires/groupe électrogène)	
	Puissance crête du champ solaire : 20 Kwc	
	Puissance de l'onduleur : 18 Kva	
	Puissance du groupe électrogène : 25 Kva	
	Nombre total de bornes-fontaines : 29	
Caractéristiques du réseau	Conduites de distribution en PEHD PN 10 :	
de distribution	DN Longueur (m)	
	Longueur (III)	

Etude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso

	200	5920,48			
	160	2654,27			
	110	5535,47			
	90	2364,93			
	63	7294,28			
	Total	23769,43			
	Local techni	que : 02			
Ouvrages annexes	Local group	e électrogène :	02		
	Toilettes: 02	2			
Coûts estimatifs des travaux	Montant des	travaux (FCF	A TTC)	701 911 300	

INTRODUCTION

L'eau potable est source de vie dit-on. C'est une denrée très précieuse qui fait partir des besoins fondamentaux des êtres humains. Il est donc primordial d'avoir une attention très particulière sur sa gestion. C'est également un facteur de développement socio-économique et contribue à la réduction de la pauvreté. Cependant l'accès à l'eau potable si bien en quantité qu'en qualité est un réel défi pour la plupart des pays de la sous régions. (UNICEF, 2024.)

Le Burkina Faso n'est pas en marge des difficultés liées à l'accès à l'eau potable si bien en milieu urbain qu'en milieu rural. Selon l'Inventaire National des Ouvrages hydraulique (INOH), le taux d'accès à l'eau potable au niveau national est de 78,3%. La santé, le bien être de la population sont des éléments dont l'amélioration est aussi conditionnée par l'accès à l'eau potable. Au vu de cette importance capitale le pays s'est doté de politiques et stratégies dans l'optique de rendre l'eau potable accessible à toute la population. C'est dans ce cadre que le Programme National d'Approvisionnement en Eau Potable et Assainissement (PN-AEPA), a vu le jour à travers les Objectifs du Millénaire pour le Développement (OMD). Pour une durée de 15 ans soit de 2006 à 2015, ce programme vise à améliorer de manière considérable l'accès à l'eau potable au Burkina et s'inscrit dans les Objectifs de Développement Durable (ODD) avec le (PN-AEP) qui va de 2016 à 2030. Dans ce contexte, le gouvernement à travers la Direction Générale de l'Eau Potable (DGEP) met en œuvre la réalisation d'AEPS, l'extension des systèmes qui existent déjà et également procède à des réhabilitations. (Ministère de l'environnement de l'eau et de l'assainissement, 2024.)

La région du Sud-Ouest est confrontée à plusieurs difficultés d'accessibilité à l'eau et rentre dans les priorités des autorités compétentes. C'est dans ce cadre que s'inscrit notre étude qui s'intitule « Etude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso » Pour réaliser cette étude, notre démarche se base sur un diagnostic du système existant, d'une conception de la réhabilitation, et de l'extension, d'une évaluation des coûts de réalisation du projets et l'analyse des impacts environnementaux.

I. PRESENTATION DE LA STRUCTURE D'ACCUEIL ET DE LA ZONE D'ETUDE

I.1. Présentation de la structure d'accueil

I.1.1. Présentation générale de la structure

Le bureau d'études Compagnie Africaine d'Ingénierie – Burkina (CAFI-B) est un cabinet d'ingénieurs-conseils de droit burkinabé en Afrique de l'Ouest créé en 2003. Son expertise et son dévouement au développement durable lui a permis de se positionner comme l'un des meilleurs bureaux d'études du Burkina Faso. Il a été à l'origine de beaucoup de grandes réalisations dans toutes les régions du Burkina Faso et dans certains pays comme la Côte d'ivoire, le Benin, le Togo et bien d'autres pays de la sous-région.

I.1.2. Valeurs et atouts du cabinet

Le bureau d'études CAFI-B accorde une attention particulière au respect de la déontologie de la profession, cherche à atteindre de meilleurs résultats avec des valeurs de rigueur et de professionnalisme, une forte capacité d'anticipation et d'adaptation. CAFI-B c'est un travail de qualité, une expérience confirmée, un personnel professionnel et dynamique, un réseau de partenaires nationaux et internationaux, un cadre de travail adéquat.

I.1.3. Domaines d'interventions

CAFI-B intervient dans l'ingénierie de divers domaines que sont :

- Le génie civil (bâtiment)
- L'approvisionnement en eau potable
- L'assainissement des eaux usées et excréta
- Les barrages et les aménagements hydro-agricoles
- Les routes, piste et ouvrages d'art
- Le développement local et la décentralisation

Dans tous ces domaines, le bureau d'étude offre des prestations d'intermédiation sociale, d'études de projets (faisabilité, APS/APD/EIE/DAO), de suivi – contrôle et coordination de travaux, d'assistance technique et de gestion de projet.

I.1.4. Organigramme de la structure d'accueil

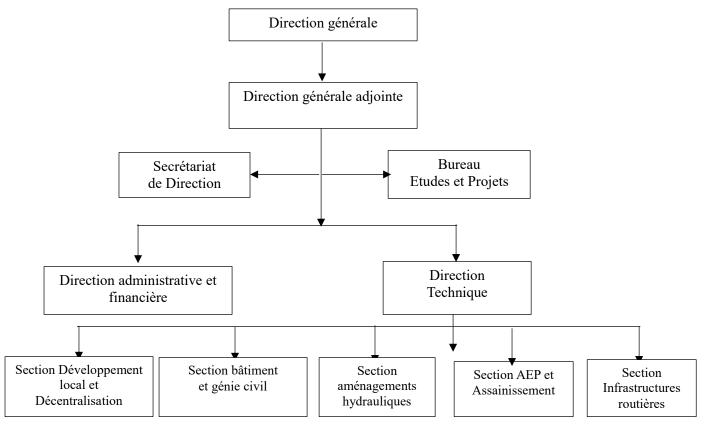


Figure 1 : Organigramme de CAFI-B (2024)

I.2. Présentation de la zone d'étude

I.2.1. Localisation de la zone d'étude

Les villages de Mou et Dissin relèvent de la commune de Dissin dans la province du Ioba, région du Sud-Ouest.

L'accès au village depuis Ouagadougou se fait par :

- la RN1 (Ouagadougou-Bobo Dioulasso) sur environ 225 km jusqu'à Pâ: voie bitumée de bonne praticabilité;
- Tourner à gauche pour emprunter la RN 12 sur environ 55 km jusqu'à Dano : route bitumée de mauvaise praticabilité,
- Continuer sur la RN 12 sur 25 km pour arriver au carrefour de Djikologo : route bitumée de mauvaise praticabilité ;

- Tourner à gauche pour emprunter la RN 20 sur 17 km pour arriver à Dissin : route bitumée de bonne praticabilité ;
- Mou est situé à environ 10 km au Sud de Dissin.

Le site de Dissin se trouve à Dissin (chef-lieu de la commune), à 42 km de Dano (chef-lieu de la province), à 92 km de Gaoua (chef-lieu de région), à 322 km de Ouagadougou.

Le site de Mou se trouve à environ 10km de Dissin (chef-lieu de la commune), à 44 km de Dano (chef-lieu de la province), à 102 km de Gaoua (chef-lieu de région), à 332 km de Ouagadougou.

Les coordonnées géographiques du site relevées au GPS sont présentées dans le tableau ciaprès:

Tableau 1: Coordonnées UTM du site de Dissin-Mou

Zone	X	Y	Point de référence
30	506762.00 m E	1201881.00 m N	Forage type F2 existant à Mou

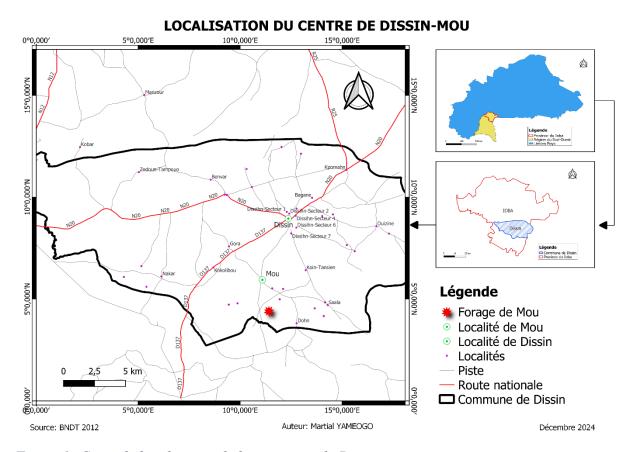


Figure 1: Carte de localisation de la commune de Dissin

I.2.2. Caractéristiques physiques du milieu

Climat

La région du Sud-Ouest est située dans la zone soudano-guinéenne. La pluviométrie est relativement bonne. Elle est comprise entre les isohyètes 900 et 1200 mm. La durée de la saison pluvieuse peut atteindre 6 mois, de fois 7 mois plus au sud de la région. -(*INSD* - 2022)-

La saison sèche dure environ 5 mois et va de novembre à mars. Elle est caractérisée par l'harmattan, un vent sec et frais avec des températures variant entre 21°C et 32°C. La saison des pluies s'étend du mois d'avril au mois d'octobre et est caractérisée par la mousson qui est un vent chaud et humide.

Végétation et faune

La région dispose d'un très bon couvert végétal en raison de la forte pluviométrie. La végétation dans son ensemble est constituée de savanes boisées et herbeuses. On distingue également des forêts claires et des forêts galeries le long des cours d'eau. On dénombre 03 forêts classées d'une superficie totale de 55 000 ha et trois réserves de faune d'une superficie de 78 700 ha. - (INSD - 2022)-

La formation végétale est constituées de nombreuses espèces utiles à l'activité socioéconomiques comme le karité (Vitellaria paradoxa), néré (Parkia biglobosa), etc...Les ressources forestières se dégradent continuellement sous l'effet des défrichements, des feux de brousse, de la coupe abusive du bois et de l'accroissement de l'activité artisanale de l'or. Toute chose qui fait que les produits de cueillette, le bois de chauffe et de service, etc. se raréfient. Quant à la faune, elle est constituée biches, d'antilopes, de cobas, de cobs, de buffons, de singes, de lièvres. Aussi, rencontre-on une variété importante d'oiseaux dans la commune : tourterelles, perdrix, gangas noires, hérons, cormorans, les grandes aiglettes, etc. Ces animaux sont soumis à des menaces liées au braconnage, à la pollution et à la destruction de leur habitat par des activités humaines

Relief et sols

La région du Sud-Ouest se caractérise par un relief très accidenté. Elle se compose de plateaux dont l'altitude moyenne atteint 450m, de vastes plaines, de bas-fonds, de collines et de buttes. Les collines ont une altitude moyenne entre 300 et 500 m. -(*INSD* - 2022)-

Selon les critères de profondeur et de position physiographique, la région du Sud-Ouest se compose de divers types de sols. La diversité de ses sols est sans nul doute, un énorme potentiel pour l'activité agricole dans la zone. En effet, la région est considérée comme une zone de grandes ressources, compte tenu de la bonne pluviométrie et de la qualité des sols. La quasitotalité des sols de cette partie du Burkina est propice à la culture. Cependant, on pourrait rencontrer par endroit des sols inaptes à la culture ou faiblement aptes à la culture. -(INSD, 2022.)-

La commune de Dissin est dominée toutefois par des reliefs résiduels et des vielles chaines birrimiennes. Les types de sols rencontrés dans la localité sont principalement à potentialités agronomiques bonnes et moyennes se prêtant à différentes spéculations (cultures de rentes, cultures de subsistance). Ils occupent grande partie du territoire communal. On note aussi la présence des sols ferrugineux tropicaux dont les matières organiques sont rapidement minéralisées. Ils sont fortement soumis au processus de lessivage, ce qui les dépouille de la grande majorité des matières organiques. -(CAFI-B, 2024)-

Service Géologie et hydrogéologie

Sur le plan géologique, la région du Sud-Ouest se compose principalement de deux (02) grandes unités pétrographiques qui sont les formations du socle cristallin d'âge Protérozoïque et les formations de la couverture sédimentaire d'âge Néoprotérozoïque à Cambrien.

Les formations du socle protérozoïque se composent de :

- Les formations des sillons birimiens (Roches volcaniques, plutoniques, ultrabasiques etc...)
- Les granitoïdes (granite, granite à biotite, granodiorite, diorite, etc...)

Les formations de la couverture sédimentaire d'âge Néoprotérozoïque à Cambrien sont de trois groupes

- Le groupe inférieur : constitué de formations détritiques gréseuses fines à grossières,
 voire conglomératiques
- Le groupe moyen : discordant sur le groupe inférieur comprend 5 formations. La série débute par des dépôts détritiques fins à grossiers fluviatiles sur lesquels repose une succession de dépôts marins essentiellement fins, silteux et argileux à passées de carbonates
- Le groupe supérieur : ou groupe de Bandiagara est constitué, au Burkina, par une seule formation discordante sur la partie supérieure du groupe moyen. C'est une formation

grossière (grès et grès-quartzites) correspondant à des dépôts fluviatiles sous climat aride. -(CAFI-B, 2024)-

On distingue deux systèmes d'aquifères à savoir le système aquifère de la zone du socle ou zone cristalline aux fissures et niveaux altérés d'une épaisseur de 10 à plus de 50 mètres et le système aquifère de la zone sédimentaire avec des roches poreuses et contenant des ressources en eaux très importantes. (Water Report 16, cas du sud-ouest du Burkina Faso)

* Réseau hydrographique

La région du Sud-Ouest est couverte par deux bassins versants : le Mouhoun et la Comoé. Le Mouhoun reste le cours d'eau le plus influent de la région. Le bassin du fleuve est le principal lieu de pêche dans la région. On y trouve des poissons comme des silures, des sardins etc. Ces affluents sont la Bougouriba et la Bambassou. Cependant d'autres cours d'eau permanents non moins importants sont parsemés ça et la dans la région. -(*INSD* - 2022)-

I.2.3. Contexte humain et aspects socio-économique

Contexte humain

La population totale des deux villages pour l'année 2019 est estimée à environ 12257 habitants avec 9061 habitants et 3196 habitants respectivement les localités de Dissin et Mou, selon le RGPH 2019. Avec un taux d'accroissement annuel provincial de 2.45% la population estimée actuellement en 2024 est de 10226 habitants pour Dissin avec une proportion d'hommes de 48.73% et 51.27% pour les femmes. Celle de Mou est de 3607 habitants avec une proportion de 48.03% pour les hommes et 51.97% pour les femmes. Cette population atteindra à l'horizon du projet 2050, 19183 et 6766 habitants respectivement pour Dissin et Mou. La localité de Dissin est structurée en secteurs avec 08 secteurs tandis que Mou est composé de quartier avec 13 quartiers.

Aspects socio-économiques

L'essentiel des activités économiques pratiqué dans les villages de Dissin et Mou sont l'agriculture, l'élevage, le commerce et l'orpaillage.

L'agriculture est l'activité la plus importante des deux villages. Elle est essentiellement une activité de subsistance tributaire des pluies. En tant qu'activité principale des ménages de ces villages, certaines personnes l'associent à la pratique de l'élevage, des AGR (beurre de karité, soumbala), l'artisanat ou du petit commerce. -(CAFI-B, 2024)-

L'élevage, l'une des activités secondaires pour les populations de Dissin et de Mou. Il occupe le deuxième rang dans les listes des activités secondaires dans la pratique des populations au niveau des deux villages. Ainsi, au niveau de Dissin, la pratique de l'élevage (17%) vient en seconde position après les Activités Génératrices de Revenus (AGR) (70%); au niveau du village de Mou, l'élevage (32%) derrière le commerce (63%). -(CAFI-B, 2024)

Les villages de Dissin et Mou disposent des marchés, qui sont fréquentés les populations des villages voisins. Les principaux produits commercialisés sont d'origine agro-pastorale ainsi que les biens et équipements. L'activité contribue à l'amélioration des conditions de vie et de revenu des ménages. Cependant cette activité est confrontée au faible aménagement du marché cas de Mou. -(CAFI-B, 2024)-

A l'instar des autres communes de la région, la pratique de l'activité d'orpaillage est constatée dans la commune de Dissin même si c'est avec un degré moins important que dans certaines communes (Kampti et Guéguéré) Il fait partie des activités qui mobilisent la jeunesse temporairement hors des villages et souvent de la commune et du pays. -(CAFI-B, 2024)-

II. PRESENTATION DU PROJET

II.1. Contexte et justification

L'accès à l'eau potable et l'assainissement du cadre de vie des populations tant en milieu urbain que dans les zones rurales constituent des maillons essentiels pour l'amélioration de la santé. D'une façon générale il contribue à l'amélioration des conditions de vie des populations et la lutte contre la pauvreté pour un développement durable. En effet, la disponibilité de l'eau potable pour les populations constitue un important facteur qui influe positivement sur la santé et les activités économiques.

C'est dans ce contexte que le Ministère de l'Environnement, de l'Eau et de l'Assainissement (MEEA) à travers l'Agence d'Exécution des Travaux Eau et Equipements Rural (AGETEER) actuel ONBAH (Office National des Barrages et des Aménagements Hydro-agricoles) a initié des études d'avant-projet détaillé pour la réalisation de trente-deux (32) systèmes d'adduction d'eau potable dont douze (12) réhabilitation/mise à niveau dans diverses régions du Burkina Faso au profit de la Direction Générale de l'Eau Potable (DGEP).

Pour ce faire, l'Agence d'Exécution des Travaux Eau et Equipements Rural (AGETEER) actuel ONBAH (Office National des Barrages et des Aménagements Hydro-agricoles), en sa qualité de maitre d'ouvrage délégué, a procédé à la consultation de prestataires préalablement sélectionnés, sur la base d'une manifestation d'intérêt, pour la réalisation desdites études. Le bureau d'études CAFI-B qui a pris part à cette demande de propositions a été retenu pour le lot 1 relatif aux études d'avant-projet détaillé (APD) pour la réalisation de six (06) systèmes d'adduction en eau potable simplifié et de deux (02) systèmes d'adduction en eau potable multi village dans les régions des Hauts Bassins et du Sud-Ouest.

Les villages de Dissin et Mou avec une population totale de 13 503 habitants en 2023 et disposant de trente-cinq forages communautaires fonctionnels et partant sur la base d'un forage fonctionnel pour 300 habitants, on note que le taux d'accès du MV_Dissin-Mou est insatisfaisant avec environ 77,76% de taux d'accès.

Dans ce contexte, le projet de réalisation d'une AEP est une opportunité pour améliorer le niveau de service et atteindre un taux de desserte de 100% à l'horizon du projet.

II.2. Objectifs de l'étude et résultats attendus

II.2.1. Objectif général

L'objectif principal de cette étude est d'assurer une desserte suffisante en eau pour les villages de Dissin et Mou.

II.2.2. Objectifs spécifiques

Les objectifs spécifiques sont :

- Réaliser un diagnostic du système d'adduction en eau potable existant
- Réaliser des études techniques détaillées pour la réhabilitation et l'extension de l'AEP MV
- Evaluer les impacts environnementaux et sociaux du projet
- > Evaluer des coûts de mise en œuvre du projet

II.2.3. Résultats attendus

- ✓ Un diagnostic du système d'adduction en eau potable existant est réalisé
- ✓ Des études techniques détaillées pour la réhabilitation et l'extension de l'AEP-MV sont réalisées
- ✓ Disposer d'une notice d'impact environnemental et social du projet

✓ Disposer d'une évaluation des coûts de réalisation.

II.2.4. Diagnostic du système actuel d'alimentation en eau potable

Ressources en eaux potables disponibles

Dissin	Mou
1 forage de 15, 10, 02 m^3/h	1 forage de 09 m ³ /h
1 AEPS	Pas d'AEPS
35 PMH	23 PMH

***** Etat des ouvrages

Une mission du bureau CAFI-B s'est rendue à Dissin du 10 au 11 janvier 2024 pour le diagnostic du système d'AEP de la ville.

VERGNET Burkina est l'opérateur qui a en charge la gestion de l'AEP. Grâce à l'appui de son exploitant qui connait bien le réseau et les difficultés, le diagnostic s'est bien déroulé.

Il ressort des échanges que l'AEP a été réalisé en 2000 par l'entreprise PPI. Le réseau était constitué de 8 bornes fontaines et un château d'eau métallique de 20 m³ alimentés par un forage de 5 m³/h. En 2015, l'AEP a connu une réhabilitation dont les travaux ont été exécutés par l'entreprise ASI-BF. Le nombre de bornes fontaines est alors passé à 18 avec un nouveau château de 50 m³ avec une hauteur sous radier de 15m et un nouveau forage de 10 m³/h réalisé à cet effet. Des branchements privés aussi ont été réalisés.

Il a été constaté quelque temps après exploitation que le forage de 10 m³/h avait un disfonctionnement. Selon l'exploitant, à partir du mois de mars la pompe est dénoyée du fait de la baisse du niveau dynamique du forage. Ce disfonctionnement est la cause des pannes récurrentes sur la pompe qu'il faut changer ou réparer assez fréquemment. Ce problème a contraint le gestionnaire d'abandonné ce forage pour utiliser l'ancien qui voit son débit d'exploitation chuté à 2 m³/h. Ces difficultés sont la cause du manque de ressource en eau qui occasionne des coupures d'eau récurrentes dans la ville de Dissin.

Le réseau est alimenté en énergie par la SONABEL avec un compteur triphasé de 30A.

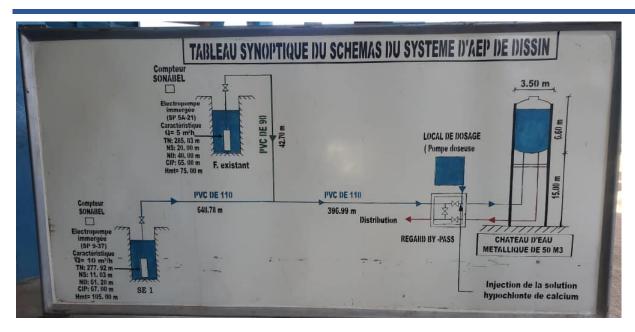


Image 1 : Tableau synoptique de l'AEP de Dissin, source VERGENT BURKINA

Tableau 2: Disfonctionnements constaté sur le réseau

Parties de l'ouvrage	Etat/Dégradations et insuffisances relevées	Causes probables / Mesures de réhabilitation
Forages 1 Q= 2m ³ /h	Le débit du forage a considérablement chuté de 5 à 2 m³/h entre 2000 et 2024	 Surexploitation de la ressource occasionnant la baisse probable du niveau de la nappe phréatique; Donnée de l'essai de pompage erronée lors de la réalisation du forage; Venue d'eau capté lors de la foration n'était pas assez alimentée;
Forage 2 Q= 10m ³ /h	Le forage ne tient pas au pompage pendant la saison sèche notamment entre Mars et Mai	 Surexploitation de la ressource occasionnant la baisse probable du niveau de la nappe phréatique; Donnée de l'essai de pompage erronée lors de la réalisation du forage; Venue d'eau capté lors de la foration n'était pas assez alimentée;
Tête de forage 1 en exploitation Q= 2m ³ /h	Le regard et les équipements hydromécaniques sont en bon état	
Tête de forage 2 en exploitation Q= 10m ³ /h	Le regard et les équipements hydromécaniques sont en bon état	
Conduites de refoulement	En bon état pas de fuites constatées lors du diagnostic	
Réseau de distribution	En bon état dans l'ensemble. Une fuite constatée au niveau du piquage pour alimenter la BF10 X=508959m , Y=1209678m	Corriger la fuite
Bornes fontaines	Les 8 bornes fontaines (BF1 à BF8) réalisés par PPI en 2000 sont vétustes avec des toitures en mauvais état, la plateforme d'accès aux BF est assez haute, les puits	

Etude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso

I constant a legione a	perdus sont en mauvais états, les siphons de sol sont bouchés; • Les 10 bornes fontaines réalisées par ASI BF en 2015 sont en bon état. Cependant les siphons de sols sont bouchés En bon état	 Pour les BF 1 à 8, remplacer les toitures et les siphons de sols, faire un aménagement pour faciliter l'accès à la plateforme, réaliser des puits perdus. Remplacer les siphons de sols
Locaux techniques Local abritant le dosatron	En bon état	
Château d'eau métallique	En bon état, absence de clôture grillagée	Prévoir une clôture grillagée
By pass enterré	En bon état	

Les images ci-dessous présentent la situation des principaux ouvrages de l'AEP de Dissin

Image 2 : Toiture dégradée au niveau de la BF3 et plateforme d'accès haute

Image 3 : Toiture dégradée au niveau de la BF10

Image 4 : Regard tête de forage en bon état

Image 5: équipement hydromécanique de la tête de forage en bon état

Image 6 : Local technique en bon état

Image 7: By pass enterré en bon état

Image 8: Système de chloration type Dosatron fonctionnel

Image 9: Onduleur de la pompe type GRUNDFOS CIU 903

III. METHODOLOGIE DE CONCEPTION

III.1. Matériels utilisés

Pour mener à bien les études, plusieurs outils ont été utilisé tels que :

- AUTOCAD 2018 pour la conception des plans des différents ouvrages, le tracé de des réseaux
- GOOGLE EARTH PRO pour la localisation des sites et le tracé préliminaire du réseau
- EPANET pour la simulation hydraulique du réseau
- EPACAD pour la conversion des fichiers AUTOCAD en fichiers EPANET
- QGIS pour la réalisation des différentes cartes
- ZOTERO pour les références bibliographiques
- Le pack OFFICE pour la rédaction du mémoire et les différents calculs

III.2. Méthodologie de conception

Dans cette partie, nous décrirons en détail les étapes que nous avons suivies pour réaliser notre étude, en incluant la collecte des données, leur analyse et traitement, ainsi que la rédaction du mémoire.

