

ÉTUDE TECHNIQUE DES TRAVAUX DE RÉHABILITATION DE LA RN1_EST SECTION DOSSO -DOGONDOUTCHI (133,60 KM) :

TRONÇON PK 20+000 AU PK 30+000 (10 KM) AU NIGER

SPECIALITE GENIE CIVIL/BATIMENTS ET TRAVAUX PUBLICS

Présenté et soutenu publiquement le 21 janvier 2025 par

CHAIBOU DAOUDA ISMAEL (20210996)

Directeur de mémoire : Dr. Arnaud Louis Sountong-Noma OUEDRAOGO

Maître de stage: MOROU ADAM, Ingénieur en Génie Civil à TECHNI-CONSULT

Structure d'accueil du stage : TECHNI-CONSULT

Jury d'évaluation du mémoire

Président : Dr. Lawani Adjadi MOUNIROU

Membres et correcteurs : M. Ousseini Mone

M. Mamadou Pousga Junior KABORE

Promotion [2024/2025]

DEDICACES:

Je dédie ce mémoire à mes parents, dont l'amour, le soutien inconditionnel et les sacrifices, tant moraux que matériels, m'ont accompagné à chaque étape de mes études et de mes projets. Leur seul désir de me voir réussir a toujours été ma plus grande force.

REMERCIEMENTS:

Au terme de ce stage réalisé dans le cadre de l'obtention de mon diplôme d'ingénieur, il m'importe de témoigner ma profonde gratitude à tous ceux qui, de près ou de loin, ont contribué à l'aboutissement de ce travail.

- A l'Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE), pour la qualité de la formation dispensée;
- A Docteur Arnaud Louis Sountong-Noma OUEDRAGO, Directeur de mémoire, pour sa disponibilité, ses orientations méthodiques et ses précieux conseils qui ont guidé mon travail tout au long de cette expérience;
- A Monsieur Morou Adam, Maitre de stage, pour sa disponibilité, son écoute et ses recommandations. Ses conseils avisés ont été d'un soutien inestimable pour moi ;
- A Monsieur Ibrahim Galadima, Gérant de TECHNI-Consult, pour m'avoir offert l'opportunité de réaliser ce stage dans sa structure ;
- A Monsieur Siradji et Ibrahim, Ingénieurs Topographes au sein de TECHNI-Consult, pour leurs disponibilités, leurs échanges constructifs et leurs appuis technique qui ont enrichi cette expérience professionnelle;
- A Monsieur Abdoulaye Moutari, Ingénieur Géotechnicien, pour son aide précieuse, ses échanges;
- A Monsieur Abdourahamane, Ingénieur en ouvrages d'Art chez Techni-Consult, pour ses conseils et orientations ;
- A tout le personnel de Techni-Consult pour leur accueil chaleureux ;
- A ma famille, pour leur soutien indéfectible, leur amour et leur encouragement tout au long de mon parcours ;

Je tiens également à remercier mes camarades, amis et toutes les personnes qui, de près ou de loin, ont contribué à l'élaboration de ce mémoire.

RESUME:

Cette étude porte sur la réhabilitation du tronçon PK 20+000 au PK 30+000 de la RN1 Est, section reliant Dosso à Dogondoutchi, au Niger. L'analyse du trafic a permis de classer ce tronçon dans la catégorie T2, mettant en lumière son rôle stratégique dans la connectivité nationale et régionale. Les investigations réalisées ont révélé des dégradations importantes, notamment un indice de qualité Q4 de la chaussée, une insuffisance des ouvrages d'assainissement et des impacts environnementaux potentiels.

Pour résoudre ces problématiques, plusieurs solutions techniques ont été proposées. La structure de la chaussée sera renforcée par l'utilisation de graveleux latéritique amélioré au ciment (GLAC) sur une épaisseur de 20 cm, recouverte d'une couche de béton bitumineux de 5 cm. L'élargissement de la chaussée est également prévu, en utilisant des matériaux identiques à ceux de la structure existante, avec une couche de fondation de 15 cm (CBR > 40 %) et une couche de base de 20 cm (CBR > 80 %).

En ce qui concerne les ouvrages hydrauliques, trois dalots de section 1x2x1 seront construits, un ouvrage existant sera rallongé, et quinze ouvrages supplémentaires seront démolis puis reconstruits avec des sections variées, notamment 1x2x1, 1x2x1,5 et 2x2x1. De plus, un caniveau de 80x80 cm² sera aménagé pour améliorer le drainage des eaux pluviales dans la traversée du village Rabé Santché.

Le coût total du projet, estimé à 8 074 250 729 FCFA TTC, reflète une évaluation réaliste des besoins. Ce travail met en avant des solutions concrètes pour garantir la durabilité de la route et favoriser le développement économique et social des zones desservies par cette section de la RN1 Est.

Mots-clés: Chaussée; Réhabilitation, Trafic, Ouvrages hydrauliques, Route Nationale

ABSTRACT:

This study concerns the rehabilitation of the PK 20+000 to PK 30+000 section of the RN1 East, linking Dosso to Dogondoutchi in Niger. A traffic analysis classified this section as T2, highlighting its strategic role in national and regional connectivity. Investigations revealed significant deterioration, including a Q4 pavement quality index, inadequate drainage structures and potential environmental impacts.

Several technical solutions have been proposed to resolve these issues. The pavement structure will be strengthened by using cement-improved lateritic gravel (GLAC) to a thickness of 20 cm, topped with a 5 cm layer of asphalt concrete. The roadway will also be widened, using materials identical to those of the existing structure, with a 15 cm sub-base layer (CBR > 40%) and a 20 cm base layer (CBR > 80%).

With regard to hydraulic structures, three 1x2x1 gutters will be built, one existing structure will be lengthened, and fifteen additional structures will be demolished and rebuilt with various cross-sections, including 1x2x1, 1x2x1.5 and 2x2x1. In addition, an 80x80 cm2 gutter will be installed to improve stormwater drainage in the Rabé Santché village crossing.

The total cost of the project, estimated at 8,074,250,729 FCFA including tax, reflects a realistic assessment of needs. This work puts forward concrete solutions to guarantee the road's sustainability and promote the economic and social development of the areas served by this section of the RN1 Est.

Key words: Pavement; Rehabilitation, Traffic, Hydraulic structures, National road

LISTE DES ABREVIATIONS :

2iE : Institut International d'Ingénierie de l'Eau et de l'Environnement

ARP: Aménagement des Routes Principales

BA: Béton Armé

BAEL: Béton Armé aux Etats Limites

BB: Béton Bitumineux

BCEOM: Bureau d'Etudes pour les Equipements d'Outre-Mer

BV: Bassin Versant

CBR: Californian Bearing Ratio

CEBTP: Centre Expérimental de recherches et d'étude du Bâtiment et des Travaux Publics

CIEH: Comité Interafricain d'Etudes Hydrauliques

DQE: Devis Quantitatif et Estimatif

ELS: Etats Limites de Service

ELU: Etats Limites Ultime

FCFA: Franc des Colonies Française d'Afrique

GLAC : Graveleux latéritique amélioré au ciment

GLN: Graveleux Latéritique Naturel

HA: Haute Adhérence

HT: Hors taxe

LCPC: Laboratoire Central des Ponts et Chaussées

LNBTP: Laboratoire National du Bâtiment et des Travaux Publics

NF: Norme Française

OPM: Optimum Proctor Modifié

ORSTOM: Office de Recherche Scientifique et Technique d'Outre-Mer

PK: Point kilométrique

PL: Poids Lourds

RN1E: Route Nationale numéro un Est

SETRA: Service d'Études Techniques des Routes et Autoroutes

TMJA: Trafic Moyen Journalier Annuel

TN: Terrain Naturel

TTC: Toute Taxe Comprise

TVA: Taxe sur la Valeur Ajoutée

SOMMAIRE:

REMERCIEMENTS:	i
RESUME:	ii
ABSTRACT:	iv
LISTE DES ABREVIATIONS :	V
LISTE DES TABLEAUX	X
LISTE DES FIGURES :	X
INTRODUCTION:	1
CHAPITRE I : PRÉSENTATION DE LA STRUCTURE D'ACCEUIL ET DU PROJET	3
I.1. Présentation de la structure d'accueil :	3
I.1.1 Principaux domaines d'intervention :	3
I.1.2 Expérience de TECHNI-CONSULT :	4
I.1.3. Moyens en personnel:	5
I.1.4. Organigramme de TECHNI-CONSULT :	5
I.2. Présentation de la zone du projet :	6
I.2.1. Situation géographique	<i>6</i>
I.2.2. Population	<i>6</i>
I.2.3. Activités économiques	7
I.2.4. Climat et relief	7
I.2.5. Contexte général et justification :	7
I.2.6. Objectif du projet :	8
I.3. Présentation de la zone d'étude :	8
I.3.1 Objectifs de l'étude :	10
I.3.2. Méthodologie de l'étude :	10
CHAPITRE II : DIAGNOSTIC DE LA ROUTE	11
II.1. Historique de la route existante :	11
II.2. Diagnostic de l'état de la chaussée existante :	11

II.2.1. Inspection visuelle du tronçon :	11
II.3. Etude des relevés de dégradation de la chaussée :	13
II.3.1. Généralités :	13
II.3.2. Evaluation du niveau de dégradation selon la méthode Vizir :	13
II.4. Diagnostic de l'état des ouvrages d'assainissement existants :	17
CHAPITRE III : ETUDE TECHNIQUE	18
III.1. Etude géotechnique :	18
III.1.1. Campagne géotechnique :	18
III.2. Dimensionnement de la chaussée :	20
III.2.1. Etude du trafic :	20
III.2.2. Méthode de dimensionnement de la chaussée	22
III.3. Étude hydrologique :	28
III.3.1. Délimitation des bassins versants :	29
III.3.2. Traitement des données pluviométriques :	31
III.3.3. Détermination des débits de crues des ouvrages longitudinaux :	32
III.3.4. Détermination du débit de dimensionnement des ouvrages de drainage (Caniv	veau):
	37
III.4. Étude hydraulique :	38
III.4.1 Dimensionnement hydraulique des ouvrages de franchissement (le dalot) :	38
III.4.2. Résultats du dimensionnement hydraulique des ouvrages de franchissement ((Dalot)
	40
III.4.3. Dimensionnement hydraulique des ouvrages longitudinaux (caniveaux) :	41
III.5. Dimensionnement structural des ouvrages :	42
III.5.1. Ouvrages de franchissement (Dalots):	42
III.5.2. Ouvrage de drainage (Caniveau) :	45
III.6. Etude de la conception géométrique de la route :	45
III.6.1. Données topographiques :	45
III.6.2. Norme géométrique :	46

III.6.3. Paramètres et caractéristiques de conception :	46
III.6.3. Aménagements :	48
CHAPITRE IV : ETUDE COMPLEMENTAIRES	50
IV.1. SIGNALISATION ROUTIERE :	50
IV.1.1. Signalisation temporaire:	50
IV.1.2. Signalisation permanentes :	50
IV.2. Sécurité routière :	52
IV.2.1. Dispositif de protection :	52
IV.3. NOTICE D'IMPACT ENVIRONNEMENT ET SOCIAL :	52
IV.3.1. Cadre politique, juridique et institutionnel:	53
IV.3.2. Evaluation des impacts environnementaux et mesures d'atténuation :	54
IV.4. ESTIMATION DU COUT DU PROJET :	55
CONCLUSION :	57
REFERENCE BIBLIOGRAPHIQUE :	59
ANNEYE ·	i

LISTE DES TABLEAUX

Tableau 1: Listes des partenaires	4
Tableau 2: Les moyens en personnel	5
Tableau 3 : Détermination de la note de qualité	15
Tableau 4 : Proposition des solutions de réhabilitions du tronçon d'étude	16
Tableau 5 : Exigences techniques pour la couche d'assise	19
Tableau 6 : Les résultats du comptage du trafic	20
Tableau 7 : Choix de la classe du trafic	21
Tableau 8 : Choix des matériaux de renforcement	22
Tableau 9 : Le module des différents matériaux retenus pour la zone de renforcement	24
Tableau 10 : Le module des différents matériaux retenus pour la zone d'élargissement	24
Tableau 11 : Les caractéristiques des bassins versants de la zone d'étude	30
Tableau 12 : La valeur de la précipitation décennale de la pluie annuelle (Pan)	32
Tableau 13 : La valeur de la précipitation décennale de la pluie maximale journalière (P10)	32
Tableau 14 : Débits calculés avec la méthode rationnelle	34
Tableau 15 : Débit calculé avec la méthode Orstom	35
Tableau 16 : Débit calculé avec la méthode CIEH	36
Tableau 17 : Choix du débit du dimensionnement	37
Tableau 18 : Calcul du débit du caniveau	38
Tableau 19 : Les Types des dalots retenus pour notre étude	40
Tableau 20 : Calcul de la section du caniveau	41
Tableau 21: Résultats de la détermination des sections armatures des dalots	43
Tableau 22 : Les sections d'armature du caniveau	45
Tableau 23 : Caractéristique géométrique du tracé	46
Tableau 24 : Sous-total des prix des travaux du projet	55

LISTE DES FIGURES:

Figure 1 : Organigramme de TECHNI-CONSULT	5
Figure 2 : Localisation de la zone du projet	<i>6</i>
Figure 3 : Location du tronçon d'étude	9
Figure 4 : Les contraintes, déformations et la déflexion calculées par Alizé	26
Figure 5 : Délimitation des bassins versants Source : Global Mapper	30
Figure 6 : Profil en travers type 01 (petite agglomération)	48
Figure 7: Profil en travers type 02 (rase campagne)	48
Figure 8 : Répartition des prix des travaux par poste	56

INTRODUCTION:

Le développement des infrastructures de transport est un levier important pour le progrès socioéconomique des nations. Un réseau routier performant facilite non seulement le désenclavement des régions, mais aussi l'intensification des échanges commerciaux et culturels, renforçant ainsi la dynamique économique d'un pays. Pour un pays enclavé comme le Niger, où le transport terrestre joue un rôle prépondérant, les routes constituent une infrastructure vitale pour répondre aux besoins de mobilité de la population et pour stimuler les activités économiques.

Cependant, le réseau routier nigérien est souvent confronté à des graves dégradations, souvent exacerbées par des conditions climatiques défavorables et une charge de trafic croissante, nécessitent des interventions régulières pour maintenir un niveau de service adéquat. La réhabilitation, bien que couteuse, s'impose comme une solution incontournable pour préserver ces infrastructures et répondre aux besoins croissants de mobilité.

C'est dans ce contexte que s'inscrit notre projet d'étude de fin de cycle, qui porte sur l'ETUDE TECHNIQUE DES TRAVAUX DE REHABILITATION DE LA RN1_Est, SECTION DOSSO-DOGONDOUTCHI (133,60 KM): TRONCON DU PK 20+000 AU PK 30+000 (10 KM) AU NIGER. Cette section, partie intégrante de la route nationale n°1, a été identifié comme prioritaire en raison des multiples dégradations apparues peu après sa réhabilitation en 2008. Ces dommages, accentués par le temps, ont affecté sa capacité à jouer son rôle de corridor stratégique pour les échanges entre les différentes régions du Niger.

L'objectif principal de cette étude est de fournir un dossier technique complet pour la réhabilitation de ce tronçon (10 KM), en intégrant les aspects géotechniques, géométriques, environnementaux et économiques. Pour atteindre cet objectif global, plusieurs axes spécifiques ont été définis :

- Décrire la zone d'étude et analyser ses contraintes ;
- Diagnostiquer l'état actuel de la route ;
- Réaliser une étude géotechnique et géométrique de la route ;
- Effectuer une étude hydrologique et hydraulique pour les ouvrages ;
- Evaluer l'impact environnemental et social du projet ;
- Proposer des mesures de signalisation et de sécurité routière ;
- Estimer les coûts des travaux de réhabilitation.

Le présent rapport est structuré en quatre chapitres principaux, qui sont :

- Présentation de la structure d'accueil et du projet : présente le contexte général de l'étude et la structure en charge des études du projet.
- ❖ Diagnostic de la route : il s'agit d'évaluer l'état actuel du tronçon à réhabiliter et de mettre en lumière les contraintes techniques.
- ❖ Etude technique: Ce chapitre couvre les études géotechnique, hydrologiques, hydrauliques, le dimensionnement structural des ouvrages, la conception géométrique de la route.
- ❖ Etude complémentaire : Ce chapitre aborde les études de signalisation et sécurité routière, notice d'impact environnemental et social et enfin l'estimation du coût global du projet.

CHAPITRE I : PRÉSENTATION DE LA STRUCTURE D'ACCEUIL ET DU PROJET

I.1. Présentation de la structure d'accueil :

TECHNI-CONSULT est un bureau d'étude d'ingénierie crée en 1989 par l'ingénieur en civil monsieur Ibrahim Galadima. Il est enregistré sous le numéro de commerce NIM-2005-A-1296 à Niamey. Le bureau est situé au quartier cité Fayçal Villa R5. TECHNI-CONSULT possède également des bureaux à Ouagadougou (Burkina Faso), Bamako (Mali) et plusieurs antennes à Lomé (Togo), Dakar (Sénégal), ainsi qu'à Maradi, Zinder, Tahoua et Agadez. La mission principale de TECHNI-CONSULT est de fournir des services de qualité aux administrations des travaux publics dans le secteur des bâtiment et travaux publics en mettant l'accent sur les études et contrôles des travaux de terrassement, de chaussées, d'assainissement, de bâtiment et d'hydraulique.

I.1.1 Principaux domaines d'intervention :

TECHNI-CONSULT se distingue par son expertise dans plusieurs domaines :

• Infrastructures de transport :

Dans ce secteur le bureau s'implique dans :

- La réalisation des études de faisabilité pour des routes en terre, des routes bitumées et des pistes rurales, des études d'exécution des infrastructures routières, allant jusqu'à la préparation des dossiers d'appel d'offres et l'assistance technique au maitre d'ouvrage;
- La supervision des travaux ;
- La collaboration parfois avec des bureaux d'études occidentaux sur certains projets.
- Génie Civil et Bâtiment :
 - Les études et le contrôle des bâtiments.
- Voirie et Assainissement :
 - Étude et contrôle de pavage, caniveaux.
- Génie Rural et hydraulique :
 - Étude et contrôle des travaux de défense, restauration du sol, des traitements de koris, des barrages dans plusieurs zones du Niger;
 - Intervention dans des projets d'aménagements hydro-agricoles sur le fleuve Niger des mares et au bord du lac Tchad au Niger, sans oublier une multitude

d'aménagement des bas-fonds au Burkina Faso, Mali, Togo, au Sénégal et au Guinée Conakry et Équatorial.

I.1.2 Expérience de TECHNI-CONSULT :

Il est à souligner que TECHNI-CONSULT travaille souvent en partenariats avec des bureaux d'études basés dans les pays occidentaux, établissant ainsi une coopération étroite sur divers projets.

Le tableau ci-dessous illustre ses différents partenaires.

Tableau 1: Listes des partenaires

Partenaires	Pays	Projets
AC3E	Burkina Faso	Routes, aménagements hydrauliques et
		assainissements
ACEP Ingénierie Conseil	Bénin/Togo	Routes et environnements
AGRITCHAD	Tchad	Routes et aménagements
BF Conseils	Togo	Routes et aménagements
COMETE Ingénierie	Tunisie	Routes et aménagements
DAMEC	KOWEIT	Routes
DHV	Hollande/Burkina Faso/Sénégal	Routes
Dimensao 3 Lda	Guinée Bissau	Routes et Bâtiments et voiries
ETRICO Conseil	Bénin	Routes et assainissements
IDEAS Consulting	Côte d'Ivoire	Routes et ponts
LOUIS BERGER	France/USA	Routes et hydrauliques
MEMO	Burkina Faso	Routes/Assainissements/Bâtiment
PERS-BTP Ingénieur	Bénin	Routes/Bâtiment et expertise
SHROODER PLANNING	Allemagne	Routes
SCET TUNISIE	Tunisie	Routes et aménagements
TESCULT	Canada	Routes/ponts/audits et expertise
TOP INGENIERIE	Togo	Routes et aménagements
TYPSA	Portugal	Routes

I.1.3. Moyens en personnel:

Techni-Consult dispose des compétences présentées dans le tableau ci-dessous :

Tableau 2: Les moyens en personnel

Qualifications	Nombre	Ancienneté
Ingénieurs de conception (pont et chaussées)	05	1 à 18 ans
Ingénieurs Génie Civil	21	1 à 18 ans
Techniciens supérieurs	16	1 à 18 ans
Adjoints Techniques	20	-
Techniciens de laboratoires	08	-
Topographes techniciens supérieurs	9	-
Aides topographiques	14	-

I.1.4. Organigramme de TECHNI-CONSULT:

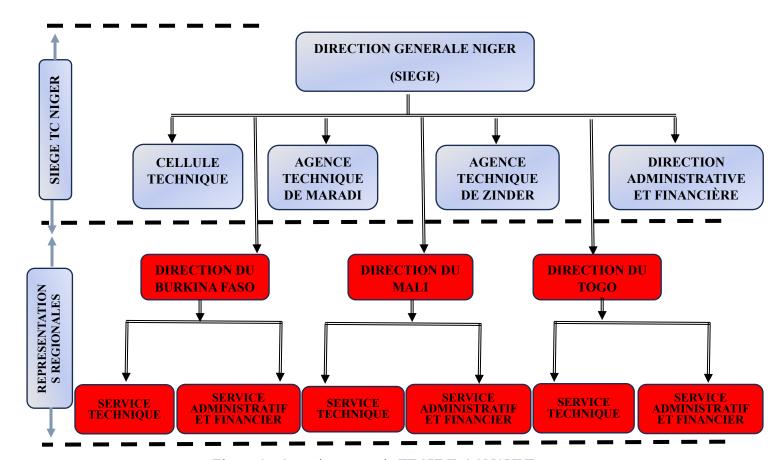


Figure 1 : Organigramme de TECHNI-CONSULT

I.2. Présentation de la zone du projet :

I.2.1. Situation géographique

La zone du projet, située dans la région de Dosso, au sud-ouest du Niger, s'étend entre les latitudes 11°50' et 14°40' Nord et les longitudes 2°30' et 4°40'Est. Elle est délimitée au nord et à l'ouest par la région de Tillabéry, à l'est par Tahoua, au sud-est par le Nigeria, et au sud-ouest par le Bénin. Avec une superficie d'environ 31 000 km² [1], la région de Dosso joue un rôle important dans les échanges régionaux et internationaux, notamment en raison de sa proximité avec des frontière importantes (Bénin, Nigéria).

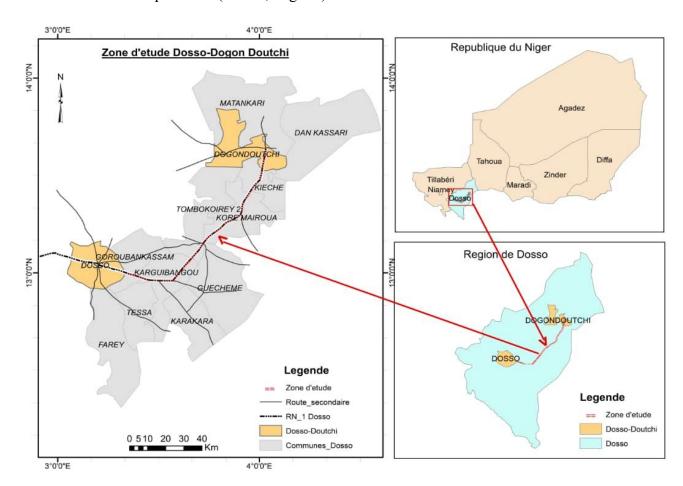


Figure 2 : Localisation de la zone du projet

I.2.2. Population

En 2023, la population de la région était estimée à 3 056 070 habitants [2] avec une composition ethnique diversifiée comprenant principalement les Zarmas, les Haoussas, les peulhs et les Songhaïs. Cette diversité culturelle enrichit la ville et représente environ 11,9% de la population nationale. La majorité de la population (90%) vit en milieu rural, et près de 75% sont âgés de moins de 30 ans, témoignant de la jeuneuse démographique de la région.

I.2.3. Activités économiques

L'économie de Dosso est principalement basée sur le secteur agrosylvopastoral, qui emploie près de 90% de la population active. L'agriculture constitue l'activité dominante, avec des cultures de mil, de sorgho, maïs et d'arachides, bénéficiant d'une pluviométrie relativement favorable par rapport à d'autres régions du Niger, avec une précipitation annuelle allant de 528,7 mm à 803,4 mm. L'élevage constitue également un pilier économique essentiel, avec un nombre important de cheptels. Bien que la pêche soit moins développée, elle reste une activité importante, rendue possible par la présence du fleuve Niger, qui traverse la région sur une longueur de 180 km.

I.2.4. Climat et relief

La région de Dosso est soumise à un climat sahélien au nord et sahélo-soudanien au sud. Elle connait deux saisons principales : une saison sèche de novembre à mai et une saison des pluies de juin à octobre. Les températures moyennes de la région oscillent entre 23,2°c pendant la saison fraîche et 36,1°C en période chaude, faisant de Dosso l'une des zones les plus humides du Niger.

Le relief de la région est constitué des plateaux, des dallols et de la vallée du fleuve Niger. Les plateaux de Fakara, Gaya et ceux du nord dominent le paysage, tandis que les dallols de Bosso, Maouri et Foga, ainsi que la vallée du fleuve Niger, constituent des zones fertiles, favorisant l'agriculture et la pêche.

I.2.5. Contexte général et justification :

Le Niger, un pays enclavé dont la capitale est Niamey, se trouve à plus de 1000 km du port maritime le plus proche (Cotonou au Bénin), couvre une vaste superficie de 1.237.000 km² et compte une population estimée à 20,65 millions d'habitants (Niger-UNICEF,2019-2021), dont la majorité réside en milieu rural. En raison de son enclavement et de l'étendue de son territoire, Le nier nécessite un réseau routier développé pour assurer à ses habitants un accès adéquat aux biens et aux services.

Le transport au Niger repose à plus de 90 % sur la voie terrestre, principalement les routes. D'autres moyens, tels que le transport fluvial et aérien, sont très peu développés, et le rail est encore à ses débuts avec la construction de la ligne Niamey-Dosso (140 km) non encore utilisé.

En 2016, le réseau routier comptait 21 219 km, dont 4 522,3 km de routes bitumées, 8 569,4 km de routes en terre (routes en terre battue et sommaire) et 7 127 km de pistes rudimentaires.

Cependant, ces chiffres masquent la réalité d'une importante dégradation du réseau de transport national en lançant des grands projets structurants et en veillant à l'entretien des infrastructures existantes, notamment la RN1.

L'augmentation significative du trafic sur la RN1, couplée à son état de dégradation, engendre des problèmes croissants de sécurité routière et de fluidité du trafic, compromettant les bonnes pratiques de conduite. Pour répondre à ce fléau, le Gouvernement envisage la réhabilitation de cette route nationale afin de faciliter la mobilité interrégionale et d'optimiser les échanges commerciaux et industriels.

Une fois la réhabilitée, la RN1_Est offrira un accès plus rapide et facile aux différentes villes et agglomérations qu'elle dessert, contribuant ainsi à un développement économique plus efficace.

I.2.6. Objectif du projet :

L'objectif global de ce projet est de contribuer à l'amélioration de la qualité et la durabilité des infrastructures de transport au Niger, notamment à travers la réhabilitation de la route Dosso-Dogondoutchi, dans le but de renforcer la mobilité interrégionale, d'optimiser les échanges commerciaux et industriels, et de promouvoir un développement économique durable tout en garantissant la sécurité et le bien-être des usagers.

I.3. Présentation de la zone d'étude :

Le projet de réhabilitation de la Route Nationale n°1_Est s'étend de la région de Dosso jusqu'à Dogondoutchi. La section étudiée concerne un tronçon de 10 Km, allant du PK 20+000 au PK 30+000. Ce tronçon traverse les villages de Zamtouri, Rabé Santche, Tourobon et Rabé Wadata.