III.2.1. Recherche documentaire

Une recherche documentaire s'est avérée nécessaire pour bien appréhender la problématique de l'étude, orienter la recherche et enrichir le rapport. Cette recherche s'est menée essentiellement sur des documents administratifs locaux, des rapports d'études de cabinet, des documents sur internet. Entre autres nous pouvons citer :

- Le rapport d'étude socio-économique de la localité
- ➤ Le Programme National d'Approvisionnement en Eau potable (PN-AEP)
- ➤ le décret N°2019-204/PRES/PM/MEA/MINEFID/MATDC/MS du 13 Mars 2019
- Le Recensement Général de la population et de l'habitat 2019 (RGPH)

III.2.2. Visite et travaux de terrain

Une visite de terrain a permis de compléter les données obtenues par la recherche documentaire. Cela nous a permis d'élaborer le diagnostic, de référencer les éventuels obstacles pouvant impacter le tracé du réseau, ainsi que la prise de coordonnées de certains points clés (forages, château d'eau). De plus, des entretiens avec les autorités locales et les associations d'usagers de l'eau (AUE) ont permis de mettre à jour certaines informations et d'obtenir des détails supplémentaires sur la gestion des infrastructures existantes et les conditions d'accès des populations à ces installations. Enfin, des échanges avec la population ont permis de recueillir leurs préférences concernant les systèmes d'approvisionnement en eau potable et leurs avis sur l'emplacement des bornes fontaines potentielles.

III.2.3. Méthode de dimensionnement du système : hypothèses des calculs

III.2.3.1. Horizon du projet

Le système d'Adduction en Eau Potable Multi-Village (AEP-MV) est dimensionné pour répondre aux besoins en eau potable à l'horizon 2050. L'horizon du projet représente la durée à laquelle le projet devra toujours tenir dans un fonctionnement optimal. Cette période inclut la durée de vie des équipements et la taille de la population

III.2.3.2. Consommations spécifiques

La consommation spécifique est la quantité d'eau journalière qu'il faut par habitant pour ses besoins. Elle se détermine à travers des enquêtes dans la localité et ressort dans le rapport socio-économique, à travers des décrets et normes. A cet effet le Plan National d'Approvisionnement en Eau Potable (PN-AEP) 2016 préconise en son horizon 2030 une consommation spécifique de 15 litres par personne et par jour pour les bornes fontaines et 20 litres par personne et par jour pour les branchements privé.

Tableau 3: Consommations spécifiques selon le PN-AEP

Horizon (Année)	Consommation spécifique PEM [l/jour/pers.]	Consommation spécifique BF [l/jour/pers.]	Consommation spécifique BP [l/jour/pers.]
2015	8	8	10
2020	10	10	15
2025	12	12	20
2030	15	15	20

A cela nous pouvons ajouter le décret N°2019-204/PRES/PM/MEA/MINEFID/MATDC/MS portant définition sur des normes, critères et indicateurs d'accès à l'eau potable qui recommande une consommation de 25 litres/habitant/jour au niveau des bornes fontaines et 40 litres/habitant/jour au niveau des branchements privés en milieu rural.

Cependant, suite à la rencontre de cadrage tenu le 20 octobre 2023 et dans le souci de ne pas surdimensionner les ouvrages il sera retenu les consommations spécifiques de 25 litres/habitant/jour pour les BP et 20 litres/habitant/jour pour les BF.

III.2.3.3. Taux de desserte

Le taux de desserte sera basé sur les normes définies dans le PN-AEP (2016-2030). En 2015, le taux d'accès à l'eau potable en milieu rural au niveau national était de 65%, et en 2016, il a légèrement augmenté à 65,30%. Le PN-AEP (2016-2030) prévoit de porter ce taux à 100% d'ici 2030, prévoit aussi d'augmenter la proportion de la population rurale ayant accès à des points d'eau potable de 0,3% en 2015 à 56% en 2030, d'accroître la part de la population rurale desservie par les bornes fontaines de 8,9% en 2015 à 20% en 2030, et de réduire la part de la population rurale desservie par des points d'eau précaires de 90,8% en 2015 à 20% en 2030. Ainsi, pour cette étude, nous adopterons un taux de 70% de desserte pour les branchements privés et un taux de desserte de 30% pour les bornes fontaine à l'horizon 2050.

III.2.3.4. Coefficients de variation

Les consommations d'eau varient en fonction des saisons, des jours de la semaine et des heures de la journée. Ces fluctuations ont un impact direct sur les ressources en eau à mobiliser et sur les dimensions des ouvrages nécessaires. Les dimensions du système de distribution sont déterminées par les comportements des utilisateurs, à qui il faut garantir un service continu. Afin de prendre en compte les habitudes et comportements d'utilisation de l'eau potable des habitants de Dissin et Mou, les coefficients suivants ont été retenus :

- ❖ Le coefficient de pointe saisonnier (Cps) exprime le rapport sur l'année de la consommation journalière de pointe et la consommation journalière moyenne. Les pointes de consommation se situent au cours des périodes chaudes. Le coefficient de pointe saisonnier varie entre 1,10 et 1,20 respectivement en zone tropicale humide et en zone sahélienne. Dans cette étude, nous prendrons 1,10 comme coefficient de pointe saisonnier
- ❖ Le coefficient de pointe horaire (Cph) exprime le comportement des usagers vis-à-vis de l'eau au cours de la journée. Il est obtenu à partir de la formule suivante :

$$Cph = 1.5 + (\frac{2.5}{\sqrt{Q(\text{ m3/ h})}})$$

III.2.3.5. Rendement du réseau

Dans notre cas nous n'avions pas de perte de traitement car disposant pas d'une station de traitement. Le système d'adduction en eau potable est alimenté par une ressource souterraine. Les différentes pertes se limiteront à l'adduction et à la distribution.

Ces pertes peuvent résulter de plusieurs facteurs, tels que les fuites, les ruptures de conduites, les dépôts dans les tuyaux ou encore la dégradation des installations. Afin d'assurer un approvisionnement en eau fiable et efficace pour l'ensemble des utilisateurs, il est essentiel de prendre en considération ces pertes. Elles peuvent varier entre 10% et 20%.

Pour notre étude les pertes sont de l'ordre de 05% jusqu'en 2030, de 10% jusqu'en 2040 et de 15% jusqu'en 2050.

III.2.3.6. Vitesse et pressions dans les conduites

La pression de service fournie par le système de distribution doit être suffisante pour permettre à l'utilisateur de prélever de l'eau normalement, sans effort supplémentaire. Elle constitue un facteur de confort à l'intérieur des habitations. Les pressions de service contractuelles varient de 05 mCE pour les systèmes simplifiés à 10-20 mCE pour les systèmes classiques. Dans le cadre du présent projet, nous avons choisi d'adopter une pression de service de 10 mCE.

Les vitesses d'écoulement doivent être surveillées afin qu'elles restent entre 0,3 et 1,2 m/s. Cette plage de vitesse permet d'éviter le bruit, l'érosion et la cavitation.

III.2.3.7. Les pertes de charges

La perte de charge dans une conduite est la perte de pression qui se produit dans un fluide en raison du frottement des particules de fluide les unes avec les autres et contre les parois de la conduite.

On distingue deux types de pertes de charges :

- Les pertes de charges linéaires dues aux frottements de l'eau contre les parois des conduites
- ➤ Les pertes de charges singulières dues aux changements brusques de direction et la robinetterie.

Les pertes de charges singulières représentent en général 5% à 10% des pertes de charges linéaires. Pour les pertes de charges linéaires plusieurs formules permettent de le déterminer :

Auteurs	Formules
Hazen-Williams	$J_L = 10,675 * (\frac{Q}{C_{HW}})^{1,852} * D^{-4,871} * L$
Manning Strickler	$J_L = \frac{10,29 * Q^2}{Ks^2 * D^{5.33}} * L$
Calmont Lechapt	$J_L = a * \frac{Q^n}{D^m} * L$
Darcy-Weisbach	$J_L = \frac{8 \lambda l Q^2}{g \pi^2 D^5}$

Avec:

 J_L : la perte de charge linéaire exprimée en m

Q: le débit qui passe dans la conduite en m^3/s

L: la longueur de la conduite en m

D : le diamètre de la conduite exprimé en m

C_{HW}: le coefficient de rugosité de Hazen-Williams

Ks : le coefficient de rugosité de Manning Strickler

a = 0.000916 n = 1,78 m = 4,78 pour les diamètres inférieur à 200 mm

G: accélération de la pesanteur (9,81 m/s²)

Le réseau sera dimensionné avec la formule de Darcy-Weisbach car elle prend en compte plusieurs paramètres et permet d'obtenir des résultats plus précis.

III.2.4. Evaluation des besoins

III.2.4.1. Evolution de la population

Il est essentiel, dans cette étude, de déterminer avec précision les besoins en alimentation en eau. Cette estimation doit être basée sur des données statistiques fiables et sur le taux de croissance de la population. Différentes méthodes permettent de prendre en compte la variation de la population et son évolution. Nous avons choisi d'utiliser la méthode de la croissance géométrique, également connue sous le nom de méthode de la formule de **Thomas MALTHUS** -(COMPAORE, 2024)-. Cette formule est la suivante :

$$P_{\,\,n} = P_{\,\,0} \times (1 \,\,+ \alpha\,)^{\,n}$$

Avec:

Pn : Population à l'horizon du projet ;

P0 : Population de l'année initiale;

lpha: Taux d'accroissement de la population

n : Nombre d'années entre l'année de base et l'année futur.

La démarche adoptée permet de décrire l'évolution démographique dans la zone étudiée en prenant en compte le taux de croissance, exprimé en pourcentage. Le projet porte sur deux villages : le village de Dissin et celui de Mou. Dans le souci d'être le plus optimal possible nous avions utilisé un taux de croissance provincial, basé sur les données de population des recensements généraux de la population et de l'habitat (RGPH de 2006 et de 2019). La formule employée est la suivante :

Taux d'accroissement (%) =
$$\left[\left(\frac{Nombre d'habitant en 2019}{Nombre d'habitant en 2006} \right) \land \left(\frac{1}{2019-2006} \right) \right] - 1$$

En utilisant cette formule, nous avons obtenu un taux de croissance de **2,449%** supposé constant sur la durée de vie du projet.

III.2.4.2. Evaluation des besoins globaux

Besoins domestiques

La quantité d'eau requise pour un individu au quotidien afin de satisfaire ses besoins physiologiques et sanitaires est définie comme son besoin en eau. Ce dernier varie en fonction de paramètres tels que la taille de la population et la consommation spécifique. On peut estimer ces besoins en utilisant la formule suivante -(COMPAORE, 2024)-:

$$B_{dom} = (Pop * C_SBF * T_dBF + Pop * C_SBP * T_dBP) / 1000$$

Avec :

Bdom: Besoins domestiques journaliers (m^3/j) ;

CsBF: Consommation spécifique au niveau des bornes fontaines (l/j/pers);

CsBP: Consommation spécifique aux branchements particuliers (l/j/pers);

Pop: population totale desservie (hbts);

TdBF: *Taux de desserte des bornes fontaines (%)*;

TDBP: Taux de desserte des branchements particuliers (%).

Besoins non domestiques (besoins annexes ou non résidentiels)

Les besoins non-résidentiels concernent ceux qui ne sont pas directement liés aux activités quotidiennes à domicile ou en famille, mais qui sont plutôt associés aux secteurs de l'économie et divers. Il est essentiel de les prendre en compte pour assurer une satisfaction globale des habitants. Les besoins non domestiques seront pris comme 10% des besoins domestiques.

Besoins globaux en eau

Les besoins globaux correspondent à la somme des besoins domestiques et des besoins non domestiques.

$$Bg = Bdom + Bann$$

Avec:

 $Bg: Besoins moyens globaux (m^3/j).$

Bdom: Besoins domestiques (m^3/j) .

Bann: Besoins annexes (m^3/j) .

III.2.4.3. Besoins en eau du jour de pointe

Les besoins en eau du jour de pointe correspondent aux besoins globeaux en eau affecté d'un coefficient de pointe qui est le coefficient de pointe saisonnier pour notre cas:

$$Bpj = Bg *Cps$$

Avec:

 B_{jp} : Besoins en eau du jour de pointe (m^3/j) .

 C_{Ps} : Coefficient de pointe saisonnier.

III.2.4.4. Demande en eau du jour de pointe

La demande en eau du jour de pointe traduit la demande réelle après déduction des pertes d'eau.

$$B_p = \frac{Bpj}{n}$$

Avec:

 \boldsymbol{B}_{p} : Besoins en eau de production du jour de pointe (m^{3}/j) ;

n: Rendement du réseau.

III.2.5. Méthode de dimensionnement

III.2.5.1. Choix du type de réseau au niveau de la distribution

Le type de réseau de distribution prévu est un réseau mixte comprenant une partie maillée et une partie ramifiée. La partie maillée convient aux endroits fortement peuplé et la partie ramifiée aux endroits moins denses. L'eau sera distribuée de manière gravitaire.

III.2.5.2. Calcul des débits et des diamètres théoriques

• Débit d'adduction et de distribution

Le débit d'adduction sera calculé avec la formule ci-dessous :

$$Q_{add} = \frac{Bp}{Tadd}$$

Le debit de distribution sera calculé avec la formule ci-dessous :

$$Q_{dist} = \frac{Bp*Cph}{Tdist}$$

Avec:

Bp : *Besoins en eau de production du jour de pointe* (m^3/j)

Tadd: Temps d'adduction

Tdist: Temps de distribution

Cph : *Coefficient de pointe horaire*

• Débit linéique ou spécifique

Les études socio-économiques ont révélé le besoin d'avoir des branchements privés. Il est donc nécessaire d'en tenir compte dans le dimensionnement en utilisant le débit spécifique pour faciliter l'évaluation de la quantité d'eau prélevée par chaque conduite.

En supposant la population uniformément repartie le long du réseau, le débit spécifique peut être calculé avec la formule suivante :

$$Q_{sp} = \frac{Qt BP}{\sum Li}$$

Avec:

Qsp: débit spécifique (l/s/m);

Qt BP: débit de pointe horaire pour les branchements particuliers (l/s);

 $\sum L i$: longueur totale des tronçons du réseau sans celles menant aux bornes fontaine(m).

• <u>Débit en route</u>

Le débit en route correspond au débit spécifique calculé pour une longueur donnée. Elle traduit la quantité d'eau prélevée le long d'une conduite.

Il est calculé par la formule suivante:

$$Qrte = Qsp * Li$$

Avec:

Qrte: débit prélevé sur le tronçon (l/s);

Qsp: débit spécifique (l/s/m);

Li : longueur du tronçon.

• <u>Débit dans les tronçons</u>

Le débit dans les tronçons désigne le débit circulant à l'intérieur des conduites. Il est également appelé debit fictif..

Le débit fictif se calcule à partir de la formule suivante :

Q fictif =
$$0.55*Q$$
 entrant + $0.45*Q$ sortant

Avec :

Q fictif : débit fictif

Q entrant : débit à l'entrée du nœud Q sortant : débit à la sortie du nœud.

Débit aval

Le débit aval est le débit qui regroupe l'ensemble des débits fictifs qui arrivent en bout d'une section.

• <u>Itération maille</u>

Pour la partie maillée, l'analyse se fait par la méthode de Hardy-Cross. Il s'agit d'une méthode d'itérations successive qui permet de trouver les débits dans les tronçons par estimation, en respectant la loi des nœuds -(COMPAORE, 2024)-. Ces débits seront ensuite corrigés à chaque itération. La valeur de la correction est obtenue par la formule suivante :

$$\delta q = \frac{\sum_{i=1}^{N} \Delta H i}{-2 * \sum_{i=1}^{N} \frac{\Delta H i}{Q i}}$$

Avec:

ΔHi : perte de charge pour le tronçon i ;

N : nombre de tronçon.

$$Qcor = Qi + \delta q$$

Avec:

Qcor: débit corrigé

Qi : débit initial calculé.

On continue les itérations jusqu'à ce que la valeur de δq tende vers zéro.

• Calcul des diamètres des conduites de distribution

Pour les diamètres de la conduite de distribution nous avons les diamètres théoriques et les diamètres internes correspondants. Pour les diamètres internes, ils sont pris légèrement supérieurs aux diamètres théoriques calculés en respectant la disponibilité sur le marché. En ce qui concerne les diamètres théoriques le débit fictif est utilisé dans la formule ci-après

$$Dth = \sqrt{\frac{4*Qfictif}{\pi*v}}$$

Avec:

Dth = diamètre intérieur théorique de la conduite (m);

v = vitesse d'écoulement de l'eau dans la conduite (m/s).

• Calcul du diamètre de la conduite de refoulement

Le transfert de l'eau depuis sa source jusqu'au réservoir sera propulsé par une pompe. Les conduites devant assurer ce transfert par refoulement sont dimensionnées à travers des formules empiriques suivantes :

Auteurs	Formules
Bresse	$D_{th} = 1, 5 \times \sqrt{Q_{expl}}$
Bresse modifié	$Dth = 0,83 \times \sqrt[3]{Qexpl}$
Munier	$Dth = (1 + 0, 02 n) \times \sqrt{Q} expl$
Bejaoui	$D_{th} = 1, 27 \times \sqrt{Q_{expl}}$
Bonnin	$\sqrt{Q} expl$

Avec

D_{th}: Diamètre intérieur théorique en m

 Q_{expl} : Débit d'exploitation en m^3/s

n : nombre d'heure de pompage par jour

> Vitesse

Le calcul de la vitesse se fait par la formule suivante :

$$v\left(m/s\right) = \frac{4*Qexpl}{\pi*Dth^2}$$

La conduite doit respecter la condition de vitesse de Flamant.

• Condition de Flamant : $v(m/s) \le D(m) + 0.6$

III.2.6. Pose des conduites

La pose des conduites doit respecter un certain nombre de conditions notamment la pose d'un lit de sable pour éviter des contaminations et des dimensions de fouilles données par ces formules :

$$l \geq D(m) + 0.5$$

$$H \geq D(m) + 0.8$$

Avec:

L: largeur des fouilles en m;

H: profondeur des fouilles en m;

D : diamètre nominal de la conduite en m.

III.2.7. Détermination de la hauteur Manométrique Totale (HMT)

La détermination de la hauteur manométrique totale est un facteur primordial au choix de la pompe car elle constitue la pression nécessaire à la pompe pour acheminer l'eau de sa source en occurrence le niveau dynamique du forage jusqu'à la cote de déversement du château d'eau. La HMT se calcule à travers la formule suivante :

$$HMT = \sum \Delta H + Hg$$

Hg = Cote de déversement – Cote ND

Avec:

Hg: hauteur géométrique (m);

Cote ND: cote du niveau dynamique (m);

 $\sum \Delta \mathbf{H}$: somme des pertes de charge (m).

III.2.8. Etude et vérification du phénomène du coup de bélier

Le coup de bélier désigne les variations de pression provoquées par une brusque modification du régime d'un liquide s'écoulant à l'intérieur d'une canalisation. Ses causes peuvent être l'arrêt brutal d'une pompe ou la fermeture et l'ouverture brusque d'une vanne. C'est un phénomène des moins négligeables d'autant plus qu'il peut entrainer la rupture de la conduite. Il est donc nécessaire de s'assurer qu'il ne sera pas préjudiciable pour notre réseau et y prévoir des solutions palliatives comme le ballon anti-bélier le cas échant.

Cette vérification se fait à travers les relations suivantes :

Calcul de la célérité				
Célérité des ondes	$C = \frac{9900}{\sqrt{48.3 + k \times \frac{D}{e}}}$			
Calcul de la perturbation selon ALLIEVI-JOUKOVSKI				
ΔP : variation de la pression (m)	$\Delta P = \frac{C \times v}{g}$			
Ho : hauteur manométrique du réseeau	H0 = HMT - ND max			

Hmax : pression maximale engendrée	$Hmax = H0 + \Delta P$
Hmin : pression minimale engendrée	$Hmin = H0 - \Delta P$

Si le coup de bélier existe alors nous avons :

• Par suppression: $\frac{Hmax}{PN} > 1,2$

Avec:

PN: pression nominale de la conduite.

• Par dépression : *Hmin* < *Patm*

Avec:

Patm = pression atmosphérique (10, 33).

III.2.9. Réservoir

Le réservoir est un ouvrage servant à stocker de l'eau potable destinée à la consommation de la population. Il permet de réguler les débits entre le débit d'adduction et le débit demander par le réseau. Il sert aussi de régulateur de pression et de réacteur de traitement.

Pour le cas de notre projet nous avons opté pour un réservoir métallique, qui est d'un coût de réalisation moindre que celui en béton armé, une mise en place plus facile et plus rapide.

III.2.9.1.Emplacement du réservoir

Le réservoir doit être situé le plus proche possible des agglomérations afin de réduire les pertes de charges. Il doit être positionné à une hauteur suffisante pour dominer tous les points du réseau. La topographie du terrain est alors utilisée afin de placer le réservoir à des endroits élevés pour réduire la hauteur sous radier. Cette hauteur sous radier se calcule avec la formule suivante :

Hauteur sous radier = Maximum Côte minimale exploitable – Côte TN du réservoir Côte minimale exploitable = pression minimale de service + ZTN aval + $\Sigma\Delta H$

III.2.9.2.Capacité du réservoir

Plusieurs méthodes permettent de calculer le volume utile du réservoir à savoir :

• la méthode graphique qui se base sur les courbes d'alimentation et de distribution

• la méthode analytique basée sur des paliers de la courbe de consommation

• la méthode forfaitaire basée sur un pourcentage de la consommation journalière maximale

Une comparaison sera effectuée entre la méthode analytique et la méthode forfaitaire en vue d'en

retenir la plus optimale pour notre dimensionnement.

Dans le cas où la méthode forfaitaire est retenue, 25% de la consommation maximale journalière

sera adoptée pour la capacité utile du réservoir.

 $Cu = \frac{1}{4} Bjp$

Avec

Cu : *capacité utile* (*m*³)

 $Bjp: besoin journalier de pointe (<math>m^3$)

Une réserve incendie ne sera pas inclue dans la capacité du réservoir dans un souci de priorisé le

besoin vitale de consommation humaine et de réduire le pompage d'eau.

III.2.9.3.Dimensionnement du réservoir

Les dimensions du réservoir sont déterminées à l'aide du calcul du volume du cylindre.

$$V = \frac{\pi * D^{2}}{4} * H$$

Avec :

V: Capacité du réservoir en m^3 ;

 $H: Hauteur\ du\ r\'eservoir\ en\ m\ ;$

D : Diamètre en m.

III.2.10. Traitement de l'eau

III.2.10.1. Temps de contact et de séjour

Le renouvellement des volumes de réservoir doit faire l'objet d'une surveillance particulière. Pour un traitement adéquat il faut s'assurer que le temps de contact et de séjour soit respecté.

• le temps de contact

Le temps de contact est le temps nécessaire au chlore pour être efficace. S'il est insuffisant la désinfection ne sera pas complète. La durée minimale pour le chlore est de 2h.

$$Tc = \frac{Cu}{Qmh} \ge 2h$$

Avec:

Tc: Temps de contact (h)

Cu: Capacité utile (m³)

Qmh : Débit moyen horaire de distribution (m³/h)

le temps de séjour

Le temps de séjour doit également être contrôlé afin de ne pas avoir des eaux stagnantes qui vont altérer la qualité de l'eau. Ce temps est de 02 jours maximum pour le traitement au chlore.

$$T_S = \frac{Cu}{Bjp} \le 2j$$

Avec:

Ts : Temps de séjour (j) ;

Cu : Capacité utile (m³)

Bjp: Besoin de pointe journalier (m^3/j) .

III.2.10.2. Système de traitement

L'eau du forage d'exhaure n'appelle pas de traitement particulier ; cependant, suivant l'évolution de sa qualité dans le temps, une adaptation pourrait intervenir si nécessaire. Aussi, avons-nous

prévu un traitement de désinfection au chlore dont la mise en œuvre doit se faire même au cas où l'eau est déjà potable au pompage. Cela permet de maintenir cette eau potable pendant tout le processus de transport jusqu'au consommateur, étant donné que cette eau entre en contact avec un ensemble d'équipements.

Un nouveau système de traitement appelé « filtre doseur » a été mis en place par un agent de l'ONEA et sera utilisé dans le cas présent. C'est un dispositif de désinfection sous pression qui fonctionne sans énergie. Ce filtre présente des avantages et quelques inconvénients.

Les avantages du filtre doseur sont :

- La facilité à manipuler
- Une absence de risque de chute du haut du château
- Une réduction des nuisances liées à la préparation du chlore granulé
- Une absence totale de consommation d'énergie électrique
- Une permanence du chlore dans l'eau

Comme inconvénient le filtre doseur présente une légère consommation spécifique du chlore.

Il est installé au pied du château sur la conduite de refoulement

La norme au Burkina Faso est de 0,5 mg/l à 5 mg/l de dose utile de chlore.

III.2.11. Sources d'énergie

Le système d'alimentation en énergie proposé pour l'adduction d'eau potable de Dissin-Mou est hybride. Il combine le groupe électrogène aux panneaux photovoltaïques. L'AEP est alimentée en énergie au fil du soleil et en cas de faible ensoleillement le groupe électrogène prend le relais. Le GE sert également à augmenter la durée temps de pompage.

III.2.11.1. Dimensionnement du champ solaire et Onduleur

La puissance maximale que peut fournir un module PV est donnée par la relation suivante :

$$Pc = ch * \frac{Qj * HMT}{Kp * Ei * \eta ond * \eta mp}$$

Avec:

Pc: la puissance crête (W);

Ch : *la constante hydraulique=2,725* ;

Qj: le débit journalier (m^3/j) ;

nonduleur: le rendement onduleur (%), valeur guide de 95%;

npompe: le rendement de la pompe-moteur (%);

Kp : le coefficient de productivité estimé à 0,75 ;

Ei (KWh/m2/j): le rayonnement total journalier moyen mensuel;

HMT: Hauteur Manométrique Totale (m).

Tenant compte de la qualité peu satisfaisante des panneaux solaires sur le marché qui ne délivre pas exactement la puissance inscrite sur les fiches techniques, nous considérons un rendement de 90% par panneau solaire pour palier au problème de baisse d'intensité au fil du temps.

Le rendement de production des panneaux solaires dépend fortement de la trajectoire des rayons du soleil. Ce rendement est optimal lorsque les rayons atteignent les cellules photovoltaïques de façon perpendiculaire.

L'inclinaison du panneau solaire représente l'angle entre le sol et le panneau.

Le Burkina Faso est situé à la latitude 12°. L'angle d'inclinaison optimal est de 15° direction Sud zéro.

III.2.11.2. Dimensionnement du groupe électrogène

Puissance au démarrage ou régime transitoire

$$Pd=Pe \times 5$$

Puissance en impact maximal

$$P \max = (Pd/0.8)/2$$

Puissance groupe en fonctionnement optimal

P opti =
$$P \max / 0.85$$

Avec

Pe : Puissance électrique (Kw)

III.3. Etude financière

Le projet à réaliser doit pouvoir être rentable afin de satisfaire aux besoins d'exploitation et de maintenance. Cette rentabilité passe par la fixation du prix de revient qui englobe plusieurs

paramètres notamment les coûts d'exploitations, la capacité des populations à payer l'eau, les

subventions.

Les dotations aux amortissements permettent d'intégrer le coût d'achat des équipements sur la

durée de vie du projet. Le volume d'eau consommé tout au long du projet est calculé en fonction

des besoins du jour de pointe. Le prix du mêtre cube d'eau est déterminé en divisant le total des

coûts d'exploitation et des dotations aux amortissements par le volume d'eau vendu, assurant ainsi

la viabilité financière du projet. Le prix du mètre cube est déterminé comme suit -(COMPAORE,

2024):

$$Pr = \frac{A+C}{V}$$

Avec:

Pr: Prix de revient de l'eau;

A: Dotation aux amortissements;

C : Charges d'exploitation et d'entretien du système ;

V : *Volume d'eau produit*.

IV. ETUDE DE FAISABILITE TECHNIQUE

Introduction

Dans l'optique d'une assurance de la viabilité et de la durabilité du projet, une étude de faisabilité

technique se trouve nécessaire. En prenant en compte tous les aspects propres aux projets, cette

étude comprendra deux variantes qui seront analysées afin d'en retenir la meilleure pour une mise

en œuvre optimale, sécurisée et durable.

IV.1. Variante N°1

Les deux localités de l'étude sont desservies par un seul château d'eau.

IV.1.1. Estimation de la population à l'horizon du projet

Il est très important de maitriser la croissance de la population pour mieux appréhender les besoins en eaux. Les résultats de l'évolution de la population sont inscrits dans le tableau ci-après :

Tableau 4: Evolution de la population variante n°1

Année	2019	2023	2025	2030	2035	2040	2045	2050
Dissin	9061	9982	10477	11824	13344	15060	16997	19183
Mou	3196	3521	3695	4171	4707	5312	5995	6766
Total	12257	13503	14172	15994	18051	20373	22992	25949

Avec un taux de croissance provincial de 2,449% la population totale de Dissin et de Mou s'élève à 25949 habitants en 2050 horizon du projet.

IV.1.2. Evaluation des besoins et demande en eau

Les besoins en eau de la population de Dissin et de Mou sont présentés dans le tableau ci-après :

Tableau 5: Besoins en eau de la population de Dissin-Mou

	Désignations	Abréviations	Unités	2025	2030	2040	2050
		Estim	ations des be	esoins			
	Population estimée		Habitants	14172	15994	20373	25949
	Taux de desserte de la population		%	56%	80%	90%	100%
	Taux de desserte des BP		%	28%	56%	60%	70%
	Population desservie par BP			3968	8957	12224	18164
rivé	Nombre de personne par BP			10	10	10	10
nt P	Nombre de BP théoriques			397	896	1222	1816
Branchement Privé	Consommation spécifique	Cs	l/j/hbt	25	25	25	25
nche	Besoin journalier moyen des BP	Bjm_BP	l/jour	99203.86	223922.22	305588.95	454110.63
Bra			m3/jour	99.20	223.92	305.59	454.11
	Taux de desserte des BF		%	28%	24%	30%	30%
	Population desservie par BF			3968	3839	6112	7785
	Nombre de personne par BF			500	500	500	500
aine	Nombre de BF théoriques			8	8	12	16
Borne Fontaine	Consommation spécifique		l/j/hbt	20	20	20	20
ne F	Besoin journalier moyen des BF	Bjm_BF	l/jour	79363.09	76773.33	122235.58	155695.07
Bor			m3/jour	79.36	76.77	122.24	155.70
	Besoins moyens domestiques	Bjm_dom	m3/jour	178.57	300.70	427.82	609.81
	Besoins annexes		m3/jour	17.86	30.07	42.78	60.98
Besoins	Besoins moyens journaliers	Bjm	m3/jour	196.42	330.77	470.61	670.79
Bes	Besoin journalier de pointe	Вјр	m3/jour	227.44	382.99	575.19	868.08

Etude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso

	Calcul du débit d'adduction						
	Temps d'adduction	Tadd	h	16	16	16	16
	Rendement du réseau	r	%	95%	95%	90%	85%
ion	Coefficient de pointe saisonnier	Cps		1.10	1.10	1.10	1.10
Adduction	Besoin journalier de pointe	Вјр	m3/jour	227.44	382.99	575.19	868.08
Add	Débit d'adduction	Qadd	m3/h	14.21	23.94	35.95	54.25
	Calcul des débits de distribution						
	Coefficient de pointe horaire	Cph		2.2	2.0	1.9	1.8
	Temps de distribution des BF		h	12	12	12	12
	Débit de distribution de Pointe BF	Qdiss_BF	m3/h	18.22	16.39	26.25	33.97
Fontaine	Nombre de BF réel (2 localités)			29	29	29	29
ont	Débit de distribution par BF		m3/h	0.63	0.57	0.91	1.17
ne F	Nombre de robinets par BF			3	3	3	3
Borne	Débit de distribution par robinet		m3/h	0.21	0.19	0.30	0.39
ınt	Temps de distribution des BP		h	20	20	20	20
Branchement Privé	Débit de distribution de Pointe BP	Qdiss_BP	m3/h	13.67	28.68	39.38	59.45
Branc Privé	Nombre de BP			397	896	1222	1816

Les besoins moyens en eau journalier s'élève à $670,79 \text{ m}^3/\text{jour}$ à l'horizon 2050 et les besoins du jour de pointe sont $868,08 \text{ m}^3/\text{jour}$.

IV.1.3. Dimensionnement du réservoir

A l'issu des résultats de la méthode forfaitaire et analytique qui sont consignés en annexe, la méthode forfaitaire a été retenue. Le résumé des résultats est présenté dans le tableau ci-dessous :

Tableau 6: Caractéristiques du réservoir unique aux deux localités

Caractéristiques	Unité	Valeur
Capacité réservoir méthode analytique	m^3	227,87
Capacité réservoir calculée : 1/4*Bj	m^3	217,02
Capacité utile du réservoir retenue	m^3	200
Hauteur du réservoir	m	5,5
Diamètre du réservoir	m	7
Côte trop plein	m	340,69

La capacité du réservoir retenue est de 200 m³

<u>Résumé</u>: pour la variante 1, nous avons un besoin journalier de pointe de 868.08 m³/jour avec une capacité de réservoir de 200 m³.

IV.2. Variante N°2

Le château de Dissin alimente gravitairement un autre château mis en place pour desservir en eau Mou.

IV.2.1. Estimation de la population à l'horizon du projet

L'évaluation de la population à l'horizon 2050 ne change pas. Elle reste la même que pour la variante 2

Tableau 7: Evolution de la population variante n°2

Année	2019	2023	2025	2030	2035	2040	2045	2050
Dissin	9061	9982	10477	11824	13344	15060	16997	19183
Mou	3196	3521	3695	4171	4707	5312	5995	6766
Total	12257	13503	14172	15994	18051	20373	22992	25949

Avec un taux de croissance provincial de 2,449% la population totale de Dissin est de 19183 habitants et celle de Mou s'élève à 6766 habitants en 2050 horizon du projet.

IV.2.2. Evaluation des besoins et demande en eau

Dissin

La synthèse des résultats des besoins en eau de Dissin est inscrite dans le tableau ci -après :

Tableau 8: Synthèse des besoins en eau de Dissin

Désignations	Unité	Valeur (2050)
Besoin journalier moyen des BP	m ³ /jour	335,7
Besoin journalier moyen des BF	m ³ /jour	115,1
Besoins moyens journaliers	m ³ /jour	495,88
Besoin journalier de pointe	m ³ /jour	641,73
Débit d'adduction	m ³ /h	40,11
Débit de distribution de Pointe BF	m ³ /h	25,87
Débit de distribution de Pointe BP	m ³ /h	45,27

Les besoins journalier de pointe de Dissin s'élève à 641,73 m³/jour

Mou

La synthèse des résultats des besoins en eau de Mou est inscrite dans le tableau ci –après :

Tableau 9: Synthèse des besoins en eaux de Mou

Désignations	Unité	Valeur (2050)
Besoin journalier moyen des BP	m ³ /jour	118,41
Besoin journalier moyen des BF	m ³ /jour	40,6
Besoins moyens journaliers	m ³ /jour	174,91

Besoin journalier de pointe	m ³ /jour	226,35
Débit d'adduction	m ³ /h	14,15
Débit de distribution de Pointe BF	m ³ /h	10,42
Débit de distribution de Pointe BP	m ³ /h	18,24

Les besoins en eau de pointe journalier de Mou s'élève à 226,35 m³/jour.

IV.2.3. Dimensionnement du réservoir

Les dimensions des différents réservoirs sont mentionnées dans les tableaux ci-dessous

Dissin

Tableau 10: Caractéristiques du réservoir de Dissin

Caractéristiques	Unité	Valeur
Capacité réservoir méthode analytique	m^3	176,11
Capacité réservoir calculée : 1/4*Bj	m^3	167,72
Capacité utile du réservoir retenue	m^3	150
Hauteur du réservoir	m	5,5
Diamètre du réservoir	m	6
Côte trop plein	m	340,69

❖ Mou

Tableau 11: Caractéristiques du réservoir de Mou

Caractéristiques	Unité	Valeur
Capacité réservoir méthode analytique	m^3	62,12
Capacité réservoir calculée : 1/4*Bj	m^3	59,16
Capacité utile du réservoir retenue	m^3	50
Hauteur du réservoir	m	5
Diamètre du réservoir	m	4
Côte trop plein	m	334,29

Résumé : pour la variante n°2 nous avions respectivement pour Dissin et Mou des besoins en eau journalier de pointe de 641,73 m³/jour et 226,35 m³/jour avec des capacités de réservoir de 150 m³ et 50 m³.

Conclusion

En comparaison des résultats des deux variantes, le choix sera porté sur la variante N°2 pour la suite du dimensionnement.

Ce choix se justifie par le fait que pour la variante n°1 la capacité du réservoir commun aux deux localités dépasse 150m³, une capacité qui n'est pas conseillée pour les châteaux d'eau métallique pour des questions de stabilité. C'est également dans un souci de réduction des coûts que le château d'eau métallique a été retenu au détriment de celui en béton qui aurait été nécessaire pour appliquer la variante n°1. Ce choix est aussi avantageux en matière de coût car le château existant de 50 m³ sera déplacé pour desservir Mou. La construction d'un seul château métallique sera alors nécessaire.

En somme un château d'eau de 150 m³ pour desservir en eau Dissin et un château de 50 m³ pour desservir en eau Mou.

IV.3. Dimensionnement du réseau de distribution et d'adduction

Le type de réseau de distribution prévu est un réseau mixte comprenant une partie maillée et une partie ramifiée. L'eau sera distribuée de manière gravitaire à partir d'un château. A l'issu de l'étude socio-économique nous notons 18 bornes fontaines pour Dissin et 11 bornes fontaines pour Mou.

Le réseau d'adduction sera en PEHD pour sa plus grande qualité que le PVC

IV.3.1. Calcul du débit d'adduction et de distribution

Le débit d'adduction calculé pour 2050, horizon du projet est de **54,26 m³/h**. Nous disposons de deux forages de 15m³/h et 09m³/h pour couvrir ce débit d'adduction. Ils sont visiblement

insuffisants et nécessitera 03 autres forages de 10m³/h chacun en plus, pour couvrir les besoins d'adduction d'ici 2050.

Le débit de distribution des bornes fontaines est de 33,97m³/h et celui des branchements privés est de 59,45 m³/h tous à l'horizon 2050.

Tableau 12: Débit d'adduction et débits de forages supplémentaires

Année	2023	2025	2030	2035	2040	2045	2050
Débit d'adduction (m³/h)	11,00	14,21	23,94	28,52	35,95	42,96	54,25
Débit forages existants (m³/h)	24	24	24	24	24	24	24
Débit cumulé forages supplémentaires (m³/h)	0	0	0	4,52	11,95	18,96	30,25

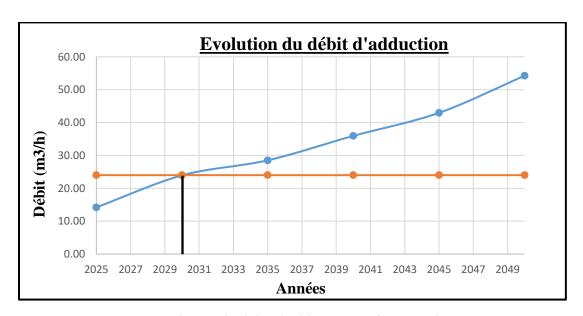


Figure 2: Evolution du débit d'adduction en fonction des années

IV.3.2. Dimensionnement du réseau de distribution

Le réseau de distribution d'eau potable de Dissin est constitué des conduites en PVC PN10 de diamètre 63 mm, 90 mm, 110 mm, 160 mm, 200 mm. Le réseau de distribution de Mou est constitué des conduites en PEHD PN10 de diamètre 63 mm, 90 mm, 110 mm et 160 mm et 200 mm. Ces diamètres ont été choisis en fonction de la disponibilité sur le marché.

Tableau 13: Linéaire des conduites de distributions

DN	Longueur (m)
200	4082,29
160	4382,96
110	5535,47
90	2364,93
63	6921,34
Total	23286,99

Le dimensionnement a été réalisé sur Excel et EPANET.

Sur Excel, nous avons tout d'abord calculé le débit linéique à partir du débit de pointe de branchements particuliers. Ce débit a servi à calculer les débits en route et les débits fictifs au niveau de chaque tronçon. Avec les débits fictifs, nous avons calculé les diamètres théoriques des différentes conduites et choisir leurs diamètres intérieurs et commerciaux correspondant tout en prenant soin de respecter la condition de vitesse comprise entre 0,3 à 1,2 [m³/s]. Une simulation a été également faite sur Excel.

Les valeurs des résultats sont consignées en annexe n°5

IV.3.3. Simulation sur EPANET

EPANET est un logiciel de simulation. Il nous a servi dans le cadre de ce projet à simuler le système de distribution de l'eau. Les résultats de cette simulation nous ont permis d'avoir les vitesses d'écoulement au niveau de chaque tronçon et les valeurs des pressions aux différents nœuds du réseau. Une confrontation des résultats de la simulation sur Excel et sur EPANET ont permis de mieux vérifier la fiabilité. Les résultats sont donc présentés au niveau de l'annexe n°7

IV.3.4. Dimensionnement du réseau d'adduction

Le réseau d'adduction a pour rôle d'assurer le transfert de l'eau d'une source vers un réservoir. Pour ce faire nous avons 02 forages qui constituent les sources qui vont alimenter les réservoirs. Le premier forage à un débit de 15 m³/h tandis que le deuxième à un débit d'exploitation de 09m³/h. Ces eaux sont acheminées à travers des conduites qui sont dimensionnées pour la cause

IV.3.4.1. Conduite de refoulement

Conduite 1 (Dissin)

Cette conduite part du forage n°1 de 15 m³/h situé au nord-ouest de Dissin jusqu'au château de 150m³. Elle sera en PEHD PN 16 DN125. Elle est dimensionnée à l'aide de formules empiriques dont les résultats sont consignés en annexe n°3

❖ Conduite 2 (Mou)

Cette conduite part du forage n°2 de 09 m³/h situé à Mou, jusqu'au château de 50m³. Elle sera en PEHD DN 110 PN16. Elle est dimensionnée à l'aide de formules empiriques dont les résultats sont consignés en annexe n°4

IV.3.4.2. Exhaure et colonne montante

La colonne d'exhaure est la conduite qui va du niveau dynamique à la tête du forage. Elle sera en Foraduc. La colonne montante est celle qui va du pied du château jusqu'à la côte de déversement. Elle sera en Acier inox. Les diamètres des différentes conduites calculés sont résumés dans le tableau ci-après :

Tableau 14: Caractéristiques colonne montante et exhaure

COLON	COLONNE D'EXHAURE_FORADUC ET COLONNE MONTANTE									
		Dissin		Mou						
Designation	Q(m ³ /h)	Dth(mm)	DN (mm)	Q(m ³ /h)	Dth(mm)	DN (mm)				
Colonne										
d'exhaure (en FORADUC)	15	72,84	75	9	56,42	65				
Colonne										
montante(en acier Inox)	15	72,84	80	9	56,42	60				

IV.4. Pose des conduites dans les tranchées

Les traversées de pont ou dalot se feront en acier galvanisé avec des colliers de fixation sur le pont. Les tuyaux ou pièces nécessaires posés le long des parois en béton sont fixés au moyen de colliers ou consoles munis de pattes de scellement. Ces colliers seront suffisamment dimensionnés en largeur, longueur et épaisseur pour assurer une stabilité suffisante aux tuyaux. Ces colliers doivent permettre éventuellement l'enlèvement de la pièce sans qu'aucun descellement ne soit à effectuer. Chaque élément de canalisation est maintenu par deux colliers de fixation au minimum.

Les dimensions des fouilles sont résumées dans le tableau ci-après :

Tableau 15: Dimensions des fouilles nécessaires

Dimensions des tranchées									
DN (mm)	C	alculs	Valeur	Valeurs retenues					
DN (mm)	H(m)	l(m)	H(m)	l(m)					
200	1	0,7	1	0,7					
160	0,96	0,66	1	0,7					
110	0,91	0,61	1	0,7					
90	0,89	0,59	0,9	0,6					
63	0,86	0,56	0,9	0,6					

IV.5. Calcul de la HMT et sélection de la pompe

Nous avons 02 pompes qui assurent le refoulement. Les HMT correspondantes sont calculées sur la base des hauteurs géographiques et de la somme des pertes de charges. Les résultats sont consignés dans le tableau ci-après :

Tableau 16: Détermination de la HMT

	PARAMETRES	VALEURS FORAGE DE 9M³	VALEURS FORAGE DE 15M³	
au	Cote TN château (m)	319,29	325.69	
Thâteau	hauteur fond de cuve (m)	15	15	
C	H(m)	5	5,5	
0	Cote TP château	339,29	346.29	
[géo	Cote TN Forage	286,35	306,34	
H	H dyn.(m)	60	60	

	ΔH Géo (m)=	114,54	99,95
_	Longueur refoulement (m)	8993	6225
tuyau	J refoulement (m)	36,77	35,51
J th	J exh-mont (m)	2,28	2,35
	j total (m)	39,06	37,87
	HMT (m)	153,6	137,82
Н	MT RETENUE	154	138

Le choix des pompes a été effectué sur le site de GRUNDFOS.

Les résultats sont consignés dans les tableaux ci-après :

Tableau 17: Caractéristiques de la pompe du forage de 15m3/h

	Q [m³/h]	HMT [m]	Marque	N [tr/min]	Type moteur	U [V]	R_Pompe+ Moteur (%)	R_pompe (%)	P [kW]	Diamètre moteur [inch]
Forage	15	138	SP 18-17	2900	MS 6000	3*400V	63	77,5	9,2	6

Tableau 18: Caractéristiques de la pompe du forage de 09m3/h

	Q [m³/h]	HMT [m]	Marque	N [tr/min]	Type moteur	U [V]	R_Pompe+ Moteur (%)	R_pompe (%)	P [kW]	Diamètre moteur [inch]
Forage	9	154	SP 9-32	2900	MS 6000	3*400V	56,2	69,2	7,5	6

➤ Point de fonctionnement de la pompe

Le point de fonctionnement de la pompe est le point d'intersection de la caractéristique hydraulique de la pompe et celle du réseau. Les graphiques ci-dessous illustres les différents points de fonctionnement de chaque pompe.

➤ Forage n°1

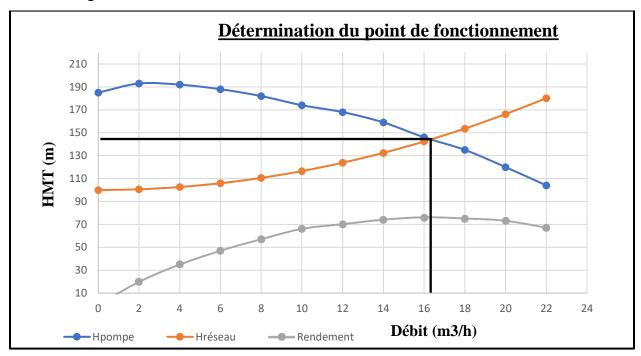


Figure 3: Point de fonctionnement de la pompe SP18-17

> Forage n°2

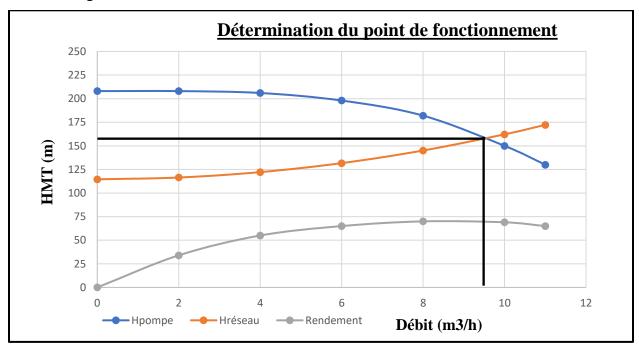


Figure 4: Point de fonctionnement de la pompe SP9-32

IV.6. Vérification et protection des conduites contre le phénomène de coup de bélier

Le coup de bélier désigne les variations de pression provoquées par une brusque modification du régime d'un liquide s'écoulant à l'intérieur d'une canalisation. Le tableau ci-dessous présente les résultats de la vérification de la présence ou non du coup de bélier.

Dissin

Tableau 19: Vérification du coup de bélier conduite de Dissin

Conduite	Débit (m³/h)	DN (mm)	D int (mm)	Epaisseur [mm]	k	Uo(m/s)	HMTpf [m]	C [m/s]			Hmax / PN 25	Hmin [m]
Forage	15	125	102,2	11,4	33	0,507922	137,82	533,66	27,63	105,45	0,66	50,19

• Mou

Tableau 20: Vérification du coup de bélier conduite de Mou

Conduite	Débit (m³/h)			Epaisseur [mm]	k	Uo(m/s)	HMTpf [m]	C [m/s]	ΔP [m]		Hmax / PN 25	Hmin [m]
Forage	09	110	90	10	33	0,392975	153,6	532,77	21,34	114,94	0,46	72,25

Nous constatons que dans les deux conduites de refoulement, le rapport de la pression maximale sur la pression nominale est inférieur à 1,2 et la pression minimale est supérieure à la pression atmosphérique 10,33. Ce qui nous permet d'affirmer que la surpression et la dépression ne sont pas préjudiciables.

Nous devrions cependant placer des ventouses le long de la conduite pour évacuer l'air.

IV.7. Dimensionnement des sources d'énergie

IV.7.1. Champ photovoltaïque

Les résultats de la puissance solaire nécessaire sont consignés dans le tableau suivant :

Tableau 21: Résultat des paramètres du champ solaire et de l'onduleur

Paramètres	Dissin	Mou
$Q(m^3/h)$	15,00	9,00
HMT (m)	138,0	154,0
Moteur	MS6000	MS6000
Frequence (Hz)	50	50
Rendement pompe (%)	77,5%	69,2%
Rendement moteur-pompe (%)	63%	56,2%
Ensoleillemnt journalier moyen (h)	5,5	5,5
Puissance du champ photovoltaïque calculée (Wc)	19957,4	15091,4
Puissance du champ photovoltaïque retenue (Wc)	20000	15000
Puissance du champ photovoltaïque retenue (KWc)	20	15
Puissance de l'onduleur (KVA)	18	14.8

Le champ solaire à Dissin aura une puissance de 20 KWc et une puissance d'onduleur de 18 KVA, tandis qu'à Mou la puissance du champ photovoltaïque sera de 15 KWc et une puissance d'onduleur de 14,8KVA

IV.7.2. Groupe électrogène

Les résultats de la puissance du groupe électrogène nécessaire sont consignés dans le tableau suivant :

Tableau 22: Caractéristiques du groupe éléctrogène

Paramètres	Dissin	Mou
Puissance au démarrage (KW)	30	15
Puissance en impact maximum (KVA)	18,75	9,37
Puissance optimal (KVA)	23,44	11,72
Puissance retenue (KVA)	25	15

La puissance du groupe nécessaire sera de 25 KVA pour la pompe de Dissin et de 15 KVA pour la pompe de Mou

IV.8. Traitement de l'eau

L'eau du forage d'exhaure n'appelle pas de traitement particulier ; cependant, suivant l'évolution de sa qualité dans le temps, une adaptation pourrait intervenir si nécessaire. Un filtre doseur sera utilisé pour injection du chlore préalablement préparé dans un bac. Le dimensionnement du système de traitement est consigné dans les tableaux ci-dessous.