Les coordonnées géographiques de début de tronçon sont 12°59'02.75"N en latitude, 3°23'05.47"E en longitude et celles de fin sont 12°57'33.58"N en latitude et 3°28'18.013"E en longitude.

La figure n°3 présente la localisation de la zone concernée par l'étude.

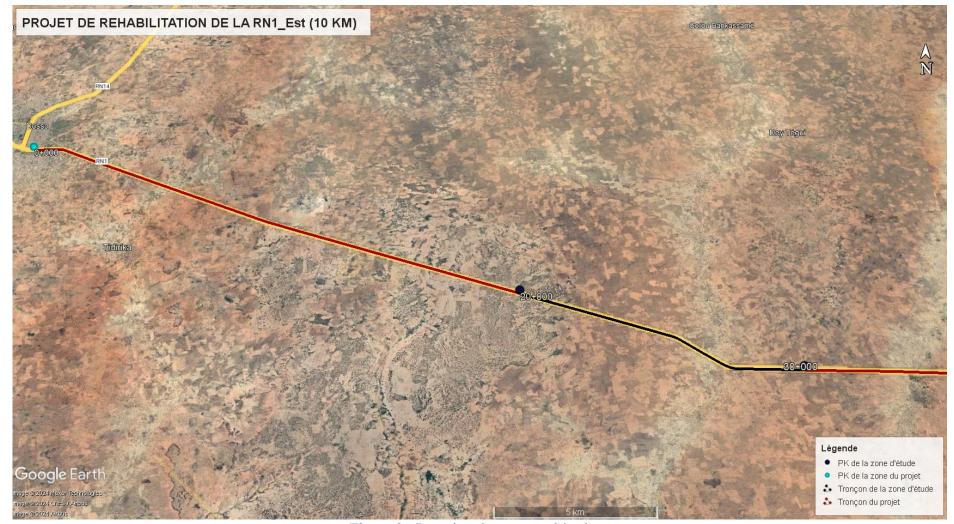


Figure 3 : Location du tronçon d'étude

I.3.1 Objectifs de l'étude :

a. Objectifs spécifiques :

Pour atteindre l'objectif global de notre étude, nous avons défini plusieurs objectifs spécifiques, cités ci-après :

- Description de la zone d'étude ;
- Diagnostic de l'état de la chausse existante ;
- L'étude géométrique et le dimensionnement structural de la route ;
- Diagnostic des ouvrages hydraulique et le dimensionnement des ouvrages supplémentaires ;
- Proposition d'un plan de signalisation et sécurité routière ;
- Proposition d'une notice d'impact environnementale et social;
- Estimation du coût du projet.

I.3.2. Méthodologie de l'étude :

Pour mener à bien cette étude, nous avons conçu un cadre logique, une méthode incontournable en planification stratégique. Ce cadre met en lumière la manière dont les objectifs spécifiques seront atteints, en précisant les activités à réaliser, les ressources matérielles nécessaire et les résultats attendus à chaque étape. Vous trouverez ce cadre en Annexe I: Cadre logique.

CHAPITRE II: DIAGNOSTIC DE LA ROUTE

Avant d'entreprendre un projet de réhabilitation routière, il est indispensable de réaliser une phase de diagnostic approfondi. Cette étape permet de déterminer si un renforcement ou un entretien de la route est nécessaire ou non. Pour garantir une évaluation précise de l'état de la route, le diagnostic se déroule en deux étapes : une inspection visuelle suivie de l'analyse des données recueillies. Dans ce chapitre, nous aborderons d'abord l'historique de la route, ensuite une évaluation détaillée de l'état de la chaussée ainsi que celle des ouvrages de franchissement.

II.1. Historique de la route existante :

L'examen de la documentation fournie par le maitre d'ouvrage a permis de retracer l'historique de l'itinéraire ainsi que les différents travaux d'entretien effectués.

Le tronçon de Dosso-Dogondoutchi de la RN1_Est datant des années d'indépendance, a été construit en 1971 et réhabilité en 2008. Cependant, depuis cette réhabilitation, la route a subi des dégradations significatives (fissuration, faïençage, épaufrures, nids de poule...) en raison de l'atteinte de sa durée de vie estimée à 15 ans au Niger, de l'augmentation du trafic et des conditions climatiques difficiles. Ces facteurs rendent désormais nécessaire une nouvelle intervention pour réhabiliter le tronçon, afin de garantir sa durabilité et la sécurité des usagers.

II.2. Diagnostic de l'état de la chaussée existante :

II.2.1. Inspection visuelle du tronçon :

Dans le cadre de cette étude, une visite approfondie de l'itinéraire a été effectuée pour afin procéder à l'inspection visuelle et à l'inventaire routier. Cette visite nous a permis d'évaluer divers aspects, notamment la géométrie de la route, la structure de la chaussée ainsi que l'état de la signalisation et des ouvrages d'assainissement.

Les résultats des travaux d'auscultation sont regroupés sur le schéma itinéraire (voir Annexe 7 : Schéma itinéraire)

a. Géométrie

Le tronçon de notre étude, long de 10 km présente les caractéristiques géométriques suivantes :

- Le Tracé en plan : il comprend 8 alignements droits et 2 courbes comme illustré dans le schéma itinéraire joint en Annexe 7 : Schéma itinéraire.
- Le profil en long : il comporte des segments rectilignes définis par leurs déclivités (pentes ou rampes) et des raccordements concaves ou convexes définis par leurs rayons.

- Le profil en travers : il est constitué d'/de :
 - Une chaussée bidirectionnelle de 7 m de largeur ;
 - Deux accotements de 1,5 m de part et d'autre de la chaussée.

b. Structure de la chaussée :

La chaussée existante est constituée de :

- Une couche de revêtement en enduit superficiel bicouche ;
- Une couche de base en graveleux latéritique naturel (GLN) d'épaisseur moyenne 18 cm :
- Une couche de fondation en graveleux latéritique naturel (GLN) d'épaisseur moyenne 20 cm.

c. Inventaire des pathologies rencontrées :

Au cours du diagnostic réalisé sur le tronçon, diverses pathologies ou dégradations ont été relevées, telles que le faïençage, les fissures, les épaufrures, les affaissements, les nids de poule, la pelade, les ressuages. (Voir en Annexe 2 : Nid-de-poule de gravité au PK 26+650) quelques images des pathologies étudiées[3],[4].

Pour définir le type de traitement à appliquer à cette route, nous avons décidé de nous concentrer sur les pathologies de type A, conformément à la méthode VIZIR [5]. Ces dernières englobent les déformations notamment les ornières, affaissement, les fissurations par fatigue, le faïençage et les réparations.

Ainsi, nous avons structuré les pathologies de type A en deux groupes principaux :

- Déformations : comprenant les ornières et les affaissements ;
- Fissurations : regroupant les fissures longitudinales et transversales et les faïençages.

d. Signalisation et sécurité routière :

L'inspection visuelle de la route a relevé une absence notable de nombreux panneaux, tandis que ceux qui sont encore présents, se trouvent dans un état vétustés ou dégradés.

Concernant les dispositifs de sécurité, nous avons observés la présence de quelques ralentisseurs de vitesse (cassis) et de balises qui sont en mauvais état.

II.3. Etude des relevés de dégradation de la chaussée :

II.3.1. Généralités :

L'étude des relevés de dégradations a pour but d'évaluer l'état du tronçon en étudiant l'étendue et la gravité des différentes pathologies observées. Cette démarche permet de calculer l'indice de dégradation et d'attribuer une note de qualité à la chaussée. Pour y parvenir, nous nous basons sur la méthode VIZIR, en suivant les recommandations du guide de renforcement des pays tropicaux. Ainsi, Le tronçon de notre étude est découpé en zones homogènes de déflexion et en section d'un (1) kilomètre, ce qui nous a facilité l'identification des problèmes et la proposition des solutions adaptées selon leur gravité et étendue.

II.3.2. Evaluation du niveau de dégradation selon la méthode Vizir :

La méthode de Vizir, couramment utilisée pour les travaux de renforcement des routes bitumées, permet une évaluation détaillée du niveau de dégradation des chaussées, en prenant en compte différents types de détériorations telles que les déformations, fissures et réparations. Cette approche est particulièrement utile pour diagnostiquer les dégradations et proposer des solutions de réhabilitations adaptées.

L'objectif principal de la méthode est de déterminer l'indice de dégradation de la chaussée, un indicateur qui sert ensuite à attribuer une note de qualité à la structure routière. Pour ce faire, les dégradations observées sont classées et codifiées selon leur gravité et leur étendue. Cependant il faut noter qu'il existe deux grandes catégories de dégradations, qui sont :

- Dégradation de type A : elle affecte directement la structure de la chaussée, compromettant sa solidité et sa durabilité.
- Dégradation de type B : cette dégradation concerne principalement la surface de la chaussée, sans affecter sa structure profonde.

Les tableaux d'attribution des niveaux de gravité selon les types de dégradation se trouvent en Annexe 9 : *Tableau de détermination des indices*.

a. Détermination de l'indice de dégradation (Is) :

L'indice de dégradation est calculé après la correction de la première note d'état de surface, il permet de qualifier l'état apparent de la chaussée. Cet indice est compris entre les valeurs 1 et 7 et est réparti en 4 catégories :

- 1^{re} catégorie (note 1): représente une chaussée en bon état apparent, peu ou pas fissurée et sans déformations.

- 2^e catégorie (notes 2-3): désigne une chaussée présentant des fissures, mais sans déformations notables, dans un état apparent moyen.
- 3^e catégorie (notes 4-5) : correspond à une chaussée déformée et fissurée, indiquant un mauvais état apparent.
- 4^e catégorie (notes 6 à 7): caractérise une chaussée en très mauvais état apparent, fortement fissurée et très déformée.

La méthode de calcul de cet indice est détaillée dans la démarche présentée en Annexe 8 : Les dégradations quantifiées sur le tronçon, où figurent également les valeurs spécifiques obtenues pour chaque section de notre tronçon.

Note d'état de surface :

La note d'état de surface est déterminée en croisant les valeurs de deux paramètres clés : l'indice de fissuration et l'indice de déformation :

Indice de fissuration :

Cet indice évalue l'état de la chaussée en fonction des fissures et faïençages relevés. Il est calculé en combinant la gravité et l'étendue des pathologies observées sur la route.

• Indice de déformation :

L'indice de déformation quant à lui évalue la chaussée en fonction des affaissements et d'orniérage relevés. Son évaluation repose sur la même méthodologie que celle utilisée pour l'indice de fissuration, en croisant gravité et étendue des déformations constatées.

❖ Facteur correctif

Après le calcul de la note de surface, une correction est appliquée pour tenir compte des réparations effectuées sur le tronçon. Ces interventions, visant principalement à réduire les dégradations de type nids-de-poule, n'apportent pas de solution aux défauts structurels. Elles se limitent à améliorer l'état apparent de la chaussée, offrant ainsi un confort minimal aux usagers.

b. Mesures de déflexion (NF P98 200-2)

La campagne de mesures de déflexion a été réalisées sur la couche de roulement par le Laboratoire National du Niger (LNBTP/N) à l'aide de la poutre Benkelman, elle s'inscrit dans une démarche d'évaluation approfondie de l'état structurel de la chaussée.

Un total de cinquante-cinq (55) mesures de déflexion a été réalisé sur notre tronçon, avec un espacement de 200 m en quinconce.

L'analyse des résultats montre que bien que la route ait dépassée sa durée de vie, présente des performances peu acceptables avec des déflexion majoritairement comprises en **40 et 60**¹, et parfois même inférieures 40 :

- Les sections du PK 20+000 au PK 28+000 présentent des déflexions moyennes, témoignant d'une qualité de structure jugée douteuse.
- Les sections du PK 28+000 au PK 30+000 présentent des déflexions acceptables, indiquant un état structurel plus satisfaisant.

c. Détermination de la note de qualité :

Elle résulte de la combinaison de la valeur de l'indice **Is** et de la déflexion. Cette association, bassée sur la grille de décision présentée dans le Tableau 3 : Détermination de la note de qualité ci-dessous, permet de guider le choix des solutions appropriées.

Tableau 3 : Détermination de la note de qualité

Déflexion	Faible d1 d2			
État apparent	Élevée			
BON 1	Q1 Entretien	Q2 Entretien	Q3 (Zone d'indétermination)	
Fissuré non déformé 2-3	Q2 Entretien	Q3 (Zone d'indétermination)	Q4 Renforcement	
Déformé et fissuré 4-7	Q3 (Zone	Q4	Q5	
	d'indétermination)	Renforcement	Renforcement	

Suite à la détermination de la note de qualité à l'aide du tableau ci-dessus, nous avons proposé des solutions adaptées aux dégradations observées sur le tronçon, comme indiqué dans le tableau récapitulatif suivant :

-

¹ Les valeurs 40 et 60 notées d1 et d2, couramment utilisées au Niger selon le manuel pour le renforcement des chaussées souples en pays tropicaux, elles constituent les valeurs seuils issues de l'expérience locale. Elles servent de référence pour le classement des déflexions.

Tableau 4 : Proposition des solutions de réhabilitions du tronçon d'étude

	PK		Déflexion caractéristique				E	ETAT APPARENT			
N° Zone	Début	Fin	D90 (1/100 mm)	D90 < d1	d1< D90 <d2< td=""><td>d2 < D90</td><td>Bon</td><td>Fissuré non déformé</td><td>Déformé et fissuré</td><td>de Qualité (Qi)</td><td>Solutions</td></d2<>	d2 < D90	Bon	Fissuré non déformé	Déformé et fissuré	de Qualité (Qi)	Solutions
1	20+000	21+000	53,97		X			X		Q4	Renforce ment
2	21+000	23+000	45,16		X		X			Q4	Renforce ment
3	23+000	25+000	41,84		X				X	Q4	Renforce ment
4	25+000	28+000	49,25		X				X	Q4	Renforce ment
5	28+000	30+000	34	X					X	Q3	Renforce ment car La durée de vie résiduelle < 7 ans

DOUDCENTACES DES ZONES DECDADÉES	Q4	Q3
POURCENTAGES DES ZONES DEGRADEES	80%	20%

Commentaire: A la suite de la détermination de la note de qualité de notre tronçon, il est clair que 80% de celui-ci, soit 8 km, présente des dégradations très avancées. Concernant le pourcentage restant, c'est-à-dire les 20% (2 km), bien qu'ils montrent également des dégradations importantes, la solution demeure incertaine et nécessite la vérification de certaines hypothèses:

- Si la durée de vie résiduelle est inférieure à 7 ans, un renforcement du tronçon est nécessaire ; sinon, un simple entretien suffira.
- Si le CBR à 98% de l'OPM de base est inférieure à 80, un renforcement du tronçon est nécessaire aussi, sinon, un simple entretien suffira.

Etant donné que les derniers travaux de réhabilitation de notre route datent de 2008, il est justifié de choisir une solution de renforcement, car la durée de vie de notre tronçon est inférieure à celle requise par l'hypothèse. De plus, les CBR à 98 % de notre couche de base étant inférieurs à 80, vérifie également la condition de renforcement.

En conclusion, l'intervention nécessaire pour notre tronçon serait donc un renforcement.

II.4. Diagnostic de l'état des ouvrages d'assainissement existants :

Pour évaluer l'état des ouvrages existants, leur emplacement et la pertinence de leur conception, nous avons effectué une visite de terrain. Lors de cette inspection, nous avons pris le temps d'analyser les différents ouvrages visant à protéger la chaussée contre les infiltrations d'eau, en portant une attention particulière à la gestion et à la direction des écoulements. Cette visite a également servi à dresser un inventaire des ouvrages présents à l'aide du logiciel **Scout**², d'évaluer leur état, de proposer des solutions correctives pour ceux présentant des défaillances et d'identifier les emplacements nécessitant la mise en place des nouveaux ouvrages.

Au total, nous avons recensé seize (16) ouvrages hydrauliques transversaux le long de notre tronçon, comprenant onze (11) dalots, cinq (5) buses et quatre (4) ouvrages de drainage longitudinal de type fossés.

Les dégradations observées sur ces ouvrages se résument comme suit :

- Ensablement des ouvrages ;
- Présences d'herbes dans les ouvrages ;
- Usure et insuffisance des perrés et gabions de protection ;
- Obstruction des ouvertures des ouvrages ;
- Fissures sur le corps des ouvrages en béton ;
- Sous dimensionnement de certains ouvrages.

La liste, accompagnée de quelques images des ouvrages diagnostiqués, est disponible en (Annexe 15 : Ensablement du dalot au Pk 27+215).

Commentaire : Il est important de noter que pour ce projet toutes les buses seront remplacées par des dalots en raison de leurs entretiens difficiles, de leur faible durée de vie et de leurs mauvaises gestions des eaux, contrairement au dalot.

En ce qui concerne les ouvrages drainages longitudinaux, ils seront tous détruits et reconstruire en fossé maçonné ou bétonné avec leur section d'origines en raison de l'élargissement de la chaussée. Il faut également souligner que pour les ouvrages longitudinaux de type fossé situés dans la traversée du village Rabé Santche (PK 25+350) seront remplacés par des caniveaux, tout en tenant compte de l'élargissement de la chaussée conformément au TDR.

² Logiciel développé par le Cerema, il assiste les agents lors de leurs visites d'inspection et de collecte de données sur le terrain, facilitant ainsi le travail sur le terrain.

-

CHAPITRE III: ETUDE TECHNIQUE

III.1. Etude géotechnique :

A l'issue de l'étude d'auscultation menée précédemment sur la chaussée, une solution de renforcement de la structure de la chaussée a été retenue pour traiter les différentes pathologies étudiées.

Ainsi, dans cette partie il sera question de faire une analyse et interprétation des données issues de la campagne géotechnique, de dimensionner l'épaisseur du renforcement proposé, de manière à garantir sa capacité à supporter le trafic projeté.

III.1.1. Campagne géotechnique :

a. Reconnaissance des matériaux d'emprunt :

La reconnaissance des emprunts pour la réalisation des corps de chaussée a été effectuée par le biais d'une prospection et d'une reconnaissance approfondie des sites. Cette recherche des gîtes de matériaux a impliqué l'exécution des puits manuels, qui ont été descendus jusqu'à la limite d'épaisseur exploitable, avec un maillage de 100 mètres ou moins selon les emprunts. Au cours de cette démarche, un emprunt a été localisé au PK 29+000.

b. Les essais réalisés :

Dans le cadre de l'identification et d'évaluation des caractéristiques des matériaux d'emprunt ainsi que de la chaussée existante, plusieurs essais ont été réalisés par le laboratoire National des Bâtiments et Travaux Publics (LNBTP), en collaboration avec le bureau d'étude TECHNI-CONSULT. Ces essais, conformes aux normes en vigueur, visent à garantir la qualité et la fiabilité des matériaux pour les travaux à venir (réhabilitation, élargissement...). Ils incluent :

- Analyse granulométrique (NF P94-056) : cet essai permet de déterminer la répartition des grains des matériaux selon leur taille, dans le but d'évaluer leur aptitude à être utilisé dans une structure de chaussée.
- <u>Limites d'Atterberg (NF P94-051)</u>: ces essais permettent de déterminer la plasticité des matériaux fins, notamment leur limite de liquidité et leur limite de plasticité, qui sont importants pour évaluer le comportement des sols en fonction de leur teneur en eau.

- <u>Proctor modifié (NF P94-093)</u>: cet essai vise à déterminer la densité sèche maximale et l'optimum en eau d'un matériau, qui sont des paramètres essentiels pour assurer une bonne compaction sur le terrain.
- <u>CBR (NF P 94-078)</u>: cet essai sert à évaluer la capacité portante des matériaux, afin de vérifier leur aptitude à supporter les charges induites par le trafic routier.

c. Exigences techniques:

Les matériaux issus des gîtes identifiés doivent répondre à des exigences spécifiques avant leur exploitation. Ces exigences sont définies selon les critères suivants :

Tableau 5 : Exigences techniques pour la couche d'assise

COUCHES	GRANULOMETRIE					LIMITE D'ATTERBERG	OPM	CBR (+4j imb.) Matériaux à l'état naturel		
	50 mm	20 mm	10 mm	2 mm	1,0 mm	0,5 mm	80 mm	IP	yd (g/cm³)	95%
Fondation	>100%	75% à 100%	58% à 100%	28% à 65%	22% à 56%	18% à 50%	5 à 30%	< 30	>1,80	> 40
Base	>100%	60% à 100%	35% à 90%	12% à 50%	10% à 40%	7% à 35%	4 à 20%	< 15	>2,00	> 80

d. Analyse et interprétation des résultats des essais effectués :

• Présentation des résultats de l'analyse des matériaux du gîte et de la chaussée existante :

Les résultats des analyses de la qualité des matériaux de l'emprunt et de la chaussée sont disponibles en (Annexe 19 : Recherche de gite de matériaux au PK 29+000).

Analyse et interprétation :

Les analyses des matériaux issus de l'emprunt montrent que leur CBR à 95% de L'OPM est inférieur à 80 pour une couche de base et à 40 pour une couche de fondation, ce qui indique qu'ils ne répondent pas aux critères requis dans leurs états naturels. Cependant, après l'ajout de 2% de ciment, le CBR à 95% de l'OPM atteint les seuils exigés, rendant ces matériaux conformes aux exigences technique et utilisables dans les travaux de réhabilitation.

De plus, les résultats d'indentification des matériaux de la chaussée révèlent également que leur CBR à 95% de l'OPM est inférieur aux exigences techniques. Cela signifie que les matériaux

de la chaussée ont perdu leurs qualités probablement en raison des charges du trafic, du vieillissement de la chaussée et des effets climatiques.

Notre solution de renforcement permettra de remédier à ces défauts et de prolonger la durée de vie de la structure.

III.2. Dimensionnement de la chaussée :

Dans le cadre de cette étude, Le dimensionnement de la structure de la chaussée vise à déterminer les épaisseurs optimales des matériaux à ajouter à la chaussée existante afin de la renforcer, ainsi que celle à mettre en place pour les zones d'élargissement tout en prenant en compte la disponibilité des matériaux locaux et de la durée de vie prévue pour la route.

Pour ce faire, le dimensionnement de la chaussée s'articulera autour des points suivants :

- Etude du trafic ;
- Choix de la méthode du dimensionnement du renforcement ;
- Le dimensionnement de la zone de renforcement ;
- Le dimensionnement de la zone d'élargissement.

III.2.1. Etude du trafic :

Le trafic actuel sur la section Dogondoutchi-Dosso a été estimé à partir des données recueillies lors de la campagne de comptage, menée du 13 au 19 Novembre 2024, sur une plage horaire continue de 24 heures (6h à 6h) pour un double sens de circulation. Cette campagne a permis de calculer le trafic moyen journalier annuel (TMJA), qui constitue une base essentielle pour les besoins de cette étude. Les résultats obtenus sont synthétisés dans le tableau suivant :

Tableau 6 : Les résultats du comptage du trafic

Nombre de jours		Poste de Dosso)	Poste de Do	ogondoutchi
	Sens	Dosso-Doutchi	Doutchi-Dosso	Dosso-Doutchi	Doutchi-Dosso
7	Trafic PL	1215	806	1088	763
	TMJA	174	115	155	109

A la lumière de ce tableau et conformément à la norme NF P 98-086 édition Mai 2019[6], la valeur du TMJA retenue est **174 TMJA** (le plus grand TMJA).

Les hypothèses suivantes ont été retenues pour estimer le trafic du dimensionnement :

Année de comptage : 2024

Année de mise en service : 2026

• Essieu standard de référence : 13 tonnes

• Durée de vie de la route (n) : 15 ans

• Taux de croissance géométrique annuelle du trafic poids lourds (i): 5%

• Coefficient d'agressivité moyen (CAM) : 0,93 (résultat issu de la campagne de pesage Dosso -Dogondoutchi).

a. Trafic de l'année de mise en service :

En supposant une croissance exponentielle du trafic, le trafic moyen journalier annuel (TMJA) actualisé pour l'année n est déterminée par la relation suivante :

TMJA = NPL
$$\times (1 + i)^{n'-1}$$
. Avec :

NPL: nombre de poids lourds/jour/sens;

n': différence entre l'année de mise en service et l'année de compactage.

$$TMJA = 174 \times (1 + 0.05)^{(2026-2024)-1} = 183 PL/j/sens$$

b. Nombre cumulé de poids lourds (trafic cumulé) :

Le calcul nombre cumulé du poids lourds est déterminé par l'expression suivante :

$$N = TMJA \times 365 \times \frac{(1+i)^n - 1}{i};$$

$$N = 183 \times 365 \times \frac{(1+5\%)^{15}-1}{5\%} = 1441340,15 \text{ PL} \approx 1,45 \times 10^6 \text{ PL}.$$

c. Classe du trafic :

Le guide pratique de dimensionnement des chaussées en zone tropicale définit plusieurs classes de trafic en fonction du nombre cumulé de poids lourds, comme indiqué dans le tableau ciaprès :

Tableau 7 : Choix de la classe du trafic

wa / · Chom de la elabbe da dalle				
Nombre cumulé de poids lourds	Classes du trafic			
(Trafic cumulé)				
$T < 5.10^5$	T1			
$5.10^5 < T < 1,5.10^6$	T2			
$1,5.10^6 < T < 4,10^6$	Т3			
$4,10^6 < T < 10,10^7$	T4			
$10^7 < 2,10^7$	T5			

Source: le guide CEBTP

Selon le tableau ci-dessus associé à la valeur de notre trafic cumulé calculé, nous donne un trafic de classe **T2**.

d. Nombre cumulé d'essieux équivalent :

Le nombre cumulé d'essieux équivalent noté NE, est obtenu par la formule suivante :

$$NE = N \times CAM \Rightarrow NE = 1441340,15 \times 0,93$$

= 1 340 446,34 \approx 1,34 \times 10⁶ essieux équivalent de 13 tonnes.

III.2.2. Méthode de dimensionnement de la chaussée

Le dimensionnement du renforcement peut être effectuer à l'aide de plusieurs méthodes (rationnelle, semi empirique, empirique) une fois la caractérisation de l'ancienne chaussée est effectuée. Dans le cadre de cette étude, nous avons opté pour la méthode empirique du CEBTP-LCPC[7], conformément aux recommandations du *Manuel pour le renforcement des chaussées souples en pays tropicaux*. Cette démarche sera ensuite validée par la méthode rationnelle de calcul des renforcements, en utilisant le logiciel **Alizé-LCPC**.

a. Dimensionnement de la zone de renforcement avec la méthode empirique :

Cette méthode, tirée du *Manuel pour le renforcement des chaussées souples en pays tropicaux*, repose sur l'utilisation des fiches ou tableaux de renforcement des chaussées souples revêtues. Elle prend en compte la classe de trafic, exprimée en nombre cumulé d'essieux standard selon le *CEBTP*[7], ainsi que la solution retenue à l'issue de l'application de la méthode Vizir.

Tableau 8 : Choix des matériaux de renforcement

	2 couches		
Propositions de matériaux	Renforcement pour trafic	Renforcement pour trafic	
	léger ou moyen T1, T2, (T3)	moyen ou lourd T3, T4, T5	
Bétons bitumineux couche mince ≤ 6 cm	x (une couche)		
Bétons bitumineux couche épaisse > 6 cm		V	
à 2 × 7 cm		X	
Graveleux latéritique ciment	X		
Concassé 0/31,5	X		
Tout-venants naturels	X		
Sable (limoneux ou argileux) ciment	x		
Sable laitier	X		
Grave ciment		X	
Sable bitume	X		
Grave bitume		X	

Source : Manuel pour le renforcement des chaussées souples en pays tropicaux.