Tableau 23: Caractéristiques du filtre doseur

DIMENSIONNEMENT DU FILTRE DOSEUR						
Paramètres	Dissin	Mou				
Taux de traitement	$T(g/m^3)$	1,5	1,5			
Concentration de Ca(OCl)2	C(g/l)	5	5			
Debit d'eau brute	$Q(m^3/h)$	15	9			
Debit de la pompe doseuse	q(l/h)	4,5	2,7			
Rendement_pompe	R	80%	80%			
Debit pompe calculé	q(l/h)	5,625	3,375			
Debit pompe retenu	q(l/h)	6	4			

Tableau 24: Caractéristiques du bac de preparation

DIMENSIONNEMENT DU BAC DE PREPARATION						
Paramètres	Dissin	Mou				
Masse(g)	M(Ca(ClO)2)	143,08	143,08			
Masse(g)	M((Cl)2)	71	71			
Titre chlore actif/Ca(OCl)2	Chlore actif	60%	60%			
Masse volumique (g/m ³)	M/V(Produit)	5,03803	5,03803			
Masse nécessaire (g)	M(Produit)	755,704	251,901			
Volume du bac (L)	V(bac)	151,141	50,380			
Volume retenu du bac (L)	V(bac)	152	51			

Vérification de temps de contact et de séjour

La vérification du temps de contact et de séjour est résumée dans le tableau ci-dessous :

Tableau 25: Vérification du temps de contact et de séjour

TEMPS DE CONTACT ET DE SEJOUR					
Paramètres	Dissin	Mou			
Cu(m ³)	150	50			
Qmh(m ³ /h)	71,14	24,56			
$Q(m^3/j)$	641,73	226,35			
Tc (h)	2,10852	2,03583			
Ts (j)	0,2337	0,2209			

Le temps de contact est de 2,10 et 2,03 heures respectivement pour Dissin et Mou, et le temps de séjour est de 0,23 et 0.22 jour pour les deux localités. Ces deux temps respectent les conditions nécessaires pour un bon traitement de l'eau.

IV.9. Ouvrages annexes du réseau

Pour le bon fonctionnement et la sécurité du réseau, d'autres ouvrages s'avèrent nécessaires afin de garantir la bonne marche du réseau. Nous distinguons entre autres :

- Des ventouses pour faire échapper l'air des conduites
- Des vidanges pour nettoyer le réseau
- Des clapets anti-retour pour empêcher la circulation de l'eau dans le sens inverse
- Des manomètres pour mesurer la pression
- Des vannes pour pouvoir isoler des tronçons

A ces équipements hydrauliques, il faut ajouter un bâtiment à usage de bureau et de magasin qui va servir de bureau pour le gérant de l'AEP et abritera les tableaux de commandes électriques. Il abritera aussi, les pièces de rechanges, le stock de gasoil.

Les pompes étant alimenté par l'énergie solaire et le groupe électrogène, il faut aussi prévoir le local du groupe électrogène.

IV.10. Mode de gestion de l'AEP-MV

La gestion de l'AEP-MV est un facteur majeur dans la durabilité de l'investissement. En effet une mauvaise gestion sera source de dysfonctionnement du système, de conflits etc... Il est donc crucial de se pencher sérieusement sur ce point.

Nous distinguons deux types de gestion pour la cause : la gestion directe et la gestion déléguée.

- La gestion directe : elle implique que l'organisation gère elle-même ses activités en interne, sans faire appel à des prestataires externes.
- La gestion déléguée : elle consiste à confier la gestion d'une partie ou de la totalité des activités de l'organisation à des prestataires externes

Chacune des options à ses avantages et ses inconvénients. Ces derniers sont représentés dans le tableau en annexe n°14 -(COMPAORE, 2024)-.

Après analyse de ces options, celle qui sera bénéfique pour nous est la gestion déléguée par affermage car généralement dans les villages, les ressources humaines qualifiées font souvent défaut. Ce mode de gestion permet à une entité compétente de d'apporter son expertise pour des meilleurs rendements.

Conclusion

En somme l'étude de faisabilité technique à révéler que le projet d'extension du système en eau potable est réalisable sous certaines conditions notamment la prise en en compte de deux châteaux pour la desserte de localités, l'utilisation de pompes adéquates mentionnées plus haut et bien d'autres conditions.

V. ETUDE DES COÛTS

Introduction

Dans un contexte où les ressources financières sont souvent limitées, il est essentiel de comprendre les implications financières d'un projet avant de prendre des décisions d'investissement. L'étude des coûts vise à analyser la viabilité économique du projet.

V.1. Evaluation du coût de réalisation du projet

Le montant général pour la réalisation du projet s'élève à 701 911 300 FCFA TTC, (sept cent un million neuf cent onze mille trois cents FCFA). Ces coûts ont été évalués sur la base du mercuriale 2022. Le résumé des coûts est représenté dans le tableau ci-dessous :

Tableau 26: Coût de réalisation du projet

N°	Designation	Montant (FCFA)
1	Frais généraux	5 000 000
2	Etude forage	4 650 000
3	Refoulement	119 660 000
4	Réseau de distribution	302 147 685
5	Traitement	10 322 400
6	Fourniture et pose équipements	17 310 000
7	Energie	68 150 000
8	Château d'eau	60 100 000
9	Locaux divers	7 000 000
10	Formations	500 000
TOTAL HT	VA	594 840 085
TVA		107 071 215
TOTAL TTO	C	701 911 300

V.2. Amortissement des investissements initiaux

En ce qui concerne l'amortissement des investissements nous avons considéré divers équipements tels que l'électropompe immergée, les ouvrages de génie civil, le groupe électrogène, le champ solaire et le château d'eau. Le montant total des amortissements actualisés s'élève à 11 156 923 (onze million cent cinquante-six mille neuf cent vingt-trois) Francs CFA.

Tableau 27: Coûts des amortissements annuels

Désignation	Montant [FCFA]	Durée de vie [an]	Annuité sans actualisation [an]	Annuité avec actualisation [an]
Electro-pompe - immergé	11 500 000	10	1 150 000	1 489 303
Génie civil	7 000 000	15	466 667	674 396
Groupe électrogène	23 450 000	25	938 000	1 663 835
Système photovoltaïque	43 200 000	25	1 728 000	3 065 146
Château d'eau	60 100 000	25	2 404 000	4 264 243
Total annuel			6 686 666	11 156 923

V.3.Charges d'exploitation

Les charges d'exploitations concernent les dépenses liées à la gestion et l'entretien des équipements de l'AEP. Cela regroupe les coûts de maintenance, les frais énergétiques, les frais de traitement et les frais pour le personnel. Le tableau ci-dessous récapitule les frais d'exploitations et leurs coûts.

Tableau 28: Evaluation des charges d'exploitation

Désignation	2025	2030	2040	2050
Volume Eau Facturée [m³/an]	71695	120729	171772	244837
Volume Eau produite [m³/an]	75468	127083	190857	288044
Coût de la desinfection [fcfa/an]	4342314	7312185	10981634	16573581
Coût de l'énergie [fcfa/an]	739125	5913000	5913000	5913000
Coût entretien du réseau [fcfa/an]	2109038	2214490	2325215	2441476
Coût Entretien réservoir [fcfa/an]	150250	157763	173539	190893
Coût Surveillance contrôle de la qualité [fcfa]	150000	165000	189750	227700
Gardien	600000	600000	630000	630000
Fontainier	10440000	10440000	10962000	10962000
Piece de rechange	96000	100800	110880	121968
Total charges d'exploitation [fcfa]	18773890,47	27151050,79	31648646,37	37593497,55

V.4.Prix de vente du mètre cube d'eau

Le prix de vente du mètre cube d'eau est réglementé par le Ministère de l'Environnement, de l'Eau et de l'Assainissement. Cependant les tarifs primaires sont souvent autres que ceux fixé par le ministère. Les détails sont présentés dans le tableau ci-dessous :

Tableau 29: Fixation du prix de vente de l'eau

Désignation	2025	2030	2040	2050
Annuité (<=10 ans) sans Actualisation [fcfa/an]	1 150 000	1 150 000	1 150 000	1 150 000
Annuité (<=10 ans) avec Actualisation [fcfa/an]	1 489 303	1 489 303	1 489 303	1 489 303
Annuité totale sans Actualisation [fcfa/an]	1 150 000	1 150 000	1 150 000	1 150 000
Annuité totale avec Actualisation [fcfa/an]	1 489 303	1 489 303	1 489 303	1 489 303

Prix de revient sans amortissement (Fcfa/m³)	261,86	224,89	184,25	153,55
Prix de revient avec Amortissement (<=10 ans) et sans actualisation	277,90	234,42	190,94	158,24
Prix de revient avec Amortissement (<=10 ans) avec actualisation	282,63	237,23	192,92	159,63
Prix de revient avec tous les Amortissement sans actualisation	355,13	280,28	223,18	180,86
Prix de revient avec tous les Amortissement avec actualisation	417,48	317,30	249,20	199,11
Prix de revient du m³ d'eau/ BF retenu	450	350	250	200
Prix de revient du m³ d'eau/ BP retenu	500	400	300	250

Le prix du mètre cube d'eau s'élève à 450 FCFA à la borne fontaine et de 500 FCFA pour les branchements privés en 2025. Le Décret N°2019-1145/PRES/MEA/MINEFID/MATDC/MCIA portant réduction du tarif de l'eau potable en milieu rural au Burkina Faso donne les tarifs généraux appliqués en milieu rural à l'horizon 2030 sur les AEP-MV, AEP, AEPS et les PEA. C'est tarifs sont de 300 FCFA le m³ pour les BF et 400 FCFA le m³ pour les BP.

Le tarif retenu du m³ d'eau sera alors de 350 FCFA.

Le prix de vente de l'eau dans d'autres localités comme la commune de Dandé est de 450 FCFA et à Ouenga dans le Centre-Est qui est de 350F (COMPAORE, 2024), (ZOMBRE, 2023)

Conclusion

Avec un penchant social, l'analyse financière a démontré que le projet présente des perspectives économiques favorable.

VI. EVALUATION DES IMPACTS ENVIRONNEMENTAUX ET SOCIAUX

Introduction

Dans un souci de protection de la nature, des outils ont été mis en place dans le but de limiter les impacts des projets sur l'environnement. Parmi ces outils nous avons l'Evaluation Environnementale Stratégique (EES), l'Etude d'Impact Environnemental et Social (EIES) et la Notice d'Impact Environnemental et Social (NIES). Dans le cas de notre projet les phases de

travaux de construction et d'exploitation des infrastructures auront des impacts sur les milieux sociaux, culturels et sur l'environnement. Conformément aux exigences légales et réglementaires environnementales en vigueur au Burkina Faso, la réalisation des systèmes d'adduction en eau potable est classée Catégorie B assujettie à des notices d'impact environnemental et social (NIES)

VI.1. Contexte et législation

Plusieurs cadres dont politiques, juridiques et institutionnels encadrent la réalisation/réhabilitation des systèmes d'adduction en eau au Burkina Faso.

VI.1.1. Cadre politique

❖ Le Plan National de Développement économique et social (PNDES)

Le PNDS est une politique qui a comme objectif de rétablir la sécurité et la paix, de renforcer la résilience de la nation et de transformer structurellement l'économie burkinabè.

❖ Le Programme National d'Approvisionnement en Eau Potable (PN-AEP)

Le Burkina Faso, dispose d'un Programme National d'Approvisionnement en Eau Potable (PN-AEP) à l'horizon 2030 qui fédère l'ensemble des interventions dans le secteur de l'eau potable.

❖ Le Programme National pour la Gestion Intégrée des Ressources en Eau (PN-GIRE)

L'objectif stratégique du PN-GIRE est de contribuer durablement à la satisfaction des besoins en eau douce des usagers et des écosystèmes aquatiques.

VI.1.2. Cadre juridique

❖ Le code l'environnement

La loi N° 006-2013/AN du 02 avril 2013, portant Code de l'environnement au Burkina Faso, qui donne des directives sur les objectifs des études ou notices d'impact environnemental.

❖ La loi sur le développement durable

La mise en œuvre du développement durable est régie par la Loi n°008-2014/AN du 08 Avril2014 portant loi sur le développement durable au Burkina Faso.

Le code forestier

Le Code forestier, adopté par la loi N°003-2011/AN du 05 Avril 2011 portant Code forestier au Burkina Faso vise à encadrer la nécessaire protection des ressources naturelles forestières, fauniques et halieutiques.

❖ La loi relative à la gestion de l'eau

La loi n°02/2001/AN du 06 février 2001 relative à la gestion de l'eau définit le cadre juridique et le mode de gestion de cette ressource.

VI.1.3. Cadre institutionnel

❖ Le Ministère de l'Environnement, de l'Eau et de l'Assainissement (MEEA)

Le ministère de l'environnement, de l'eau et de l'assainissement assure la mise en œuvre des politiques nationales en matière d'eau et d'assainissement avec ses directions rattachées.

Les municipalités et collectivités locales

Les municipalités et collectivités locales interviennent dans le suivi de l'exécution des projets.

VI.2. Identification et évaluation des impacts

VI.2.1. Identifications des impacts

L'identification des impacts du projet portera sur 03 phases à savoir, la phase préparatoire, l'exécution des travaux et l'exploitation. Ces impacts retenus sont de natures positives et négatives.

Ces impacts sont résumés dans la matrice d'identification des impacts en annexe n°16

VI.2.2. Evaluation des impacts

En ce qui concerne l'évaluation des impacts l'outil utilisé est la matrice de FECTEAU qui recense les activités du projet avec les composants du milieu biophysique, humain et socioéconomique afin de mesurer les impacts et déboucher sur la détermination de l'importance des risques.

La matrice de Fecteau se base sur 03 paramètres que sont :

Tableau 30: Critères d'évaluation des impacts

Critères d'évaluation des impacts			
Durée de l'impact	Long terme (+ 10 ans)		
	Moyen terme (1 à 10 ans)		
	Court terme (- 10 ans)		
	Forte		
Intensité de l'impact	Moyenne		
1 impact	Faible		
	Régionale (+ 10 km)		
Portée de l'impact	Locale (- 10 km)		
	Ponctuelle		

Les résultats de l'évaluation sont consignés dans le tableau d'évaluation en annexe n°18

VI.3. Mesures d'atténuation

Des mesures d'atténuation doivent être prises pour amoindrir les impacts négatifs. Ces mesures sont consignées dans le tableau en annexe n°19

VI.4. Analyse des risques

Un risque représente la possibilité qu'un évènement survienne et nuise à l'atteinte des objectifs. De ce fait, une étude des risques permettra de déterminer les accidents susceptibles de se produire, d'évaluer les conséquences afin de proposer des solutions.

Les critères d'évaluation sont la gravité, la probabilité, la détectabilité et la criticité.

Tableau d'analyse des risques

Activités	Risques	Catégorie	C	<mark>critères d'éval</mark>	uation	Criticit	Mesures	Responsable
			Gravité	Probabilité	Détectabilité	é	préventives	
Débroussaillage , aménagement, nettoyage et la délimitation des sites des travaux	Blessure/ Accident	Risque technique	6	5	7	210	Porter des EPI	Chef de chantier

Etude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso

Aménagement des installations de chantier	Blessure/ Accident	Risque technique	5	6	5	150	Porter des EPI	Chef de chantier
Travaux de construction des ouvrages	Blessure/ Accident	Risque technique	6	8	4	192	Porter des EPI	Chef de chantier
Présence et exploitation des ouvrages de l'AEP-MV	Blessure/ Accident	Risque technique	4	5	6	120	Sensibilisatio n sur les mesures de sécurité	Chef de site

Conclusion

Cette étude environnementale a mis en évidence plusieurs enjeux critiques, notamment les effets potentiels sur la biodiversité locale, la qualité de l'air et de l'eau, ainsi que les impacts socio-économiques sur les communautés environnantes. Il est impératif de respecter les mesures d'atténuation de manière à respecter les normes environnementales.

CONCLUSION

La présente étude porte sur le diagnostic, la réhabilitation et l'extension du système d'adduction en eau potable multi-village de Dissin-Mou. Pour mener à bien cette étude des visites et travaux sur le terrain ont été effectués afin de servir de base pour les réhabilitations proposées et le dimensionnement des ouvrages. Avec plusieurs variantes proposées pour l'extension de la localité de Mou, c'est l'alimentation avec deux châteaux d'eau qui a été retenue pour pouvoir assurer une desserte suffisante des localités jusqu'à l'horizon 2050. Ce projet vient soulager les populations qui sont en grande difficultés car la ressource eau n'étant plus suffisante. C'est avec enthousiasme et joie qu'ils accueillent le projet en manifestant leur volonté à payer l'eau. Les travaux à mener dans le cadre de l'adduction en eau potables des localités génèreront des changements environnementaux de critère d'importance mineur. Néanmoins des mesures palliatives ont été trouvées comme l'arrosage des aires de travaux, des pistes de circulation des engins et des zones d'emprunt avec de l'eau, la remise en état des sites d'usage temporaire, les activités de reboisement et bien d'autres mesures.

Pour l'horizon 2050 de nouveaux forages doivent être réalisé avec un débit d'exploitation total de 30 m³/h pour pouvoir couvrir les besoins en eaux de la population qui atteindra 25949 habitants. La mise en œuvre de ce projet nécessite une mobilisation des ressources importantes avec un coût estimé à près de 701 911 300 Fcfa.

L'AEP-MV de Dissin-Mou a été une étude enrichissante dans le sens où elle nous a permis de libérer notre génie afin d'en venir au bout d'une problématique pour le grand bonheur de la population. Dans un souci de modernisation quelles pourraient être les alternatives pour une alimentation avec des ressources d'eau de surface ?

YAMEOGO Martial Promotion [2024-2025] 66

RECOMMANDATIONS

Pour un bon fonctionnement et pour la durabilité de l'ouvrage des recommandations sont nécessaires parmi lesquelles nous avons :

- * Commencer dès à présent des études géophysiques pour la réalisation des futurs forages
- * Remplacer les toitures des bornes fontaines défaillante
- * Remplacer les siphons de sols
- Prévoir des clôtures grillagées pour les châteaux
- ❖ Assurer la formation du personnel de gestion de l'AEP-MV
- ❖ Assurer la formation d'une main d'œuvre locale pour les maintenances mineures
- Sensibiliser les populations sur la nécessité de rentabiliser le projet en ayant de bonnes attitudes financières
- Sensibiliser les populations sur la nécessité de la propreté autours des bornes fontaines

YAMEOGO Martial Promotion [2024-2025] 67

Bibliographie

- ARCOP. « Mercuriale | Autorité de régulation de la commande publique (ARCOP) », s. d.
- Bourgine, P., et B. Brémond. « Renforcement optimum des réseaux d'adduction d'eau potable en zone rurale. Méthodes d'avant-projet ». *La Houille Blanche* 74, n° 1 (1 janvier 1988): 25-44. https://doi.org/10.1051/lhb/1988002.
- CAFI-B. « Présentation CAFI B 2022 », s. d.
- -----. « Rapport Socio MV Dissin-Mou VF », s. d.
- COMPAORE, Yasmine. « Etude de faisabilité technique de l'alimentation en eau potable (AEP-MV) de Koreba, Mangorotou et Bakaribougou dans les communes de Koungougou et de Dande, province du Houet région des Hauts-bassins Burkina Faso », s. d.
- INSD. « Fichier des localités 5e RGPH-17-02-2022-Final », s. d.
- -----. « MONOGRAPHIE DU SUD OUEST 5E RGPH », s. d.
- « Inventaire National des Ouvrages Hydrauliques (INOH 2023) », s. d.
- Ministère de l'eau et de l'assainissement. « mea_PN_AEP_2016_2030 », s. d.
- Ministère de l'environnement, de l'eau et de l'assainissement. « 7481_Decret_n°2000-514PRESPMMEE_du_3_novembre_2000_portant_adoption_d_un_document_cadre_de_la_reforme_du systeme de gestion des infrastructures hydrauliques », s. d.
- ———. « Décret-2019-0204 MATDC portant définition des normes, critères et indicateurs d'accès à l'eau potable », s. d.
- ONET. « Etude de référence de la région du sud-ouest », s. d.
- Pezon, C., et R. Bassono. « Le coût des systèmes d'approvisionnement en eau potable au Burkina Faso : une application de l'approche des coûts à long terme », 2012.
- UNICEF. « L'Afrique doit accélérer considérablement les progrès en matière d'eau, d'assainissement et d'hygiène rapport ». Consulté le 30 janvier 2025. https://www.unicef.org/wca/fr/communiqu%C3%A9s-de-presse/lafrique-doit-acc%C3%A9l%C3%A9rer-consid%C3%A9rablement-les-progr%C3%A8s-en-mati%C3%A8re-deau.
- ZOMBRE, Adama. « ETUDE D'AVANT-PROJET DETAILLE POUR LA REALISATION D'UN SYSTÈME D'ADDUCTION D'EAU POTABLE SIMPLIFIE (AEPS) A OUENGA DANS LA COMMUNE DE ANDEMTENGA, REGION DU CENTRE-EST AU BURKINA FASO », s. d.

YAMEOGO Martial Promotion [2024-2025] 68

Annexe

Annexe 1: Dimensionnement du réservoir de Dissin
Annexe 2: Dimensionnement du réservoir de Mou
Annexe 3: Dimensionnement de la conduite de refoulement de Dissin
Annexe 4: Dimensionnement de la conduite de refoulement de Mou
Annexe 5: Dernière itération du réseau maillé de Dissin
Annexe 6: Dimensionnement du réseau complet des conduites de distributions de Dissin vii
Annexe 7: Dernière itération du réseau maillé de Mou
Annexe 8: Dimensionnement du réseau complet des conduites de distribution de Mou xi
Annexe 9: Schéma hydraulique des pressions aux nœuds et débits dans les conduites xiii
Annexe 10: Schémas hydraulique des charges aux nœuds et vitesse dans les conduites xiv
Annexe 11: Résultat de la simulation EPANET
Annexe 12: Catalogue pour le choix des diamètres des conduites en PEHDxx
Annexe 13: Catalogue pour le choix des diamètres des conduites en PVCxxi
Annexe 14: Mode de gestion de l'AEP-MVxxii
Annexe 15: Devis estimatif et quantitatif des travaux
Annexe 16: Matrice d'identification des impacts négatifs
Annexe 17: Matrice d'identification des impacts positifs
Annexe 18: Matrice d'évaluation des impacts
Annexe 19: Mesures d'atténuation des impacts négatifs
Annexe 20 : Plan du réseau AEP-MV de DISSIN-MOU
Annexe 21 : Plan de tête de forage
Annexe 22: Plan borne fontainexxxviii
Annexe 22: Plan panneaux photovoltaïques

YAMEOGO Martial Promotion [2024-2025] i

Annexe 1: Dimensionnement du réservoir de Dissin

Besoins de pointe journalier	Temps de pompage	Débit entrant dans le réservoir	Débit sortant du réservoir
Вр	t	Qe = Bp/t	Qs = Bp/24h
m ³	h	m³/h	m ³ /h
670,9	16	41,9	27,95

Hypothèses de répatition prévisionnelle de la consommation

Période/duréee	Consommation	Période	Consommation
00h-06h	0,1*Qs	14h-18h	1,3*Qs
06h-08h	2,8*Qs	18h-20h	1,5*Qs
08h-11h	1,1*Qs	20h-22h	0,1*Qs
11h-14h	1*Qs	22h-24h	0,1*Qs

période	00h-06h	06h-08h	08h-11h	11h-14h	14h-18h	18h-20h	20h-22h	22h-24h
durée dt (h)	6	2	3	3	4	2	2	2
Coéficient de consommation k	0,1	2,8	1,1	1	1,3	1,5	0,1	0,1
Qe	0	41,9	41,9	41,9	41,9	41,9	41,9	0,0
V entrant Ve = Qe*dt	0,00	83,86	125,79	125,79	167,72	83,86	83,86	0,00
Ve cumulé Vec	0	83,86	209,65	335,45	503,17	587,03	670,90	670,90
Q distribuée Qd = Qs*k	2,80	78,27	30,75	27,95	36,34	41,93	2,80	2,80
V ditribuée Vd = Q distribué*dt	16,77	156,54	92,25	83,86	145,36	83,86	5,59	5,59
Vd cumulée Vdc	16,77	173,31	265,56	349,42	494,79	578,65	584,24	589,83
Vec-Vdc	-16,77	-89,45	-55,91	-13,98	8,39	8,39	86,66	81,07

Annexe 2: Dimensionnement du réservoir de Mou

Besoins de pointe journalier		Temps de po	ompage	Débit entra	nt dans le réser	voir	Débit sor réservoir	
Вр		t		Qe = Bp/t			$Q_S = Bp/2$	24h
m^3		h		m ³ /h			m ³ /h	
236,6		16		14,8			9,86	
Hypothèses de répatition prévis	onnelle de la conso	ommation	•	•				
Période/duréee	Consommation	Période	Consommati	ion				
00h-06h	0,1*Qs	14h-18h	1,3*Qs					
06h-08h	2,8*Qs	18h-20h	1,5*Qs					
08h-11h	1,1*Qs	20h-22h	0,1*Qs					
11h-14h	1*Qs	22h-24h	0,1*Qs					
période	00h-06h	06h-08h	08h-11h	11h-14h	14h-18h	18h-20h	20h-22h	22h-24h
durée dt (h)	6	2	3	3	4	2	2	2
Coéficient de consommation k	0,1	2,8	1,1	1	1,3	1,5	0,1	0,1
Qe	0	14,8	14,8	14,8	14,8	14,8	14,8	0,0
V entrant Ve = Qe*dt	0,00	29,58	44,37	44,37	59,16	29,58	29,58	0,00
Ve cumulé Vec	0	29,58	73,95	118,32	177,48	207,06	236,64	236,64
Q distribuée Qd = Qs*k	0,99	27,61	10,85	9,86	12,82	14,79	0,99	0,99
V ditribuée Vd = Q distribué*dt	5,92	55,22	32,54	29,58	51,27	29,58	1,97	1,97
Vd cumulée Vdc	5,92	61,13	93,67	123,25	174,52	204,10	206,07	208,04
Vec-Vdc	-5,92	-31,55	-19,72	-4,93	2,96	2,96	30,57	28,59

YAMEOGO Martial Promotion [2024-2025]

iii

Annexe 3: Dimensionnement de la conduite de refoulement de Dissin

						Conduite f	orage Diss	sin - Chât	eau						
Formules	Debits (l/s)	Debits (m ³ /s)	Dth (mm)	Dth (m)	Dint(mm)	Dint(m)	Vreelle (m/s)	K/D	Re	Lambda	Longueur (m)	Delta H	Condition de Flamant	Vérification Flamant	
Bresse															
Bonnin	Sonnin 64,55 0,0645 73,6 0,0736 0,98 0,020 62679,17 0,0496 204,90 0,67 Non														
Bedjaoui	4,167	0,0042	81,98	0,0820	90	0,09	0,65	0,017	51257,63	0,0462	6225,48	69,88	0,69	Ok	
Munier			85,21	0,0852	90	0,09	0,65	0,017	51257,63	0,0462		69,88	0,69	Ok	
Bresse modifie			128,73	0,1287	130,8	0,1308	0,31	0,011	35269,01	0,0412		9,61	0,73	Ok	
					Choix	Conduite A	dduction:	DN 125 I	PEHD PN16						