Sur la base des éléments précédemment déterminés, à savoir une classe de trafic T2 et indice de qualité Q4 (solution de renforcement), la structure de chaussée retenue est la suivante :

- Couche de roulement : en Béton bitumineux de 5 cm d'épaisseur ;
- Couche de base : en Graveleux latéritique amélioré au ciment, d'une épaisseur de 20 cm ;
- <u>Couche de fondation</u>: Scarification et revalorisation de l'ancienne couche de base et de fondation sur une profondeur de **35 cm**.

b. Dimensionnement de la zone d'élargissement :

Dans cette section, nous allons nous appuyer sur le guide *CEBTP* pour déterminer le choix des structures des zones d'élargissement. Les résultats du rapport géotechnique qui a été établi par LNBTP en collaboration avec le bureau TECHNI-CONSULT indique que la plateforme de notre tronçon présente des classes de sol S4 et S5. Cependant, dans une démarche de sécurité et pour éviter un dimensionnement non durable, nous avons choisi de retenir une classe de sol S4 (le cas le plus défavorable) pour l'ensemble du tronçon. Ainsi, en tenant compte de la combinaison du trafic et de la portance du sol (T2 : S4), nous avons retenu la solution suivante :

- Couche de base : en graveleux latéritique naturel de 15 cm d'épaisseur ;
- Couche de fondation : en graveleux latéritique naturel de 20 cm d'épaisseur.
- c. Vérification des dimensionnements avec la méthode rationnelle (Alizé-LCPC) :

Il est indispensable d'effectuer une vérification des déformations de la structure retenue pour le corps de la chaussée afin de garantir la fiabilité du dimensionnement.

Cette vérification consiste à calculer les contraintes et les déformations générées par le trafic au sein des différentes couches de chaussée ainsi que dans le sol support, puis à comparer ces résultats aux valeurs admissibles.

Hypothèses de vérifications du dimensionnement :

Les hypothèses suivantes ont été retenues pour la vérification du dimensionnement de la chaussée :

- Les interfaces entre les couches sont prises étant collées ;
- Le coefficient de poisson est pris égale à 0,35 ;
- La température du dimensionnement et de la mise en place du béton bitumineux est prise à 43 °C (environ la température maximale du Niger).
- Les épaisseurs des différentes couches de matériaux déterminées précédemment.

Détermination du module de Young :

Le module de Young de chaque couche de la chaussée est déterminé par la formule suivante :

$$E = 5 \times CBR$$

Les modules obtenus après l'application de la formule sont les suivants :

Tableau 9 : Le module des différents matériaux retenus pour la zone de renforcement

Zone de renforcement		
Couches	Matériaux	Module de Young (Mpa)
Revêtement	Béton bitumineux	1150
Renforcement	Graveleux latéritique amélioré au ciment (2%)	160×5= 800
Couche existante (après scarification et recyclage)	Graveleux latéritique	60 ×5 = 300
Sol support	PF3	$32 \times 5 = 160$

Tableau 10 : Le module des différents matériaux retenus pour la zone d'élargissement

Zone d'élargissement		
Couches	Matériaux	Module de Young (Mpa)
Renforcement	Graveleux latéritique amélioré au ciment (2%)	160×5= 800
Couche de base	Graveleux latéritique naturel	90×5= 450
Couche de fondation	Graveleux latéritique naturel	60 ×5 = 300
Sol support	PF3	$32 \times 5 = 160$

Détermination des contraintes et déformations admissibles :

Calcul des contraintes admissibles :

La contrainte verticale admissible est déterminée par la formule de Kerkoven et Dormon :

$$\sigma_{\text{z adm}} = \frac{0.3 \times \text{CBR}}{1 + 0.71 \times \log \text{NE}}$$
, Avec NE : le nombre cumulé d'essieux équivalent.

- Les contraintes admissibles pour la zone de renforcement :
 - Couche de renforcement (CBR = 160):

$$\sigma_{\text{z adm}} = \frac{0.3 \times 160}{1 + 0.71 \times \log(1340446.34)} = 8.97 \text{ MPa};$$

- Couche existante (Fondation et base à scarification et/ou recyclage) (CBR = 60):

$$\sigma_{z \text{ adm}} = \frac{0.3 \times 60}{1 + 0.71 \times \log(1340446.34)} = 3.36 \text{ MPa};$$

- Sol support (CBR = 32) : $\sigma_{\text{z adm}} = \frac{0.3 \times 32}{1 + 0.71 \times \log (1340446.34)} = 1,79 \text{ MPa}$
- Les contraintes admissibles pour la zone d'élargissement :
 - Couche de renforcement (CBR = 160):

$$\sigma_{\text{z adm}} = \frac{0.3 \times 160}{1 + 0.71 \times \log(1340446.34)} = 8.97 \text{ MPa};$$

- Couche de base (CBR = 90):

$$\sigma_{\text{z adm}} = \frac{0.3 \times 90}{1 + 0.71 \times \log(1340446.34)} = 5.05 \text{ MPa};$$

- Couche de fondation (CBR = 60):

$$\sigma_{\text{z adm}} = \frac{0.3 \times 60}{1 + 0.71 \times \log(1340446.34)} = 3.36 \text{ MPa};$$

- Sol support (CBR = 32) :
$$\sigma_{\text{z adm}} = \frac{0.3 \times 32}{1 + 0.71 \times \log (1340446.34)} = 1.79 \text{ MPa}$$

Calcul de la déformation verticale admissibles :

La déformation verticale admissibles est déterminée à l'aide des formules suivantes :

$$\begin{split} \epsilon_{z\;adm} &= 12000 \times NE^{-0,222} : Pour\; NE > 250\; 000 \; ; \\ \epsilon_{z\;adm} &= 16\; 000 \times NE^{-0,222} : Pour\; NE \leq 250\; 000. \end{split}$$

Etant donné que notre NE, est supérieure à 250 000, la valeur de la déformation sera calculée comme suit :

$$\varepsilon_{z,adm} = 12\,000 \times 673\,885,60^{-0,222} = 523,52\,\mu def.$$

- **Vérification des contraintes et déformations verticales :**
 - Pour la zone de renforcement :

En tenant compte de toutes les informations étudiées précédemment, la modélisation réalisée sur le logiciel Alizé-LCPC nous a fourni les valeurs des sollicitations ci-dessous :

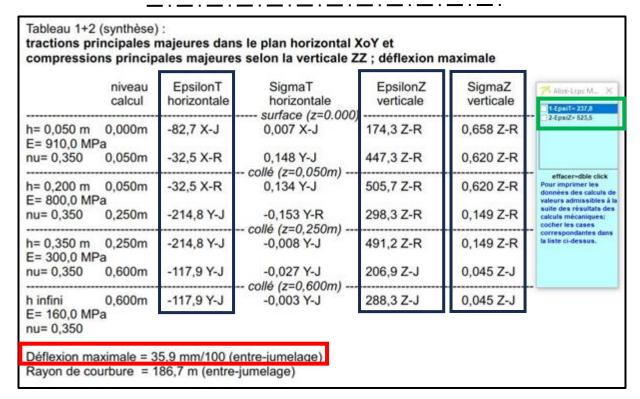


Figure 4 : Les contraintes, déformations et la déflexion calculées par Alizé

Commentaire : Les résultats obtenus montrent que les déformations horizontales et les contraintes calculées par le logiciel (Alizé-LCPC) dans les différentes couches des matériaux retenus sont inférieures aux valeurs admissibles déterminées ($\sigma_z < \sigma_{z \text{ adm}}$ et $\epsilon_z < \epsilon_{z \text{ adm}}$). De plus, la déflexion maximale donnée par le logiciel Alizé est inférieure au seuil de 40 (notée d_1), tel que prescrit par le *guide de renforcement des chaussées en pays tropicaux* pour le Niger, qui atteste qu'une chaussée se comporte de façon satisfaisante.

Ainsi, ces vérifications permettent de conclure que la variante étudiée peut en toute fiabilité et sécurité être utilisée comme structure de réhabilitation de notre tronçon. (Voir en Annexe 22 : Résultat du dimensionnement de la zone de renforcement sur Alizé).

• Pour la zone d'élargissement :

En tenant compte de toutes les informations étudiées précédemment, la modélisation réalisée sur le logiciel Alizé-LCPC nous a fourni les valeurs des sollicitations ci-dessous :

	niveau calcul	EpsilonT horizontale	SigmaT horizontale	EpsilonZ verticale	SigmaZ verticale	Alizéal ene M X
h= 0,200 m E= 800,0 MP		-85,2 X-J	surface (z=0.000) 0,003 X-J	231,0 Z-R	0,659 Z-R	1-EpsiZ= 523,5
nu= 0,350	0,200m	-198,4 Y-R	-0,104 Y-R	348,6 Z-R	0,220 Z-R	
h= 0,150 m E= 450,0 MP		-198,4 Y-R	collé (z=0,200m) -0,009 Y-J	482,0 Z-R	0,220 Z-R	
nu= 0,350	0,350m	-168,1 Y-J	-0,049 Y-J	269,0 Z-J	0,097 Z-J	effacer=dble click Pour imprimer les
h= 0,200 m		-168,1 Y-J	collé (z=0,350m) -0,015 Y-J	335,9 Z-J	0,097 Z-J	données des calculs de valeurs admissibles à la suite des résultats des
E= 300,0 MP nu= 0,350	0,550m	-136,5 Y-J	-0,032 Y-J	234,2 Z-J	0,051 Z-J	calculs mécaniques: cocher les cases correspondantes dans
h infini	0,550m	-136,5 Y-J	collé (z=0,550m) -0,004 Y-J	326,2 Z-J	0,051 Z-J	la liste ci-dessus.
E= 160,0 MP: nu= 0,350	a					

Commentaire: Les résultats obtenus montrent que les déformations horizontales et les contraintes calculées par le logiciel (Alizé-LCPC) dans les différentes couches des matériaux retenus sont inférieures aux valeurs admissibles déterminées ($\sigma_z < \sigma_{z \text{ adm}}$ et $\varepsilon_z < \varepsilon_{z \text{ adm}}$). De plus, la déflexion maximale donnée par le logiciel Alizé est inférieure au seuil de 40 (notée d₁), tel que prescrit par le *guide de renforcement des chaussées en pays tropicaux* pour le Niger, qui atteste qu'une chaussée se comporte de façon satisfaisante.

Ainsi, ces vérifications permettent de conclure que la variante étudiée peut en toute fiabilité et sécurité être utilisée comme structure d'élargissement de notre tronçon. (Voir en Annexe 24 : Résultat du dimensionnement de la zone d'élargissement sur Alizé)

d. Spécification technique de formulation des matériaux proposés dans la zone de renforcement :

Conformément au guide de renforcement des chaussées souple en pays tropicaux, nous proposons les formulations suivantes pour les matériaux de la zone de renforcement :

❖ Couche de revêtement :

Consti	tuants							
GRAVE								
Granularité	0/14							
Coupure granulométrique	3 fractions 0/4-4/6,3-6,3/14							
Nature des granulats	Calcaire							
Fines	5 à 9%							
Angularité -indice de concassage	Entièrement concassé							
Lia	ant							
Bitume	60/70							
Pénétration à 25°C	46							
Température B. A	59°C							
Formu	lation							
Dosage en liant	5 à 8%							
	92 à 94% (LCPC)							
Compacité								
Formule	Grenu et semi grenu							

* Couche de renforcement :

Constituants							
Granulats							
	Graveleux latéritique 0/20						
Grave							
Fines (< 80 µ)	27%						
Usage	Couche de base						
Domaine d'utilisation							
(épaisseur)	20 cm						
Formulation							
Classe de ciment CPA 45							
Dosage de ciment 2,00%							

III.3. Étude hydrologique :

L'étude hydrologique a pour but la compréhension et l'évaluation des comportements et caractéristiques des ressources en eau dans une zone donnée. Elle permet d'analyser les précipitations et débits, la gérance des ressources en eau.

Pour ce fait, nous employons une méthode structurée, comprenant :

- La délimitation des bassins versants ;
- La présentation des techniques standards de calcul hydrologique et choix des méthodes les plus adaptées;
- La détermination des débits de crue ;
- Le choix du début de dimensionnement.

III.3.1. Délimitation des bassins versants :

Pour garantir un assainissement efficace de la route, il est essentiel de connaître les caractéristiques des bassins versants qui la traversent. Selon les débits à évacuer, des infrastructures telles que des dalots et des buses sont mises en place. De plus, le drainage horizontal est assuré par des caniveaux en zone urbaine et des fossés en zone rurale.

Dans le cadre de notre étude de réhabilitation, nous devons vérifier les sections hydrauliques des ouvrages afin de garantir un bon drainage de la route. Pour cela, nous avons relevé les coordonnées des ouvrages existants sur le terrain. Ensuite, nous les avons converties en fichier KLZ avec le logiciel GPS utility, puis reportées le long de notre tronçon sur Google Earth. Enfin, nous avons mené une étude hydrologique dans Global Mapper en délimitant les bassins versants. A l'issue de ces étapes, 13 bassins ont été identifiés et sont présentés dans la figure et tableau ci-dessous.

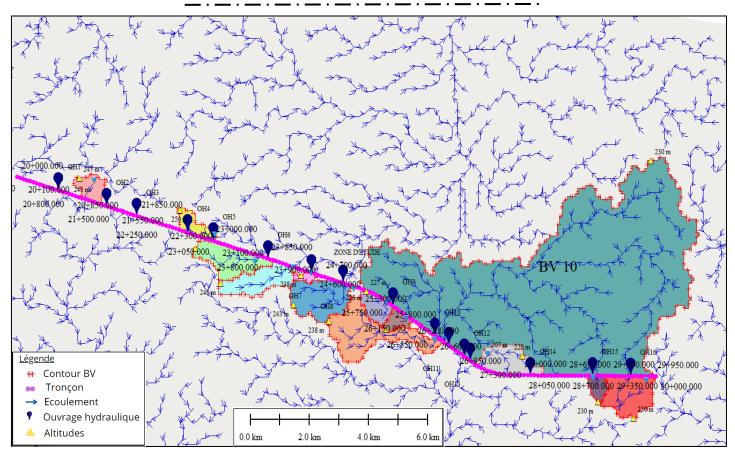


Figure 5 : Délimitation des bassins versants Source : Global Mapper

Tableau 11 : Les caractéristiques des bassins versants de la zone d'étude

		CA	RACTERISTIQ	UES DES BA	SSINS VI	ERSAN	TS			
Bassin versant	Superficie (Km2)	Périmètre (km)	Longueur d'écoulement (km)	Longueur rectangle (Km) Z max min (m)		ΔH (m)	Indice de comp	Indice globale (m/km)	I (%)	
BV1	0,13	1,82	0,26	0,73	247	243	4	1,43	5,46	2,36
BV2	0,12	2,02	0,19	0,87	250	244	6	1,61	6,93	2,34
BV3	0,35	3,30	0,92	1,40	250	236	14	1,58	9,97	3,38
BV4	0,31	3,54	0,92	1,57	246	235	11	1,79	6,99	2,82
BV5	0,04	1,06	0,01	0,45	238	234	4	1,59	8,83	2,88
BV6	0,41	3,27	1,13	1,33	243	226	17	1,45	12,80	3,54
BV7	0,14	1,87	0,29	0,74	227	217	10	1,39	13,48	3,48
BV8	0,08	1,50	0,13	0,62	222	216	6	1,50	9,62	2,89
BV9	0,58	5,90	1,88	2,74	238	210	28	2,18	10,23	3,68
BV10	7,80	19,84	5,56	9,06	230	202	28	2,00	3,09	3,14
BV11	0,29	2,84	1,02	1,18	222	207	15	1,49	12,74	3,42
BV12	0,08	1,38	0,13	0,54	230	224	6	1,37	11,12	2,74
BV13	0,35	2,90	0,91	1,15	230	222	8	1,38	6,98	3,01

III.3.2. Traitement des données pluviométriques :

a. Recueil des données hydrologiques :

Les données hydrologiques, en particulier celles relatives à la pluviométrie de la zone d'étude, ont été recueillies auprès des services météorologique nationaux.

Les informations détaillées sont présentées en (Annexe 25 : Courbe de vérification de la précision de la loi Gumbel pour P10).

b. Analyse fréquentielle :

• Définition :

L'analyse fréquentielle est une méthode statistique de prédiction qui vise à étudier les événements passés d'un processus hydrologique pour en estimer les probabilités de survenue future.

• Objectif de l'analyse fréquentielle :

L'objectif de cette étude est la détermination des précipitions décennales, nécessaires au calcul des débits de crue. Elle s'appuie sur les données de pluies journalières maximales de la station nationale pour la période de 1991 à 2023. Pour estimer les précipitations annuelle (Pan) et décennales (P₁₀), nous avons utilisé le logiciel HyfranPlus, spécialisé dans l'analyse fréquentielle. Ce logiciel prend en charge plusieurs lois de distribution, notamment celles Gumbel, Exponentielle et Weibull. Pour cette étude, nous avons retenu la loi de Gumbel, également connue sous le nom de loi de doublement exponentielle, qui repose sur la fréquence expérimentale de non-dépassement.

Calcul des précipitations :

Les précipitations décennales sont estimées à partir de la loi de Gumbel, dont les paramètres principaux sont :

Q = F(X) (probabilité au non-dépassement);

T = 1/(1-q) (temps de retour);

Xt: Quantile.

Les valeurs des précipitations décennale données par le logiciel sont consignées dans les tableaux ci-dessous :

Tableau 12 : La valeur de la précipitation décennale de la pluie annuelle (Pan)

Т	q	XT	Ecart-type	Intervalle de confiance (95%)
50.0	0.9800	905	63.0	782 - 1030
20.0	0.9500	811	50.5	712 - 910
10.0	0.9000	738	41.2	658 - 819

La valeur obtenue pour la précipitation décennale de la pluie annuelle (Pan) dans la zone d'étude est égale à **738 mm**.

Tableau 13 : La valeur de la précipitation décennale de la pluie maximale journalière (P10)

T	q	XT	Ecart-type	Intervalle de confiance (95%)
50.0	0.9800	108	8.66	90.8 - 125
20.0	0.9500	94.9	6.95	81.2 - 108
10.0	0.9000	84.8	5.66	73.7 - 95.9

La valeur obtenue pour la précipitation décennale de la pluie maximale journalière (P_{10}) dans la zone d'étude est égale à **84,8** mm.

III.3.3. Détermination des débits de crues des ouvrages longitudinaux :

Plusieurs méthodes permettent de calculer les débits de crues en fonction des caractéristiques des bassins versants, notamment les méthodes ORSTOM, CIEH, la méthode Rationnelle et celle de Caquot. Dans le cadre de notre étude, nous utiliserons trois (3) méthodes pour estimer les débits de crue dans les bassins étudiés : la méthode rationnelle pour les bassins de moins de 4 km², les méthodes ORSTOM et CIEH pour les bassins de 4 km² ou plus. Les différentes méthodes sont décrites en détail en (Annexe 26 : Courbe de vérification de la précision de la loi Gumbel pour Pan).

a. Détermination des débits de crues décennales par la méthode Rationnelle :

Cette méthode est applicable uniquement aux bassins de faible surface. Par conséquent, nous utiliserons cette méthode pour déterminer les débits de crues de nos 12 bassins versants.

Formule de détermination du débit :

$$Q (m^3/s) = 0.278 \times C \times i \times A;$$

Les paramètres de la formule sont :

C : coefficient de ruissellement ;

i : intensité de pluie (mm/h), elle est déterminée par la formule :

$$i = a \times tc^{-b}$$
;

Où a = 7.5 et b = 0.5 sont les coefficients de Montana (valeurs prises dans le *BCEOM* à la page 151);

A: la surface du bassin versant.

Le temps de concentration tc (en minutes) a été calculé en utilisant la méthode de Kirpich à l'aide de la formule suivante :

: Tc (mm) =
$$\frac{1}{52} \times \frac{L^{1,15}}{H^{0,38}}$$
; Avec :

L (m): Distance entre l'exutoire et le point le plus éloigné du bassin;

H (m): La dénivelé.

Les débits de nos bassins obtenus avec la méthode rationnelle sont consignés dans le tableau suivant :

Tableau 14 : Débits calculés avec la méthode rationnelle

		CA	RACTE	ERISTIQ	UES DES E	BASSINS V	ERSAN	TS				MI	ЕТНО	DE RATIO	NNELLI	E
BV	S (Km²)	P (km)	L (km)	Lr (Km)	Z max (m)	Z min (m)	ΔH (m)	I_{comp}	I _g (m/km)	i (%)	TC		f de tana b	I (mm/h)	С	Débit Q(m3/s)
BV1	0,13	1,82	0,26	0,73	247	243	4	1,43	5,46	2,36	6,66	7,5	0,5	174,36	0,52	3,24
BV2	0,12	2,02	0,19	0,87	250	244	6	1,61	6,93	2,34	4,14	7,5	0,5	221,27	0,52	3,98
BV3	0,35	3,3	0,92	1,4	250	236	14	1,58	9,97	3,38	18,04	7,5	0,5	105,95	0,52	5,3
BV4	0,31	3,54	0,92	1,57	246	235	11	1,79	6,99	2,82	19,88	7,5	0,5	100,92	0,52	4,52
BV5	0,04	1,06	0,01	0,45	238	234	4	1,59	8,83	2,88	0,09	7,5	0,5	1526,15	0,52	7,8
BV6	0,41	3,27	1,13	1,33	243	226	17	1,45	12,8	3,54	21,15	7,5	0,5	97,86	0,52	5,75
BV7	0,14	1,87	0,29	0,74	227	217	10	1,39	13,48	3,48	5,46	7,5	0,5	192,58	0,52	4
BV8	0,08	1,5	0,13	0,62	222	216	6	1,5	9,62	2,89	2,65	7,5	0,5	276,28	0,52	3,16
BV9	0,58	5,9	1,88	2,74	238	210	28	2,18	10,23	3,68	31,52	7,5	0,5	80,16	0,52	6,76
BV11	0,29	2,84	1,02	1,18	222	207	15	1,49	12,74	3,42	19,9	7,5	0,5	100,87	0,52	4,2
BV12	0,08	1,38	0,13	0,54	230	224	6	1,37	11,12	2,74	2,68	7,5	0,5	274,91	0,52	3,19
BV13	0,35	2,9	0,91	1,15	230	222	8	1,38	6,98	3,01	22,03	7,5	0,5	95,89	0,52	4,84

S: surface; P: périmètre; L: longueur du chemin hydraulique; Lr: longueur du rectangle équivalent; Z: Altitudes; ΔH: dénivelé; I_{comp}: Indice de compacité ; Ig : Indice global, i : pente, Tc : Temps de concentration, I : Intensité de pluie ; c : coefficient de ruissellement.

b. Détermination des débits de crues par la méthode Orstom :

La méthode **ORSTOM**, établie pour estimer les débits de crues dans les bassins versants, sera appliquée à notre bassin versant 10, qui couvre une superficie de 7,80 km² (supérieure au seuil de 4 km²). Cette méthode permettra de déterminer le débit avec la formule [8]:

$Or_{10} = m \times A \times P_{10} \times Kr_{10} \times \alpha_{10} \times S/Tb_{10}$:

Avec:

Qr₁₀ : Débit de pointe correspondant au ruissellement superficiel de la crue décennale en m³/s;

m : Coefficient majorateur d'écoulement retardé, il est estimé entre 1,03 et 1,15 en fonction de la perméabilité des bassins ;

A: Coefficient d'abattement (sans dimension);

P₁₀: Hauteur de pluie journalière décennale en mm;

Kr₁₀: Coefficient de ruissellement correspondant à la crue décennale en %;

 α_{10} : Coefficient de pointe correspondant à la crue décennale (sans dimension);

S: Superficie du bassin versant en km²;

Tb₁₀: Temps de base correspondant à la pluie décennale en seconde (voir graphe dans l'annexe III).

Le débit obtenu dans le bassin versant 10 après application de la formule se trouve dans le tableau de la page suivante (voir en annexxxe la démarche du calcul) :

Tableau 15 : Débit calculé avec la méthode Orstom

Dec	Surfac	Туре	Infiltr abilite		R olation) 6	Kr	n	P ₁₀	P _{m1}	A	A ₁₀	Tb	A	Q ₁₀
Bv	e (Km ²)	Relief	(Ti, I, Ri, P, Tp)	Kr70	Kr 100	10 %	Pan	(mm)	0	A		mn		(m ³ / s)
Bv1 0	7,80	Faible	Ri	19,00	20,50	19, 74	738	84,8	74, 97	1,05	2,6	790	0,88	6,65

c. Détermination de débit de crue décennale par la méthode CIEH :

Le débit de pointe Q₁₀ avec la méthode CIEH se détermine par l'expression [8],[9]:

$$Q_{10} = a \times S^S \times P_{an}^p \times Ig^i \times Kr_{10}^k \times Dd^d \dots$$

Où : a,s,p,i,k,d....sont des coefficients à déterminer , S : la superficie des bassin en km² , Ig : indice global de pente en m/km , Pan : la pluie annuelle moyenne en mm , Kr₁₀ : le coefficient de ruissellement décennal en % , Dd : la densité de drainage en km⁻¹.

Le débit obtenu dans le bassin 10 après application de la formule se trouve dans le tableau cidessous :

Tableau 16: Débit calculé avec la méthode CIEH

N°	Surface	Périmètre	Ig	Kr10	Pan	P10	P _{m10}		f. (voir c ableau 1			C	hoix (débit C	IEH
BV	(km2)	(km)	(m/km)	%	1	(mm)	(mm)	10	18	27	42	Mini	Maxi	Moyenne	Débit de crue retenue
BV10	7,80	19,84	3,09	19,74	738	84,8	74,97	5,00	11,33	12,52	11,20	5,00	12,52	10,50	10,50

Les détails du calcul se trouvent en annexe III (xxxiv).

d. Choix du débit du débit du dimensionnement des franchissement (Dalots) :

Après l'application des trois formules du dimensionnement, nous retenons 12 bassins de faible surface, calculés avec la méthode rationnelle, et un seul bassin de grande superficie, calculé avec les méthodes Orstom et CIEH; pour ce dernier, une moyenne des débits obtenus par les deux méthodes a été faite et sera considérée comme le débit de dimensionnement.

Les différents débits de dimensionnement sont consignés dans le tableau de la page suivante suivant :

Tableau 17: Choix du débit du dimensionnement

N° BV	Surface (km ²)	Périmètre (km)	ORSTOM	RATIONNELLE	CIEH	DEBIT RETENU
BV1	0,13	1,82	_	3,24	_	3,24
BV2	0,12	2,02	_	3,98	_	3,98
BV3	0,35	3,30	_	5,30	_	5,30
BV4	0,31	3,54	_	4,52	_	4,52
BV5	0,04	1,06	_	7,80	_	7,80
BV6	0,41	3,27	_	5,75	_	5,75
BV7	0,14	1,87	_	4,00	_	4,00
BV8	0,08	1,50	_	3,16	_	3,16
BV9	0,58	5,90	_	6,76	_	6,76
BV10	7,80	19,84	6,65	_	10,50	8,57
BV11	0,29	2,84	_	4,20	_	4,20
BV12	0,08	1,38	_	3,19	_	3,19
BV13	0,35	2,90	_	4,84	_	4,84

III.3.4. Détermination du débit de dimensionnement des ouvrages de drainage (Caniveau) :

Le drainage longitudinal de la route est assuré par la mise en place des fossés ou de caniveaux, conçus pour évacuer les eaux de ruissellement provenant de la chaussée. Ces caniveaux collectent également les eaux en provenance des accotements et des zones environnantes de la chaussée. Pour calculer le débit nécessaire à l'évacuation efficace des eaux en agglomération, nous utiliserons la formule de Caquot afin de garantir la mise hors d'eau de la chaussée.

 $Q = 167 \times 1200^{b} \times a \times c \times j^{\frac{b}{2}} \times l^{-b} \times A^{0,95}$; Avec a et b les coefficients de Montana;

c : le coefficient de ruissellement pris égale à 0,70 selon le BCEOM[9] ;

J: la pente du bassin; L: le plus long chemin hydraulique et A (ha): la superficie;

Le résultat issu de l'application de la formule de Caquot se présente à la page suivante.

Tableau 18 : Calcul du débit du caniveau

N°	Coeff	ficients		ients de itana	Coefficient de ruis	Pente	Long chemin	Surface	Débit	Débit
			a	b	С	J	L	A	Q(1/s)	Q(m3/s)
1	167	1200	7,5	0,5	0,7	3,42	1020	1,02	896,02	0,90

Commentaire: Les sections des fossés ne présentant aucun problème d'évacuation ont été retenues. Ainsi, nous aurons qu'à déterminer les sections du caniveau dans la partie hydraulique.

III.4. Étude hydraulique :

III.4.1 Dimensionnement hydraulique des ouvrages de franchissement (le dalot) :

a. Hypothèses et critères :

La détermination de la section des dalots repose sur les hypothèses et critères, que nous avons définis de manière suivante :[9]

- La vitesse maximale d'écoulement de l'eau est limitée à 3,5 m/s ;
- Le fonctionnement des dalots est pris en sortie dénoyée, à surface libre ;
- Les dalots seront équipés de murs en aile formant un angle de 30° avec l'axe de l'ouvrages;
- Tous les dalots seront réalisés en béton, ce qui nous permet d'utiliser une valeur de Ks = 67 pour le calcul des sections ;
- La valeur de l'accélération dû à la gravité est prise à 9,81 m/s².

b. Détermination des sections du dalot :

Dans le cadre d'une étude de réhabilitation, le dimensionnement hydraulique du dalot se fait en deux volets :

- ❖ Premier volet : vérifier si la section existante des ouvrages permet une évacuation correcte des eaux en fonction des débit calculés. Si ce n'est pas le cas, un redimensionnement sera nécessaire afin de garantir que les ouvrages puissent supporter le débit projeté.
- ❖ Deuxième volet : déterminer la section des futurs ouvrages dans les zones où un ouvrage est nécessaire mais actuellement inexistant.

La méthode utilisée pour la détermination des sections des dalots dans les deux volets est la suivante :

• Etape 1 : Calcul de la profondeur en amont H1

L'objectif est de déterminer la profondeur en amont et de vérifier sa conformité avec la situation topographique de l'ouvrage. Pour ce faire, il faut d'abord estimer une valeur approximative des paramètres D (Hauteur) et B (Largeur) du dalot en utilisant la formule de base suivante :

$$Q = V \times S \ avec \ S = \frac{Q}{V}$$

Dans cette formule, S représente la section mouillée (minimale), Q est le débit connu, V est la vitesse limite fixée.

Ensuite, pour on calcule le débit réduit q* en utilisant les formules suivantes :

$$Q^*_1 = \frac{q}{BD \times \sqrt{2 \times g \times D}}$$
; avec $q = \frac{Q}{n}$; où n : represente le nombre d'ouverture du dalot.

Une fois la valeur de Q* obtenue, on détermine après la profondeur réduite H1* à l'aide d'un abaque (figure disponible en Annexe 34 : Abaque de la détermination de H1*), en utilisant la valeur Q*. La profondeur H₁ peut ainsi être déterminée par la relation $H_1^* = \frac{H_1}{D}$.

Après avoir calculer H_1 , il convient de vérifier que notre dalot aura un écoulement en surface libre avec l'expression suivante : $H_1*\le 1,25 \times D$. Si la condition n'est pas vérifiée, il sera nécessaire de modifier les valeurs de B et/ou D. Si la condition est vérifiée, l'étape suivante consiste à vérifier que la vitesse de l'eau dans l'ouvrages respecte les limites admissibles. Cela nécessite le calcul de la pente critique de l'ouvrage.

• Etape 2 : Calcul de la pente critique Ic

L'ouvrage doit être capable de transiter le débit critique correspondant à la profondeur H1. Pour cela, la pente longitudinale de l'ouvrage doit être supérieure ou égale à la pente critique ($I \ge Ic$).

Pour calculer Le débit réduit de la pente critique, on utilise la largeur B du dalot et le débit Q à évacuer. La formule permettant de déterminer le débit réduit pour la pente critique est la suivante : $Q^*_2 = \frac{q}{\sqrt{g \times B^5}}$. A partir de ce débit, on détermine la valeur de la pente étoile Ic* à l'aide de l'abaque (figure disponible en Annexe 35 : Abaque de détermination de Ic*).

En connaissant la valeur du coefficient de rugosité KS et le débit Q2* calculé, on détermine ensuite la valeur de la pente critique Ic à l'aide de la formule suivante Ic = $Ic^* \times \frac{g}{K^2 \times D^{1/3}}$.

Après on choisit la pente de l'ouvrage I de tels sorte qu'elle soit supérieure ou égale à la pente critique.

• Etape 3 : Calcul de la vitesse dans l'ouvrage

A ce niveau, il s'agit de calculer la vitesse dans l'ouvrage et de vérifier qu'elle ne dépasse pas la vitesse limite définie (3,5 m/s).

Le débit réduit Q*3 est déterminé à partir des formules dérivées de Manning, en fonction de la pente de l'ouvrage retenue.

La valeur de Q, obtenue grâce à l'abaque figure présentée en (Annexe 36 : Abaque de détermination de Vitesse dans le dalot), permet de déduire V*, à partir de laquelle on calcule V recherchée, qui sera ensuite comparer à la vitesse limite dans le but qu'elle ne dépasse pas le seuil de la vitesse limite.

• Etape 4 : Itération

Si la vitesse obtenue vérifie la condition ($V \le V_{limite}$), le calcul est terminé. Dans le cas contraire, il faudra ajuster les paramètres d'ouverture B et D, puis recommencer tout le processus.

III.4.2. Résultats du dimensionnement hydraulique des ouvrages de franchissement (Dalot)

Le résultat du dimensionnement et de la vérification des ouvrages a permis de retenir au total 19 ouvrages, répartis en trois (3) types distincts.

Le tableau ci-dessous présente les types d'ouvrages retenus pour notre étude.

Tableau 19 : Les Types des dalots retenus pour notre étude

Type d'ouvrage	Nombre
D1x2x1	10
D1x2x1,5	4
D2x2x1	5
Total d'ouvrage à conserver	1
Total des ouvrages à remplacer	15
Total des nouveau ouvrages	3
Total des ouvrages retenus	19

III.4.3. Dimensionnement hydraulique des ouvrages longitudinaux (caniveaux) :

a. Détermination de la section du caniveau :

Pour la détermination de la section de notre caniveau, nous avons opté pour la méthode de débitance, qui repose sur la variation de l'une des dimensions du caniveau (base ou hauteur) en appliquant la formule de Manning-Strickler :

$$Q = K_S \times S \times R_h^{\frac{2}{3}} \times I^{\frac{1}{2}}$$

Avec : Q : le débit en m³/s ;

K_s : le coefficient de rugosité ;

S: la surface d'écoulement en m²;

R_h: le rayon hydraulique en m et I : la pente du caniveau :

***** Hypothèses de calcul :

• Nature des parois en béton (ks = 67);

• Vitesse maximale d'écoulement : (V = 2.5 m/s).

• Type de caniveau : rectangulaire.

* Calcul du tirant d'eau et la hauteur du caniveau :

Ils sont déterminés par la relation suivante :

$$\frac{Q}{\sqrt{I}} = K_S \times S \times R_h^{\frac{2}{3}}$$

Posant
$$X = \frac{Q}{\sqrt{I}}$$
 et $Z = K_s \times S \times R_h^{\frac{2}{3}}$.

Formule de la revanche : $r = 0.2 + 0.15 \times Q^{1/3}$ (Formule de Lacey)

Pour faciliter les itérations, nous avons préparé ci-dessous un tableau récapitulatif qui présente les itérations effectuées jusqu'à obtenir un quotient conforme à la formule.

Tableau 20 : Calcul de la section du caniveau

Q (m3/s)	r	b (m)	Yn (m)	S (m ²)	Ks	Rh (m)	I	Z	X	V	V max	Condition
0,90	24	0,6	0,5	0,3	67	0,19	0,034	0,236	4,85	2,99	2,5	Non vérifiée
0,90	25	0,55	0,6	0,33	67	0,19	0,034	0,262	4,85	2,73	2,5	Non vérifiée
0,90	25	0,6	0,6	0,36	67	0,20	0,034	0,322	4,85	2,50	2,5	Vérifiée

En tenant compte de la revanche de 25 cm, les dimensions de 80×80 cm² sont retenues pour la section de notre caniveau, pour des raisons de sécurité.

III.5. Dimensionnement structural des ouvrages :

Dans cette section, nous présentons exclusivement le prédimensionnement et les résultats du dimensionnement structurel de tous les ouvrages hydrauliques types de notre étude à savoir un dalot 2×2×1; 1×2×1, 1×2×1,5 et un caniveau 80×80. Vous trouverez également des tableaux récapitulatifs des armatures retenues.

Les notes de calcul détaillées ainsi que les plans de ferraillages sont disponibles en annexe (xlix).

c. Hypothèses et règles de calcul:

Les calculs de ferraillage des ouvrages ont été réalisés conformément aux règles techniques de conception définies par le BAEL 91, modifié 1999 [10]et a été effectué par bande de largeur 1 m.

Les surcharges routières ont été déterminées conformément aux prescriptions du titre II du fascicule 61 du cahier des prescriptions communes.[11]

III.5.1. Ouvrages de franchissement (Dalots) :

a. Pré dimensionnement du dalot :

Les épaisseurs des différents éléments constitutifs du dalot sont déterminées à l'aide la relation suivante :

$$e = \frac{L}{32} + 0.125$$
; Avec L: la dimension maximale de la cellule hydraulique

$$e = \frac{2}{32} + 0.125 = 0.19 m$$

Pour faciliter la mise en œuvre de l'ouvrage, nous retenons une épaisseur de 25 cm pour les éléments constitutifs de tous les dalots.

b. Dimensionnement structural du dalot :

Les résultats du dimensionnement structural des dalots sont consignés dans les tableaux cidessous.

Tableau 21: Résultats de la détermination des sections armatures des dalots

TYPE d'ouvrage	Éléments du dalot	Sollicitations			Aciers principaux	Espacement (cm)	Aciers transversaux	Espacement (cm)
		Moments	Travée	32,5	7HA12 soit 7,92 cm2	15	4 HA 10 (3,14 cm2)	25
	Tablier	fléchissants (KN,m/ml)	Appuis int	62,1	12 HA 14 soit 16,93	10	8 HA 10 (6,28 cm2)	15
			Appuis rives	28,3	6 HA 14 soit 9,24 cm2	15	4 HA 10 (3,14 cm2)	25
Dalot :	Radier	Moments fléchissants (KN,m/ml)	Travée	37,6	7 HA 14 soit 10,78 cm2	15	4 HA 10 (3,14 cm2)	25
2X2X1			Appuis int	59,9	11 HA 14 soit 13,85 cm2	10	6 HA 10 soit 4,71 cm2	20
			Appuis rives	36,1	9 HA 12 soit (10,18 cm2)	10	6 HA 10 soit 4,71 cm2	20
	Piédroits de rive	Effort normal KN/ml	Travée	138,5	13 HA 12 soit 14,70 cm2	10	7 HA 10 soit 4,71 cm2	20
	Piédroit intermédiaire	Effort normal KN/ml	Travée	347,7	5 HA 10 soit 3,93 cm2	20	4 HA 10 (3,14 cm2)	25

iĘ	ÉTUDE TECHNIQUE DES TRAVAUX DE RÉHABILITATION DE LA RN1 EST SECTION DOSSO-DOGONDOUTCHI (133,60 KM) : TRONÇON DU PK 20+000 AŪ PK 30+000 (10 KM) AU NIGER	DUREAU D' ETUDES ET INGENIEURS CONSEILS

TYPE d'ouvrage	Éléments du dalot	Sollicitations		Aciers principaux	Espaceme nt (cm)	Aciers transversaux	Espacement (cm)	
Dalot : 1X2X1	Tablier	Moments fléchissants (KN,m/ml)	Travée	43,4	12HA12 soit 12,44 cm2	10	5 HA 10 (3,93 cm2)	20
			Appuis rives	25,7	7 HA 12 soit 7,92 cm2	15	4 HA 10 (3,14 cm2)	25
	Radier	Moments fléchissants (KN,m/ml)	Travée	37,4	10 HA 14 soit 15,39 cm2	10	6 HA 10 (4,71 cm2)	20
			Appuis rives	55,2	9 HA 12 soit 10,18 cm2	10	4 HA 10 soit 3,14 cm2	25
	Piédroits de rive	Effort normal KN/ml	Travée	138,5	13 HA 12 soit 14,70 cm2	10	7 HA 10 soit 4,71 cm2	20
Dalot : 1X2X1,5	Tablier	Moments fléchissants (KN,m/ml)	Travée	38,4	10 HA12 soit 7,92 cm2	10	4 HA 10 (3,14 cm2)	25
			Appuis rives	30,70	8 HA 12 soit 9,42 cm2	15	4 HA 10 (3,14 cm2)	25
	Radier	Moments fléchissants (KN,m/ml)	Travée	47,4	12 HA 12 soit 13,57 cm2	10	6 HA 10 (4,71 cm2)	20
			Appuis rives	39,0	10 HA 12 soit (11,31 cm2)	10	6 HA 10 soit 4,71 cm2	20
	Piédroits de rive	Effort normal KN/ml	Travée	138,5	13 HA 12 soit 14,70 cm2	10	7 HA 10 soit 4,71 cm2	20

Les détails des calculs sont fournis en annexe III (xlix).

III.5.2. Ouvrage de drainage (Caniveau) :

a. Pré dimensionnement du caniveau :

Le prédimensionnement d'un caniveau permet déterminer les épaisseurs des éléments constitutifs (dallette, radier, piédroits) de ce dernier. Il est effectué par les formules suivantes :

$$e = \frac{B}{32} + 0.125$$

$$e = \frac{0.80}{32} + 0.125 = 15 \text{ cm}$$
;

- Epaisseurs de la lèvre de feuillure : a = e/2 = 7.5 cm ;
- Redent de la feuillure : h = e-a = 7.5 cm;
- Largeur de la dallette : O = B+2h= 95 cm;
- Epaisseur de la dallette, du radier, du piédroit : e = 15 cm;
- Hauteur libre et ouverture du caniveau : H= 80 cm ;

b. Dimensionnement structural du caniveau :

* Résultat du dimensionnement structural du caniveaux :

Les résultats du dimensionnement du caniveau sont présentés dans le tableau ci-après :

Tableau 22: Les sections d'armature du caniveau

Dimensionnement du Caniveau 80×80							
	Désignation	Dallette	Piédroits	Radier			
	Section théorique (cm²)	6,03	1,63	14,25			
Aciers principaux	Section choisie	6HA12	6HA10	10HA14			
principauni	Espacements (cm)	15	15	10			
Aciers de répartitions	Section théorique (cm²)	2,01	0,54	4,67			
	Section choisie	6HA10	5HA10	6HA10			
	Espacements (cm)	15	25	15			

La note de calcul du caniveau ainsi que le plan du ferraillage sont fournis en annexe (lxxxi).

III.6. Etude de la conception géométrique de la route :

III.6.1. Données topographiques :

Les relevés topographiques du tronçon ont été effectués en se référant au nivellement général du Pays (Niger). Ces données ont été traitées afin de permettre la conception géométrique assistée par ordinateur grâce aux logiciels Piste, Covadis et Autocad.

Présentation du fond de plan topographique :

Une analyse des données topographique du tronçon révèle que les levés de détails ont été réalisés le long du tronçon et complétés pour intégrer tous les éléments nécessaires à l'étude. Les profils sont espacés d'environ 25 m, sauf aux points particuliers.

III.6.2. Norme géométrique :

La conception suit les normes en vigueur selon la catégorie de la route. Pour ce projet, nous appliquons la normes ARP (Aménagement des Routes Principales).

a. Type et catégories de routes selon la norme ARP :

Selon le document ARP, les routes sont classées en trois types :

- Routes de type L : ce sont des routes de grandes liaisons, assimilables aux autoroutes ;
- Route de type T : ce sont des routes prévues pour des trafics de transit sur moyenne ou longue distance.
- Route de type R : ce sont des routes multifonctionnelles interurbaines.

Dans ce projet et conformément au TDR, la route retenue est de type T100 avec une vitesse de référence de 100 km/h en rase campagne, et de type R80 avec une vitesse de 80 km/h en traversée d'agglomération.

III.6.3. Paramètres et caractéristiques de conception :

La conception géométrique est basée sur les paramètres suivants pour les vitesses de 80 km/h et 100 km/h :

Tableau 23 : Caractéristique géométrique du tracé

Désignation des paramètres	80 km/h	100 km/h
Dévers maximal	7%	7%
Rayon au dévers minimal (7%)	240 m	425 m
Rayon minimal normal	425 m	665 m
Rayon au dévers minimal (2,5%)	650	900 m
Rayon en plan non déversé	900	1300 m
Déclivité maximale	6%	5%

Source : Aménagement des routes principales (ARP)

a. Tracé en plan:

Le tracé en plan correspond à la projection de l'axe de la route sur un plan horizontal. Il se compose d'alignements droits et de courbes circulaires ou progressives. Pour cette étude, nous avons obtenu un tracé de 10 000 m comprenant :

- 9 alignements droits;
- 10 courbes dont 2 clothoïdes.

Un listing des éléments d'axe en plan est présenté dans le tableau disponible en annexe III.

b. Profil en long:

Le profil en long est une coupe verticale le long de l'axe du projet, présentée à des échelles différentes pour illustrer le relief (1/2000 en abscisse et 1/200 en ordonnée). Il inclut des pentes rectilignes et des raccordement circulaires.

Les contraintes considérées sont :

- Mise hors d'eau du corps de la chaussée ;
- Calage des ouvrages d'assainissement ;
- Epaisseurs de la couche de renforcement ;
- Respect des normes géométriques.

c. Profil en travers:

Le profil en travers est une coupe perpendiculaire à l'axe. Dans cette étude, deux types de profil en travers sont prévus :

• Profil en travers type 1 (petite agglomération): chaussée bidirectionnelle de 7,2 m, deux accotements en monocouche de 1,5 m de chaque côté, une pente transversale de 2,5% sur la chaussée et sur les accotements, deux caniveaux de 0,80 m x 0,80 m de part et d'autre de la chaussée et deux lampadaires.

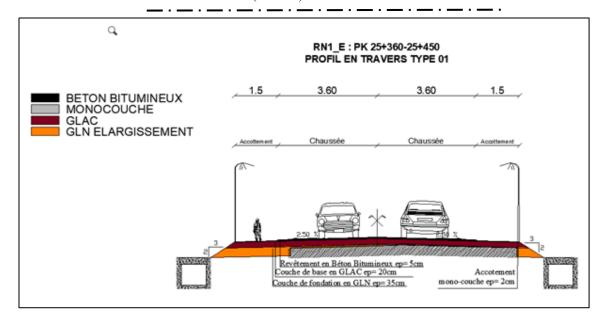


Figure 6 : Profil en travers type 01 (petite agglomération)

• Profil en travers type 2 (rase campagne) : chaussée bidirectionnelle de 7,2 m, deux accotements en monocouche de 1,5 m de chaque côté une pente transversale de 2,5% sur la chaussée, deux lampadaires et fossés.

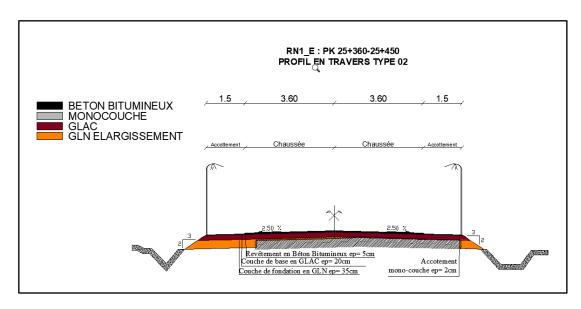


Figure 7: Profil en travers type 02 (rase campagne)

III.6.3. Aménagements :

a. Aires de stationnement :

Des aires de stationnement permettent de réduire les risques d'accidents liés à la fatigue et minimiser les dégradations dues aux dépannages des véhicules.

Ainsi, dans le cadre de cette étude, nous proposons l'aménagement de deux aires de stationnement de type double demi-encoche : l'une située au PK 25+250 à l'entrée du village Rabé Santche et l'autre au PK 27+650 à l'entrée du village de Tourobon.

b. Amorces routières:

Nous proposons l'aménagement de trois amorces routières situées aux points kilométriques suivants : PK 24 +725 (à l'entrée du village Rabe Santche), PK 27+250 et PK 27+925 (à l'entrée et à la sortie du village Tourobon).

Ces amorces permettront de connecter les routes secondaires à la RN 1_Est tout en respectant les contraintes techniques suivantes :

- Largeur de la chaussée amorce : 7 mètres ;
- Longueur de la chaussée amorce : 15 mètres.

CHAPITRE IV: ETUDE COMPLEMENTAIRES

IV.1. SIGNALISATION ROUTIERE:

IV.1.1. Signalisation temporaire:

La signalisation temporaire est prévue pour être mise en place pendant la réalisation des travaux. Elle joue un rôle essentiel en garantissant la sécurité des usagers de la route ainsi que celle des équipes intervenant sur le chantier. Les dispositifs de signalisation envisagés incluent :[12]

- Signalisation de danger (panneau de type AK) : dans les zones particulièrement dangereuses, comprenant des panneaux avertissant d'une chaussée glissante, d'un risque de projection...;
- Signalisation de prescription (panneau de type B) : ces panneaux marquent le début et la fin des limitations de vitesse ;
- Signalisation d'indication (panneau de type K) : ces panneaux orientent et informent les usagers pendant les travaux.
- Signalisation individuelle : consistant en un équipement de sécurité complet destiné au personnel travaillant sur le chantier.

IV.1.2. Signalisation permanentes:

a. Signalisation verticale:

La signalisation verticale est constituée de panneaux installés en bord de la route, elle remplit trois fonctions principales [13]:

- Avertir les usagers des dangers imminents à l'aide de panneaux triangulaires ;
- Signaler des interdictions ou obligations via des panneaux ronds ;
- Fournir des indications ou des informations aux conducteurs tout au long de leur trajet à l'aide de panneaux rectangulaires.

Dans le cadre de ce projet de réhabilitation, un diagnostic des panneaux existants a révélé qu'ils sont pratiquement absents ou en très mauvais état. La démarche consistera donc à remplacer les panneaux dégradés et à en installer de nouveaux aux emplacements appropriés. Les types de panneaux retenus sont les suivants :

• Panneaux de type A : ces panneaux sont de forme triangulaires, destinés à signaler un danger, mesurant 1000 mm de côté;

- Panneaux de type AB: ces panneaux sont de forme triangulaires ou octogonaux (1000 mm ou 800 mm de côté), indiquant une intersection;
- Panneaux de type C: ils sont de forme rectangulaire, avec ou sans flèche, pour indiquer la direction ou la localisation.
- Panneaux de type EB: ils indiquent la présence d'agglomérations.

Tous les panneaux doivent être réfléchissants et conformes à la réglementation française en vigueur. De plus, pour éviter l'éblouissement, les panneaux doivent être orientés légèrement vers l'extérieur de la route. En agglomération, le bord du panneau doit se situer à au moins 1,50 m de la chaussée, et sa base à 1,50 m du sol, de plus la distance entre le panneau et l'extrémité des accotements doit être d'au moins 0,50 m, tandis que la base du panneau doit être située à 1,80 m au-dessus du niveau du sol.

Un tableau récapitulatif des panneaux utilisés dans cette étude est disponible en Annexe 44 : Ralentisseur retenu pour le projet.

b. Signalisation horizontale:

La signalisation horizontale comprend les marquages réalisés directement sur la chaussée. Ces marquages, généralement en bandes réfléchissantes blanches continues ou discontinues, sont destinés à orienter les conducteurs et à organiser la circulation. Selon la réglementation internationale, plusieurs types de marquages existent, parmi lesquels on distingue principalement :[14]

\Delta Lignes longitudinales:

- Lignes continues (infranchissables);
- Lignes discontinues, servant à délimiter les voies ou à avertir d'une ligne continue à venir, ou d'un risque de dépassement dangereux ;
- Lignes discontinues marquant le bord de chaussée.

Lignes transversales :

- Lignes continues pour signaler un stop;
- Lignes discontinues pour indiquer qu'il faut céder le passage.

❖ Autres marques :

- Passage piétons ;
- Zones de stationnement et autres zones protégées ;
- Flèches de direction ou de guidage.

La largeur des lignes de signalisation dépend de l'unité de mesure « U », qui varie en fonction du type de route. Pour ce projet, la largeur « U » est fixée à 6 cm. Les lignes longitudinales axiales auront une largeur de 2 U, soit 12 cm, tandis que les lignes de rives et transversales auront une largeur comprise entre 3 et 10 U, soit entre 18 et 60 cm.

IV.2. Sécurité routière :

IV.2.1. Dispositif de protection :

a. Ralentisseur:

Conformément à la *norme NF P 98-300*[15], deux types de ralentisseurs sont définis : le ralentisseur de type dos d'âne et celui de type trapézoïdal. Ces dispositifs sont généralement installés à l'entrée des agglomérations pour obliger les conducteurs à réduire leur vitesse à moins de 30 km/h.

Dans le cadre de cette étude, nous avons opté pour le ralentisseur de type trapézoïdal, qui sera conçu en conformité avec la réglementation française. Ce ralentisseur se distingue par son profil en long, constitué d'un plateau surélevé et de deux parties inclinées, appelées rampants. Sa forme trapézoïdale se trouve en (Annexe 44 : *Ralentisseur retenu pour le projet*).

b. Eclairage public solaire:

L'éclairage public joue un rôle important dans la sécurité routière en renforçant le confort des usagers tout en sublimant l'esthétique de la route. Pour ce projet, le choix s'est porté sur des lampadaires tout-en-deux, qui intègrent une technologie avancée d'éclairage public solaire.

Les spécifications techniques détaillées, accompagnées d'une illustration représentative de ces lampadaires, sont présentées en (Annexe 44 : *Ralentisseur retenu pour le projet*).

IV.3. NOTICE D'IMPACT ENVIRONNEMENT ET SOCIAL:

La présente notice d'impact environnement et social (NIES) vise à évaluer les impacts environnementaux et sociaux liés à la réhabilitation du tronçon RN1_Est, allant du Dosso à Dogondoutchi au Niger. Ce projet s'inscrit dans une dynamique de développement des infrastructures routières afin de renforcer la mobilité et l'économie locale tout en minimisant les risques environnementaux et sociaux.

Cette NIES fournit une analyse synthétique et précise des impacts potentiels, ainsi que des mesures préventives et correctives.

IV.3.1. Cadre politique, juridique et institutionnel :

La protection de l'environnement constitue un pilier majeur des politiques publiques au Niger, contribuant directement à la réalisation des objectifs de développement durables (ODD). Elle repose sur un cadre politique, juridique et institutionnel solide, destiné à prévenir et à limiter les impacts négatifs des activités de développement sur les populations et leurs biens.

a. Cadre politique:

Le Niger a mis en place plusieurs instruments stratégiques visant à promouvoir un développement durable et inclusif. Parmi ceux-ci, on peut citer :

- Le Plan National et l'Environnement pour un Développement Durable (PNEDD), élaboré en 1998, qui définit six programmes prioritaires ;
- La Stratégie Nationales des Transports (SNT 2016-2025) visant à moderniser le secteur des transports.

b. Cadre Juridique:

Le Niger a adhéré à plusieurs conventions internationales ayant trait à la gestion environnementale, notamment :

- La convention sur la Diversité Biologique (adoptée le 11 juin 1992 à Rio), qui stipule en son article 14 que chaque Etat signataire doit mettre en place des mécanismes d'évaluation environnementale pour tout projet susceptible d'affecter la biodiversité. Le Niger a ratifié cette convention le 25 juillet 1995;
- La convention n°161 de l'OIT, qui encadre les services de santé au travail, notamment aux articles 12 et 13
- La convention n° 148 DE L'OIT, qui vise à réduire les risques liés à la pollution de l'air, au bruit et aux vibrations sur les lieux de travail.
- La convention n° 155 de l'OIT, adoptée en 1993 par le Niger, portant sur la sécurité et la santé des travailleurs.

c. Cadre National:

Cadre juridique interne s'appuie sur divers textes législatifs et réglementaires relatifs à la gestion environnementale, parmi lesquels :

■ La Loi n°98-56 du 29 décembre 1998, définissant les principes généraux de la gestion environnementale.