Annexe 4: Dimensionnement de la conduite de refoulement de Mou

						Conduite	forage Mo	u - châte	au						
Formules	Debits (l/s)	Debits (m ³ /s)	Dth (mm)	Dth (m)	Dint(mm)	Dint(m)	Vreelle (m/s)	K/D	Re	Lambda	Longueur (m)	Delta H	Condition de Flamant	Vérification Flamant	
Bresse															
Bonnin			50,00	0,0500	51,4	0,0514	1,20	0,029	53850,43	0,0570		738,32	0,65	Non vérifié	
Bedjaoui	2,500	0,0025	63,50	0,0635	73,6	0,0736	0,59	0,020	37607,50	0,0500	8993	107,41	0,67	Ok	
Munier			66,00	0,0660	73,6	0,0736	0,59	0,020	37607,50	0,0500		107,41	0,67	Ok	
Bress modifie			108,58	0,1086	114,6	0,1146	0,24	0,013	24152,81	0,0436		10,24	0,71	Ok	
		·	·		Choix C	onduite A	dduction:	DN 110 F	EHD PN16		·				

Annexe 5: Dernière itération du réseau maillé de Dissin

Itéra	tio Maill	Tronçons	Longueurs [Débits(l/s)	Débits(m3/s)	Dth(m)	Dth(mm)	Doom	Dint(m	Doom (V réelle	k/D	Re	lambda	delta H	delta H/Q	dq1	dq2	dq3	dq4	dq5	dq(m3/s)	dq(l/s)	Qcor (m3/s)	Qcor (l/s)
	15 I	N27-N28	407,42	2,6548	0,0026548	0,0581396	58,1396	90	81,4	0,09	0,510	0,01842752	36109,517	0,04821538	3,201067076	1205,760259	1,82E-09					1,82E-09	1,82E-06	2,65E-03	2,65E+00
		N28-N34	223,00	0,4591	0,0004591	0,0241775	24,1775	90	81,4	0,09	0,088	0,01842752	6244,5545	0,05294319	0,057536218	125,3221179	1,82E-09					1,82E-09	1,82E-06	4,59E-04	4,59E-01
		N34-N35	215,36	-0,2257	-0,00022569	0,0169517	16,951737	90	81,4	0,09	0,043	0,01842752	3069,7722	0,05792036	-0,01469035	65,0899296	1,82E-09					1,82E-09	1,82E-06	-2,26E-04	-2,26E-01
		N35-N37	208,57	-0,4814	-0,00048142	0,0247581	24,758109	90	81,4	0,09	0,093	0,01842752	6548,0609	0,05269953	-0,05889894	122,3439902	1,82E-09					1,82E-09	1,82E-06	-4,81E-04	-4,81E-01
		N27-N41	364,74	-4,1783	-0,0041783	0,0729383	72,9383	110	101,6	0,11	0,515	0,01476378	45532,362	0,04441371	-2,15852142	516,600422	1,82E-09				-1,43E-09	3,88E-10	3,88E-07	-4,18E-03	-4,18E+00
		N41-N40	127,66	-3,7452	-0,0037452	0,0690547	69,0547	110	101,6	0,11	0,462	0,01476378	40812,659	0,04452807	-0,60854683	162,4866528	1,82E-09				-1,43E-09	3,88E-10	3,88E-07	-3,75E-03	-3,75E+00
		N40-N39	64,84	-3,5936	-0,0035936	0,0676428	67,6428	110	101,6	0,11	0,443	0,01476378	39160,75	0,04457442	-0,2848697	79,27090698	1,82E-09				-1,43E-09	3,88E-10	3,88E-07	-3,59E-03	-3,59E+00
		N39-N37	66,63	-1,3239	-0,0013239	0,0410572	41,0572	90	81,4	0,09	0,254	0,01842752	18007,642	0,04928574	-0,13308472	100,5215645	1,82E-09					1,82E-09	1,82E-06	-1,32E-03	-1,32E+00
														Σ	-8,6654E-06	2377,395843									
															dq1	1,82E-09									
	ll l	N1-N2	53,77	14,6623	0,0146623	0,1366331	136,6331	200	_	0,2	0,601	8,51E-03	9,21E+04	3,66E-02	2,06E-01	1,40E+01		3,81E-06				3,81E-06	3,81E-03	1,47E-02	
		N2-N50	275,05	3,8834	0,0038834	0,0703176	70,3176	110			0,479	1,48E-02	4,23E+04	4,45E-02	1,41E+00	3,63E+02		3,81E-06			-1,43E-09	3,81E-06	3,81E-03	3,89E-03	_
		N50-N51	256,24	1,4248	0,0014248	0,0425919	42,5919	63	-	-,	0,558	2,63E-02	2,77E+04	5,53E-02	3,95E+00	2,77E+03		3,81E-06	-2,25E-06			1,56E-06	1,56E-03	1,43E-03	_
		N51-N53	64,40	1,1205	0,0011205	0,0377711	37,7711	63	-	-,	0,439	2,63E-02	2,18E+04	5,56E-02	6,18E-01	5,51E+02		3,81E-06	-2,25E-06			1,56E-06	1,56E-03	1,12E-03	1,12E+00
-	+	N53-N54	48,89	1,0440	0,0010440	0,0364595	36,4595	63	-		0,409	2,63E-02	2,03E+04	5,57E-02	4,08E-01	3,91E+02		3,81E-06	-2,25E-06			1,56E-06	1,56E-03	1,05E-03	1,05E+00
-	+	N54-N56	88,62	0,5660	0,0005660	0,0268443	26,8443	63		-,	0,222	2,63E-02	1,10E+04	5,70E-02	2,22E-01	3,93E+02		3,81E-06	-2,25E-06			1,56E-06	1,56E-03	5,68E-04	
-	+	N1-N61	23,47	-5,0913	-0,0050913	0,0805137	80,5137	200	_	0,2	0,209	8,51E-03	3,20E+04	3,79E-02	-1,12E-02	2,20E+00		3,81E-06				3,81E-06	3,81E-03	-5,09E-03	
-	+	N61-N59	263,03	-5,0634	-0,0050634	0,0802931	80,2931	200		0,2	0,208	8,51E-03	3,18E+04	3,79E-02	-1,24E-01	2,46E+01		3,81E-06				3,81E-06	3,81E-03	-5,06E-03	_
-		N59-N58	137,88	-1,8314	-0,0018314	0,0482884	48,2884	63	-	0,063	0,718	2,63E-02	3,56E+04	5,50E-02	-3,50E+00	1,91E+03		3,81E-06		-3,19E-06		6,14E-07	6,14E-04	-1,83E-03	
-		N58-N57	79,29	-1,2476	-0,0012476	0,0398566	39,8566	63	-	0,063	0,489	2,63E-02	2,42E+04	5,55E-02	-9,40E-01	7,53E+02		3,81E-06		-3,19E-06		6,14E-07	6,14E-04	-1,25E-03	-1,25E+00
-	+-	N57-N56	227,57	-1,1535	-0,0011535	0,0383233	38,3233	63	57	0,063	0,452	2,63E-02	2,24E+04	5,56E-02	-2,31E+00	2,00E+03		3,81E-06		-3,19E-06		6,14E-07	6,14E-04	-1,15E-03	-1,15E+00
-	+								\vdash					Σ	-6,99E-02	9,18E+03									
-		NIEG NIAG	222.00	0.4004	0.0004004	0.0504000	E0 4000			0.000	0.000	2.005.00	4445.04	E 40E 00	dq2	3,81E-06			0.055.00		1405.00	0.055.00	0.055.00	0.405.00	2 125 22
-		N50-N48 N48-N47	322,09 87,55	2,1321 1,3296	0,0021321 0,0013296	0,0521022	52,1022 41,1451	63	-	-,	0,836	2,63E-02 2,63E-02	4,14E+04 2,58E+04	5,49E-02 5,54E-02	1,10E+01 1,18E+00	5,18E+03 8,85E+02			2,25E-06 2,25E-06		-1,43E-09 -1,43E-09	2,25E-06 2,25E-06	2,25E-03 2,25E-03	2,13E-03 1,33E-03	
-	+	N47-N62	56,39	0,7744	0,0003236	0,0411451	31,4015	63 63	-	0,063	0,303	2,63E-02	2,58E+04 1,50E+04	5,63E-02	2,61E-01	3,37E+02			2,25E-06 2,25E-06		-1,43E-09	2,25E-06 2,25E-06	2,25E-03	7,77E-04	1,33E+00 7,77E-01
-	+	N62-N256	210,14	0,7744	0,0007744	0,0314013	30,0133	63	-	0,063	0,303	2,63E-02	1,30E+04	5,64E-02	8,15E-01	1,15E+02			2,25E-06		-1,43E-03	2,25E-06 2,25E-06	2,25E-03	7,10E-04	7,77E-01 7,10E-01
-	+	N256-N63	169,32	2,2025	0,0007075	0,0529556	52,9556	90	-	0,063	0,423	1,84E-02	3,00E+04	4,84E-02	9,20E-01	4,18E+02			2,25E-06 2,25E-06		-1,43E-03	2,25E-06 2,25E-06	2,25E-03	2,20E-03	_
-	+	N63-N65	76,89	1,5469	0,0022020	0,0323336	44,3796	90		0,09	0.297	1,84E-02	2,10E+04	4,90E-02	2,08E-01	1,35E+02			2,25E-06			2,25E-06	2,25E-03	1,55E-03	1,55E+00
-	+	N65-N66	294,66	1,4556	0,0014556	0,0430499	43,0499	90		0,09	0.280	1,84E-02	1,98E+04	4,91E-02	7,09E-01	4,87E+02			2,25E-06			2,25E-06	2,25E-03	1,46E-03	1,46E+00
	+	N66-N69	92,12	0,5766	0,0005766	0,0270950	27,0950	90		0,09	0,111	1,84E-02	7,84E+03	5,19E-02	3,67E-02	6,37E+01			2,25E-06			2,25E-06	2,25E-03	5,79E-04	
	+	N69-N70	14,80	0,4672	0,0004672	0,0243898	24,3898	90		0,09	0.090	1,84E-02	6,35E+03	5,29E-02	3,95E-03	8,45E+00			2,25E-06			2,25E-06	2,25E-03	4,69E-04	
	+	N70-N71	64,29	-0,0467	-0,0000467	0,0077118	7,7118	90		0,09	0.009	1,84E-02	6,35E+02	1.01E-01	-3,27E-04	6,99E+00			2,25E-06			2,25E-06	2,25E-03	-4,45E-05	
	+	N71-N73	394,30	-0,5149	-0,0005149	0,0256050	25,6050	90		0,09	0.099	1,84E-02	7,00E+03	5,24E-02	-1,27E-01	2,46E+02			2,25E-06			2,25E-06	2,25E-03	-5,13E-04	-5,13E-01
	\top	N73-N74	113,09	-0,6492	-0,0006492	0,0287506	28,7506	90	_	0,09	0,125	1,84E-02	8,83E+03	5,14E-02	-5,66E-02	8,72E+01			2,25E-06			2,25E-06	2,25E-03	-6,47E-04	-6,47E-01
	\top	N74-N76	320,72	-1,4882	-0,0014882	0,0435301	43,5301	90	_	0,09	0.286	1.84E-02	2,02E+04	4,91E-02	-8,06E-01	5,41E+02			2,25E-06			2,25E-06	2,25E-03	-1,49E-03	-1,49E+00
	\top	N76-N77	214,00	-1,7423	-0,0017423	0,0471001	47,1001	90		0,09	0,335	1,84E-02	2,37E+04	4,88E-02	-7,33E-01	4,21E+02			2,25E-06			2,25E-06	2,25E-03	-1,74E-03	-1,74E+00
_	-			4	-,	-,					-,	1	-,		.,	.,			-,		-	-,	-,		4

YAMEOGO Martial Promotion [2024-2025]

٧

	N77-N78	219,87	-2,0034	-0,0020034	0,0505058	50,5058	90	81,4	0,09	0,385	1,84E-02	2,72E+04	4,86E-02	-9,91E-01	4,95E+02			2,25E-06			2,25E-06	2,25E-03	-2,00E-03	-2,00E+00
	N78-N80	54,68	-2,4982	-0,0024982	0,0563985	56,3985	63	57	0,063	0,979	2,63E-02	4,85E+04	5,48E-02	-2,57E+00	1,03E+03			2,25E-06			2,25E-06	2,25E-03	-2,50E-03	-2,50E+00
	N80-N81	10,83	-2,5110	-0,0025110	0,0565434	56,5434	63	57	0,063	0,984	2,63E-02	4,88E+04	5,48E-02	-5,14E-01	2,05E+02			2,25E-06			2,25E-06	2,25E-03	-2,51E-03	-2,51E+00
	N50-N51	256,24	-1,4248	-0,0014248	0,0425919	42,5919	63	57	0,063	0,558	2,63E-02	2,77E+04	5,53E-02	-3,95E+00	2,77E+03		-3,81E-06	2,25E-06			-1,56E-06	-1,56E-03	-1,43E-03	-1,43E+00
	N51-N53	64,40	-1,1205	-0,0011205	0,0377711	37,7711	63	57	0,063	0,439	2,63E-02	2,18E+04	5,56E-02	-6,18E-01	5,51E+02		-3,81E-06	2,25E-06			-1,56E-06	-1,56E-03	-1,12E-03	-1,12E+00
	N53-N54	48,89	-1,0440	-0,0010440	0,0364595	36,4595	63	57	0,063	0,409	2,63E-02	2,03E+04	5,57E-02	-4,08E-01	3,91E+02		-3,81E-06	2,25E-06			-1,56E-06	-1,56E-03	-1,05E-03	-1,05E+00
	N54-N56	88,62	-0,5660	-0,0005660	0,0268443	26,8443	63	57	0,063	0,222	2,63E-02	1,10E+04	5,70E-02	-2,22E-01	3,93E+02		-3,81E-06	2,25E-06			-1,56E-06	-1,56E-03	-5,68E-04	-5,68E-01
	N56-N81	310,58	-1,3440	-0,0013440	0,0413671	41,3671	63	57	0,063	0,527	2,63E-02	2,61E+04	5,54E-02	-4,27E+00	3,17E+03			2,25E-06	-3,19E-06		-9,46E-07	-9,46E-04	-1,34E-03	-1,34E+00
													Σ	-8,53E-02	1,90E+04									
														dq3	2,25E-06									
IV	N59-N58	137,88	1,8314	0,0018314	0,0482884	48,2884	63	57	0,063	0,718	2,63E-02	3,56E+04	5,50E-02	3,50E+00	1,91E+03		-3,81E-06		3,19E-06		-6,14E-07	-6,14E-04	1,83E-03	1,83E+00
	N58-N57	79,29	1,2476	0,0012476	0,0398566	39,8566	63	57	0,063	0,489	2,63E-02	2,42E+04	5,55E-02	9,40E-01	7,53E+02		-3,81E-06		3,19E-06		-6,14E-07	-6,14E-04	1,25E-03	1,25E+00
	N57-N56	227,57	1,1535	0,0011535	0,0383233	38,3233	63	57	0,063	0,452	2,63E-02	2,24E+04	5,56E-02	2,31E+00	2,00E+03		-3,81E-06		3,19E-06		-6,14E-07	-6,14E-04	1,15E-03	1,15E+00
	N56-N81	310,58	1,3440	0,0013440	0,0413671	41,3671	63	57	0,063	0,527	2,63E-02	2,61E+04	5,54E-02	4,27E+00	3,17E+03			-2,25E-06	3,19E-06		9,46E-07	9,46E-04	1,34E-03	1,34E+00
	N59-N85	389,76	-2,9197	-0,0029197	0,0609716	60,9716	200	176,2	0,2	0,120	8,51E-03	1,83E+04	3,92E-02	-6,34E-02	2,17E+01				3,19E-06		3,19E-06	3,19E-03	-2,92E-03	-2,92E+00
	N85-N81	373,20	-1,9790	-0,0019790	0,0501969	50,1969	63	57	0,063	0,776	2,63E-02	3,84E+04	5,50E-02	-1,10E+01	5,58E+03				3,19E-06		3,19E-06	3,19E-03	-1,98E-03	-1,98E+00
													Σ	-8,58E-02	1,34E+04									
														dq4	3,19E-06									
V	N2-N17	19,47	8,9025	0,0089025	0,1064662	106,4662	110	101,6	0,11	1,098	1,48E-02	9,70E+04	4,39E-02	5,17E-01	5,81E+01					1,43E-09	1,43E-09	1,43E-06	8,90E-03	8,90E+00
	N17-N19	75,72	8,2932	0,0082932	0,1027579	102,7579	110	101,6	0,11	1,023	1,48E-02	9,04E+04	4,39E-02	1,75E+00	2,10E+02					1,43E-09	1,43E-09	1,43E-06	8,29E-03	8,29E+00
	N19-N23	107,82	7,6117	0,0076117	0,0984455	98,4455	110	101,6	0,11	0,939	1,48E-02	8,29E+04	4,40E-02	2,10E+00	2,75E+02					1,43E-09	1,43E-09	1,43E-06	7,61E-03	7,61E+00
	N23-N25	50,70	7,4837	0,0074837	0,0976141	97,6141	110	101,6	0,11	0,923	1,48E-02	8,16E+04	4,40E-02	9,53E-01	1,27E+02					1,43E-09	1,43E-09	1,43E-06	7,48E-03	7,48E+00
	N25-N26	127,81	7,4235	0,0074235	0,0972207	97,2207	110	101,6	0,11	0,916	1,48E-02	8,09E+04	4,40E-02	2,36E+00	3,18E+02					1,43E-09	1,43E-09	1,43E-06	7,42E-03	7,42E+00
	N26-N27	15,64	6,8517	0,0068517	0,0934016	93,4016	110	101,6	0,11	0,845	1,48E-02	7,47E+04	4,40E-02	2,47E-01	3,60E+01					1,43E-09	1,43E-09	1,43E-06	6,85E-03	6,85E+00
	N27-N41	364,74	4,1783	0,0041783	0,0729383	72,9383	110	101,6	0,11	0,515	1,48E-02	4,55E+04	4,44E-02	2,16E+00	5,17E+02	-1,82E-09				1,43E-09	-3,88E-10	-3,88E-07	4,18E-03	4,18E+00
	N41-N40	127,66	3,7452	0,0037452	0,0690547	69,0547	110	101,6	0,11	0,462	1,48E-02	4,08E+04	4,45E-02	6,09E-01	1,62E+02	-1,82E-09				1,43E-09	-3,88E-10	-3,88E-07	3,75E-03	3,75E+00
	N40-N39	64,84	3,5936	0,0035936	0,0676428	67,6428	110	101,6	0,11	0,443	1,48E-02	3,92E+04	4,46E-02	2,85E-01	7,93E+01	-1,82E-09				1,43E-09	-3,88E-10	-3,88E-07	3,59E-03	3,59E+00
	N39-N42	52,03	2,1927	0,0021927	0,0528376	52,8376	110	101,6	0,11	0,270	1,48E-02	2,39E+04	4,53E-02	8,65E-02	3,94E+01					1,43E-09	1,43E-09	1,43E-06	2,19E-03	2,19E+00
	N42-N43	98,36	2,1309	0,0021309	0,0520879	52,0879	110	101,6	0,11	0,263	1,48E-02	2,32E+04	4,53E-02	1,55E-01	7,25E+01					1,43E-09	1,43E-09	1,43E-06	2,13E-03	2,13E+00
	N43-N256	227,02	2,0141	0,0020141	0,0506403	50,6403	110	101,6	0,11	0,248	1,48E-02	2,19E+04	4,55E-02	3,19E-01	1,59E+02					1,43E-09	1,43E-09	1,43E-06	2,01E-03	2,01E+00
	N2-N50	275,05	-4,0551	-0,0040551	0,0718552	71,8552	110	101,6	0,11	0,500	1,48E-02	4,42E+04	4,44E-02	-1,53E+00	3,78E+02					1,43E-09	1,43E-09	1,43E-06	-4,06E-03	-4,06E+00
	N50-N48	322,09	-1,8924	-0,0018924	0,0490870	49,0870	63	57	0,063	0,742	2,63E-02	3,68E+04	5,50E-02	-8,71E+00	4,61E+03					1,43E-09	1,43E-09	1,43E-06	-1,89E-03	-1,89E+00
	N48-N47	87,55	-1,0900	-0,0010900	0,0372533	37,2533	63	57	-1	0,427	2,63E-02	2,12E+04	5,57E-02	-7,95E-01	7,29E+02					1,43E-09	1,43E-09	1,43E-06	-1,09E-03	-1,09E+00
	N47-N62	56,39	-0,5348	-0,0005348	0,0260950	26,0950	63	57	0,063	0,210	2,63E-02	1,04E+04	5,72E-02	-1,27E-01	2,37E+02					1,43E-09	1,43E-09	1,43E-06	-5,35E-04	-5,35E-01
	N62-N256	210,14	-0,4679	-0,0004679	0,0244068	24,4068	63	57	0,063	0,183	2,63E-02	9,09E+03	5,76E-02	_	7,77E+02					1,43E-09	1,43E-09	1,43E-06	-4,68E-04	-4,68E-01
													Σ	-2,52E-05	8,78E+03									
														dq5	1,43E-09									

YAMEOGO Martial Promotion [2024-2025] vi

Annexe 6: Dimensionnement du réseau complet des conduites de distributions de Dissin

TRONCONS	NŒUDS	LONGUEUR	Q fictif	Q fictif	D th	D com	D int	Vr	K/D	Re	Lamda	Delta H	S Delta H	Z TN aval	P min serv	Z min	P réelle
		m	I/s	m3/s	mm	mm	mm	m/s				m	m	m	mCE	m	mCE
R-N255	N255	21,20	24,3494	0,0243	176,076	200	176,2	0,99859	0,0085	153001	0,03633	0,24437	0,244367	325	10	335,244	40,2175
N255-N1	N1	31,86	23,9124	0,0239	174,488	200	176,2	0,98067	0,0085	150255	0,03634	0,35425	0,598621	323,31	10	333,909	41,5532
N1-N2	N2	53,77	14,6109	0,0146	136,3936	200	176,2	0,59921	0,00851	91808,8	0,03661	0,20447	0,803091	321,49	10	332,293	43,1688
N2-N11	N11	918,74	1,0200	0,0010	36,038	50	45,2	0,63569	0,0332	24985,3	0,06072	27,9629	28,766	305,88	10	344,646	30,8159
N2-N15	N15	556,43	0,7924	0,0008	31,7642	50	45,2	0,49385	0,0332	19410,6	0,06104	10,2754	11,07849	319,61	10	340,688	34,7734
N15-N16	N16	7,61	0,4250	0,0004	23,2613	50	45,2	0,26484	0,0332	10409,6	0,06226	0,04122	11,11971	319,75	10	340,87	34,5921
N2-N17	N17	19,47	8,9007	0,0089	106,4551	110	101,6	1,09786	0,01476	96993,2	0,04388	0,51658	1,319669	321,52	10	332,84	42,6222
N17-N18	N18	254,54	0,5862	0,0006	27,3207	50	45,2	0,36535	0,0332	14359,8	0,06154	2,59361	3,913275	319,57	10	333,483	41,9786
N17-N19	N19	75,72	8,2913	0,0083	102,7464	110	101,6	1,02269	0,01476	90352,8	0,04392	1,74473	3,064401	322,79	10	335,854	39,6075
N19-N5D	N5D	321,40	0,5915	0,0006	27,4442	50	45,2	0,36866	0,0332	14489,9	0,06153	3,33354	6,397936	319,96	10	336,358	39,1039
N19-N23	N23	107,82	7,6098	0,0076	98,4335	110	101,6	0,93864	0,01476	82926,7	0,04396	2,09496	5,159363	322,17	10	337,329	38,1325
N23-N25	N25	50,70	7,4818	0,0075	97,6020	110	101,6	0,92285	0,01476	81531,6	0,04397	0,95245	6,111811	320,07	10	336,182	39,2801
N25-N26	N26	127,81	7,4216	0,0074	97,2085	110	101,6	0,91542	0,01476	80875,5	0,04398	2,36279	8,474606	317,85	10	336,325	39,1373
N26-N27	N27	15,64	6,8498	0,0068	93,3890	110	101,6	0,8449	0,01476	74644,8	0,04402	0,24657	8,721171	317,65	10	336,371	39,0907
N27-N28	N28	407,42	2,6529	0,0027	58,1186	90	81,4	0,50978	0,01843	36083,5	0,04822	3,19651	11,91768	320,11	10	342,028	33,4342
N28-N30	N30	46,46	1,7119	0,0017	46,6871	63	57,0	0,67088	0,0263	33252,2	0,05511	1,13346	13,05113	320,56	10	343,611	31,8507
N30-N4D	N4D	79,84	0,1469	0,0001	13,6785	50	45,2	0,09158	0,0332	3599,47	0,06684	0,05552	13,10665	320,19	10	343,297	32,1652
N30-N32	N32	79,23	1,4496	0,0014	42,9619	50	45,2	0,90342	0,0332	35508,3	0,06039	4,84367	17,8948	321,39	10	349,285	26,1771
N32-N257	N257	381,71	0,7026	0,0007	29,9085	50	45,2	0,43784	0,0332	17208,8	0,06123	5,55706	23,45186	332,01	10	365,462	10
N32-N33	N33	60,10	0,4593	0,0005	24,1813	50	45,2	0,28621	0,0332	11249,3	0,06207	0,37901	18,27381	321,79	10	350,064	25,3981
N28-N34	N34	223,00	0,4572	0,0005	24,1271	90	81,4	0,08785	0,01843	6218,53	0,05297	0,05708	11,97476	317,52	10	339,495	35,9671
N34-N35	N35	215,36	-0,2276	-0,0002	17,0234	90	81,4	0,04374	0,01843	3095,79	0,05784	-0,0149	11,95984	315,07	10	337,03	38,432
N35-N37	N37	208,57	-0,4833	-0,0005	24,8073	90	81,4	0,09288	0,01843	6574,08	0,05268	-0,0593	12,01918	313,72	10	335,739	39,7227
N27-N41	N41	364,74	-4,1784	-0,0042	72,9388	110	101,6	0,51538	0,01476	45533	0,04441	-2,1586	10,87975	313,27	10	334,15	41,3121
N41-N40	N40	127,66	-3,7453	-0,0037	69,0552	110	101,6	0,46196	0,01476	40813,3	0,04453	-0,6086	11,48832	314,06	10	335,548	39,9135
N40-N39	N39	64,84	-3,5937	-0,0036	67,6433	110	101,6	0,44326	0,01476	39161,4	0,04457	-0,2849	11,7732	312,91	10	334,683	40,7787