- La Loi n°2018-28 du 14 mai 2018, précisant les principes fondamentaux de l'évaluation environnementale ;
- L'Arrêté n°140 du 27 septembre 2004, qui fixe les normes de rejet des déchets dans l'environnement.

d. Cadre institutionnel:

Plusieurs institutions jouent un rôle clé dans la protection et la préservation de l'environnement au Niger, notamment :

- Le Ministère de l'équipement : il supervise la conformité des travaux avec les normes en vigueur, tout en intégrant les enjeux environnementaux ;
- Le Ministère de l'Environnement et de la lutte contre la désertification, responsable de veiller à l'application des procédures nationales d'évaluation environnementale ;
- Le Ministère de l'emploi, du travail et de la protection sociale, qui s'assure du respect des réglementations relatives aux conditions de travail et à la sécurité des travailleurs ;
- Le Ministère des Mines : il gère les autorisations liées à l'exploitation des ressources minières et des carrières ;
- Les collectivités territoriales, impliquées dans les processus d'expropriation et d'indemnisation;
- Les chefferies traditionnelles : ils jouent un rôle important dans la conciliation des parties sur les plans coutumier, civil et commercial.

IV.3.2. Evaluation des impacts environnementaux et mesures d'atténuation :

Ce projet de réhabilitation, bien qu'il soit porteur de bénéfices potentiels, engendra également des impacts environnementaux, tant négatifs que positifs, à différents niveaux : local, régional et même sous-régional. Ces impacts, ont été identifiés grâce à une analyse approfondie, concernant les éléments sensibles tels que le sol, l'eau, la flore, l'air, le paysage, ainsi que la santé et la sécurité des populations.

Pour atténuer ces impacts, des mesures seront mises en œuvre à chaque étape du projet, de la planification à l'exploitation. Ces mesures visent à réduire les effets négatifs tout en maximisant les bénéfices pour l'environnement et la pollution locale.

Les résultats de cette analyse et les mesures proposées sont disponibles en annexe I (cxxiii).

IV.4. ESTIMATION DU COUT DU PROJET:

L'estimation financière d'un projet routier constitue une étape importante pour l'ensemble des parties impliquées dans sa mise en œuvre.

Elle a été réalisée en s'appuyant sur des prix unitaires obtenus auprès des services techniques de l'administration des travaux publics. Ces prix proviennent de marchés en cours.

Dans le cadre de cette étude, les travaux ont être catégorisées comme suit :

- Installation et repliement de chantier ;
- Travaux préparatoires ;
- Terrassement pour élargissement ;
- Chaussée;
- Revêtement;
- Assainissement et drainage;
- Signalisation;
- Environnement;
- Travaux connexes.

Tableau 24 : Sous-total des prix des travaux du projet

N°Poste	Désignations	Prix				
0	INSTALLATION ET REPLIEMENT DE CHANTIER	885 400 000				
100	TRAVAUX PREPARATOIRES	420 902 476				
200	TERRASSEMENT POUR ELARGISSEMENT	478 260 000				
300	CHAUSSEE	3 355 176 550				
400	REVETEMENT	1 074 062 600				
500	500 ASSAINISSEMENT ET DRAINAGE					
600	600 SIGNALISATION					
700	700 ENVIRONNEMENT					
800	TRAVAUX CONNEXES	68 000 000				
	MONTANT TOTAL HT (FCFA)					
	1 289 166 083					
	MONTANT TOTAL TTC (FCFA)					

Le cout global de notre projet est de huit milliards soixante-quatorze millions deux cent cinquante mille sept cent vingt-neuf francs CFA toutes taxes comprises (8 074 250 729 FCFA TTC).

La figure ci-dessous illustre la répartition des prix du projet par poste. Elle vise à identifier le poste qui mobilise le plus grand coût des travaux :

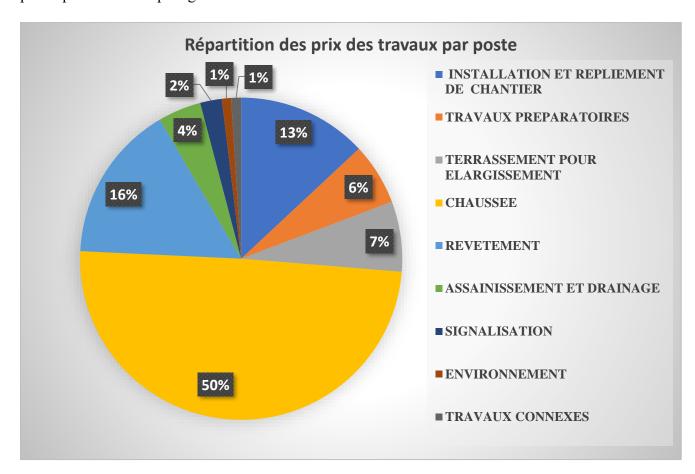


Figure 8 : Répartition des prix des travaux par poste

Commentaire: L'analyse du graphe met en évidence que les travaux de construction de la chaussée représentent plus de la moitié du budget total estimé du projet. Bien que ces travaux engendrent des coûts élevés, leur réalisation dans le strict respect des normes de construction et de mise en œuvre, ainsi que l'entretien régulier de la route, sont essentiels pour garantir sa durabilité et limiter l'apparition et l'aggravation des pathologies.

CONCLUSION:

Dans le cadre de cette étude portant sur la réhabilitation du tronçon PK 20+000 au PK 30+000 de la RN1_Est, section Dosso-Dogondoutchi, nos hypothèses initiales, basées sur l'état dégradé de la route et la nécessité d'une intervention technique rigoureuse, ont été confirmées par les données et analyses recueillies.

Nous avons démontré que ce tronçon, en raison de son rôle stratégique dans la connectivité nationale, requiert une réhabilitation complète conforme aux normes techniques actuelles. Nos résultats ont permis d'identifier les principales problématiques, telles que les dégradations avancées de la chaussée (indice de qualité **Q4**), l'insuffisance des ouvrages d'assainissement et les impacts environnementaux potentiels, et d'y apporter des solutions adaptées.

Les solutions techniques proposées incluent :

- Renforcement de la structure de la chaussée, avec l'utilisation des matériaux spécifiques comme le graveleux latéritique améliorée au ciment (GLAC) d'une épaisseur de 20 cm, associé à une couche de revêtement en béton bitumineux d'une épaisseur 5 cm.
- Elargissement de la chaussée, avec l'utilisation des matériaux identiques aux matériaux de la chaussée existante qui sont tout en graveleux latéritique naturel sur des épaisseurs de 35 cm dont 15 cm en couche de fondation avec un CBR supérieur à 40% et 20 cm en couche de base avec un CBR supérieur à 80 %.
- Amélioration des ouvrages hydrauliques par la construction de trois nouveaux ouvrages de section 1x2x1, rallongement d'un ouvrage existant de même section, ainsi que la démolition et reconstruction de quinze ouvrages avec des sections variées (1x2x1;1x2x1,5;2x2x1).
- Construction d'un caniveau de section 80 cm x 80 cm dans la traversée du village Rabé Santché, afin de mieux drainer les eaux pluviales.

Par ailleurs, l'estimation du trafic a permis de classer ce tronçon dans la catégorie de trafic T2, ce qui a guidé les choix techniques et dimensionnels de réhabilitation. Le coût total du projet a été estimé à **8 074 250 729 FCFA TTC**, reflétant une évaluation réaliste et cohérente des besoins.

Ces résultats démontrent que les objectifs fixés au départ ont été atteints, avec des propositions concrètes et viables pour la réhabilitation de ce tronçon. Cependant, des

interrogations subsistent concernant les mécanismes d'entretien à long terme et la minimisation des impacts environnementaux. Ces aspects méritent d'être approfondis dans des études futures pour garantir la durabilité des infrastructures.

En définitive, cette étude constitue une contribution significative à l'amélioration du réseau routier national et représente une avancée majeure pour le développement économique et social des zones desservies par la RN1_Est.

REFERENCE BIBLIOGRAPHIQUE:

- [1] Ministre du plan Institut National de la statistique, « MONOGRAPHIE REGIONALE DE DOSSO ». Octobre 2016.
- [2] Direction régionale de l'institut national de la statistique, « DOSSO EN CHIFFRES 2023 ».
- [3] Ministre de l'Équipement des Transports et du logement, « Catalogue des dégradations de surface des chaussées ». LCPC, mars 1998.
- [4] L. Tristan, « AUTOPSIE D'UNE CHAUSSÉE ». LCPC.
- [5] L. M.G, « MANUEL POUR LE RENFORCEMENT DES CHAUSSEES SOUPLES EN PAYS TROPICAUX ». CEBTP-L.C.P.C, 1971.
- [6] Association Française de Normalisation (AFNOR), *Dimensionnement structurel des chaussées routières Application aux chaussées neuves*, Norme homologuée NF P 98-086, mai 2019.
- [7] L. G., « Guide pratique de dimensionnement des chaussées pour les pays tropicaux ». Paris cedex, 1984.
- [8] FAO, « Manuel pour l'estimation des crues et des apports annuels pour les petits bassins versants non jaugés de l'Afrique sahélienne et tropicale sèche ». 1996.
- [9] V. T. NGUYEN, « Hydraulique routière ». Ministère du développement et la coopération, janvier 1979.
- [10] Collectif, sous la direction du CSTB (Centre Scientifique et Technique du Bâtiment), règles BAEL 91 révisées 99 : Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites, Document Technique Unifié (DTU) DTU P18-702, février 2000.
- [11] Ministère de l'équipement et du logement, « Fascicule N°61 CONCEPTION, CALCUL ET EPREUVE DES OUVRAGES D'ART ». Programmes de charges et épreuves des ponts routes.
- [12] OPP BTP, « SIGNALISATION TEMPORAIRE ». Juillet 2010.
- [13] Direction de la voirie et des déplacements, « GUIDE LA SIGNALISATION VERTIFCALE A PARIS ». Section technique et d'assistance Réglementaire, 21 janvier 2015.
- [14] Direction de la voirie et des déplacements, « GUIDE DE LA SIGNALISATION A PARIS ». Section technique et d'assistance Réglementaire, 11 mars 2015.

[15] Directeur Général de l'AFNOR, Ralentisseurs routiers de type dos d'ane ou type trapézoïdal, 16 juin 1994.

ANNEXE:

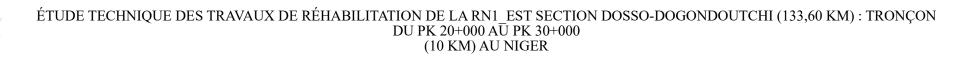
Liste des Annexes:

Annexe I : Présentation de la structure d'accueil et de la zone d'étude

Annexe II : Diagnostique de la route

Annexe III: Etude technique

Annexe IV : Etude complémentaire



2iE

ANNEXE I : Présentation de la zone d'étude et du projet

Objectifs spécifiques	Activités	Données de base	Matériels utilisés	Résultats attendus	
Présentation générale de la structure d'accueil, de la zone d'étude et du projet	Collecte des données nécessaires sur le terrain ; Analyses et interprétation de ces données	Données statiques en provenance des administrations publiques sur la zone d'étude et son environnement (Ins ; DRM.)	Google earth et Arcgis	Une présentation large, claire et précise du projet et de la zone d'étude.	
Auscultation de la chaussée existante	Collecte des données de la campagne de reconnaissance du sol et du relevé visuel; quantification des dégradations, déterminations de l'indice de dégradation et de qualité,	Les résultats des essais géotechniques ; Le relevé visuel.	Application Scout, Excel, appareil photo, mètre	Une application de la méthode de VIZIR; Indice de dégradation et note de qualité Q.	
Etude géométrique et dimensionnement structurale de la route	Collecte et analyse des données issues des levées topo ; Analyse de la campagne de pesage et comptage et détermination de la classe de trafic ; Choix de méthode de dimensionnement et proposition d'une solution de renforcement ; Vérification de la solution obtenue.	Les profils en long, le profil en travers et le tracé en plan ; Les résultats issus de la campagne de pesage et comptage ; Les résultats de l'auscultation ; Les essais géotechniques	Autocad, Google earth, GPS utility, Excel, Alizé Lcpc	Profil en long, en travers et tracé en plan et la classe de trafic ; Obtention de solution de renforcement ; Détermination des contraintes admissibles	

Annexe 1 : Cadre logique

2	i	E	
	Ū		

Objectifs spécifiques	Activités	Données de base	Matériels utilisés	Résultats attendus	
Diagnostic des ouvrages hydraulique et dimensionnement des ouvrages supplémentaires	Analyse de l'état des ouvrages existant	Le schéma itinéraire ; Donnés hydrologiques	Scout, GPS utility, Google Earth, Global Mapper, Excel, Appareil GPS, Pybar	Proposition des solutions et renforcement des ouvrages endommagés, Ouvrages hydraulique additifs dimensionnés	
Signalisation et sécurité routière	Étude des signalisations nécessaires ; Étude de la sécurité au chantier	Document des normes applicable au Niger	Autocad, Covadis	Type et emplacement des signalisations verticales et horizontales	
Notice d'impact environnementale	Identification et évaluation des impacts environnement	Document indiquant les normes applicables au Niger ; Loi portant sur la protection de l'environnement	Excel et Word	Identification des impacts positifs et négatif; Proposition des Mesures d'atténuation et de bonification.	
Evaluation du coût du projet	Devis quantitatif et estimatif du projet	Les résultats des études précédentes	Excel et Word	Coût global des travaux	

ANNEXE II: DIAGNOSTIQUE DE LA ROUTE:

1. INVENTAIRE DES PATHOLOGIES OBSERVEES SUR LA CHAUSSEE :

1.1 <u>Dégradation de surface :</u>

a. Nids de poule :

- **Définition :** c'est une cavité circulaire ou ovales, formées par enlèvement du matériau au niveau des axes de passage.
- Causes: éclatement des faïençages; défauts dans la couche de roulement ou d'interface; poches d'argile, drainage inadéquat.
- Evolution et interventions : stade 1 : profondeur < 5 cm → surveillance ; stade 2 : série de cavités profondes → réfection après pose d'une couche d'accrochage.

Annexe 2 : Nid-de-poule de gravité au PK 26+650

b. Epaufrures:

- **Définition**: Cassure du revêtement aux rives.
- Causes: largeur insuffisante de la bande revêtue (< 6 m); érosion des accotements créant un escalier.

Evolution et interventions: stade 1 : marche d'escalier légère → surveillance; stade
 2 : cassure 5-10 cm→ rechargement des accotements; stade 3 : cassure > 15 cm →
 rechargement et réfection de la couche de roulement.

Annexe 3 : Épaufrure de gravité 1 au PK 27+857

c. Ressuage:

- **Définition :** apparition d'excès de liant en surface.
- Causes: surdosage en liant ou formulation incorrecte; remontée du liant à cause de sur-compactage ou chaleur excessive.
- Evolution et interventions: stade 1 : ressuage visibles → surveillance; stade 2 : recouvrement de gravillons → sablage; stade 3 : bourrelets → renouvellement du tapis d'usure.

Annexe 4 : Ressuage de gravité 2 au PK 24+000

1.2 Dégradations structurelles :

1.2.1 <u>Déformations</u>:

a. Affaissement:

- **Définition :** dépression localisée de forme variable, se manifestant soit au niveau de l'axe de la chaussée, soit sur ses bords.
- Causes : sous-dimensionnement ponctuel (épaisseur insuffisante des couches de base, portance inadéquate de la plateforme) ou mauvais drainage ; surcharge localisée due au trafic, défauts de mise en œuvre.
- Evolution et interventions : si la profondeur < 15 cm : observation sans intervention ; si la profondeur >15 cm : apparition de fissures et amorce de nid-de-poule : réfection localisée aux enrobés (point à temps).

b. Ornières:

- **Définition :** déformation transversale de bandes de roulement, affectant généralement des tronçons longs.
- Causes : tassement progressif des couches dû à la fatigue engendrée par le trafic cumulatif ou instabilité des assises.
- Evolution et interventions: profondeur < 5 cm: surveillance; profondeur 5-15 cm: reflachage aux enrobés.

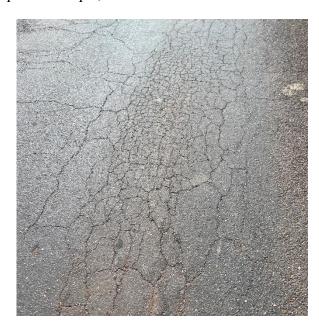
1.2.2 <u>Fissurations:</u>

a. Fissures transversales:

- **Définition :** ligne de rupture perpendiculaires à l'axe de la route, l'espacement variable, pouvant toucher les couches de roulement et de base.
- Causes: retrait hydraulique (ciment) ou thermique (surdosage en ciment)
- Evolution et interventions : stade 1 : apparition de fissures → surveillance ; stade 2 : faïençage initial avec nids-de-poule → scellement ou colmatage.

b. Fissures longitudinales:

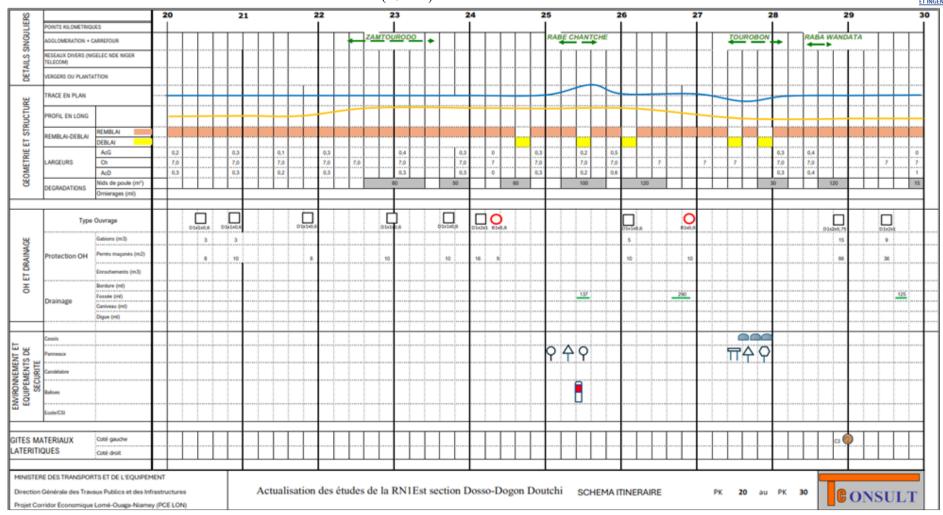
- Définition: fissures parallèles à l'axe de la route, apparaissant dans les bandes de roulement ou en bordures.
- Causes : contraintes de flexion excessives dans les couches traitées ; raccordement mal exécuté entre bandes de roulement.
- Evolution et interventions : stade 1 : fissures légères → surveillance ; stade 2 : début de faïençage →scellement ou colmatage.



Annexe 5 : Fissure longitudinale de gravité 1 au PK 27+343

c. Faïençage:

- **Définition :** réseau de fissures recouvrant la surface, souvent dans la couche de roulement.
- Causes : défauts de mise en œuvre, drainage inadéquat, sous-dimensionnement.
- Evolution et interventions : densité < 3ml/m² : surveillance ; densité < 5ml/m² : réparation locale et point à temps ; densité > 10 ml/m² : réfection de la chaussée.


Annexe 6 : Faïençage de gravité 2 au PK 21+855

2. METHODE VIZIR:

Vous trouverez ci-dessous les démarches d'évaluation de l'état de la route :

Annexe 7 : Schéma itinéraire

Annexe 8 : Les dégradations quantifiées sur le tronçon

Nous rappelons ci-dessous les définitions relatives à la prise en copte de la gravité et de l'entendue de la fissuration ainsi que de la déformation :

Gravité de la fissuration :

• Absence: 1

• Fissures fines longitudinales : 2

• Fissures continues, ramifiées ou ouvertes : 3

• Fissures ramifiées ouvertes/ Faïençages : 4

Gravité de la déformation :

• Absence: 1

• Flèche inférieure à 20 mm : 2

• Flèche comprise entre 20 et 40 mm : 3

• Flèche supérieure à 40 mm : 4

Etendue de la fissuration et de la déformation :

• Inférieure à 10% : 1

• Comprise entre 10 à 50% : 2

• Comprise à 50 % : 3

Les tableaux d'évaluation des dégradations se trouvent ci-dessous :

- Tableau de la détermination des indices (fissuration et déformation) :

Étendu	1	2	2	
Gravité	I	2	3	
1	1	2	3	
2	2	3	4	
3	3	4	5	

Annexe 9 : Tableau de détermination des indices

• Détermination d'indice de fissuration :

PK	20	21	22	23	24	25	26	27	28	29	30
ETENDUE	3	3	3	3	3	3	3	3	3	0	0
GRAVITE	1	1	1	1	1	1	1	1	1	0	0
IF	3	3	3	3	3	3	3	3	3	0	0

• Détermination d'indice de déformation :

PK	20	21	22	23	24	25	26	27	28	29	30
ETENDUE	3	3	3	3	3	3	3	3	3	3	3
GRAVITE	2	3	1	1	1	1	1	1	1	1	1
ID	5	5	3	3	3	3	3	3	3	3	3

Les mesures de déflexion :

Zone 1:

Actualisation des études de faisabilité économique et les études techniques détaillées avec production du dossier d'appel d'offres (DAO) pour les travaux de remise à niveau de la RN1_Est section Dosso-Dogondoutchi longue de 133,60 km **DEFLEXIONS ELASTIQUES** PK21+450 au Pk19+450 couche de: Revêtement Date: 06/08/2024 Deflexions totales Déflexions Déflexions Déflexions élastiq Position résiduelles lues OBSERVATION ues (mm) es (1/100 mm (mm) (1/100 mm) (1/100 mm) 21,450 Α 0,04 8 0,00 0 8 0,28 56 0,06 21,250 G 12 44 0,10 21,050 D 0,3 60 20 40 20.850 Α 0.30 60 0,10 20 40 G 0,17 -0,03 -6 40 20,650 34 20,450 D 0,23 46 0,02 4 42 -0,05 20,250 Α 0,21 42 -10 52 G 0,14 28 0,00 0 28 20,050 19,850 D 0,3 60 0,04 8 52 0,3 0,10 19,650 Α 60 20 40 19,450 0,17 34 0,00 0 34 moyenne (1/100 mm 38,18 Ecart type 12,15 D90

Annexe 10 : Résultat de la déflexion caractéristique dans la zone 1

D90=MOY+1.3 (ECART TYPE)

Zone 2:

Actualisation des études de faisabilité économique et les études techniques détaillées avec production du dossier d'appel d'offres (DAO) pour les travaux de remise à niveau de la RN1_Est section Dosso-Dogondoutchi longue de 133,60 km Techni consult **DEFLEXIONS ELASTIQUES** PK23+650 au Pk21+650 Date: 06/08/2024 couche de: Revêtement flexions totales Deflexions totale Déflexions Déflexions Déflexions élastique OBSERVATION PK Position réelles (1/100 mr (1/100 mm) (1/100 mm) ues (mm) (mm) 23,650 0,24 0,10 Α 48 0,18 0,09 23,450 G 36 18 18 0,18 23,250 D 36 -0,02 -4 40 23,050 Α 0,18 36 0,00 0 36 22,850 G 0 0 -0,03 -6 6 D 0,28 56 0,14 28 28 22,650 G 0,13 0,06 12 14 22,450 26 22,250 D 0,28 56 0,10 20 36 22,050 Α 0,14 28 0,04 8 20 21,850 G 0,25 50 0,04 42 0,00 0.23 21.650 D 46 0 46 moyenne (1/100 mm 28,55 Ecart type 12.78 D90 45,16 D90=MOY+1.3 (ECART TYPE)

Annexe 11 : Résultat de la déflexion caractéristique dans la zone 2

Zone 3:

Actualisation des études de faisabilité économique et les études techniques détaillées avec production du dossier d'appel d'offres (DAO) pour les travaux de remise à niveau de la RN1_Est section Dosso-Dogondoutchi longue de 133,60 km **DEFLEXIONS ELASTIQUES** couche de: Revêtement PK25+850 au Pk23+850 Date: 06/08/2024 OBSERVATION PK Position résiduelles lues elles réelles lues (mm) réelles (1/100 mm (mm) (1/100 mm) (1/100 mm) 0,19 0,05 25,850 G 38 10 25,650 0,1 0,05 10 10 0.2 0.03 25,450 40 34 Α 6 25,250 G 0,20 40 0,02 36 25,050 D 0,21 42 0,05 10 32 0,21 0,01 24,850 2 40 Α 42 24,650 G 0,19 38 0,05 10 28 24,450 D 0,15 30 0,05 10 20 0,28 0,18 24,250 56 36 20 0,24 0,02 4 44 24,050 48 G 23,850 0.09 18 0,02 4 14 moyenne (1/100 mm 27,82 Ecart type 10.79 D90 D90=MOY+1.3 (ECART TYPE) 41,84

Annexe 12 : Résultat de la déflexion caractéristique dans la zone 3

Zone 4:

Actualisation des études de faisabilité économique et les études techniques détaillées avec production du dossier d'appel d'offres (DAO) pour les travaux de remise à niveau de la RN1_Est section Dosso-Dogondoutchi longue de 133,60 km **DEFLEXIONS ELASTIQUES** PK28+050 au Pk26+050 Date: 06/08/2024 couche de: Revêtement Deflexions tota Déflexions Déflexions Déflexions élastique PK Position résiduelles lue OBSERVATION réelles (1/100 mm) (1/100 mm) (1/100 mm) lues (mm) (mm) 28,050 G 0,24 48 0,10 20 28 27,850 D 0,27 54 0,00 0 54 27,650 Α 0,2 40 0,13 26 14 0,07 27,450 G 0,20 40 14 26 27,250 D 0,23 46 0,10 20 26 -0,03 27,050 0,2 40 -6 46 0,03 26,850 G 0,14 28 6 22 0,31 0,05 26,650 D 62 10 52 26,450 G 0,15 30 -0,03 -6 36 26,250 D 0,23 46 0,09 18 28 26,050 Α 0,2 40 0,08 16 24 moyenne (1/100 mm 32.36 Ecart type 12,99 D90 D90=MOY+1.3 (ECART TYPE) 49.25

Annexe 13 : Résultat de la déflexion caractéristique dans la zone 4

Zone 5:

D90

Actualisation des études de faisabilité économique et les études techniques détaillées avec production du dossier d'appel d'offres (DAO) pour les travaux de remise à niveau de la RN1_Est section Dosso-Dogondoutchi longue de 133,60 km

34,00

DEFLEXIONS ELASTIQUES

couche d	le: Revête	ment	PK30-	+450 au Pk	28+250	Date: 06/08/2024		
PK	Position	Déflexions totales	Deflexions totales réelles (1/100 mm)	Déflexions résiduelles lues (mm)	Déflexions residuelles réelles (1/100 mm)	Déflexions élastiques (1/100 mm)	OBSERVATION	
30,250	D	0,1	20	0,08	16	4		
30,050	Α	0,27	54	0,27	54	0		
29,850	G	0,13	26	-0,01	-2	28		
29,650	D	0,14	28	-0,01	-2	30		
29,450	Α	0,18	36	0,02	4	32		
29,250	G	0,12	24	0,04	8	16		
29,050	D	0,16	32	0,11	22	10		
28,850	Α	0,19	38	0,13	26	12		
28,650	G	0,25	50	0,15	30	20		
28,450	D	0,13	26	0,00	0	26		
28,250	Α	0,15	30	-0,01	-2	32		
moyenne	(1/100 mm					19,09		
Ecart type	9					11,47		

Annexe 14 : Résultat de la déflexion caractéristique dans la zone 5

D90=MOY+1.3 (ECART TYPE)

PK INDICES	20+000	21+000	22+000	23+000	24+000	25+000	26+000	27+000	28+000	29+000	30+000
INDICE DE FISSURATION « IF » (FISSURES ET FAIENCES)	3	3	3	3	3	3	3	3	3	0	0
INDICE DE DEFORMATION « ID » (AFFAISSEMENTS ET ORNIERES)	5	5	3	3	3	3	3	3	3	3	3
INDICE DE DEGRADATION	7	7	5	5	5	5	5	5	5	4	4
FACTEUR CORRECTIF	0	0	0	0	0	0	0	0	0	0	0
NOTE FINALE DE Is	7	7	5	5	5	5	5	5	5	4	4
ZONAGE			I	I	I	I		IV		V	
ETAT APPARENT	Très déformé et fissuré	Très déformé et fissuré	Déformé et fissuré	Déformé et Fissuré	Déformé et Fissuré						
DEFLEXION	53,97	53,97	45,16	45,16	41,84	41,84	49,25	49,25	49,25	34	34
CLASSE DE DEFLEXION	Moyenne	Moyenne	Moyenne	Moyenne	Moyenne	Moyenne	Moyenne	Moyenne	Moyenne	Faible	Faible
INDICE DE QUALITE Qi	Q4	Q4	Q4	Q4	Q4	Q4	Q4	Q4	Q4	Q3	Q3
SOLUTION				REI	NFORCEMI	ENT				INDETERM	IINATION

DECISION:	LA CHAUSSEE SERA RENFORCEE			
TOURCENTAGE ZONE ATTECTEE	80%	20%		
POURCENTAGE ZONE AFFECTEE	Q4	Q3		

Justification du renforcement :

La justification du renforcement consiste à vérifier les hypothèses. Le tableau ci-dessous regroupe ces hypothèses.

Paramètres	Entretien	Renforcement
Durée de vie résiduelle (ans)	≥7ans	<7 ans
Indice de qualité	Q1, Q2	Q4, Q5
Q3 et CBR à 98% de l'OPM de la		
base	≥80	<80

Source: Cours de renforcement dispensé en Semestre 8

Commentaire : Etant donné que les derniers travaux de réhabilitation de notre route datent de 2008, il est justifié de choisir une solution de renforcement, car la durée de vie de notre tronçon est inférieure à celle requise par l'hypothèse. De plus, les CBR à 98 % de notre couche de base étant inférieurs à 80, vérifie également la condition de renforcement.

3. DIAGNOSTIC DES OUVRAGES:

Vous trouverez ci-dessous les informations sur l'état actuel des ouvrages de la route :

Annexe 16 : Fissure de la tête du dalot au PK 21+384

Annexe 15: Ensablement du dalot au Pk 27+215

Annexe 17 : Buse obstruée au PK 29+625

Annexe 18 : Présence d'herbe dans le fossé au PK 24+640

N°	NATURE D'OH	TYPE D'OUVRAGE	Sens d'écoulement	PK	Observations
OH 1	Dalot	D1X1X0,60	D-G	20+640	L'ouvrage est moyennement bon dans sa structure, brisé au niveau des têtes, mais obstrué et fonctionne mal à cause de son ouverture étroite
OH 2	Dalot	D1X1X0,60	D-G	21+384	L'ouvrage est moyennement bon dans sa structure, brisé au niveau des têtes, mais obstrué et fonctionne mal à cause de son ouverture étroite
OH 3	Dalot	D1X2X0,80	G-D	21+850	Bon état
OH 4	Buse	B1X0,80	G-D	22+637	La buse est en bon état, mais obstruée, déformée et n'évacue pas
OH 5	Buse	B1X0,80	G-D	23+030	La buse est en mauvais état, obstruée, déformée et n'évacue pas bien
OH 6	Dalot	D1X2X1	D-G	23+875	L'ouvrage est moyennement bon dans sa structure, brisé au niveau des têtes, mais obstrué
OH 7	Dalot	D1X1X0,60	D-G	24+550	L'ouvrage est en bon état dans sa structure, mais obstrué et fonctionne mal à cause de son ouverture étroite
OH 8	Dalot	D1X2X1	D-G	25+037	Bon état juste obstrué
OH 9	Dalot	D1X2X1	D-G	25+845	Bon état et évacue bien, mais les murs en aile sont cassés
OH 10	Dalot	D1X1,5X0,75	D-G	26+590	Bon état
OH 11	Dalot	D1X2X1	D-G	26+830	Bon état mais juste obstrué
OH 12	Buse	B2X0,80	G-D	27+108	Les buses sont en mauvais état, obstruées, ensablées, déformées
OH 13	Dalot	D1X2X1	G-D	27+215	En bon état, mais ensablé et n'évacue pas les eaux
OH 14	Dalot	D1X1X0,60	D-G	28+145	L'ouvrage est en mauvais état dans sa structure, cassé en partie, étroit, ensablé a du mal à évacuer les eaux
OH 15	Buse	B2X0,80	D-G	29+062	L'ouvrage est en mauvais état, les buses sont obstruées, ensablées et n'évacuent pas bien les eaux
OH 16	Buse	B1X0,80	G-D	29+626	Buse complètement détruite

Commentaire : Toutes les buses seront retirées et remplacées par des dalots en respect des recommandations du termes de référence.

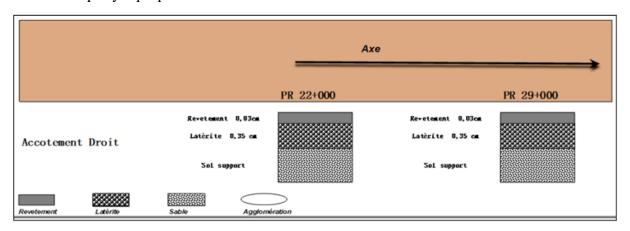
	OUVRAGES DE DRAINAGES LONGITUDINAUX											
N°	NATURE D'OD	TYPE		TION	P		LINEAIRE	OBSERVATIONS	INTERVENTIONS PROPOSES			
		D'OUVRAGE	D	G	Début	Fin						
1_1	Fossé maçonné	Trapézoïdale	X		24+640	24+860	220	En bon état juste Ensablé et herbacé	Fossé à démolir et à reconstruire en raison de l'élargissement de la chaussée,			
1_2	Fossé maçonné	Trapézoïdale		X	24+600	24+990	350	En bon état juste Ensablé et herbacé	Fossé à démolir et à reconstruire en raison de l'élargissement de la chaussée,			
2	Fossé maçonné	Triangulaire	X		24+860	24+970	110	En bon état juste Ensablé et herbacé	Fossé à démolir et à reconstruire en raison de l'élargissement de la chaussée,			
3	Fossé bétonné	Triangulaire	X		25+410	25+580	160	En bon état juste Ensablé et herbacé	Fossé à démolir et reconstruire du PK 26+200 au 26+700 par deux fossés maçonnés divergeant sur les deux cotés en raison de l'élargissement de la présence d'eau sur le coté gauche.			
4	Fossé bétonné	Triangulaire		X	27+421	27+621	200	En bon état juste un peu herbacé	Fossé à démolir et à reprendre par un caniveau du PK 27+421 au 27+821 (400 ml).			

COMMENTAIR	\mathbf{F}
	نا

Tous les fossés seront démolis et reconstruits en raison de l'élargissement. Leurs sections seront conversées, à l'exception du fossé 4 qui sera remplacé par un caniveau (à l'entrée d'une petite agglomération). La section de ce caniveau sera déterminée lors de l'étude hydraulique.

ANNEXE III: ETUDE TECHNIQUE:

***** Etude géotechnique :


Vous trouverez dans cette partie les suppléments de la partie géotechnique.

• Campagne géotechnique :

Annexe 19 : Recherche de gite de matériaux au PK 29+000

• Coupe synoptique.

Annexe 20 : Coupe synoptique

• Résultat des essais sur la plateforme Dosso-Dogondoutchi

	Identité		GRANULOMETRIE				MITES TERBERG	ОРМ		C.B.R. (+ 4j imb.)			Classificatio n		Classe sol support	
No	PK	Matériau x	2mm	1,0mm	0,5mm	80mm	LL	IP	γd (t/m3)	W %	90%	95%	100%	HRB	RTR	
1	22+000	Latérite	83,7	55,4	37,2	14,2	22,6	11,7	2,24	6,3	15	26	33	A-2-6	В6	<i>S4</i>
2	29+000	Sable	95,9	94,8	83,0	15,1	17,6	5,9	2,00	6,6	31	38	49	A-2-4	В5	<i>S</i> 5

MIN 26 MOYENNE 32 MAX 38

 Résultats d'identifications des matériaux de la chaussée du tronçon Dosso-Dogondoutchi

Identité					LIMI D'AT BEI	TER	OPM	C.B.R.(+ 4j imb.)			Classification					
PK	50 mm	20 mm	10 mm	2 mm	1,0 mm	0,5 mm	80 mm	LL	IP	γd (t/m3)	W%	95%	98%	100 %	HRB	RTR
Exigences C. Fondation	> 100%	75% à 100%	58% à 100%	28% à 65%	22% à 56%	18% à 50%	5 à 30%		< 30	> 1,80		> 40				
Exigences C. Base	> 100%	60% à 100%	35% à 90%	12% à 50%	10% à 40%	7% à 35%	4 à 20%		< 15	> 2,00		> 80				
29+000	100	93,7	71,9	36,0	32,0	27,2	10,7	28,8	12,7	2,23	6,8	21	35	43	A-2-6	В6

• Résultats d'identification des matériaux d'emprunt

Actualisation des études de faisabilité économique et les études techniques détaillées avec production du dossier d'appel d'offres (DAO) pour les travaux de remise à niveau de la RN1Est section Dosso-Doutchi longue de 136,5 km

Tronçon: RN1 Est section Dosso-Doutchi

Recapitulatif des Resultats du d'identification de Qualité du Matériaux de la chasse

			IDENTITE					GRAN	NULOMETR	IE			LIMI D'ATTE		OP	М	Mat	R.(+ 4j is irisux - š Naturelle		Ma	I.R.(+ 4j i térioux : le + 2% é		Choife	stion	Puissance exploitable (m3)
No	PK	Distance morte km	Positions	Mélanges	COORDONNES	50mm	20mm	10 mm	2mm	1,0mm	0,5mm	Hmm	LL.	IP	gd (t/m3)	W%	95%	98%	100%	95%	98%	100%	HRB	RTR	(2)
		E	xigences C. Fondatio			> 100%	75% à 100%	58% à 100%	28% à 65%	22% á 56%	18% a 50%	5 à 30%		< 30	> 1,80		>40			> 40					
			Exigences C. Base			>100%	60% à 100%	35% à 90%	12% à 50%	10% à 40%	7% à 35%	4 à 20%		<15	> 2,00		>80			> 80					
Gl	5+000	0,200	Côte Gauche	\$1+\$2+\$3 +\$4+\$5+\$	31P,527622, 1440269	100	80,2	53,8	33,6	31,8	29,2	13,1	21,1	8,3	2,08	8,4	75	94	110				A-2-6	В6	72900
				6÷\$7	1440209										2,19	9,4				185	264	311			
G2	12+100	1,200	Côte Droit	\$1+\$2+\$3	31P,527622,	100	91,3	64,6	34,2	31,4	28,6	12,8	31	11,7	2,24	8,5	78	100	111				A-2-6	B6	40000
02	12+100	1,200	Cole Dion	+\$4	1440269										2,26	8,5				170	235	286			40000
				S1+S2+S4		100	91,9	72,3	37,8	33,4	27,0	8,8	19,2	8,3	2,24	8,5	27	42	52				A-2-4	B 5	
G4	29+000	1,200	City Court		31P,50375,										2,23	8,5				180	223	246			32500
64	29+000	1,200	Côte Gauche	\$3+\$5+\$6	1434007	100	88,3	75,4	48,5	40,3	29,7	10,6	23,5	10,3	2,18	6,5	27	42	52				A-2-6	B6	32300
															2,21	7,5				147	210	241			

Dimensionnement de la chaussée :

Etude du trafic:

PO	STE D	E DOSS	O	POS	TE DE	DOUTC	HI
Dosso- Doutchi	Trafic PL	Doutchi- Dosso	Trafic PL	Doutchi- Dosso	Trafic PL	Dosso- Doutchi	Trafic PL
Jour 1	215	Jour 1	114	Jour 1	112	Jour 1	187
Jour 2	203	Jour 2	103	Jour 2	127	Jour 2	194
Jour 3	179	Jour 3	136	Jour 3	99	Jour 3	172
Jour 4	165	Jour 4	119	Jour 4	116	Jour 4	152
Jour 5	155	Jour 5	131	Jour 5	100	Jour 5	133
Jour 6	153	Jour 6	99	Jour 6	111	Jour 6	139
Jour 7	145	Jour 7	104	Jour 7	98	Jour 7	111
TOTAUX	1 215		806		763		1 088
TMJA PL	174		115		109		155

❖ Dimensionnement de la zone d'élargissement :

Avec une classe de sol de type S4 couplée au trafic T2, nous a retenu les matériaux ci-dessous conformément au guide CEBTP :

- Couche de base : en graveleux latéritique naturel de 15 cm d'épaisseur ;
- Couche de fondation : en graveleux latéritique naturel de 20 cm d'épaisseur

Tableau : choix des matériaux de la zone d'élargissement

	TRAFICS T1-T2	S	1	S	2	S	3	S	4	S	5
	TRAFICS 11-12	T1	T2								
В	Graveleux latéritique naturel	15	15	15	15	15	15	15	15	25	25
F	Graveleux latéritique naturel	45	45	35	35	25	30	15	20	0	0
В	Graveleux latéritique ou grave naturelle améliorés au ciment	15	15	15	15	15	15	15	15	20	20
F	Graveleux latéritique naturel ou grave naturelle O/D	40	45	30	35	25	25	15	20	0	0

Source: Guide CEBTP

❖ Vérification du dimensionnement avec la méthode rationnelle (Alizé) :

Il est indispensable d'effectuer une vérification des déformations de la structure retenue pour le corps de la chaussée afin de garantir la fiabilité du dimensionnement.

Cette vérification consiste à calculer les contraintes et les déformations générées par le trafic au sein des différentes couches de chaussée ainsi que dans le sol support, puis à comparer ces résultats aux valeurs admissibles.

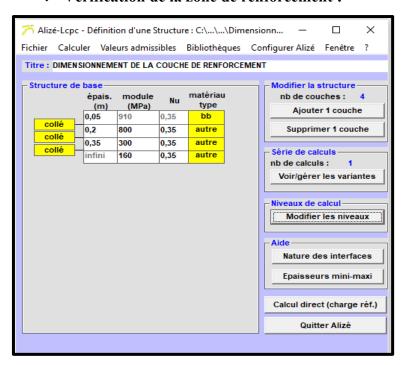
a. Hypothèses de vérifications du dimensionnement :

Les hypothèses suivantes ont été retenues pour la vérification du dimensionnement de la chaussée :

- Les interfaces entre les couches sont prises étant collées ;
- Le coefficient de poisson est pris égale à 0,35 ;
- La température du dimensionnement et de la mise en place du béton bitumineux est prise à 43 °C (environ la température maximale du Niger).
- Les épaisseurs des différentes couches de matériaux déterminées précédemment.

b. Détermination du module de Young :

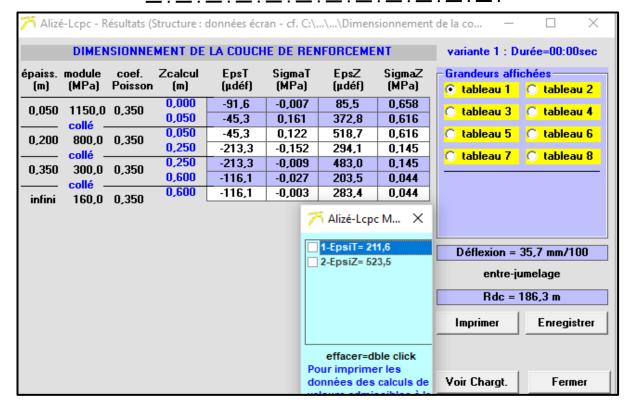
Le module de Young de chaque couche de la chaussée est déterminé par la formule suivante :


 $E = 5 \times CBR$

Les modules obtenus après l'application de la formule sont les suivants :

	Zone de renforcement									
Couches	Matériaux	Module de Young (Mpa)								
Revêtement	Béton bitumineux	1150								
Renforcement	Graveleux Latéritique amélioré au ciment (2%)	160×5= 800								
Couche existante (après scarification et recyclage)	Graveleux Latéritique	60 ×5 = 300								
Sol support	PF3	$32 \times 5 = 160$								

	Zone d'élargissement									
Couches	Matériaux	Module de Young (Mpa)								
Renforcement	Graveleux latéritique amélioré au ciment (2%)	160×5= 800								
Couche de base	Graveleux latéritique naturel	90×5= 450								
Couche de fondation	Graveleux latéritique naturel	60 ×5 = 300								
Sol support	PF3	$32 \times 5 = 160$								

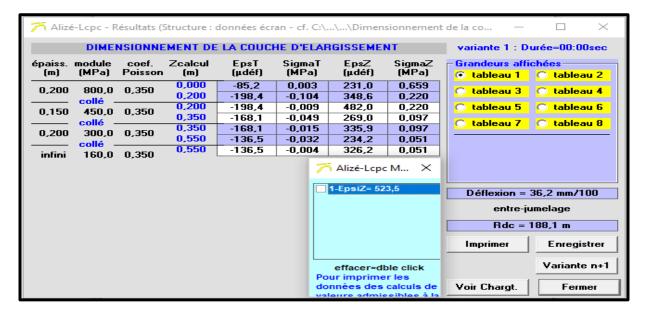

Vérification de la zone de renforcement :

Annexe 21 : Modélisation des matériaux de la zone renforcement dans le logiciel Alizé

Annexe 22 : Résultat du dimensionnement de la zone de renforcement sur Alizé


Commentaire: Les résultats obtenus montrent que les déformations horizontales et les contraintes calculées par le logiciel (Alizé-LCPC) dans les différentes couches des matériaux retenus sont inférieures aux valeurs admissibles déterminées ($\sigma_z < \sigma_{z \text{ adm}}$ et $\varepsilon_z < \varepsilon_{z \text{ adm}}$). De plus, la déflexion maximale donnée par le logiciel Alizé est inférieure au seuil de 40 (notée d₁), tel que prescrit par le *guide de renforcement des chaussées en pays tropicaux* pour le Niger, qui atteste qu'une chaussée se comporte de façon satisfaisante.

Ainsi, ces vérifications permettent de conclure que la variante étudiée peut en toute fiabilité et sécurité être utilisée comme structure de réhabilitation de notre tronçon.


Vérification de la zone d'élargissement :

Annexe 23 : Modélisation des matériaux de la zone d'élargissement dans le logiciel Alizé

Annexe 24 : Résultat du dimensionnement de la zone d'élargissement sur Alizé

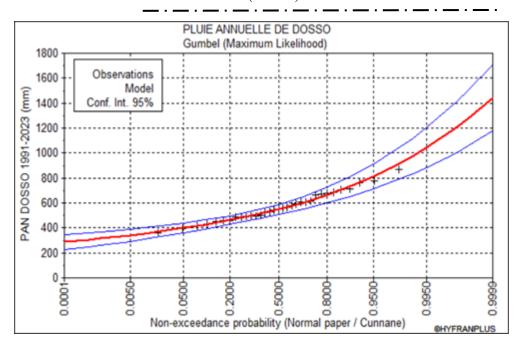
Commentaire: Les résultats obtenus montrent que les déformations horizontales et les contraintes calculées par le logiciel (Alizé-LCPC) dans les différentes couches des matériaux retenus sont inférieures aux valeurs admissibles déterminées ($\sigma_z < \sigma_{z \text{ adm}}$ et $\epsilon_z < \epsilon_{z \text{ adm}}$). De plus, la déflexion maximale donnée par le logiciel Alizé est inférieure au seuil de 40 (notée d_1), tel que prescrit par le *guide de renforcement des chaussées en pays tropicaux* pour le Niger, qui atteste qu'une chaussée se comporte de façon satisfaisante.

Ainsi, ces vérifications permettent de conclure que la variante étudiée peut en toute fiabilité et sécurité être utilisée comme structure d'élargissement de notre tronçon.

ANNEXE III: ETUDE TECHNIQUE

I. ANNEXE ETUDE HYDROLOGIQUE:

- 1. Traitement des données pluviométrique :
- **Les valeurs des précipitations de la zone d'étude :**

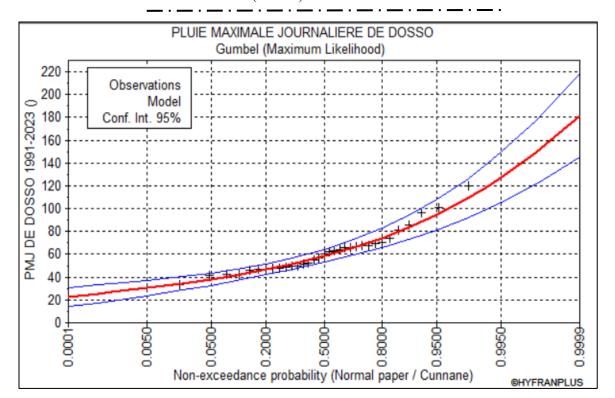

Pluies cumulées à la station de DOSSO de 1991 à 2023 (PAN):

Résultats de l'ajustement
GUMBEL (Maximum de vraisemblance)
Nombre d'observations : 33
q = F(X) (probabilité au non-dépassement)
T = 1/(1-q)

Т	q	XT	Ecart- type	Intervalle de confiance (95%)
10000.0	0.9999	1440	136	1180 - 1710
2000.0	0.9995	1280	114	1060 - 1500
1000.0	0.9990	1210	104	1010 - 1410
200.0	0.9950	1050	82.0	886 - 1210
100.0	0.9900	976	72.5	834 - 1120
50.0	0.9800	905	63.0	782 - 1030
20.0	0.9500	811	50.5	712 - 910
10.0	0.9000	738	41.2	658 - 819
5.0	0.8000	662	31.9	600 - 725
3.0	0.6667	602	25.3	552 - 652
2.0	0.5000	548	20.6	507 - 588
1.4286	0.3000	492	17.9	457 - 527
1.2500	0.2000	462	17.7	428 - 497
1.1111	0.1000	426	18.7	390 - 463

Annexe 25 : Courbe de vérification de la précision de la loi Gumbel pour P10

Après le traitement des données pluviométrique, le logiciel Hyfranplus a fourni une valeur de pluies cumulées de 738 mm pour une période de retour de 10 ans. Cette valeur sera utilisée pour le débit des bassins versants (Méthode Orstom et CIEH).



❖ Pluies Maximale journalière à la station de DOSSO de 1991 à 2023 (P₁₀)

Résultats de l'ajustement
GUMBEL (Maximum de vraisemblance)
Nombre d'observations : 33
q = F(X) (probabilité au non-dépassement)
T = 1/(1-q)

Т	q	XT	Ecart- type	Intervalle de confiance (95%)
10000.0	0.9999	182	18.7	145 - 218
2000.0	0.9995	159	15.7	129 - 190
1000.0	0.9990	150	14.3	122 - 178
200.0	0.9950	127	11.3	105 - 149
100.0	0.9900	118	9.97	98.0 - 137
50.0	0.9800	108	8.66	90.8 - 125
20.0	0.9500	94.9	6.95	81.2 - 108
10.0	0.9000	84.8	5.66	73.7 - 95.9
5.0	0.8000	74.4	4.39	65.8 - 83.0
3.0	0.6667	66.1	3.49	59.2 - 72.9
2.0	0.5000	58.6	2.83	53.1 - 64.2
1.4286	0.3000	50.9	2.46	46.1 - 55.7
1.2500	0.2000	46.9	2.43	42.1 - 51.7
1.1111	0.1000	41.9	2.57	36.9 - 46.9

Annexe 26 : Courbe de vérification de la précision de la loi Gumbel pour Pan

Après le traitement des données pluviométrique, le logiciel Hyfranplus a fourni une valeur de pluie maximale journalière de **84,8** mm sur une période de retour de 10 ans. Cette valeur sera utilisée pour déterminer le débit des bassins versants (méthode Orstom et CIEH).

2. Détermination des débits de crues :

a. Calcul du débit de crue décennale par la méthode rationnelle :

Remettons en mémoire la formule rationnelle :

$$Q(m^3/s) = 0.278 \times C \times i \times A$$
;

• Détermination de C :

La valeur du coefficient de ruissellement est déterminée à partir des informations sur la structure du terrain, la pente et la forme des bassins versants. En prenant en compte la nature du terrain (culture couvrante, céréales), une superficie des bassins comprise entre 10 ha à 400 ha, et une faible pente, nous obtenons une valeur de 0,52 à partir du tableau ci-dessous

5

ÉTUDE TECHNIQUE DES TRAVAUX DE RÉHABILITATION DE LA RN1_EST SECTION DOSSO-DOGONDOUTCHI (133,60 KM) : TRONÇON DU PK 20+000 AŪ PK 30+000 (10 KM) AU NIGER

Tableau 30. Coefficient de ruissellement dans la méthode rationnelle.

	Valeur de C											
Nature de la converture végétale			de 0 à 10 me pente		Bassins moyens de 10 à 400 ha présentant une pente de							
continue regetate	moins de 5 %	de 5 à 10 %	de 10 à 30 %	plus de 30 %	moins de 5 %	dc 5 à 10 %	de 10 à 30 %	plus de 30 %				
Plates-formes et chaussées de routes ; cours	0.95			,		,						
Terrains dénudés, ou à végétation non couvrante	0.80	0,85	0,90	0,95	0,70	0.75	08,0	0,85				
Cultures couvrantes, céréales hautes Terrains de parcours, chiendent ras Petite brousse clairsemée	0,75	03,0	0,85	0,90	0,52	0.60	0,72	0,80				
Prairies Broutee dense, Savanc à sous-bois	0.70	0,75	0,80	0,85	0,30	0,36	0,12	0.50				
Forêt ordinaire en futale. Sous-bois touffus	0.30	0.50	0.60	0,70	0.13	0,20	0.25	0.30				
Grande foret primaire	0.20	0.25	0.30	0.40	0.15	0.18	0,22	0.25				

Annexe 27 : Tableau de choix du Coefficient de ruissellement Source : BCEOM

• Intensité de pluie i : Pour détermination l'intensité de pluie selon cette méthode, nous avons travaillés avec la formule de montana : i = a × tc^{-b} . Le temps de concentration des bassins a été avec la formule de Kirpich.

Période de retour	1 an	2 ans	5 ans	10 ans	20 ans	
Zone sahéto-soudanienne $(b = 0.5)$	5,4	6,0	6,9	7,5	8,2	
Sénégal $(b = 0.5)$	6	6,75	7,6	8,5	9,1	
Zone côtière : Axim-Abidjan $(b = 0.4)$	5,6	6,7	8,9	10	12.6	
Zone côtière : Acera (b = 0,4)	4,6	5,3	6.8	8,5	9,2	
Zone forestière : Kumasi $(b = 0.5)$	7	8,9	11	12,7	14,3	

Annexe 28: Tableau de choix du coefficient a et b

- Temps de concentration :

Tc _{bvl} =
$$\frac{1}{52} \times \frac{(0.26 \times 1000)^{1.15}}{4^{0.38}} = 6.66$$
 mm.

Application numérique : i bv1 = $(7.5 \times 6.66^{-0.5}) \times 60 = 174.36$ mm/h.