YAMEOGO Martial Promotion [2024-2025] vii

N39-N37	N37	66,63	-1,3259	-0,0013	41,0869	90	81,4	0.25478	0.01843	18033.7	0.04928	-0.1335	11.90666	313,72	10	335,627	39,8352
N37-N38	N38	146,59	0,5157	0,0005	25,6253	50	45.2	0.32141	0.0332	12632.9	0.0618		13.18007	311,15	10	334,33	
N39-N42	N42	52,03	2,1908	0,0022	52,8153	110	101,6	0,27023	0,01476	23874,1	0,04529	0,08633	11,85953	312,56	10	334,42	41,0423
N42-N43	N43	98,36	2,1290	0,0021	52,0652	110	101,6	0,26261	0,01476	23200,9	0,04535	0,15431	12,01383	311,11	10	333,124	42,338
N43-N256	N256	227,02	2,0123	0,0020	50,6170	110	101,6	0,2482	0,01476	21928,1	0,04545	0,3189	12,33274	310,16	10	332,493	42,9691
N2-N50	N50	275,05	-4,0570	-0,0041	71,8716	110	101,6	0,50041	0,01476	44210,3	0,04444	-1,5356	2,338702	318,98	10	331,319	44,1432
N50-N48	N48	322,09	-1,8943	-0,0019	49,1111	63	57,0	0,74235	0,02632	36794,8	0,05502	-8,7319	11,07057	314,33	10	335,401	40,0613
N48-N47	N47	87,55	-1,0918	-0,0011	37,2850	63	57,0	0,42788	0,02632	21207,8	0,05565	-0,7976	11,8682	313,06	10	334,928	40,5337
N47-N46	N46	47,78	0,4512	0,0005	23,9686	50	45,2	0,28119	0,0332	11052,2	0,06211	0,29105	12,15925	312,6	10	334,759	40,7026
N47-N62	N62	56,39	0,7414	0,0007	30,7245	63	57,0	0,29055	0,02632	14401,2	0,05635	0,23985	12,10805	312,4	10	334,508	40,9538
N62-N256	N256	210,14	0,6745	0,0007	29,3043	63	57,0	0,26431	0,02632	13100,5	0,05656	0,74243	12,85047	310,16	10	333,01	42,4514
N256-N63	N63	169,32	2,1676	0,0022	52,5345	90	81,4	0,41652	0,01843	29482,7	0,04846	0,89133	13,74181	307,61	10	331,352	44,1101
N63-N64	N64	52,91	0,4546	0,0005	24,0574	50	45,2	0,28328	0,0332	11134,2	0,06209	0,32701	14,06882	307,11	10	331,179	44,283
N63-N65	N65	76,89	1,5120	0,0015	43,8762	90	81,4	0,29054	0,01843	20565,4	0,04902	0,19924	13,94105	308,43	10	332,371	43,0908
N65-N66	N66	294,66	1,4207	0,0014	42,5309	90	81,4	0,273	0,01843	19323,5	0,04914	0,67574	14,61679	312,21	10	336,827	38,6351
N66-N67	N67	48,62	0,5291	0,0005	25,955	50	45,2	0,32973	0,0332	12960	0,06175	0,40488	15,02167	312,71	10	337,732	37,7302
N67-N68	N68	65,13	0,4625	0,0005	24,2677	50	45,2	0,28826	0,0332	11329,7	0,06205	0,41651	15,43818	312,39	10	337,828	37,6337
N66-N69	N69	92,12	0,5417	0,0005	26,2625	90	81,4	0,10409	0,01843	7368	0,05213	0,03258	14,64937	312,14	10	336,789	38,6725
N69-N70	N70	14,80	0,4323	0,0004	23,4615	90	81,4	0,08307	0,01843	5880,16	0,05327	0,00341	14,65278	312,21	10	336,863	38,5991
N71-N70	N70	64,29	-0,0816	-0,0001	10,1929	90	81,4	0,01568	0,01843	1109,87	0,05766	-0,0006	17,47698	312,21	10	339,687	35,7749
N73-N71	N71	394,30	-0,5498	-0,0005	26,4582	90	81,4	0,10565	0,01843	7478,22	0,05207	-0,1435	17,47755	313,22	10	340,698	34,7643
N74-N73	N73	113,09	-0,6841	-0,0007	29,5130	90	81,4	0,13146	0,01843	9304,75	0,05117	-0,0626	17,62104	311,96	10	339,581	35,8808
N74-N75	N75	58,47	0,4582	0,0005	24,1533	50	45,2	0,28555	0,0332	11223,2	0,06207	0,36706	17,92548	312,92	10	340,845	34,6164
N76-N74	N74	320,72	-1,5231	-0,0015	44,0374	90	81,4	0,29268	0,01843	20716,7	0,04901	-0,8431	17,55843	313,53	10	341,088	34,3734
N77-N76	N76	214,00	-1,7772	-0,0018	47,5693	90	81,4	0,34151	0,01843	24173,1	0,04875	-0,7618	16,71531	317,55	10	344,265	31,1966
N78-N77	N77	219,87	-2,0383	-0,0020	50,9437	90	81,4	0,39168	0,01843	27724,2	0,04854	-1,0253	15,9535	318,63	10	344,583	30,8784
N78-N79	N79	15,05	0,4298	0,0004	23,3939	50	45,2	0,26787	0,0332	10528,6	0,06223	0,08336	15,0116	321,27	10	346,282	29,1803
N80-N78	N78	54,68	-2,5331	-0,0025	56,7909	63	57,0	0,99268	0,02632	49202,3	0,05479	-2,64	14,92824	321,15	10	346,078	29,3836
N81-N80	N80	10,83	-2,5459	-0,0025	56,9349	63	57,0	0,99772	0,02632	49452,1	0,05479	-0,5282	12,28826	320,45	10	342,738	32,7236
N85-N81	N81	373,20	-1,4083	-0,0014	42,3451	63	57,0	0,55189	0,02632	27354,8	0,05532	-3,8605	4,662531	320,62	10	335,283	40,1793

YAMEOGO Martial Promotion [2024-2025] viii

N85-N86	N86	88,71	0,4779	0,0005	24,6683	50	45,2	0,29785	0,0332	11706,9	0,06197	0,60497	1,407043	317,43	10	328,837	46,6248
N50-N51	N51	256,24	1,4083	0,0014	42,3451	63	57,0	0,55189	0,02632	27354,8	0,05532	3,86045	6,199155	321,02	10	337,219	38,2427
N51-N53	N53	64,40	1,1040	0,0011	37,4926	63	57,0	0,43266	0,02632	21444,7	0,05564	0,59972	6,798877	322,52	10	339,319	36,143
N53-N54	N54	48,89	1,0276	0,0010	36,1709	63	57,0	0,40269	0,02632	19959,3	0,05575	0,39517	7,194051	321,95	10	339,144	36,3178
N54-N56	N56	88,62	0,5495	0,0005	26,4510	63	57,0	0,21534	0,02632	10673,6	0,05708	0,20977	7,403819	322,46	10	339,864	35,598
N1-N61	N61	23,47	-5,1427	-0,0051	80,9188	200	176,2	0,2109	0,00851	32314,3	0,03786	-0,0114	0,610054	322,89	10	333,5	41,9618
N61-N59	N59	263,03	-5,1148	-0,0051	80,6992	200	176,2	0,20976	0,00851	32139,2	0,03787	-0,1268	0,736839	326,16	10	336,897	38,565
N59-N58	N58	137,88	-1,8387	-0,0018	48,3851	63	57,0	0,72057	0,02632	35715	0,05504	-3,5235	4,260301	324,73	10	338,99	36,4716
N58-N57	N57	79,29	-1,2550	-0,0013	39,9737	63	57,0	0,49181	0,02632	24376,8	0,05546	-0,9511	5,211366	325,59	10	340,801	34,6605
N57-N56	N56	227,57	-1,1608	-0,0012	38,4450	63	57,0	0,45492	0,02632	22548	0,05556	-2,3399	7,551246	322,45	10	340,001	35,4606
N56-N81	N81	310,58	1,3349	0,0013	41,2265	63	57,0	0,52312	0,02632	25928,7	0,05538	4,20884	11,76008	320,62	10	342,38	33,0818
N59-N85	N85	389,76	-2,9638	-0,0030	61,4294	200	176,2	0,12155	0,00851	18622,9	0,03917	-0,0652	0,802077	318,21	10	329,012	46,4498
N255-BF1	BF1	2,32	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,01228	0,256647	325,21	10	335,467	39,9952
N18-BF2	BF2	10,92	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,0578	3,971079	319,45	10	333,421	42,0408
N26-BF3	BF3	11,67	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,06177	8,53638	317,7	10	336,236	39,2255
N48-BF4	BF4	38,31	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,20279	11,27336	314,54	10	335,813	39,6485
N46-BF5	BF5	39,81	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,21073	12,36998	312,96	10	335,33	40,1319
N58-BF6	BF6	4,10	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,0217	4,282004	325,17	10	339,452	36,0099
N54-BF7	BF7	3,70	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,01959	7,213636	322,36	10	339,574	35,8882
N79-BF8	BF8	3,38	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,01789	15,02949	321,39	10	346,419	29,0424
N70-BF9	BF9	3,32	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,01757	14,66695	312,56	10	337,227	38,2349
N68-BF10	BF10	11,10	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,05876	15,49694	312,81	10	338,307	37,1549
N86-BF11	BF11	4,96	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,02626	1,433299	317,78	10	329,213	46,2486
N75-BF12	BF12	14,85	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,07861	18,00409	312,71	10	340,714	34,7478
N64-BF13	BF13	8,20	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,04341	14,11222	307,22	10	331,332	44,1296
N38-BF14	BF14	9,60	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,05082	13,23089	311,17	10	334,401	41,061
N34-BF15	BF15	18,57	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,0983	12,07306	317,84	10	339,913	35,5488
N33-BF16	BF16	4,49	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,02377	18,29758	321,75	10	350,048	25,4143
N16-BF17	BF17	2,18	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,01154	11,13125	319,84	10	340,971	34,4906
N11-BF18	BF18	26,87	0,4200	0,0004	23,1249	50	45,2	0,26175	0,0332	10287,8	0,06229	0,14223	28,90823	306,03	10	344,938	30,5236

YAMEOGO Martial Promotion [2024-2025]

ix

Etude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso

Annexe 7: Dernière itération du réseau maillé de Mou

						I	Dth(mm	Dcom	Dint(m	Dcom	V réelle										Qcor	
Itérations	Mailles	Tronçons	Longueurs	Débits(1/s)	Débits(m3/s)	Dth(m))	(mm)	m)	(m)	(m/s)	k/D	Re	lambda	delta H	delta H/Q	dq1	dq2	dq(m3/s)	dq(1/s)	(m3/s)	Qcor (1/s)
10	I	N4-N5	215,10	-4,0191	-0,0040191	0,072	71,54	90	79,2	0,09	0,816	1,89E-02	5,62E+04	0,048301	-4,4499144	1107,191418	8,95E-14		8,95E-14	8,95E-11	-4,02E-03	-4,02E+00
		N5-N7	1204,00	-3,6784	-0,0036784	0,068	68,44	90	79,2	0,09	0,747	1,89E-02	5,14E+04	0,048366	-20,892141	5679,664597	8,95E-14		8,95E-14	8,95E-11	-3,68E-03	-3,68E+00
		N7-N8	352,80	-2,8833	-0,00288326	0,061	60,59	90	79,2	0,09	0,585	1,89E-02	4,03E+04	0,048576	-3,7775621	1310,169527	8,95E-14	-1,01E-13	-1,11E-14	-1,11E-11	-2,88E-03	-2,88E+00
		N8-N9	227,30	-2,5285	-0,00252852	0,057	56,74	63	55,4	0,063	1,049	2,71E-02	5,05E+04	0,055394	-12,745807	5040,816678	8,95E-14	-1,01E-13	-1,11E-14	-1,11E-11	-2,53E-03	-2,53E+00
		N9-N10	1692,00	-1,1283	-0,0011283	0,038	37,90	63	55,4	0,063	0,468	2,71E-02	2,25E+04	0,056169	-19,157804	16978,81062	8,95E-14		8,95E-14	8,95E-11	-1,13E-03	-1,13E+00
		N10-N11	858,50	-0,4519	-0,0004519	0,024	23,99	50	44	0,05	0,297	3,41E-02	1,14E+04	0,062691	-5,5071757	12186,14585	8,95E-14		8,95E-14	8,95E-11	-4,52E-04	-4,52E-01
		N12-N11	1261,00	0,3272	0,0003272	0,020	20,41	50	44	0,05	0,215	3,41E-02	8,23E+03	0,063573	4,29949292	13141,11956	8,95E-14		8,95E-14	8,95E-11	3,27E-04	3,27E-01
		N14-N12	976,40	0,8575	0,0008575	0,033	33,04	63	55,4	0,063	0,356	2,71E-02	1,71E+04	0,056602	6,43382137	7503,2688	8,95E-14		8,95E-14	8,95E-11	8,57E-04	8,57E-01
		N16-N14	823,70	1,3459	0,0013459	0,041	41,40	63	55,4	0,063	0,558	2,71E-02	2,69E+04	0,055945	13,2168733	9820,080322	8,95E-14		8,95E-14	8,95E-11	1,35E-03	1,35E+00
		N18-N16	1130,00	1,9117	0,0019117	0,049	49,34	63	55,4	0,063	0,793	2,71E-02	3,82E+04	0,055597	36,3519566	19015,90166	8,95E-14		8,95E-14	8,95E-11	1,91E-03	1,91E+00
		N4-N18	846,60	2,3850	0,0023850	0,055	55,11	90	79,2	0,09	0,484	1,89E-02	3,33E+04	0,048777	6,22825878	2611,415503	8,95E-14		8,95E-14	8,95E-11	2,39E-03	2,39E+00
														Σ	-1,69E-08	94394,58454						
															dq1	8,95E-14						
	II	N7-N8	352,80	2,1206	0,0021206	0,052	51,96	90	79,2	0,09	0,430	1,89E-02	2,96E+04	4,89E-02	2,06E+00	9,70E+02	8,95E-14	-1,01E-13	-1,11E-14	-1,11E-11	2,12E-03	2,12E+00
		N8-N9	227,30	1,7659	0,0017659	0,047	47,42	63	55,4	0,063	0,733	2,71E-02	3,53E+04	5,57E-02	6,25E+00	3,54E+03	8,95E-14	-1,01E-13	-1,11E-14	-1,11E-11	1,77E-03	1,77E+00
		N7-N19	1980,00	-1,0472	-0,0010472	0,037	36,51	63	55,4	0,063	0,434	2,71E-02	2,09E+04	5,63E-02	-1,93E+01	1,85E+04		-1,01E-13	-1,01E-13	-1,01E-10	-1,05E-03	-1,05E+00
		N9-N20	1897,00	0,8043	0,0008043	0,032	32,00	63	55,4	0,063	0,334	2,71E-02	1,61E+04	5,67E-02	1,10E+01	1,37E+04		-1,01E-13	-1,01E-13	-1,01E-10	8,04E-04	8,04E-01
		N20-N19	201,20	0,0787	0,0000787	0,010	10,01	50	44	0,05	0,052	3,41E-02	1,98E+03	3,23E-02	2,02E-02	2,56E+02		-1,01E-13	-1,01E-13	-1,01E-10	7,87E-05	7,87E-02
														Σ	7,43E-09	3,69E+04						
															dq2	-1,01E-13						

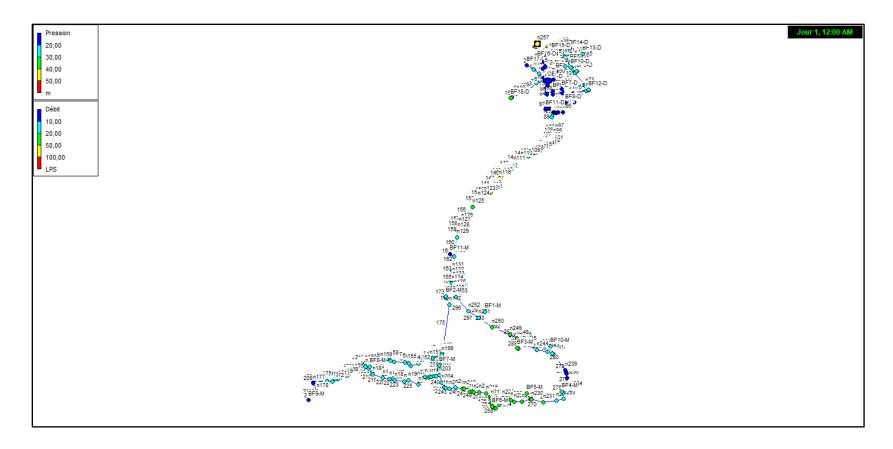
YAMEOGO Martial Promotion [2024-2025]

Х

Annexe 8: Dimensionnement du réseau complet des conduites de distribution de Mou

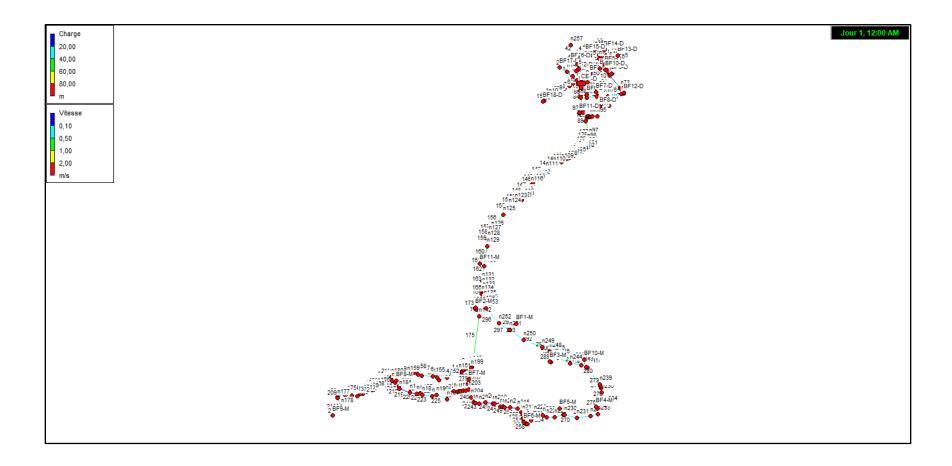
TRONCONS	NŒUDS	LONGUEUR	Q fictif	Q fictif	D th	D com	D int	Vr	K/D	Re	Lamda	Delta H	S Delta H	Z TN aval	P min serv	Z min	P réelle
		m	I/s	m3/s	mm	mm	mm	m/s				m	m	m	mCE	m	mCE
CE-N1	N1	1,14	8,5082	0,0085	104,082	125	110,2	0,89204	0,0136	85480,7	0,04272	0,01972	0,019718	319,29	10	329,31	147,843
N1-N2	N2	4775,25	7,7407	0,0077	99,2761	125	110,2	0,81157	0,0136	77769,6	0,04278	68,4562	68,47591	308,63	10	387,106	90,0463
N2-N3	N3	853,19	6,7075	0,0067	92,4135	110	96,8	0,91142	0,0155	76718,1	0,04476	18,3731	86,84899	305,08	10	401,929	75,2233
N3-N4	N4	21,87	6,6131	0,0066	91,7611	110	96,8	0,8986	0,0155	75638,7	0,04477	0,45789	87,30688	304,37	10	401,677	75,4754
N4-N5	N5	215,10	-4,0191	-0,0040	71,5352	90	79,2	0,81581	0,01894	56184,4	0,0483	-4,4499	91,75679	301,89	10	403,647	73,5055
N5-N7	N7	1204,00	-3,6784	-0,0037	68,4361	90	79,2	0,74666	0,01894	51421,8	0,04837	-20,892	112,6489	293,7	10	416,349	60,8033
N7-N8	N8	352,80	-2,8833	-0,0029	60,5895	90	79,2	0,58525	0,01894	40306,1	0,04858	-3,7776	116,4265	296,21	10	422,636	54,5158
N8-N9	N9	227,30	-2,5285	-0,0025	56,7399	63	55,4	1,04896	0,02708	50532,3	0,05539	-12,746	129,1723	295,85	10	435,022	42,1299
N9-N10	N10	1692,00	-1,1283	-0,0011	37,9031	63	55,4	0,46809	0,02708	22549,7	0,05617	-19,158	148,3301	283,88	10	442,21	34,9421
N10-N11	N11	858,50	-0,4519	-0,0005	23,9876	50	44	0,29721	0,03409	11371,6	0,06269	-5,5072	153,8373	286,28	10	450,117	27,035
N12-N11	N11	1261,00	0,3272	0,0003	20,4102	50	44	0,21517	0,03409	8232,74	0,06357	4,29949	153,8373	286,28	10	450,117	27,035
N14-N12	N12	976,40	0,8575	0,0009	33,0418	63	55,4	0,35572	0,02708	17136,5	0,0566	6,43382	149,5378	302,2	10	461,738	15,4145
N16-N14	N14	823,70	1,3459	0,0013	41,3963	63	55,4	0,55835	0,02708	26897,8	0,05594	13,2169	143,104	303,55	10	456,654	20,4983
N18-N16	N16	1130,00	1,9117	0,0019	49,3356	63	55,4	0,79305	0,02708	38204,4	0,0556	36,352	129,8871	294,53	10	434,417	42,7352
N4-N18	N18	846,60	2,3850	0,0024	55,1062	90	79,2	0,48412	0,01894	33340,9	0,04878	6,22826	93,53514	297,03	10	400,565	76,5871
N7-N19	N19	1980,00	-1,0472	-0,0010	36,5148	63	55,4	0,43443	0,02708	20928,1	0,05628	-19,347	131,996	295,81	10	437,806	39,3463
N9-N20	N20	1897,00	0,8043	0,0008	32,0019	63	55,4	0,33368	0,02708	16074,7	0,05672	11,0219	140,1942	294,96	10	445,154	31,998
N20-N19	N19	201,20	0,0787	0,0001	10,0093	50	44	0,05175	0,03409	1979,97	0,03232	0,02017	140,2144	295,81	10	446,024	31,1278
N19-N21	N21	1385,00	0,6020	0,0006	27,6847	50	44	0,39589	0,0341	15147,1	0,0621	17,177	149,173	298,86	10	458,033	19,1193
N21-N22	N22	253,30	0,3855	0,0004	22,155	50	44	0,25353	0,0341	9700,44	0,06309	1,30896	150,4819	302,43	10	462,912	14,2403
N22-N23	N23	273,80	0,3062	0,0003	19,7441	50	44	0,20136	0,0341	7704,14	0,06379	0,90232	151,3842	305,62	10	467,004	10,148
N5-N6	N6	144,00	0,2890	0,0003	19,1832	50	44	0,19008	0,0341	7272,66	0,06399	0,42421	92,181	302,5	10	404,681	72,4713
N12-N13	N13	195,00	0,2958	0,0003	19,4055	50	44	0,19451	0,0341	7442,19	0,06391	0,60078	150,1386	301,43	10	461,569	15,5837
N14-N15	N15	155,80	0,2906	0,0003	19,2349	50	44	0,19111	0,0341	7311,88	0,06397	0,46379	143,5678	302,17	10	455,738	21,4145

YAMEOGO Martial Promotion [2024-2025]


χi

Etude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso

N16-N17	N17	184,20	0,2943	0,0003	19,3587	50	44	0,19357	0,0341	7406,29	0,06392	0,56219	130,4493	293,35	10	433,799	43,353
N2-BF11	BF11	109,32	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,28213	68,75804	311,34	10	390,098	87,0542
N6-BF2	BF2	16,03	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,04137	92,22237	302,76	10	404,982	72,1699
N8-BF7	BF7	9,29	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,02398	116,4505	296,28	10	422,73	54,4218
N20-BF8	BF8	58,03	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,14976	140,344	295,5	10	445,844	31,3082
N23-BF9	BF9	6,98	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,01801	151,4023	305,75	10	467,152	10
N10-BF6	BF6	18,51	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,04777	148,3779	284,21	10	442,588	34,5644
N11-BF5	BF5	218,75	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,56455	154,4018	288,91	10	453,312	23,8404
N13-BF4	BF4	50,12	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,12935	150,2679	302,05	10	462,318	14,8343
N15-BF10	BF10	52,73	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,13609	143,7038	302,02	10	455,724	21,4284
N17-BF3	BF3	40,47	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,10445	130,5537	292,98	10	433,534	43,6185
N18-BF1	BF1	209,91	0,2700	0,0003	18,5412	50	44	0,17757	0,0341	6793,97	0,06424	0,54174	94,07688	299,44	10	403,517	73,6354
TOTAL		22698,29													Max:	467,152	


YAMEOGO Martial Promotion [2024-2025] xii

Annexe 9: Schéma hydraulique des pressions aux nœuds et débits dans les conduites

YAMEOGO Martial Promotion [2024-2025] xiii

Annexe 10: Schémas hydraulique des charges aux nœuds et vitesse dans les conduites