• Les débits Q:

$$Q_{bv1}$$
 (m³/s) = 0,278 ×0,70×174,36×0,13 = **4,36** m³/s.

Source: BCEOM

Les débits des autres bassins versants sont regroupés dans le tableau ci-dessous :

CARACTERISTIQUES DES BASSINS VERSANTS									METHODE RATIONNELLE							
Bassin	Superficie		Périmètre (km) Longueur d'écoul (km)	Longueur rectangle (Km)	Z max (m)	Z min (m)	ΔH (m)	Indice de comp	Indice globale (m/km)	I (%)	TC KIRPICH	Coefficients de Montana		I	Coef de ruissellement	Débit
versant (Kr	(Km2)	(km)										a	b	(mm/h)	С	Q(m3/s)
BV1	0,13	1,82	0,26	0,73	247	243	4	1,43	5,46	2,36	6,66	7,5	0,5	174,36	0,52	3,24
BV2	0,12	2,02	0,19	0,87	250	244	6	1,61	6,93	2,34	4,14	7,5	0,5	221,27	0,52	3,98
BV3	0,35	3,30	0,92	1,40	250	236	14	1,58	9,97	3,38	18,04	7,5	0,5	105,95	0,52	5,30
BV4	0,31	3,54	0,92	1,57	246	235	11	1,79	6,99	2,82	19,88	7,5	0,5	100,92	0,52	4,52
BV5	0,04	1,06	0,01	0,45	238	234	4	1,59	8,83	2,88	0,09	7,5	0,5	1526,15	0,52	7,80
BV6	0,41	3,27	1,13	1,33	243	226	17	1,45	12,80	3,54	21,15	7,5	0,5	97,86	0,52	5,75
BV7	0,14	1,87	0,29	0,74	227	217	10	1,39	13,48	3,48	5,46	7,5	0,5	192,58	0,52	4,00
BV8	0,08	1,50	0,13	0,62	222	216	6	1,50	9,62	2,89	2,65	7,5	0,5	276,28	0,52	3,16
BV9	0,58	5,90	1,88	2,74	238	210	28	2,18	10,23	3,68	31,52	7,5	0,5	80,16	0,52	6,76
BV11	0,29	2,84	1,02	1,18	222	207	15	1,49	12,74	3,42	19,90	7,5	0,5	100,87	0,52	4,20
BV12	0,08	1,38	0,13	0,54	230	224	6	1,37	11,12	2,74	2,68	7,5	0,5	274,91	0,52	3,19
BV13	0,35	2,90	0,91	1,15	230	222	8	1,38	6,98	3,01	22,03	7,5	0,5	95,89	0,52	4,84

b. Méthode Orstom:

Calcul du débit de crue par la méthode Orstom :

Pour appliquer la méthode au bassin versant 10, nous utilisons la formule de calcul de débit suivant :

$$Qr_{10} = A \times P_{10} \times Kr_{10} \times \alpha_{10} \times S/Tb_{10}$$
; Avec $\alpha_{10} = 2,6$.

Avant de pouvoir applique la formule, il est nécessaire de déterminer au préalable certains paramètres :

• Indice de compacité :

L'indice de compacité s'exprime par la relation :

$$I_{comp} = 0.282 \times P \times S^{1/2}$$

$$I_{comp} = 0.282 \times 19.84 \times 7.80^{1/2} = 2.$$

• Longueur du rectangle équivalent :

La longueur se calcule par la formule suivante :

$$L = S^{1/2} \times \left(I_{comp} / \ 1{,}128 \right) \times \left[1 + \left(1 - (1{,}128 \ / \ I_{comp})^2 \right)^{1/2} \right]$$

$$L = 7.80^{1/2} \times (2/1.128) \times [1+(1-(1.128/2)^2)^{1/2}] = 9.06 \text{ km}.$$

• Indice globale:

L'indice globale se détermine par la relation suivante :

$$Ig (m/km) = \frac{D}{I}$$

Avec D : la différence des altitudes et L : la longueur du rectangle équivalent.

$$Ig = \frac{28}{9.06} = 3.09 \text{ m/km}.$$

Dénivelé spécifique

La dénivelée D_s (m) du bassin s'obtient avec la formule suivante :

$$D_s = S{\times}Ig^{0,5}$$

$$D_s = 7.80 \times 3.09^{0.5} = 8.63 \text{ m}.$$

• Type du relief :

La détermination du type de relief a été faite selon le critère suivant : si la dénivelée est inférieure à 50, le relief est considéré comme faible ; dans le cas contraire, il est fort ou modère. Dans notre cas, nous avons un **relief faible** car notre Ds est inférieur à 50.

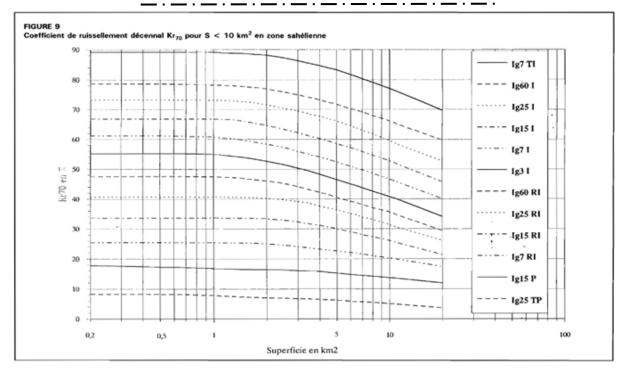
• L'infiltrabilité du sol :

Ce terme désigne la capacité d'un sol à absorber l'eau. De nature essentiellement qualitative, notre zone présente en raison de l'imperméabilité du sol, une infiltrabilité de type RI (P3) [8].

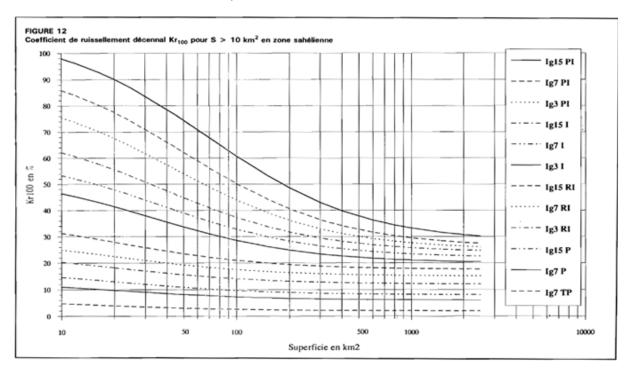
• Coefficient de ruissellement décennal Kr₁₀ :

Le coefficient de ruissellement Kr₁₀, associé à la précipitation ponctuelle P₁₀, a été déterminé par interpolation linéaire entre les valeurs de Kr obtenues par des précipitations décennales de 70 mm (Kr₇₀) et de 100 mm (kr₁₀₀). Ces coefficients sont calculés en fonction de la superficie du bassin versant et varient en fonction des classes d'infiltrabilité (PI, RI...), ainsi que des différentes valeurs de l'indice global de pente. Pour déterminer les coefficients Kr₇₀ et Kr₁₀₀, nous avons utilisé deux graphes spécifiques (voir ci-dessous), qui ont permis une lecture précise des valeurs en fonction des caractéristiques du bassin. Ensuite, une interpolation a été effectuée entre les valeurs de Kr obtenues pour P₇₀ et P₁₀₀, afin de calculer la valeur ajustée de kr₁₀ pour le bassin 10.

- Application numérique :


Rappelons les valeurs obtenues :

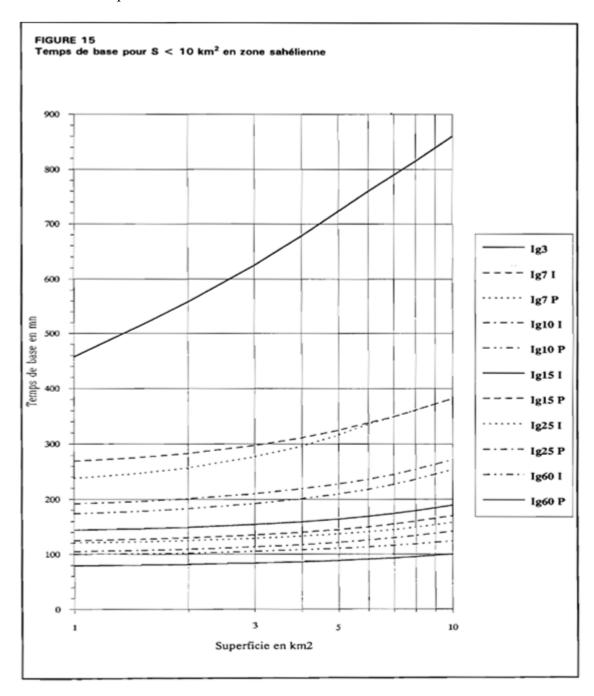
 $P_{10} = 84.8 \text{ mm}$ (déterminées dans la partie traitement des données pluviométriques);


 $Kr_{70} = 19$ % et $Kr_{100} = 20,50$ % (déterminées graphiquement).

 $Kr_{10} = (84,8-70) \times (20,50-19,00) / (100-70) + 70 = 22,21 \%$

Annexe 29 : Abaque de détermination de ruissellement Kr70

Annexe 30: Abaque de détermination de ruissellement Kr100


Les précipitations décennales

Les valeurs de précipitations annuelles et journalière décennales ont été déterminées dans la section de traitement des données pluviomètres avec Pan=738 mm et P₁₀= 84,8 mm.

• Le temps de base :

Le temps de base Tb₁₀ fonction de la superficie du bassin, de l'indice global et de l'infiltrabilité est déterminé à partir de la courbe ci-dessous :

Annexe 31 : Abaque de détermination de temps de base

La valeur de Tb₁₀ obtenue à près lecture sur la courbe est égale à **790 mm**.

• Le coefficient d'abattement :

L'expression du calcul du coefficient d'abattement est :

$$A = 1 - \left[\frac{(161 - 0.042 \times Pan)}{1000} \times logS \right]$$

$$A=1-\left[\frac{(161-0,042\times738)}{1000}\times\log(7,80)\right]=\textbf{0},\textbf{88}.$$

• Le débit de pointe :

Le débit maximal total également appelé débit de pointe est estimé en examinant les caractéristiques du bassin versant, ce qui permet d'évaluer la portion d'écoulement retardé, qui représenterait environ 5% du débit total ruisselé. Le débit de pointe de notre bassin 10 est calculé comme suit :

$$Q_{10} = 1,05 \times 84,8 \times 19,74 \times 2,6 \times \left(\frac{7,80}{790}\right) = 6,65 \text{ m}^3/\text{s}.$$

d. Calcul de débit de crue décennale par la méthode CIEH :

Rappelons la formule de calcul du débit :

$$Q_{10} = a \times S^S \times P_{an}^p \times Ig^i \times Kr_{10}^k \times Dd^d \dots$$

Plusieurs paramètres de cette formule ont été déterminés précédemment dans la méthode Orstom. Le bassin 10 se situe dans le sud-ouest du Niger. Les équitions que nous utiliserons ici dépendent des caractéristiques de notre zone d'étude, il s'agit des équations n° 10,18,27 et 42. (voir à la page suivante la figure qui nous a permis le choix des coefficients)

Résultats des équations :

N°10: Q₁₀₋₁₀ = 0,083 × 7,80^{0,696} × 3,09^{0,953} × 19,74^{0,534} =
$$5\frac{m^3}{s}$$
;

N°18: Q₁₀₋₁₈ = 0,0678 × 7,80^{0,661} × 3,09^{0,412} × 19,74^{1,105} = **11**, **33**
$$\frac{m^3}{s}$$
;

N°27 : Q₁₀₋₂₇ = 0,56 × 7,80^{0,619} × 3,09^{0,2789} × 19,74^{0,51} = **12**, **52**
$$\frac{m^3}{s}$$
;

$$N^{\circ}42: Q_{10-42} = 0.0912 \times 7.80^{0.643} \times 3.09^{0.399} \times 19.74^{1.019} = 11.\frac{20 \text{ m}^3}{\text{s}}.$$

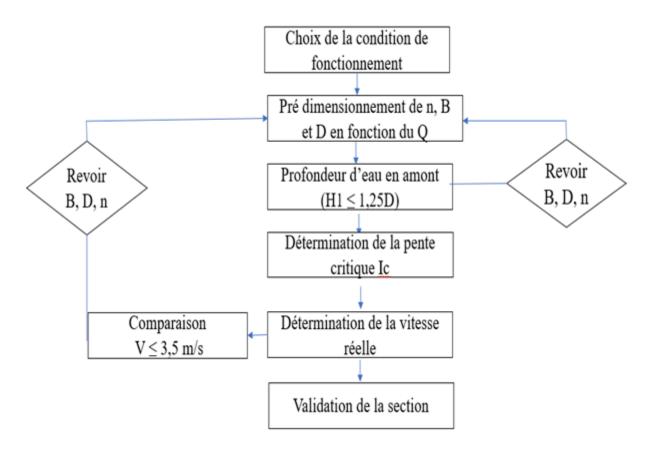
Les résultats indiquent que Q_{10} se situe probablement entre 11 et 12 m³/s. Une valeur moyenne de **10,50 m**³/s sera retenue.

Le tableau suivant résume la démarche du calcul.

N°	Surface	Périmètre	Ig	Kr10	Pan	P10	P _{m10}			rue et a 1 page 7		C	hoix (débit C	IEH
BV	(km2)	(km)	(m/km)	%	Tun	(mm)	(mm)	10	18	27	42	Mini	Maxi	Moyenne	Débit de crue retenue
BV10	7,80	19,84	3,09	19,74	738	84,8	74,97	5,00	11,33	12,52	11,20	5,00	12,52	10,50	10,50

N°	Description	Echantillon	Correla	tion	Constante		Exposants	des paramètres de l'éque	60n 4.1	
		n	۲	r	8	S	lg	Pan PM10	Kr10	Dd
	DECOUPAGE C	LIMATIQUE SA	NS KR10							
	avec S et ig									
	0-400 mm	71	0.760	0.874	2.83	0.624	0.491			
_	400-800 mm	128	0.570	0.755	2.03	0.590	0.588			
3	1200-1600 mm	87	0.579	0.761	1.33	0.596	0.457			
	avec S, Ig et Dd 0-400 mm	33	0.600	0.793	242	0.503	0.500			
	400-800 mm	69	0.629	0.793	1.83	0.583	0.506			0.320
	800-1200 mm	87	0.591	0.769	2.01	0.620 0.649	0.056			0.121
۰	DECOUPAGE C			0.709	2.01	0.049	0.000			0.024
	avec S et Kr10	CIMATIQUE AV	PEG KR10							
7	0-400 mm	66	0.758	0.870	0.553	0.655			0.802	
	400-800 mm	116	0.736	0.858	0.461	0.540			0.941	
	avec S, Ig et Kr1		0.100	0.000	0.401	0.040			0.541	
9	0-400 mm	65	0.847	0.920	0.167	0.745	0.731		0.475	
	400-800 mm	116	0.806	0.898	0.0833	0.696	0.953		0.534	
	DECOUPAGE P				0.0000	0.000	0.000		0.001	
	Tous les bassins									
11	S. Kr10	180	0.716	0.846	0.410	0.524			0.982	
	S, Ig, Kr10	176	0.795	0.892	0.095	0.643	0.406		1.038	
	Longitude < 10°									
13	S.lg	21	0.569	0.754	1.78	0.557	0.805			
	S, Ig, PM10	21	0.581	0.762	55.0	0.462	0.667	-0.652		
	S. Ig. Kr10	20	0.722	0.850	0.224	0.540	0.622		0.767	
	S, Kr10	20	0.645	0.803	0,661	0.375			0.910	
	Longitude compr	ise entre 10° O	uest et 10° E	st						
	S, Kr10, PM10	117	0.764	0.874	30.2	0.492		-0.972	0.948	
16	S, Ig, Kr10	117	0.788	0.888	0.0678	0.661	0.412		1.105	
	Longitude supéri									
	S, PM10	46	0.646	0.804	0.00372	0.605		1.778		
	S, Ig	45	0.645	0.803	2.72	0.626	0.360			
	S, 1g, PM10	45	0.679	0.824	0.00638	0.694	0.305	1.411		
	S, Kr10	39	0.77	0.877	0.610	0.523			0.908	
	S, Ig, Kr10	39	0.821	0.906	0.134	0.678	0.374		0.940	
	S, PM10, Kr10	39	0.805	0.897	0.00243	0,608		1.263	0.882	
	DECOUPAGE P			E PAYS						
	Afrique de l'Oues									
	S,KR10	295	0.628	0.792	1.41	0.542		0.000	0.511	
	S,Kr10,PM10	295	0.654	0.809	146 0.560	0.479	0.279	-0.969	0.457	
21	S,Kr10,ig Afrique centrale	288	0.650	0.606	0.560	0.019	0.279		0.510	_
28	S,KR10	50	0.738	0.859	0.521	0.625			0.876	
	S,Kr10,IG,PM10		0.815	0.903	893	0.773	0.567	-2.051	0.923	
	S,Kr10,lg	49	0.778	0.882	0.109	0.771	0.419	-2.001	0.823	
30	Sénégal + Mauri		0.770	0.00£	J. 199	3.771	0.410		0.001	
31	S. PM10	40	0.563	0.750	5450000	0.215		-2.830		
-	S Kr10	35	0.843	0.918	0.288	0.405		2.000	1,117	
	S Kr10 lg	35	0.851	0,922	0.195	0.471	0.239		1.046	
	Côte d'Ivoire									
34	S	37	0.713	0.844	4.83	0.562				
35	Sig	34	0.729	0.854	2.29	0.651	0.216			
	S, PM10	36	0.706	0.840	0.000174	0.645		2.149		
	S Kr10	31	0.791	0.889	0.380	0.586			0.805	
38	S Kr10 lg .	28	0.787	0.887	0.275	0,618	0.099		0.798	
	Burkina Faso									
	S K/10	61	0.816	0.904	0.410	0.425			0.923	
40	S Kr10 lg	60	0.824	0.908	0.254	0.462	0.101		0.976 .	
	Burkina Faso + f	-								
-	S Kr10	137	0.688	0.829	0.407	0.532			0.941	
	S Kr10 lg	133	0.755	0.869	0.0912	0.643	0.399	4 845	1.019	
	S A*P10	133	0.589	0.767	35600	0.342		-1.808		
	S. Kr10 PM10	133	0.757	0.870	203	0.459	A 050	-1.301	0.813	
45	S, lg PM10	130	0.592	0.769	22400	0.363	0.059	-1.748		
	Tchad + Nord Ca			0.700		0.412	A 750			
46	Sig	55 49	0.638	0.799	1.28 0.525	0.412	0.739		0.950	
47					 42.025 	. 4.530				
	S Kr10 S Kr10 lg	48	0.884	0.940	0.105	0.709	0.432		0.949	

Annexe 32 : Abaque des valeurs du calcul de débit avec CIEH


(10 KM) AU NIGER

II. ANNEXE ETUDE HYDRAULIQUE

1. Détermination de la section des dalots :

La détermination de la section des dalots selon les deux volets, a été faite en suivant la méthode décrite dans l'organigramme ci-dessous :

Annexe 33 : Organigramme de la détermination de la section des dalots

• Volet 1 : Vérification de la section des dalots existants

	Paramètre d'entrés										
	ОН		DV	Débit	Vitesse limite	Nombre d'ouverture	Débit unitaire	Section minimale	Largeur du dalot	Hauteur du dalot	Section du dalot
BV	EXISTANTS	TYPE D'OH	PK	Q	Vmax	n	q	Smin	В	D	S
				[m3/s]	[m/s]	[-]	[m3/s]	[m2]	[-]	[-]	[-]
BV 3	ОН6	D1X2X1	23+875	5,30	3,5	1	5,30	1,51	2	1	2
BV 5	ОН7	D1X1X0,60	24+550	7,80	3,5	1	7,80	2,23	1	0,6	0,6
BV 6	ОН8	D1X2X1	25+037	5,75	3,5	1	5,75	1,64	2	1	2
BV 7	ОН9	D1X2X1	25+845	4,00	3,5	1	4,00	1,14	2	1	2
BV 9	OH10	D1X1,5X0,75	26+590	6,76	3,5	1	6,76	1,93	1,5	0,75	1,125
BV 10	OH11	D1X2X1	26+830	8,57	3,5	1	8,57	2.45	2	1	2
D V 10	ОН13	D1X2X1	27+215	0,37	3,3	1	6,37	2,45	2	1	Δ
BV 11	OH14	D1X1X0,60	28+145	4,20	3,5	1	4,20	1,20	1	0,6	0,6

	Paramèt	re d'entrés			Type d'éc	oulement	
BV	OH EXISTA	TYPE D'OH	PK	Paramètre adimensionel 1	Niveau adimensionel	Niveau d'eau amont	Condition d'écoulement
БУ	NTS	THEDON	Q* [-]		Hi*	H1	Type d'écoulement
				[-]	[-]	[m]	[-]
BV 3	ОН6	D1X2X1	23+875	0,6	1,55	1,55	en charge
BV 5	ОН7	D1X1X0,60	24+550	3,79	Impossible de lire H1*	#VALEUR!	#VALEUR!
BV 6	OH8	D1X2X1	25+037	0,65	1,7	1,7	en charge
BV 7	ОН9	D1X2X1	25+845	0,45	1,15	1,15	en surface
BV 9	OH10	D1X1,5X0,75	26+590	1,57	Impossible de lire H1*	#VALEUR!	#VALEUR!
BV 10	OH11	D1X2X1	26+830	0.07	2.7	2.7	an alaman
D V 10	OH13	D1X2X1	27+215	0,97	2,7	2,7	en charge
BV 11	OH14	D1X1X0,60	28+145	2,04	Impossible de lire H1*	#VALEUR!	#VALEUR!

Commentaire: Lors de la vérification de la section existante des dalots, il a été constaté que la majorité de ces ouvrages présentent des écoulements en charge. Cette situation ne respecte pas la première condition relative au type d'écoulement attendu (en surface). Toutefois, une exception notable a été observée au niveau de l'OH 9 de type D1X2X1 situé au PK 25+845, qui répond aux critères requis. Par conséquent, la section de cet ouvrage sera maintenue. En revanche, tous les autres dalots existants qui ne répondent pas aux exigences, seront démolis et remplacés par des dalots de section inférieure conformément au guide BCEOM.

				Para	mètre d'	entrés					
	ОН		DV	Débit	Vitesse limite	Nombre d'ouverture	Débit unitaire	Section minimale	Largeur du dalot	Hauteur du dalot	Section du dalot
BV	EXISTANTS	TYPE D'OH	PK	Q	Vmax	n	q	Smin	В	D	S
				[m3/s]	[m/s]	[-]	[m3/s]	[m2]	[-]	[-]	[-]
BV 3	ОН6	D1X2X1	23+875	5,30	3,5	1	5,30	1,51	2	1,5	3
BV 5	ОН7	D1X1X0,60	24+550	7,80	3,5	2	3,90	1,11	2	1	2
BV 6	ОН8	D1X2X1	25+037	5,75	3,5	1	5,75	1,64	2	1,5	3
BV 7	ОН9	D1X2X1	25+845	4,00	3,5	1	4,00	1,14	2	1	2
BV 9	OH10	D1X1,5X0,75	26+590	6,76	3,5	2	3,38	0,97	2	1	2
BV 10	OH11	D1X2X1	26+830	0.57	2.5	2	4.20	1.22	2	1	2
DV 10	ОН13	D1X2X1	27+215	8,57	3,5	2	4,29	1,22	2	1	<i>L</i>
BV 11	ОН14	D1X1X0,60	28+145	4,20	3,5	1	4,20	1,20	2	1	2

	Paran	nètre d'entrés			Type d'éc	oulemer	nt		Pen	te du dalo	ot	
	ОН		Nbr d'ouve rture	Param ètre 1	Niveau adimension el	Nivea u d'eau amont	Condition d'écouleme nt	Paramètr e 2	Paramètr e 3	Coeff de mannin g	Pente critiqu e	Pente réelle
BV	existan ts	TYPE D'OH	n	Q*	Hi*	H1	Type d'écouleme nt	Q*	Ic*	K	Ic	I
			[-]	[-]	[-]	[m]	[-]	[-]	[-]	[]	[m/m]	[m/m]
BV 3	ОН6	D1X2X1	1	0,33	0,92	1,38	en surface	0,30	3,06	67	0,0059	0,0060
BV 5	ОН7	D1X1X0,60	2	0,44	1,15	1,15	en surface	0,22	2,91	67	0,0063	0,0065
BV 6	ОН8	D1X2X1	1	0,35	0,96	1,44	en surface	0,32	3,12	67	0,0060	0,0060
BV 7	ОН9	D1X2X1	1	0,45	1,175	1,175	en surface	0,23	2,92	67	0,0064	0,0065
BV 9	OH10	D1X1,5X0,75	2	0,38	1,025	1,025	en surface	0,19	2,85	67	0,0062	0,0065
DV 10	OH11	D1X2X1	2	0.49	1.25	1.25		0.24	2.05	67	0.0064	0.0065
BV 10	ОН13	D1X2X1	2	0,48	1,25	1,25	en surface	0,24	2,95	67	0,0064	0,0065
BV 11	OH14	D1X1X0,60	1	0,47	1,225	1,225	en surface	0,24	2,94	67	0,0064	0,0065

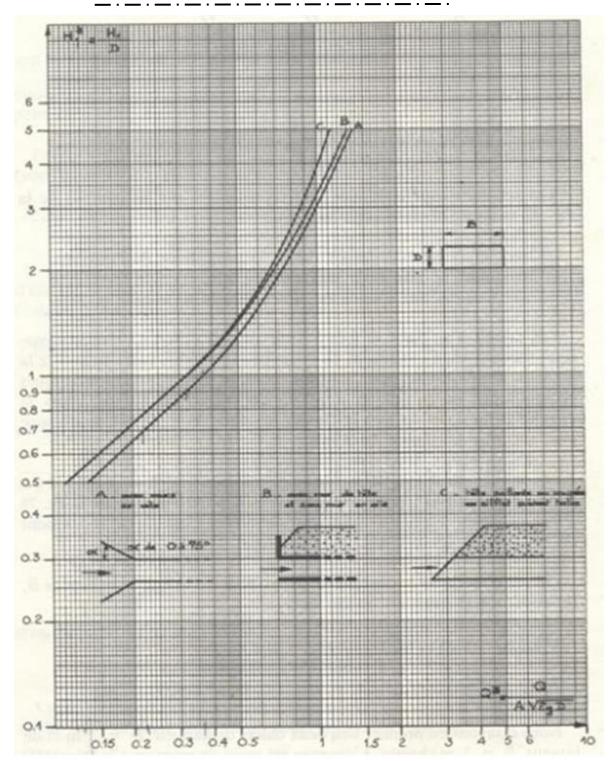
			Paramèti	re d'entré	s					La v	itesse d'écou	lement		
BV	ОН	TYPE D'OH	PK	Débit	Vitesse limite	Nbr d'ouvert ure	Largeur du dalot	Hauteur du dalot	Paramètre 4	Tirant d"eau	Paramètre 5	Vitesse d'écoul	Condition sur la vitesse	Section Retenue
В	existants	TILDON	1 IX	Q	Vmax	n	В	D	Q*	y	V*	V	Limitation	
				[m3/s]	[m/s]	[-]	[-]	[-]	[-]	[m]	[-]	[m/s]	[-]	
BV 3	ОН6	D1×2×1	23+875	5,3	3,5	1	2	1,5	0,16	0,89	0,38	3,15	vérifiée	1x2x1,5
BV 5	ОН7	D1×1×0,60	24+550	7,8	3,5	2	2	1	0,11	0,73	0,35	3,04	vérifiée	2x2x1
BV 6	ОН8	D1×2×1	25+037	5,75	3,5	1	2	1,5	0,17	0,94	0,39	3,21	vérifiée	1x2x1,5
BV 7	ОН9	D1×2×1	25+845	4	3,5	1	2	1	0,12	0,74	0,36	3,06	vérifiée	1x2x1
BV 9	OH10	D1×1,5×0,75	26+590	6,76	3,5	2	2	1	0,1	0,66	0,34	2,93	vérifiée	2x2x1
BV 10	OH11	D1×2×1	26+830	8,57	3,5	2	2	1	0,12	0,78	0,36	3,11	vérifiée	2x2x1
B V 10	OH13	D1×2×1	27+215		3,3		Z	1	0,12	0,78	0,30	3,11	verifiee	2x2x1
BV 11	OH14	D1×1×0,60	28+145	4,2	3,5	1	2	1	0,12	0,77	0,36	3,1	vérifiée	1x2x1