YAMEOGO Martial Promotion [2024-2025] xiv

Annexe 11: Résultat de la simulation EPANET

Tuyaux	Long(m)	Dint (mm)	Débit (l/s)	Vitesse (m/s)	Tuyaux	Long(m)	Dint (mm)	Débit (l/s)	Vitesse (m/s)
Tuyau 1	21,2	176,2	12,86	0,53	Tuyau 44	18,57	57	0,4	0,16
Tuyau 2	2,32	57	0,4	0,16	Tuyau 45	215,36	81,4	0,17	0,03
Tuyau 3	4,29	176,2	12,41	0,51	Tuyau 46	48,63	81,4	0,12	0,02
Tuyau 4	27,57	176,2	12,36	0,51	Tuyau 47	159,94	81,4	0,07	0,01
Tuyau 5	53,77	146,7	10,08	0,6	Tuyau 48	146,59	57	0,45	0,18
Tuyau 6	55,15	81,4	0,85	0,16	Tuyau 49	9,6	57	0,4	0,16
Tuyau 7	99,95	81,4	0,8	0,15	Tuyau 50	66,63	81,4	-0,43	0,08
Tuyau 8	100,11	81,4	0,75	0,14	Tuyau 52	364,74	101,6	2,28	0,28
Tuyau 9	120,13	81,4	0,7	0,13	Tuyau 53	127,66	101,6	2,23	0,28
Tuyau 10	110,06	81,4	0,65	0,12	Tuyau 54	64,84	101,6	2,18	0,27
Tuyau 11	52,53	81,4	0,6	0,12	Tuyau 55	52,03	101,6	1,7	0,21
Tuyau 12	65,72	81,4	0,55	0,11	Tuyau 56	98,36	101,6	1,65	0,2
Tuyau 13	171,36	81,4	0,5	0,1	Tuyau 57	53,59	101,6	1,6	0,2
Tuyau 14	143,73	81,4	0,45	0,09	Tuyau 58	72,85	101,6	1,55	0,19
Tuyau 15	26,87	57	0,4	0,16	Tuyau 60	100,58	101,6	1,5	0,19
Tuyau 16	60,67	57	0,65	0,25	Tuyau 63	210,14	57	-0,86	0,34
Tuyau 17	144,46	57	0,6	0,24	Tuyau 64	56,39	57	-0,91	0,36
Tuyau 18	155,03	57	0,55	0,22	Tuyau 65	47,78	57	0,45	0,18
Tuyau 19	196,27	57	0,5	0,2	Tuyau 66	39,81	57	0,4	0,16
Tuyau 20	7,61	57	0,45	0,18	Tuyau 67	87,55	57	-1,41	0,55
Tuyau 21	2,18	57	0,4	0,16	Tuyau 68	38,31	57	0,4	0,16
Tuyau 22	19,47	146,7	5,1	0,3	Tuyau 69	126,9	57	-1,86	0,73
Tuyau 23	254,54	57	0,45	0,18	Tuyau 70	195,19	57	-1,91	0,75
Tuyau 24	10,92	57	0,4	0,16	Tuyau 71	256,24	57	1,31	0,51
Tuyau 25	75,72	57	4,6	1,8	Tuyau 72	53,52	57	1,26	0,49
Tuyau 26	31,46	101,6	4,5	0,56	Tuyau 73	10,88	57	1,21	0,48
Tuyau 27	15,83	101,6	4,45	0,55	Tuyau 74	48,89	57	1,16	0,46
Tuyau 28	23,43	101,6	4,4	0,54	Tuyau 75	3,74	57	0,4	0,16
Tuyau 29	37,1	101,6	4,35	0,54	Tuyau 76	45,97	57	0,71	0,28
Tuyau 30	48,7	101,6	4,3	0,53	Tuyau 77	42,65	57	0,66	0,26
Tuyau 31	2	101,6	4,25	0,52	Tuyau 78	227,57	57	-1,44	0,56
Tuyau 32	127,81	101,6	4,2	0,52	Tuyau 79	79,29	57	-1,49	0,58
Tuyau 33	11,67	57	0,4	0,16	Tuyau 80	4,1	57	0,4	0,16
Tuyau 34	15,64	101,6	3,75	0,46	Tuyau 81	310,58	57	2,05	0,8
Tuyau 35	407,42	81,4	1,42	0,27	Tuyau 82	23,47	176,2	2,24	0,09
Tuyau 36	16,57	81,4	0,75	0,14	Tuyau 83	157,26	176,2	2,19	0,09
Tuyau 37	29,89	81,4	0,7	0,13	Tuyau 84	105,77	176,2	2,14	0,09

YAMEOGO Martial Promotion [2024-2025] xv

Tuyau 38	59,63	57	0,6	0,24	Tuyau 85	137,88	57	1,94	0,76
Tuyau 39	19,6	57	0,55	0,22	Tuyau 86	50,9	176,2	0,15	0,01
Tuyau 40	60,1	57	0,45	0,18	Tuyau 87	308,68	176,2	0,1	0
Tuyau 41	4,49	57	0,4	0,16	Tuyau 88	30,18	176,2	0,05	0
Tuyau 42	381,71	57	0,05	0,02	Tuyau 90	111,28	57	1,41	0,55
Tuyau 43	223	81,4	0,62	0,12	Tuyau 91	350,62	57	0,45	0,18
		1	1	1	•	1	-	•	
Tuyau 92	4,96	57	0,4	0,16	Tuyau 139	93,97	176,2	11,65	0,48
Tuyau 93	169,32	81,4	2,31	0,44	Tuyau 140	198,99	176,2	11,6	0,48
Tuyau 94	52,91	57	0,45	0,18	Tuyau 141	201,35	176,2	11,55	0,47
Tuyau 95	8,2	57	0,4	0,16	Tuyau 142	252,25	176,2	11,5	0,47
Tuyau 96	76,89	81,4	1,81	0,35	Tuyau 143	54,9	176,2	11,45	0,47
Tuyau 97	294,66	81,4	1,76	0,34	Tuyau 144	58,75	176,2	11,4	0,47
Tuyau 98	48,62	57	0,5	0,2	Tuyau 145	48,1	176,2	11,35	0,47
Tuyau 99	65,13	57	0,45	0,18	Tuyau 146	71,63	176,2	11,3	0,46
Tuyau 100	11,1	57	0,4	0,16	Tuyau 147	286,49	176,2	11,25	0,46
Tuyau 101	92,12	81,4	1,21	0,23	Tuyau 148	30,76	176,2	11,2	0,46
Tuyau 102	14,8	81,4	1,16	0,22	Tuyau 149	46,28	176,2	11,15	0,46
Tuyau 103	3,32	81,4	0,4	0,08	Tuyau 150	49,29	176,2	11,1	0,46
Tuyau 104	64,29	81,4	0,71	0,14	Tuyau 151	51,23	176,2	11,05	0,45
Tuyau 105	361,54	81,4	0,66	0,13	Tuyau 152	54,1	176,2	11	0,45
Tuyau 106	32,76	81,4	0,61	0,12	Tuyau 153	65,18	176,2	10,95	0,45
Tuyau 107	113,09	81,4	0,56	0,11	Tuyau 154	170,13	176,2	10,9	0,45
Tuyau 108	58,47	57	0,45	0,18	Tuyau 155	217,89	176,2	10,85	0,44
Tuyau 109	14,85	57	0,4	0,16	Tuyau 156	433,26	176,2	10,8	0,44
Tuyau 110	320,72	81,4	0,06	0,01	Tuyau 157	117,54	176,2	10,75	0,44
Tuyau 111	214	81,4	0,01	0	Tuyau 158	120,7	176,2	10,7	0,44
Tuyau 112	219,87	81,4	-0,04	0,01	Tuyau 159	159,75	176,2	10,65	0,44
Tuyau 113	15,05	57	0,45	0,18	Tuyau 160	452,95	176,2	10,6	0,43
Tuyau 114	3,38	57	0,4	0,16	Tuyau 161	109,32	57	0,4	0,16
Tuyau 115	10,83	57	0,59	0,23	Tuyau 162	337,13	176,2	10,15	0,42
Tuyau 116	54,68	57	0,54	0,21	Tuyau 163	107,36	176,2	10,1	0,41
Tuyau 119	38,61	176,2	12,65	0,52	Tuyau 164	101,2	141	10,05	0,64
Tuyau 120	23,93	176,2	12,6	0,52	Tuyau 165	90,35	141	10	0,64
Tuyau 121	25,5	176,2	12,55	0,51	Tuyau 166	119,51	141	9,95	0,64
Tuyau 122	14,14	176,2	12,5	0,51	Tuyau 167	97,57	141	9,9	0,63
Tuyau 123	9,99	176,2	12,45	0,51	Tuyau 168	21,87	141	9,85	0,63
Tuyau 124	37,28	176,2	12,4	0,51	Tuyau 169	49,85	98,6	5,22	0,68
Tuyau 125	81,96	176,2	12,35	0,51	Tuyau 170	165,21	98,6	5,17	0,68
Tuyau 126	348,39	176,2	12,3	0,5	Tuyau 171	107,38	57	0,5	0,2
Tuyau 127	24,94	176,2	12,25	0,5	Tuyau 172	36,59	57	0,45	0,18

YAMEOGO Martial Promotion [2024-2025] xvi

·									
Tuyau 128	118,4	176,2	12,2	0,5	Tuyau 173	16,03	57	0,4	0,16
Tuyau 129	98,88	176,2	12,15	0,5	Tuyau 174	112,91	98,6	4,62	0,61
Tuyau 130	45,59	176,2	12,1	0,5	Tuyau 175	1091,46	98,6	4,57	0,6
Tuyau 131	36,77	176,2	12,05	0,49	Tuyau 176	24,98	141	2,72	0,17
Tuyau 132	75,92	176,2	12	0,49	Tuyau 177	37,79	141	2,67	0,17
Tuyau 133	109,62	176,2	11,95	0,49	Tuyau 178	85,28	96,8	2,62	0,36
Tuyau 134	51,26	176,2	11,9	0,49	Tuyau 179	40,1	141	2,57	0,16
Tuyau 135	71,27	176,2	11,85	0,49	Tuyau 180	40,62	96,8	2,52	0,34
Tuyau 136	89,18	176,2	11,8	0,48	Tuyau 181	47,72	96,8	2,47	0,34
Tuyau 137	47,66	176,2	11,75	0,48	Tuyau 182	45,05	96,8	2,42	0,33
Tuyau 138	75,42	176,2	11,7	0,48	Tuyau 183	46,42	96,8	2,37	0,32
Tuyau 184	302,14	79,2	2,32	0,47	Tuyau 229	39,67	57	-0,63	0,25
Tuyau 185	190,11	96,8	2,27	0,31	Tuyau 230	65,6	57	-0,68	0,27
Tuyau 186	72,03	96,8	2,22	0,3	Tuyau 231	45,99	57	-0,73	0,29
Tuyau 187	100,4	96,8	2,17	0,29	Tuyau 232	81,08	57	-0,78	0,31
Tuyau 188	245,12	96,8	2,12	0,29	Tuyau 233	66,44	98,6	1,81	0,24
Tuyau 189	93,97	96,8	2,07	0,28	Tuyau 234	35,27	98,6	1,76	0,23
Tuyau 190	88,36	96,8	2,02	0,27	Tuyau 235	251,13	79,2	1,71	0,35
Tuyau 191	158,71	96,8	1,97	0,27	Tuyau 236	9,29	57	0,4	0,16
Tuyau 192	360,84	96,8	1,92	0,26	Tuyau 237	75,48	57	1,26	0,49
Tuyau 193	37,95	57	1,35	0,53	Tuyau 238	43,74	57	1,21	0,47
Tuyau 194	147,09	79,2	1,3	0,26	Tuyau 239	108,08	57	1,16	0,45
Tuyau 195	46,63	79,2	1,25	0,25	Tuyau 240	194,7	57	0,32	0,13
Tuyau 196	58,98	79,2	1,2	0,24	Tuyau 241	119,68	57	0,27	0,11
Tuyau 197	44,05	79,2	1,15	0,23	Tuyau 242	46,49	57	0,22	0,09
Tuyau 198	62,26	79,2	1,1	0,22	Tuyau 243	91,16	57	0,17	0,07
Tuyau 199	120,36	79,2	1,05	0,21	Tuyau 244	133,24	57	0,12	0,05
Tuyau 200	39,62	79,2	1	0,2	Tuyau 245	170,72	57	0,07	0,03
Tuyau 201	131,86	79,2	0,95	0,19	Tuyau 246	46,67	57	0,02	0,01
Tuyau 202	96,87	57	0,9	0,35	Tuyau 247	143,15	57	-0,03	0,01
Tuyau 203	47,12	57	0,85	0,33	Tuyau 248	43,96	57	-0,08	0,03
Tuyau 204	86,18	57	0,8	0,31	Tuyau 249	42,49	57	-0,13	0,05
Tuyau 205	130,22	57	0,75	0,29	Tuyau 250	133,44	57	-0,18	0,07
Tuyau 206	129,65	57	0,7	0,27	Tuyau 251	167,45	57	-0,23	0,09
Tuyau 207	49,13	57	0,65	0,25	Tuyau 252	121,03	57	-0,28	0,11
Tuyau 208	157,03	57	0,6	0,24	Tuyau 253	41,73	57	-0,33	0,13
Tuyau 209	34,74	57	0,55	0,22	-	106,92	57	-0,38	0,15
Tuyau 210	218,49	57	0,5	0,2		45,55	57	-0,43	0,17
Tuyau 211	273,03	57	0,45	0,18	Tuyau 256	43,23	57	-0,48	0,19
Tuyau 212	7,35	57	0,4	0,16	-	18,51	57	0,4	0,16

YAMEOGO Martial Promotion [2024-2025] xvii

Etude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso

Tuyau 213	38,19	96,8	0,52	0,07	Tuyau 258	59,23	57	-0,93	0,36
Tuyau 214	82,19	57	0,47	0,18	Tuyau 259	39,43	57	-0,98	0,38
Tuyau 215	80,8	57	0,42	0,16	Tuyau 260	114,69	57	-1,03	0,4
Tuyau 216	58,02	57	0,4	0,16	Tuyau 261	145,9	79,2	-1,08	0,22
Tuyau 217	105,47	57	-0,03	0,01	Tuyau 262	25	79,2	-1,13	0,23
Tuyau 218	73,4	57	-0,08	0,03	Tuyau 263	195,73	79,2	-1,18	0,24
Tuyau 219	237,62	57	-0,13	0,05	Tuyau 264	91,93	79,2	-1,23	0,25
Tuyau 220	159,19	57	-0,18	0,07	Tuyau 265	186,64	79,2	-1,28	0,26
Tuyau 221	87,16	57	-0,23	0,09	Tuyau 267	218,75	57	0,4	0,16
Tuyau 222	69,97	57	-0,28	0,11	Tuyau 268	204,18	79,2	-1,73	0,35
Tuyau 223	219,73	57	-0,33	0,13	Tuyau 269	17,91	79,2	-1,78	0,36
Tuyau 224	98,62	57	-0,38	0,15	Tuyau 270	293,52	79,2	-1,83	0,37
Tuyau 225	262,99	57	-0,43	0,17	Tuyau 271	311,11	96,8	-1,88	0,26
Tuyau 226	243,01	57	-0,48	0,19	Tuyau 272	165,06	96,8	-1,93	0,26
Tuyau 227	83,1	57	-0,53	0,21	Tuyau 273	269,63	96,8	-1,98	0,27
Tuyau 228	23,57	57	-0,58	0,23	Tuyau 274	195	57	0,45	0,18

Tuyau 275	50,12	57	0,4	0,16
Tuyau 276	289,83	96,8	-2,48	0,34
Tuyau 277	101,71	96,8	-2,53	0,34
Tuyau 278	45,8	96,8	-2,58	0,35
Tuyau 279	37,41	96,8	-2,63	0,36
Tuyau 280	477,53	96,8	-2,68	0,36
Tuyau 281	23,98	96,8	-2,73	0,37
Tuyau 282	155,84	57	0,45	0,18
Tuyau 283	52,72	57	0,4	0,16
Tuyau 284	126,52	96,8	-3,23	0,44
Tuyau 285	254,86	96,8	-3,28	0,45
Tuyau 286	298,07	96,8	-3,33	0,45
Tuyau 287	144,26	141	-3,38	0,22
Tuyau 288	184,21	57	0,45	0,18
Tuyau 289	40,47	57	0,4	0,16
Tuyau 290	92,58	141	-3,88	0,25
Tuyau 291	191,72	141	-3,93	0,25
Tuyau 292	450,47	141	-3,98	0,25
Tuyau 293	395,3	141	-4,03	0,26
Tuyau 294	209,91	57	0,4	0,16
Tuyau 295	118,95	141	4,58	0,29
Tuyau 296	435,89	141	4,53	0,29
Tuyau 297	291,73	141	4,48	0,29
Tuyau 51	27,36	57	3,42	1,34

YAMEOGO Martial Promotion [2024-2025] xviii

Etude diagnostic, de réhabilitation et d'extension du système d'adduction en eau potable multi-village de Dissin-Mou dans la commune de Dissin, province du Ioba, région du Sud-Ouest au Burkina Faso

Tuyau 59	81,08	101,6	3,37	0,42
Tuyau 61	81,98	101,6	3,32	0,41
Tuyau 62	84,63	101,6	3,27	0,4
Tuyau 266	79,84	81,4	0,05	0,01
Tuyau 298	321,4	81,4	-0,05	0,01
Tuyau 117	108,71	57	0,91	0,36
Tuyau 118	86,47	176,2	12,7	0,52

YAMEOGO Martial Promotion [2024-2025] xix

Annexe 12: Catalogue pour le choix des diamètres des conduites en PEHD

PRESENTATION

Les tubes en polyéthylène haute densité (PE80 ou PE100) sont livrés soit en barres de 5,8m-6,0m-11,8m ou 12m soit en couronnes de 50, 100, 200 mètres ou autres longueurs sur demande. Ils sont de couleur noir et de qualité alimentaire.

Des filets de repérage bleus sont répartis sur la circonférence du tube. Ces filets ont une faible épaisseur et une faible largeur de façon à ne modifier aucune des caractéristiques physiques et mécaniques du tube.

DIMENSIONS DES TUBES PEHD

Gamme PE80/PE100

		Epaisseur de paroi (mm)									
Diamètre nominal			SDR21	SDR26	SDR13,6	SDR17	SDR11	SDR13,6	SDR9	SDR11	
(mm)	HN*		PI	N6	PN	10	PN	112,5	PI	N16	
(11111)	PE80	PE100	PE80	PE100	PE80	PE100	PE80	PE100	PE80	PE100	
20	1,4						2,0		2,3	2,0	
25	1,5				2,0		2,3	2,0	3,0	2,3	
32			2,0		2,4	2,0	3,0	2,4	3,6	3,0	
40			2,0		3,0	2,4	3,7	3,0	4,5	3,7	
50			2,4	2,0	3,7	3,0	4,6	3,7	5,6	4,6	
63			3,0	2,5	4,7	3,8	5,8	4,7	7,1	5,8	
75			3,6	2,9	5,6	4,5	6,8	5,6	8,4	6,8	
90			4,3	3,5	6,7	5,4	8,2	6,7	10,1	8,2	
110			5,3	4,2	8,1	6,6	10,0	8,1	12,3	10,0	
125			6,0	4,8	9,2	7,4	11,4	9,2	14,0	11,4	
140			6,7	5,4	10,3	8,3	12,7	10,3	15,7	12,7	
160			7,7	6,2	11,8	9,5	14,6	11,8	17,9	14,6	
180			8,6	6,9	13,3	10,7	16,4	13,3	20,1	16,4	
200			9,6	7,7	14,7	11,9	18,2	14,7	22,4	18,2	
225			10,8	8,6	16,6	13,4	20,5	16,6	25,2	20,5	
250			11,9	9,6	18,4	14,8	22,7	18,4	27,9	22,7	

Norme Française NF T 54-063 Norme NF EN 12201-2 : 2003 ou ISO 4427 : 2007

SOTICI - Documentation technique des tubes PEHD

Page 2

YAMEOGO Martial Promotion [2024-2025] xx

Annexe 13: Catalogue pour le choix des diamètres des conduites en PVC

1-		PVC pressi 062 / ISO 1			100 Systèm 074 ISO 44	es Eau Din 427
DN (mm)		D _{int} (mm)			D _{int} (mm)	
	PN6	PN10	PN16	PN6	PN10	PN16
50	46.4	45.2	42.6	-	-	40.8
63	59.2	57.0	53.6	-	-	51.4
75	70.6	67.8	63.8	69.2	66.0	61.4
90	84.6	81.4	76.6	83.2	79.2	73.6
110	103.6	99.4	93.6	101.6	96.8	90.0
125	117.8	113.0	106.6	115.4	110.2	102.2
140	131.8	126.6	119.2	129.2	123.4	114.6
160	150.6	144.6	136.2	147.8	141.0	130.8
180				166.2	158.6	147.2
200	188.2	180.8	170.2	184.6	176.2	163.6
225	211.8		191.6	207.8	198.2	184.0
		226.2		230.8	220.4	
250	255.4	220.2	212.8	258.4	246.8	204.4
280				290.8	277.6	229.2
315	296.2	285.0	267.4	327.6	312.8	257.8
355				369.2	352.6	290.6
400	376.6	361.8	340.6	415.4	396.6	327.2
450				461.8	440.8	368.2
500						409.0
560				517.2	494.0	458.2
630				582.0	555.8	515.4

YAMEOGO Martial Promotion [2024-2025] xxi

Annexe 14: Mode de gestion de l'AEP-MV

	Mode de gestion	Avantages	Inconvénients
	Régie directe	Contrôle total de toutes les opérations	Nécessite du personnel technique et des gestionnaires
Gestion directe		Transparence pour rendre des comptes aux citoyens)	Budget communal important pour la maitrise d'ouvrage
	Régie autonome	Gestion séparée du budget communal	Nécessite des gestionnaires compétents pour la gestion séparée
	Régie personnalisée	Plus grande autonomie de gestion avec un contrôle suivi pour éviter certains désagréments	Nécessite une organisation solide des ressources humaines, techniques et des gestionnaires
Gestion déléguée	Concession	Faible engagement financier de la commune Revenu d'impôt pour le budget communal	Cout de l'eau souvent élevé car le concessionnaire doit amortir ses investissements
	Affermage	La commune conserve la propriété de son patrimoine	Nécessite des gestionnaires professionnels et responsables pour une gestion à long terme et rentable des équipements

YAMEOGO Martial Promotion [2024-2025] xxii

Annexe 15: Devis estimatif et quantitatif des travaux

	ELECTROGE	•			RE/GROUPE
T	PEHD	I	T	ln r	T
Poste N°	DESIGNATION DES TRAVAUX	Unité	Qté	P.U (FCFA)	P. T (FCFA)
1	GENERALITES				
1.1	Amené, installation et repli du matériel	ff	1	3 500 000	
1.2	Dossier d'exécution	ff	1	1 000 000	1 000 000
1.3	Etablissement de plans de recollement des ouvrages exécutés	ff	1	500 000	500 000
	Sous-Total 1				5 000 000
2	FORAGE				
2.1	Développement du forage	ff	2	250 000	500 000
2.2	Pompage par paliers (4h) et observation remontée (1h)	ff	2	350 000	700 000
2.3	Essai de pompage de longue durée (72h) et observation remontée (24h)	ff	2	1 500 000	3 000 000
2.4	Prélèvement et analyses physico-chimique, Bactériologique et de métaux lourds de l'eau au laboratoire	ff	2	150 000	300 000
2.5	Désinfection du forage	u	2	75 000	150 000
	Conduite de refoulement				
2.6	Excavation et remblai, fourniture et pose de tuyau PEHD De 110 PN 16, y compris toutes sujétions (lit de sable, grillage avertisseur) tout terrain confondu (forage de 9m3/h)	ml	7 500	9 000	67 500 000
2.6	Excavation et remblai, fourniture et pose de tuyau PEHD De 125 PN 16, y compris toutes sujétions (lit de sable, grillage avertisseur) tout terrain confondu (forage de 15 m3/h)	ml	9 000	5 590	50 310 000
2.7	Fourniture et pose de pièces spéciales de raccordement (Coudes, Te, Réducteurs)	ens	2	500 000	1 000 000
2.8	Mise en place de bornes de repérage de la conduite de refoulement	ff	1	500 000	500 000
2.9	Mise en place de butées en béton	m^3	2	175 000	350 000
	Sous-Total 2				124 310 000
3	FOURNITURE ET POSE DES EQUIPEMENTS DE PRODUCTION				
3.1	Génie civil et equipement de la tête de forage		_		
3.1.1	Regard de la tête de forage en cage selon plan joint.	ens	2	400 000	800 000
3.1.2	Fourniture et installation de pièces conformes au plan pour l'équipement de la tête de forage: tuyau galva, ventouse, coudes, raccords union M/F, bride ronde filetée, compteur volumetrique DN 50, clapet AR, manomètre, pressostat double seuil, filtre, vanne, robinet de prise, y compris raccordements à la pompe (foraduc) et au réseau ,,,	ens	2	750 000	1 500 000

YAMEOGO Martial Promotion [2024-2025] xxiii

3.2	Pompe immergée				
3.2.1	Fourniture et pose d'un groupe électropompe GRUNDFOS de débit minimum 9 m3/h, HMT 154m , y compris éssais de marche et câble de sécurité en acier inoxydable et toutes sujétions.	u	1	4 500 000	4 500 000
3.2.2	Fourniture et pose d'un groupe électropompe GRUNDFOS de débit minimum 15 m3/h, HMT 134m , y compris éssais de marche et câble de sécurité en acier inoxydable et toutes sujétions.	u	1	7 000 000	7 000 000
3.2.3	Fourniture, pose et raccordement d'un câble électrique U1000 R02V de 4x4mm² enterré sous PVC et signalé par grillage avertisseur pour l'alimentation de la boîte de raccordement dans l'abri tête de forage à partir de l'armoire électrique, y compris toute	ens	1	750 000	750 000
3.2.4	Fourniture, pose et raccordement d'un câble électrique à immersion permanente de 4x4 mm² pour l'alimentation de l'électropompe à partir de la boîte de raccordement dans l'abri tête de forage, y compris toute sujétion	ens	1	60 000	60 000
3.2.5	Fourniture, pose et raccordement d'un câble électrique U1000 R02V de 3x1,5mm² pour l'asservissement surpression de l'électropompe du pressostat à la boîte de raccordement dans l'abri tête de forage, y compris toute sujétion	ens	1	600 000	600 000
3.2.6	Fourniture, pose et raccordement des câbles d'électrodes de niveau à immersion permanente de 2x6 mm² des électrodes dans le forage à la boîte de raccordement dans l'abri tête de forage, y compris toutes sujétions	ens	1	500 000	500 000
3.2.7	Fourniture, pose et raccordement d'un coffret étanche équipée de bornes de jonction pour le raccordement des câbles dans l'abri de la tête de forage câble de 4x2,5 mm², y compris toute sujétion	u	2	150 000	300 000
3.2.8	Fourniture, pose et raccordement de sonde de détection de niveau	u	2	50 000	100 000
3.2.9	Fourniture, pose et raccordement d'un avertisseur sonore, y compris toute sujétion	u	2	50 000	100 000
3.2.10	Puits de terre équipé et mise à la terre des masses des équipements électriques des locaux, y compris toute sujétion	u	2	150 000	300 000
3.2.11	Fourniture, pose et raccordement d'un parafoudre 800V, y compris toute sujétion	u	2	250 000	500 000
3.2.12	Fourniture, pose et raccordement d'un coupe circuit CA pour la partie alternatif, y compris toute sujétion	u	2	150 000	300 000
	Sous-Total 3				17 310 000
4.1	SOURCE D ENERGIE GROUPE ELECTROGENE				
4.1.1	Fourniture, pose, raccordement et mise en service d'un groupe électrogène diésel triphasé à service continu, de 30 kVA, 3PH+N 230/400V 50HZ à démarrage	u	1	8 000 000	8 000 000

YAMEOGO Martial Promotion [2024-2025] xxiv

	électrique avec possibilité de démarrage par manivelle, y compris pièces de rechange et outillages spécifiques et toute sujétion				
4.1.2	Fourniture, pose, raccordement et mise en service d'un groupe électrogène diésel triphasé à service continu, de 50 kVA, 3PH+N 230/400V 50HZ à démarrage électrique avec possibilité de démarrage par manivelle, y compris pièces de rechange et outillages spécifiques et toute sujétion	u	1	12 000 000	12 000 000
4.1.3	Fourniture, pose et raccordement d'une cuve journalière de 200 litres équipée de pompe manuelle type JAPPY, y compris toute sujétion	u	2	1 000 000	2 000 000
4.1.4	Fourniture et pose d'un bac à sable de 50 litres avec une pelle, y compris et toute sujétion	u	2	150 000	300 000
4.1.5	Rallonge du tuyau d'échappement hors du local groupe électrogène et calorifugeage	ens	1	150 000	150 000
4.1.6	Fourniture et pose d'un extincteur + support de fixation	ens	1	300 000	300 000
4.1.7	Fourniture, pose et raccordement d'un câble électrique U1000 R02V de 4x6mm² pour raccordement onduleur-inverseur-Groupe Elec et Inverseur-coffret de commande y compris toute sujétion	ens	1	400 000	400 000
4.1.8	Génie civil du local du groupe électrogène y compris tous les équipements (électriques, éclairage, prises, intérrupteurs, etc.) conformément aux plans	ens	1	1 800 000	1 800 000
4.2	ENERGIE SOLAIRE				
4.2.1	Fourniture et pose d'une station solaire de 15 kWc (Support et plateforme, plaques solaires , boîte de raccordement, y compris pièces de rechange et outillages spécifiques, y compris toutes sujétions.	ens	1	10 000 000	10 000 000
4.2.2	Fourniture et pose d'une station solaire de 20 kWc (Support et plateforme, plaques solaires , boîte de raccordement, y compris pièces de rechange et outillages spécifiques, y compris toutes sujétions.	ens	1	15 000 000	15 000 000
4.2.3	Fourniture, pose et raccordement d'une protection contre les surcharges Côté Continu (Disjoncteur DC), y compris toute sujétion	ff	1	300 000	300 000
4.2.4	Fourniture, pose, raccordement et essai d'un onduleur pour pompe RSI 18500, Tension MPP mini recomandée 400 VDC, Tension MPP maxi recommandée 800 VCD, y compris toutes sujétions	u	1	10 000 000	10 000 000
4.2.5	Fourniture, pose, raccordement et essai d'un onduleur pour pompe RSI 5000, Tension MPP mini recomandée 400 VDC, Tension MPP maxi recommandée 800 VCD, y compris toutes sujétions	u	1	7 500 000	7 500 000
4.2.6	Inverseur de source solaire/Electrique	u	2	200 000	400 000
4.3	RACCORDEMENT AU RESEAU SONABEL				
4.3.1	Raccordement au réseau électrique existant y compris abonnement triphasé de 20A	ens	0	1 500 000	-
	Sous-Total 4				68 150 000
5	CHÂTEAU D'EAU				

YAMEOGO Martial Promotion [2024-2025] xxv

	Clâtura avillanta da 2 m da haut da 10 m y 10 m avas				
5.1	Clôture grillagée de 2 m de haut, de 10 m x 10 m avec une porte grillagée fermant à clé, selon plan joint. (40ml)	ml	80	10 000	800 000
5.2	Études géotechniques pour fondation du château d'eau	u	2	400 000	800 000
5.3	Chateau d'eau de 150 m3: Fabrication et pose de la cuve métallique y compris différentes colonnes (alimentation, distribution, vidange et trop plein,) + tour, trou d'aération, toutes sujétions comprises+equipement complet du regard By-pass (clapet anti retour, compteur, vannes); échelle de lecture, peinture anti rouille et peinture alimentaire intérieure, peinture extérieure, désinfection, divers,) et échelle dont les deux mètres les plus bas amovibles, suivant plans.	ens	1	50 000 000	50 000 000
5.4	Deplacement un fixation d'un Chateau d'eau de 50 m3: Confection de la semelle et fixation du château.	ens	1	7 500 000	7 500 000
5.5	Construction d'un regard au pied du château (by pass).	u	2	400 000	800 000
5.6	Essai d'étanchéité du château	u	2	100 000	200 000
	Sous-Total 5				60 100 000
6	TRAITEMENT DE L'EAU (filtre doseur ONEA)				
6.1	Founriture et pose du filtre doseur	u	2	1 128 000	2 256 000
6.2	Fournitures de pièces et travaux de plombérie	u	2	715 200	1 430 400
6.3	Fourniture de désinfectant alimentaire chlore en pastille (fût de 45 kg)	u	2	504 000	1 008 000
6.4	Fourniture et pose de support et hangar de protection	u	2	870 000	1 740 000
6.5	Fouille et remblai pour installation	u	2	264 000	528 000
6.6	Main d'œuvre (plombérie et mise en service)	u	2	1 140 000	2 280 000
6.7	Formation des techniciens pour l'exploitation du filtre doseur	u	2	540 000	1 080 000
	sous total 6				10 322 400
7	RESEAU DE DISTRIBUTION				
7.1	Tuyauterie				
7.1.1	Excavation et remblai, fourniture et pose de tuyau PEHD De 200 PN 10, y compris toutes sujétions (lit de sable, grillage avertisseur, etc.) en tout terain de toute nature	ml	5920	16 000	94 727 680
7.1.1	Excavation et remblai, fourniture et pose de tuyau PEHD De 160 PN 10, y compris toutes sujétions (lit de sable, grillage avertisseur, etc.) en tout terain de toute nature	ml	2654	13 500	35 832 645
7.1.2	Excavation et remblai, fourniture et pose de tuyau PEHD De 110 PN 10, y compris toutes sujétions (lit de sable, grillage avertisseur, etc.) en tout terain de toute nature	ml	5535	11 000	60 890 170
7.1.3	Excavation et remblai, fourniture et pose de tuyau PEHD De 90 PN 10, y compris toutes sujétions (lit de sable, grillage avertisseur, etc.) en tout terain de toute nature	ml	2365	9 000	21 284 370
7.1.4	Excavation et remblai, fourniture et pose de tuyau PEHD De 63 PN 10, y compris toutes sujétions (lit de	ml	7294	6 500	47 412 820

YAMEOGO Martial Promotion [2024-2025] xxvi

	sable, grillage avertisseur, etc.) en tout terain de toute				
7.1.5	nature Essais de pression	ff	1	300 000	300 000
7.1.5	Rinçage et désinfection	ff	1	450 000	450 000
	Fourniture et pose d'equipement de robinetterie	11	1	430 000	430 000
7.2	vanne:				
7.2.1	Vannes de sectionnement DN 200	u	3	250 000	750 000
7.2.2	Equipement complet vidange y compris regard en béton	ens	1	350 000	350 000
7.2.3	Equipement complet ventouse y compris regard en béton	ens	1	350 000	350 000
7.2.4	Fourniture et pose de pièces spéciales (coudes, té, etc.)	ens	1	500 000	500 000
7.2.5	Fourniture et pose de bouche à clé (tabernacle, tube alonge, tête de bouche, etc.)	ens	1	300 000	300 000
7.2.6	Mise en place de butées	m^3	2	175 000	350 000
7.2.7	Fourniture et pose de conduite Galva DN convenable servant de fourreau, traversée de route et remise en état.	ml	75	50 000	3 750 000
7.3	Bornes fontaines (BF), branchements particulier (BP) et abreuvoir				
7.3.1	Construction et branchement de bornes fontaines à 3 robinets, fourniture et pose de hangar y compris l'ensemble de la tuyauterie, pièces de raccordements, compteur, vanne et robinetterie, massif en béton cyclopéen, puits perdu (conformément aux. plans), prise en charge sur la conduite de distribution et toutes sujétions.	u	11	1 000 000	11 000 000
7.3.2	Réhabilitation de bornes fontaines à Dissin	u	8	750 000	6 000 000
7.3.3	Génie Civil et raccordement de BP (branchement situés à moins de 50m du réseau selon les normes appliquées par l'ONEA et composé en entre autres : lyre, compteur, tuyau pehd 40, collier de prise en charge, etc.), y compris toutes sujétions	u	50	150 000	7 500 000
7.3.4	Construction et branchement d'abreuvoirs à 3 robinets (en béton armé), fourniture et pose de hangar y		2	1 750 000	3 500 000
7.3.5	Fourniture et pose de lampadaire solaire ALL IN ONE double cross, hauteur de feu (8m), de 80w par lampe doté d'un mât en acier galvanisé au droit des bornes fontaines	u	5	1 150 000	5 750 000
7.3.6	Fournitures de pièces de rechange pour l'entretien du réseau (têtes de robinet, compteurs et conduites)	ff	1	250 000	250 000
7.3.7	Fourniture de pièces de rechange pour l'entretien électromécanique (Kits de maintenance du groupes (filtres et joints) caisses à outils pour la maintenance	ff	1	500 000	500 000

YAMEOGO Martial Promotion [2024-2025] xxvii

	du groupe, les ampoules de remplacement, équipement d'entretien des plaques (échelles, balai à manche)							
7.3.8	Confection et pose de plaques d'immatriculation pour bornes fontaines et abreuvoirs	u	13	25 000	325 000			
7.3.9	Confection et pose de plaques de renseignements pour forage et château d'eau (Données institutionnelles du projet+ Données techniques de l'ouvrage correspondant)	u	3	25 000	75 000			
	Sous-Total 7				302 147 685			
8	CONSTRUCTION DE LOCAUX DIVERS							
8.1	Construction du local de Bureau/magasin conformément aux plans y compris toutes sujétions	u	1	3 000 000	3 000 000			
8.2	Construction de latrine douche VIP double fosses, conformément aux plans y compris toutes sujétions	ens	1	1 500 000	1 500 000			
8.3	Aménagement d'une clôture en parpaing pour l'ensemble (local bureau/magasin, local groupe électrogène, station solaire et latrine VIP). conformément aux plans y compris toutes sujétions	ml	100	25 000	2 500 000			
	Sous-Total 8				7 000 000			
9	FORMATION							
9.1	Formation des responsables d'exploitation du réseau	ff	1	500 000	500 000			
	Sous-Total 9				500 000			
TOTAI	TOTAL HORS TVA							
TVA								
TOTAI	TOTAL TTC							

YAMEOGO Martial Promotion [2024-2025] xxviii

Annexe 16: Matrice d'identification des impacts négatifs

Phase de Activités			Milieu	Impacts négatifs	
projet	sources d'impacts	Physique	Biologique	Humain	
		Sol			Modification de la structure et de la texture des sols
	5.4	Air			Dégradation de la qualité de l'air due aux envols de poussières et de gaz
	Débroussaillage, aménagement, nettoyage et la	Eau			Pollution des eaux de surface par ruissellement
Phase	délimitation des sites des travaux		Faune		Destruction de l'habitat faunique/migration de la faune
préparatoire			Flore		Pertes d'espèces ligneuses, arbustives et herbacées
				Personnel/Population	Risques d'accidents pour le personnel de chantier, les populations riveraines
		Sol			Modification de la structure et de la texture des sols
		Air			Contribution au changement climatique par les émissions de CO2 des véhicules
	Aménagement des installations	Eau			Pollution des eaux souterraines par infiltration
	de chantier		Faune		Destruction de l'habitat faunique/migration de la faune
			Flore		Pertes d'espèces ligneuses, arbustives et herbacées
				Personnel/Population	Propagation des maladies respiratoires

YAMEOGO Martial Promotion [2024-2025] xxix

Phase de projet	Activités	Milieu a		affecté	Impacts négatifs
	sources d'impacts	Physique	Biologique	Humain	
		Sol			Pollution des sols
	Travaux de construction des ouvrages	Air			Contribution au changement climatique par les émissions de CO2 des véhicules
Phase d'exécution des trayaux		Eau			Pollution des eaux de surface par ruissellement
des travaux			Faune		Destruction de l'habitat faunique/migration de la faune
			Flore		Pertes d'espèces ligneuses, arbustives et herbacées
				Personnel/Population	Perturbation des habitudes sociale, des us et des coutumes

Phase de projet	Activités sources	Milieu affecté		nffecté	Impacts négatifs
	d'impacts	Physique	Biologique	Humain	
		Sol			Pollution des sols
		Son			Nuisances sonnores et vibrations chez le personnel
DI.	Présence et exploitation	Eau			Pollution des eaux de surface par ruissellement
Phase d'exploitation	des ouvrages de l'AEP-		Faune		Destruction de l'habitat faunique/migration de la faune
	MV		Flore		Pertes d'espèces ligneuses, arbustives et herbacées
				Personnel/Population	Risque de difficultés de recouvrement

YAMEOGO Martial Promotion [2024-2025] xxx

Annexe 17: Matrice d'identification des impacts positifs

Phase de projet	Activités sources d'impacts	Milieu affecté	Impacts Positifs
	Recrutement de la main d'œuvre locale		Création d'emplois, accroissement des compétences des ouvriers locaux
Phase préparatoire	Importation des équipements et activités des engins de chantier	Socio-économique	Développement d'activités génératrices de revenues

YAMEOGO Martial Promotion [2024-2025] xxxii

Annexe 18: Matrice d'évaluation des impacts

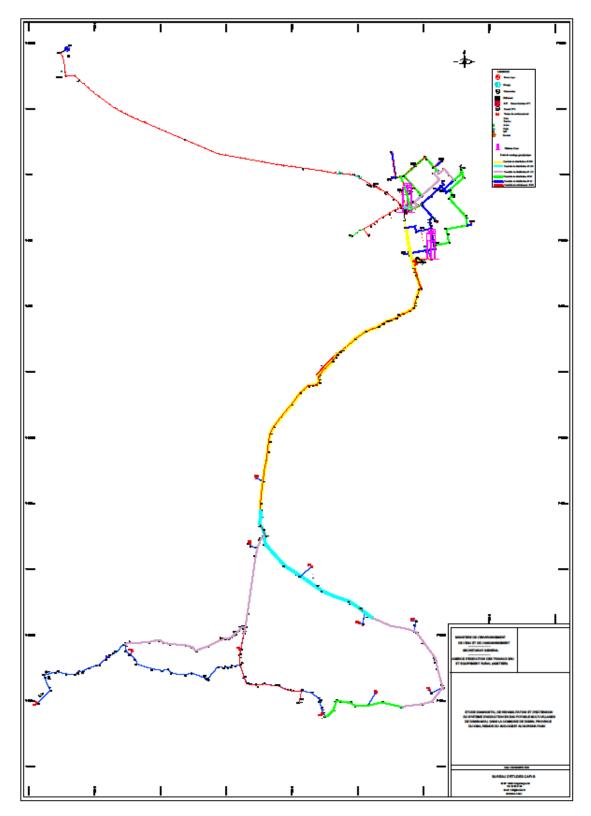
3.4.11 66 77	T	Crit	Critère		
Milieu affecté	Impacts négatifs	Durée	Intensité	Portée	d'importance
Sol	Modification de la structure et de la texture des sols	Court terme	Moyenne	Poctuelle	Mineur
	Pollution des sols	Court terme	Faible	Poctuelle	Mineur
	Dégradation de la qualité de l'air due aux envols de poussières et de gaz	Court terme	Moyenne	Poctuelle	Mineur
Air	Contribution au changement climatique par les émissions de CO2 des véhicules	Court terme	Moyenne	Poctuelle	Mineur
Eau	Pollution des eaux de surface par ruissellement	Court terme	Faible	Poctuelle	Mineur
Lau	Pollution des eaux de surface par infiltration	Court terme	Moyenne	Poctuelle	Mineur
Son	Nuisances sonnores et vibrations chez le personnel	Court terme	Faible	Poctuelle	Mineur
Faune	Destruction de l'habitat faunique/migration de la faune	Court terme	Faible	Poctuelle	Mineur
Flore	Pertes d'espèces ligneuses, arbustives et herbacées	Court terme	Faible	Poctuelle	Mineur
	Propagation des maladies respiratoires	Court terme	Moyenne	Poctuelle	Mineur
Personnel/Popul ation	Risques d'accidents pour le personnel de chantier, les populations riveraines	Court terme	Faible	Poctuelle	Mineur
unon	Perturbation des habitudes sociale, des us et des coutumes	Court terme	Faible	Poctuelle	Mineur
	Risque de difficultés de recouvrement	Court terme	Moyenne	Poctuelle	Mineur

YAMEOGO Martial Promotion [2024-2025] xxxii

Annexe 19: Mesures d'atténuation des impacts négatifs

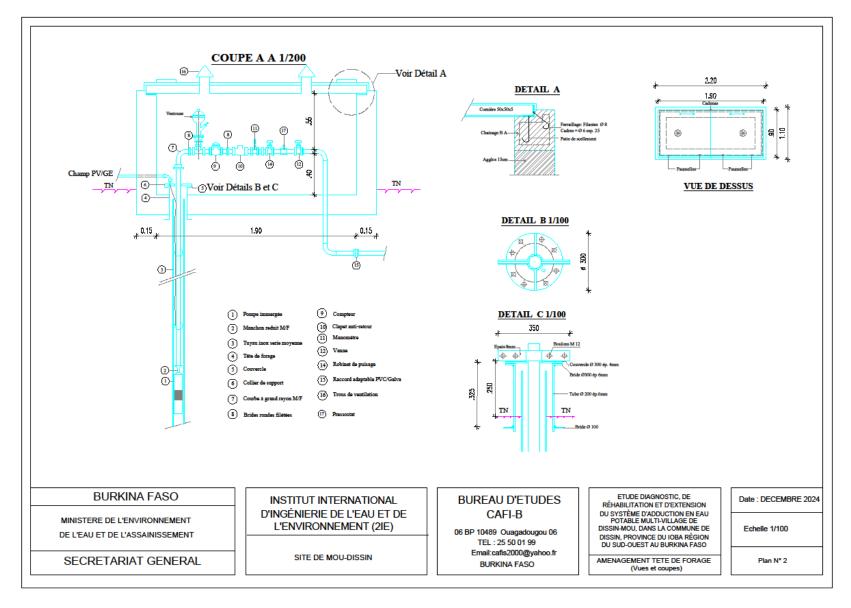
Phase de	Activités		Milieu aff	ecté		
projet	sources d'impacts	Physi que	Biologi que	Humain	Impacts négatifs	Mesures d'atténuation
		Sol			Modification de la structure et de la texture des sols	Remise en état des sites d'usage temporaire
	Débroussaillage, aménagement, nettoyage et la délimitation des sites des travaux	Air			Dégradation de la qualité de l'air due aux envols de poussières et de gaz	Arrosage des aires de travaux, des pistes de circulation des engins et des zones d'emprunt avec de l'eau
		Eau			Pollution des eaux de surface par ruissellement	Créer des lieux de stockage hermétiques pour les éffluents liquides (les huiles de vidange)
Phase préparatoire			Faune		Destruction de l'habitat faunique/migration de la faune	Epargner la végétation qui n'est pas dans l'emprise des ouvrages ou dans les emprises des zones d'emprunt et autres installations
			Flore		Pertes d'espèces ligneuses, arbustives et herbacées	Réaliser des reboisements
				Personnel/P opulation	Risques d'accidents pour le personnel de chantier, les populations riveraines	Mise au point de consignes de sécurité
		Sol			Modification de la structure et de la texture des sols	Remise en état des sites d'usage temporaire

YAMEOGO Martial Promotion [2024-2025] xxxiiii

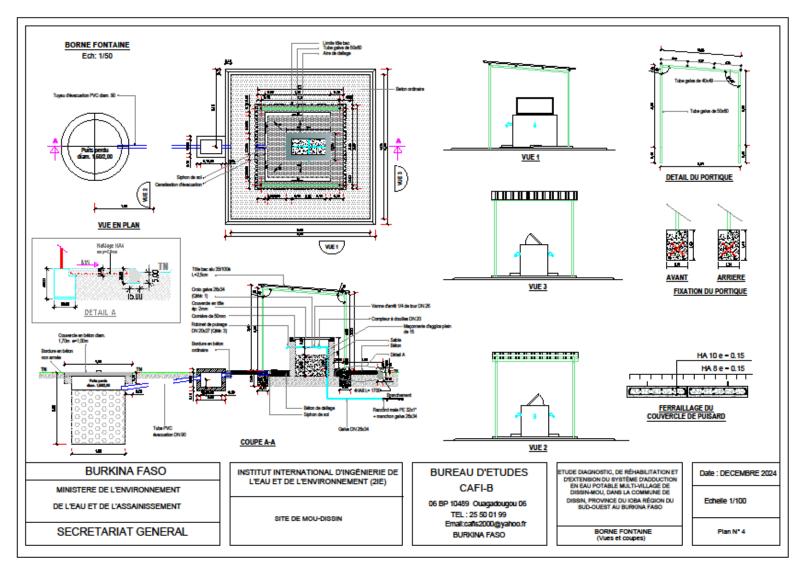

	Aménagement des installations de chantier	Air			Contribution au changement climatique par les émissions de CO2 des véhicules	Assurer la maintenance régulière des engins de chantier et des camions de transport	
A		Eau			Pollution des eaux souterraines par infiltration	Créer des lieux de stockage hermétiques pour les éffluents liquides (les huiles de vidange)	
			Faune		Destruction de l'habitat faunique/migration de la faune	Epargner la végétation qui n'est pas dans l'emprise des ouvrages ou dans les emprises des zones d'emprunt et autres installations	
			Flore		Pertes d'espèces ligneuses, arbustives et herbacées	Réaliser des reboisements	
				Personnel/P opulation	Propagation des maladies respiratoires	Port de EPI de protection pour les ouvriers	

YAMEOGO Martial Promotion [2024-2025] xxxiv

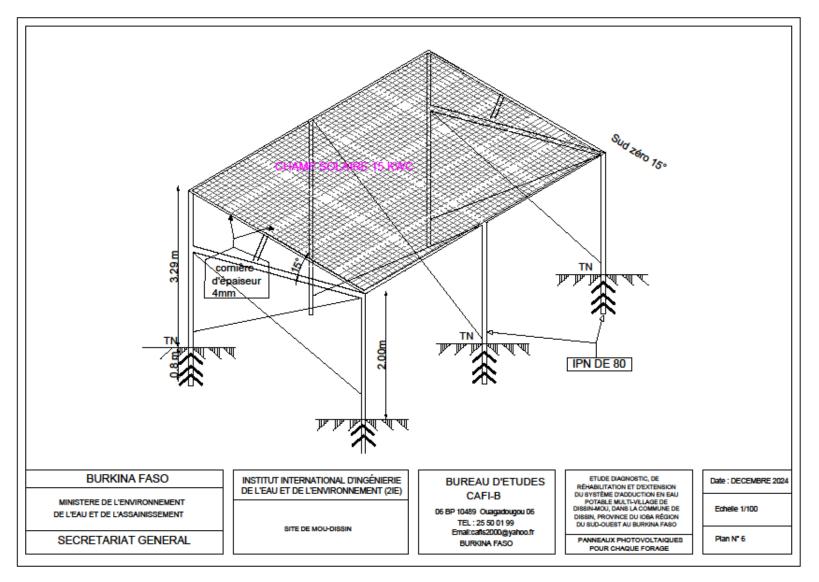
Activités	Risques	Catégorie	Catégorie Critères d'évaluation			Criticité	Mesures	Responsable
			Gravité	Probabilité	Détectabilité		préventives	
Débroussaillage, aménagement, nettoyage et la délimitation des sites des travaux	Blessure/Accident	Risque technique	6	5	7	210	Porter des EPI	Chef de chantier
Aménagement des installations de chantier	Blessure/Accident	Risque technique	5	6	5	150	Porter des EPI	Chef de chantier
Travaux de construction des ouvrages	Blessure/Accident	Risque technique	6	8	4	192	Porter des EPI	Chef de chantier
Présence et exploitation des ouvrages de l'AEP-MV	Blessure/Accident	Risque technique	4	5	6	120	Sensibilisation sur les mesures de sécurité	Chef de site


YAMEOGO Martial Promotion [2024-2025] xxxv

Annexe 20 : Plan du réseau AEP-MV de DISSIN-MOU


YAMEOGO Martial Promotion [2024-2025] xxxvi

Annexe 21 : Plan de tête de forage


YAMEOGO Martial Promotion [2024-2025] xxxvii

Annexe 22: Plan borne fontaine

YAMEOGO Martial Promotion [2024-2025] xxxviii

Annexe 23: Plan panneaux photovoltaïques

YAMEOGO Martial Promotion [2024-2025] xxxix