Volet 1+Volet 2

		Para	amètre d'e	ntrés					Type d'e	écouleme	nt
DV	ОН		DV	Section minimale	Largeur du dalot	Hauteur du dalot	Section du dalot	Paramètre 1	Niveau 1	Niveau d'eau amont	Condition d'écoulement
BV	existants	TYPE D'OH	PK	Smin	В	D	S	Q*	Hi*	H1	Type d'écoulement
				[m2]	[-]	[-]	[-]	[-]	[-]	[m]	[-]
BV 1	Nouveau	DALOT	21+050	0,93	2	1	2	0,37	1	1	en surface
BV 2	OH4 OH5	B1X0,80 B1X0,80	22+637 23+030	1,14	2	1	2	0,45	1,16	1,16	en surface
BV 3	ОН6	D1X2X1	23+875	1,51	2	1,5	3	0,33	0,92	1,38	en surface
BV 4	Nouveau	DALOT	24+200	1,29	2	1,5	3	0,28	0,82	1,23	en surface
BV 5	OH7	D1X1X0,60	24+550	1,11	2	1	2	0,44	1,15	1,15	en surface
BV 6	OH8	D1X2X1	25+037	1,64	2	1,5	3	0,35	0,96	1,44	en surface
BV 7	ОН9	D1X2X1	25+845	1,14	2	1	2	0,45	1,175	1,175	en surface
BV 8	Nouveau	DALOT	26+100	0,9	2	1	2	0,36	0,98	0,98	en surface
BV 9	OH10	D1X1,5X0,75	26+590	0,97	2	1	2	0,38	1,025	1,025	en surface
	OH11	D1X2X1	26+830								
BV 10	OH12	B2X0,80	27+108	1,22	2	1	2	0,48	1,25	1,25	en surface
	OH13	D1X2X1	27+215								
BV 11	OH14	D1X1X0,60	28+145	1,2	2	1	2	0,47	1,225	1,225	en surface
BV 12	OH15	B2X0,80	29+062	0,91	2	1	2	0,36	0,98	0,98	en surface
BV 13	ОН16	B1X0,80	29+625	1,38	2	1,5	3	0,3	0,86	1,29	en surface

		Paramètre	d'entrés				F	Pente du dalc	ot	
DU	ОН	TUDE DION	Nombre d'ouverture	Largeur du dalot	Hauteur du dalot	Paramètre 2	Paramètre 3	Coeff de manning	Pente critique	Pente réelle
BV	existants	TYPE D'OH	n	В	D	Q*	Ic*	K	Ic	I
			[-]	[-]	[-]	[-]	[-]	[]	[m/m]	[m/m]
BV 1	Nouveau	DALOT	1	2	1	0,18	2,83	67	0,0049	0,005
BV 2	OH4	B1X0,80	1	2	1	0,22	2,91	67	0,005	0,005
DV Z	OH5	B1X0,80	1	Z	1	0,22	2,91	67	0,003	0,003
BV 3	ОН6	D1X2X1	1	2	1,5	0,3	3,06	67	0,0059	0,006
BV 4	Nouveau	DALOT	1	2	1,5	0,25	2,98	67	0,0057	0,006
BV 5	OH7	D1X1X0,60	2	2	1	0,22	2,91	67	0,0063	0,0065
BV 6	OH8	D1X2X1	1	2	1,5	0,32	3,12	67	0,006	0,006
BV 7	ОН9	D1X2X1	1	2	1	0,23	2,92	67	0,0064	0,0065
BV 8	Nouveau	DALOT	1	2	1	0,18	2,82	67	0,0049	0,005
BV 9	OH10	D1X1,5X0,75	2	2	1	0,19	2,85	67	0,0062	0,0065
	OH11	D1X2X1								
BV 10	OH12	B2X0,80	2	2	1	0,24	2,95	67	0,0064	0,0065
	OH13	D1X2X1								
BV 11	OH14	D1X1X0,60	1	2	1	0,24	2,94	67	0,0064	0,0065
BV 12	OH15	B2X0,80	1	2	1	0,18	2,82	67	0,0049	0,005
BV 13	OH16	B1X0,80	1	2	1,5	0,27	3,01	67	0,0052	0,0055

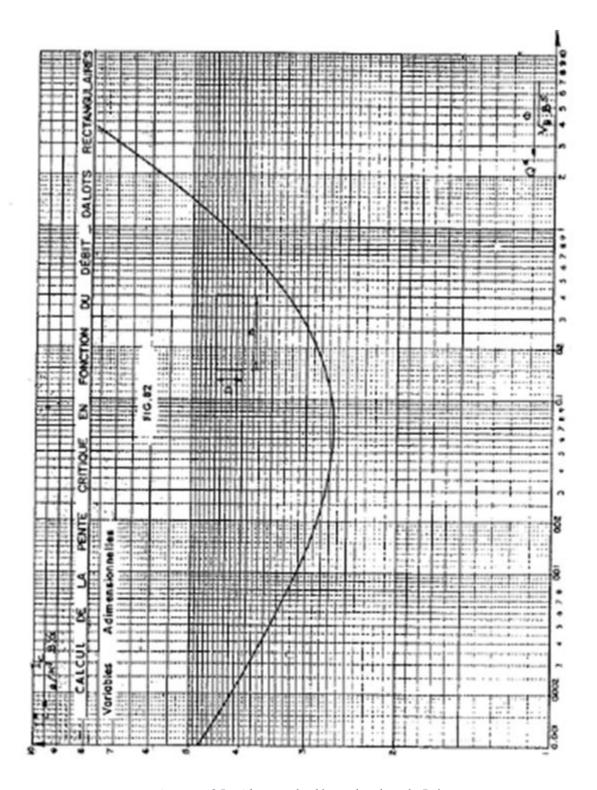
		Param	nètre d'ent	rés				L	a vitesse d'éc	coulement		
BV	ОН	TYPE D'OH	Vitesse limite	Nombre d'ouverture	Largeur du dalot	Hauteur du dalot	Paramètre 4	Tirant d"eau	Paramètre 5	Vitesse d'écoulement	Condition sur la vitesse	Section Retenue
	existants		Vmax	n	В	D	Q*	у	V*	V	Limitation	
			[m/s]	[-]	[-]	[-]	[-]	[m]	[-]	[m/s]	[-]	
BV 1	Nouveau	DALOT	3,5	1	2	1	0,11	0,64	0,34	2,53	vérifiée	1x2x1
BV 2	OH4	B1X0,80	3,5	1	2	1	0,13	0,73	0,36	2.67	vérifiée	1x2x1
BV Z	OH5	B1X0,80	3,3	1	2	1	0,13	0,73	0,30	2,67	vermee	18281
BV 3	ОН6	D1X2X1	3,5	1	2	1,5	0,16	0,89	0,38	3,15	vérifiée	1x2x1,5
BV 4	Nouveau	DALOT	3,5	1	2	1,5	0,14	0,8	0,37	3,03	vérifiée	1x2x1,5
BV 5	OH7	D1X1X0,60	3,5	2	2	1	0,11	0,73	0,35	3,04	vérifiée	2x2x1
BV 6	OH8	D1X2X1	3,5	1	2	1,5	0,17	0,94	0,39	3,21	vérifiée	1x2x1,5
BV 7	ОН9	D1X2X1	3,5	1	2	1	0,12	0,74	0,36	3,06	vérifiée	1x2x1
BV 8	Nouveau	DALOT	3,5	1	2	1	0,11	0,63	0,33	2,51	vérifiée	1x2x1
BV 9	OH10	D1X1,5X0,75	3,5	2	2	1	0,1	0,66	0,34	2,93	vérifiée	2x2x1
	OH11	D1X2X1										
BV 10	OH12	B2X0,80	3,5	2	2	1	0,12	0,78	0,36	3,11	vérifiée	2x2x1
	OH13	D1X2X1										



		Para	mètre d'enti	rés				La	a vitesse d'éc	oulement		
BV	ОН	ТҮРЕ	Vitesse limite	Nombre d'ouverture	Largeur du dalot	Hauteur du dalot	Paramètre 4	Tirant d"eau	Paramètre 5	Vitesse d'écoulement	Condition sur la vitesse	Section Retenue
	existants	D'OH	Vmax	n	В	D	Q*	у	V*	V	Limitation	
			[m/s]	[-]	[-]	[-]	[-]	[m]	[-]	[m/s]	[-]	
BV 11	OH14	D1X1X0,60	3,5	1	2	1	0,12	0,77	0,36	3,1	vérifiée	1x2x1
BV 12	OH15	B2X0,80	3,5	1	2	1	0,11	0,63	0,34	2,52	vérifiée	1x2x1
BV 13	OH16	B1X0,80	3,5	1	2	1,5	0,15	0,84	0,37	2,94	vérifiée	1x2x1,5

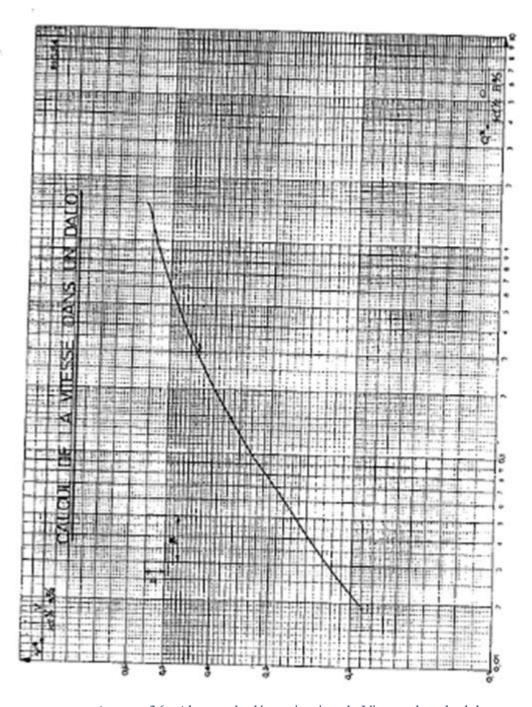
Commentaire : A l'issue des résultats du dimensionnement hydraulique effectué (les tableaux ci-dessus, les sections retenues sont les suivantes :

- D1X2X1 pour les ouvrages (OH4, OH5, OH 9, OH 14, OH 15);
- D1x2x1,5 pour les ouvrages (OH16, OH 8, OH6, 3 Nouveau);
- D2x2x1 pour les ouvrages suivants (OH 7, OH 10, OH 11, OH 12, OH 13)



Source: BCEOM

Annexe 34 : Abaque de la détermination de H1*



Annexe 35 : Abaque de détermination de Ic*

Source: BCEOM

Annexe 36 : Abaque de détermination de Vitesse dans le dalot

Source: BCEOM

III. ANNEXE DIMENSIONNEMENT STRUCTURAL DES OUVRAGES :

1. Cas du Dalot 2×2×1 AU PK 26+590

Description du dalot:

- Les épaisseurs des différents éléments constitutifs du dalot (dalle, radier, piédroits, voiles): e = 0,25 m
- Hauteur des piédroits : e = 0,25 m
- Largeur roulable : Lr = 10,20 m;
- Largeur chargeable : Lc = 7.2 m;
- Nombre de voies : $n = entier(\frac{Lc}{3}) \Rightarrow n = entier(\frac{7,2}{3}) = 2$;
- Largeur d'une voie : 1 = 3.6 m;
- Largeur de la travée du dalot : L = 2 m ;
- Gabarit du dalot : 2 m × 1 m ;
- Section des guides roues en BA : (0.25×0.60) m²;
- Classe de l'ouvrage de franchissement : $Lr > 7 \text{ m} \Rightarrow \text{classe I (première classe)}$.

Hypothèse de calcul:

Norme et règles utilisées :

Les calculs des charges d'exploitation se feront conformément aux prescriptions du fascicule 61 Titre II (les dalots seront dimensionnés en fonction des systèmes de charges A(L) et Bc (Bc, Bc_{niger} et Bt) et le convoi militaire Mc 120), tous les éléments en béton armé seront dimensionnés suivant les règles de BAEL 91 modifiée 99 et par bande de 1 m.

Caractéristiques des matériaux :

• Le béton :

Le dosage du béton : 350 kg/m³

Résistance à la compression : fc28 = 25 Mpa;

Résistance caractéristique à la traction du béton à 28 j: $\text{ft}28 = 0.6 + 0.06 \times \text{fc}28 = 2.1 \text{ Mpa}$;

Densité du béton : 25 KN/m³;

Coefficient de sécurité : yb = 1,5

Resistance de calcul à l'ELU du béton en compression : $f_{bu} = \frac{0.85 \times f_{c28}}{vb} = 14,17 \text{ Mpa};$

Contrainte limite à l'ELS du béton comprimé : $\sigma bc = 0.6 \times fc28 = 15 \text{ Mpa}$;

• Acier:

Type: Acier HA FeE 400;

Limité d'élasticité : Fe = 400 ;

Coefficient de sécurité et d'adhérence sont respectivement $\gamma = 1,15$ et $\eta = 1,6$

Fissuration préjudiciable : $\overline{\sigma}_s = \min \left\{ \frac{2}{3} \times \text{ fe; } \max(0.5 \times \text{ fe; } 110\sqrt{\eta \text{ft}28}) \right\} = 201,63 \text{ Mpa;}$

■ Remblai :

Poids volumique du graveleux latéritique amélioré au ciment γd 1 = 22 KN/m³;

Poids volumique de graveleux latéritique $\gamma d 2 = 20 \text{ KN/m}^3$;

Poids volumique du béton bitumineux $\gamma d 3 = 24 \text{ KN/m}^3$.

Coefficient de poussée de terre Ka =0,33.

Calcul des sollicitations :

- a. Charges permanentes sur :
 - Le tablier :
- Poids propre du tablier :

$$Pp_{ta} = e \times \gamma \times 1 = 0.25 \times 25 \times 1 = 6.25 \text{ KN/ml};$$

• Poids propre des guides roues :

$$Pp_{gr} = \frac{egr \times hgr \times Ltd \times \gamma b}{Lc + 2 \times egr} = \frac{0.25 \times 0.60 \times 4.75 \times 25}{7.2 + 2 \times 0.25} = 2.31 \text{ KN/ml};$$

• Poids du remblai :

Poids propre couche de renforcement :

Ppcrenf =
$$e_{renf} \times \gamma d1 \times 1 = 0.20 \times 22 \times 1 = 4.4 \text{ KN/ml}$$
;

Poids propre couche de fondation

Ppcfond =
$$e_{fond} \times \gamma d2 \times 1 = 0.15 \times 20 \times 1 = 3 \text{ KN/ml}$$
;

Poids propre couche de revêtement (béton bitumineux)

Ppcrevet = ebb
$$\times$$
 yd3 \times 1 = 0,05 \times 24 \times 1 = 1,2 KN/ml;

Poids total remblai:

Pptremb = Ppcrenf+Ppcfond+Ppcrevet = 4,4+3+1,2 = 8,6 KN/ml;

Poids total sur le tablier = Ppta+Pptremb+Ppgr = 6,25+2,31+8,6 = 17,16 KN/ml.

• Les piédroits :

Calcul de h1 à partir du tablier :

$$h1 = Hr + \frac{e}{2} = (0.05 + 0.20 + 0.15) + \frac{0.25}{2} = 0.53 \text{ m}$$

Poussée latérale au niveau du tablier :

$$Plt = ka \times \gamma d2 \times h1 = 0.33 \times 22 \times 0.53 = 3.85 \text{ KN/ml}$$

Calcul de h2 à partir du radier : h2 = Hi + Hr + $\frac{e}{2}$ = 1,76 m

$$Plr = ka \times \gamma d2 \times h2 = 0.33 \times 20 \times 1.76 = 11.62 \text{ KN/ml}.$$

• Le radier :

Poids propre du radier : Pprd = $e \times \gamma b \times 1 = 0.25 \times 25 \times 1 = 6.25$ KN/ml;

Poids propre des piédroits : Pppdr =
$$\frac{e \times Hpdr \times \gamma b \times 1 \times npdr}{nouverture \times Ldalot + npdr \times e} = \frac{0.25 \times 1 \times 25 \times 1 \times 3}{2 \times 2 + 3 \times 0.25} = 3.95 \text{ KN/ml}$$

Poids total sur le radier = Poids total sur tablier +Pppdr+Pprd

Poids total sur le radier = 17,06 + 3,95 + 6,25 = 27,26 KN/ml.

b. Charges variables:

Détermination des surcharges routières :

Système A:

$$Q_A = a_2 \times \gamma_q \times Q(L)$$
; où $\gamma_q = 1, 2$ à l'ELS et $\gamma_q = 1, 61$ à l'ELU.

Calcul des différents paramètres de la formule :

• Le coefficient du a₂ :

 $a_2 = \frac{v_0}{v}$; Avec v : la largeur d'une voie $(V = \frac{Lr}{3} = \frac{10,20}{3} = 3,4 \text{ m})$ et Vo est fonction de la classe de l'ouvrage $(V_0 = 3,5 \text{ m car on a un pont de première classe})$.

$$\Rightarrow a_2 = \frac{3.5}{3.4} = 1.03$$

• Charger Q(L):

$$Q(L) = \max \{a_1 \times A(L); (4 - 0,002L)\};$$

Avec L : la largeur chargée ($L_{Chargeable} = L_{chargée} = 7,2 \text{ m}$) et a_1 : le coefficient de dégressivité transversale (Nombre de voie 2 et pont première classe $\Rightarrow a_1 = 1$)

Calcul de $a_1 \times A(L)$:

$$a_1 \times A(L) = a_1 \times 2.3 + \frac{360}{Lc + 12} = 1 \times 2.3 + \frac{360}{7.2 + 12} = 21.35 \text{ KN/m}^2$$

Calcul de 4-0,002L:

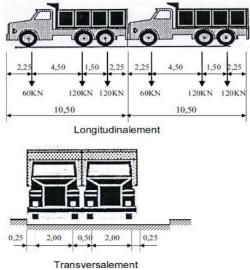
$$4-0.002L = 4-0.002 \times 7.2 = 3.99 \text{ KN/m}^2$$

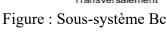
$$Q(L) = max\{(21,35;3,99)\}$$

$$Q(L) = 21,35 \text{ KN/m}^2$$

■ Calcul de la charge Q_A à l'ELS

$$Q_A = 1,46 \times 1,2 \times 21,35 = 37,41 \text{ KN/m}^2/\text{ml}$$


Calcul de la charge Q_A à l'ELU


$$Q_A = 1,46 \times 1,61 \times 21,35 = 50,19 \text{ KN/m}^2/\text{ml}$$

NB: Étant donné que la largeur roulable n'atteint pas 20 m, on peut dire que la surcharges A (1) ne sera pas la charges le plus défavorable.

• Système B:

Sous système BC:

source : cours CCOH

Le sous système Bc est constitué des camions ayant un poids individuel de 30 tonnes. On dispose autant de files de deux camions au maximum que de voies de circulation. Un coefficient de pondération b_c, déterminé en fonction du nombre de voies et de la classe du pont, est appliquée. Dans notre cas, la valeur du coefficient b_c est égale à 1,1.

Calcul de la charge Bc:

$$P = \frac{Q}{S_{encombrement}}$$

Les charges des roues sur le tablier : $Q = 8 \times 60 = 480 \text{ KN}$

Surface d'encombrement : $S_{encbre} = l_x \times l_y = (1.50 + 0.25) \times (4.50 + 0.25) = 8.31 \text{ m}^2$

$$P = \frac{480}{8,31} = 57,76 \text{ KN/m}^2;$$

Calcul du coefficient de majoration dynamique :

$$\delta = 1 + \frac{0.4}{1 + 0.2 \times L} + \frac{0.6}{1 + 4 \times \frac{G}{O}}$$

Avec:

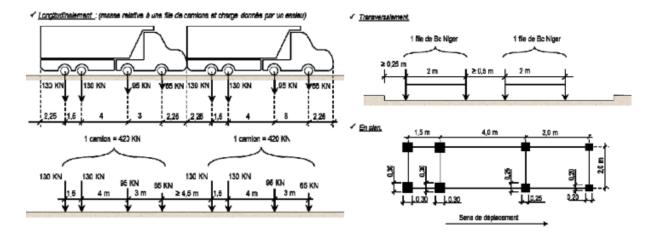
L = max (Lr; portée de la travée)

$$\rightarrow$$
 L = max (10,20; 2) = 10,20 m.

G : le poids total d'une section de couverture correspond à la charge exercée par une longueur L de la couverture, incluant toute la largeur associée à cette dernière ainsi qu'aux aux éléments qui y reposent.

$$\rightarrow$$
 G = Pp tablier = $(25 \times 0.25 \times 10.20 \times 2) = 127.5$ KN.

Q : Le poids total maximal des essieux du système B (Bc,Bc_N ou Bt) qu'il est possible de placer sur la longueur L.


$$\rightarrow$$
 Q = 480 KN

AN:
$$\delta = 1 + \frac{0.4}{1 + 0.2 \times 10.20} + \frac{0.6}{1 + 4 \times \frac{127.5}{490}} = 1.42$$
;

$$\delta = 1.42.$$

Sous système BC_Niger:

Calcul de la charge BC_Niger:

$$P = \frac{Q}{S_{encombrement}}$$

Les charges des roues sur le tablier : $Q = 4 \times 130 = 520 \text{ KN}$

Surface d'encombrement : $S_{encbre} = l_x \times l_y = (1,50 + 0,30) \times (4,50 + 0,30) = 8,64 \text{ m}^2$

$$P = \frac{520}{8.64} = 60,19 \text{ KN/m}^2$$
;

Calcul du coefficient de majoration dynamique :

$$\delta = 1 + \frac{0.4}{1 + 0.2 \times L} + \frac{0.6}{1 + 4 \times \frac{G}{O}}$$

Avec:

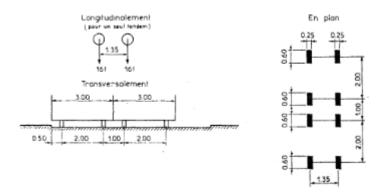
L = max (Lr; portée de la travée)

$$\rightarrow$$
 L = max (10,20; 2) = 10,20 m.

G : le poids total d'une section de couverture correspond à la charge exercée par une longueur L de la couverture, incluant toute la largeur associée à cette dernière ainsi qu'aux aux éléments qui y reposent.

$$\rightarrow$$
 G = Pp tablier = $(25 \times 0.25 \times 10.20 \times 2) = 127.5$ KN.

Q : Le poids total maximal des essieux du système B (Bc,Bc_N ou Bt) qu'il est possible de placer sur la longueur L.


$$\rightarrow$$
 Q = 520 KN

AN:

$$\delta = 1 + \frac{0.4}{1 + 0.2 \times 10.20} + \frac{0.6}{1 + 4 \times \frac{127.5}{520}} = 1.43$$
;

$$\delta = 1.43$$
.

Sous système Bt:

Calcul de la charge Bt:

$$P = \frac{Q}{S_{ancombromont}}$$

Les charges des roues sur le tablier : $Q = 8 \times 80 = 640 \text{ KN}$

Surface d'encombrement : $S_{encbre} = l_x \times l_y = (1,35 + 0,25) \times (5,00 + 0,60) = 8,96 \text{ m}^2$

$$P = \frac{640}{8,96} = 71,43 \text{ KN/m}^2;$$

Calcul du coefficient de majoration dynamique :

$$\delta = 1 + \frac{0.4}{1 + 0.2 \times L} + \frac{0.6}{1 + 4 \times \frac{G}{O}}$$

Avec:

$$L = max (10,20; 2) = 10,20 m.$$

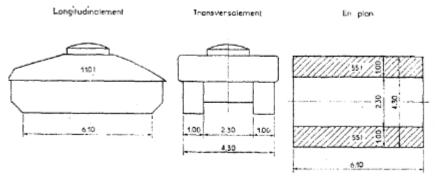
G = Pp tablier = 127,5 KN.

$$Q = 640 \text{ KN}$$

AN:

$$\delta = 1 + \frac{0.4}{1 + 0.2 \times 10.20} + \frac{0.6}{1 + 4 \times \frac{127.5}{640}} = 1.47$$
;

$$\delta = 1.47$$
.


• Système M:

Sous système Mc 120:

Étant donné que notre tronçon est une route nationale, les convois militaires seront pris en compte. Cependant, on distingue deux types de convois militaires : M 80 et M 120. Ces convois se répartissent en deux catégories selon les charges : les convois sur chenilles et ceux sur essieux. Pour notre étude, nous travaillerons avec les convois sur chenille Mc120, qui exercent une charge de 55 tonnes, soit 550 KN par chenille sur le dalot.

En ce qui concerne les véhicules du système Mc, ils peuvent circuler en convoi.

Dans le sens transversal, un seul convoi est supposé emprunter la chaussée, quelle que soit sa largeur. En revanche dans le sens longitudinal, le nombre de véhicules dans le convoi est illimité.

Calcul de la charge Mc120:

$$\mathbf{P} = \frac{\mathbf{Q}}{\mathbf{S}_{\text{encombrement}}}$$

Les charges des chenilles sur le tablier : $Q = 2 \times 550 = 1100 \text{ KN}$

Surface d'encombrement : $S_{encbre} = l_x \times l_y = 2 \times (2 \times 4.3) = 17.20 \text{ m}^2$

$$P = \frac{1100}{17.20} = 63,95 \text{ KN/m}^2$$
;

Calcul du coefficient de majoration dynamique :

$$\delta = 1 + \frac{0.4}{1 + 0.2 \times L} + \frac{0.6}{1 + 4 \times \frac{G}{O}}$$

Avec:

$$L = 10,20 \text{ m}.$$

$$G = Pp \text{ tablier} = 127,5 \text{ KN}.$$

$$Q = 1100 \text{ KN}$$

AN:

$$\delta = 1 + \frac{0.4}{1 + 0.2 \times 10.20} + \frac{0.6}{1 + 4 \times \frac{127.5}{1100}} = 1.54$$
;

$$\delta = 1,54$$
.

• Choix du " δ " pour le calcul des sollicitations :

$$\delta = \max(\delta_{bc}, \delta_{bc}, \delta_{bc}, \delta_{bc}, \delta_{Mc120}) = \max(1,42; 1,43; 1,47; 1,54) = 1,54$$

$$\delta = 1,54$$

La charge de chaque sous système :

❖ Sous système Bc :

$$Q_{BC} = \delta \times Q \times b_{C} = 1,54 \times 57,76 \times 1,1 = 97,84 \text{ KN/m}^{2}$$

- À l'ELU :

$$Q_{Bc_Elu} = 1,61 \times Q_{Bc} = 1,61 \times 97,48 = 156,94 \text{ KN/m}^2$$

- À 1'ELS :

$$Q_{Bc Els} = 1.2 \times Q_{Bc} = 1.2 \times 97.48 = 117.41 \text{ KN/m}^2$$
.

Sous système Bc Niger:

$$Q_{BC} = \delta \times Q \times b_{c \text{ Niger}} = 1,54 \times 60,19 \times 1,1 = 101,96 \text{ KN/m}^2$$

- À 1'ELU :

$$Q_{Bc Elu} = 1,61 \times Q_{Bc} = 1,61 \times 101,96 = 164,16 \text{ KN/m}^2$$

- À 1'ELS :

$$Q_{Bc Els} = 1.2 \times Q_{Bc} = 1.2 \times 101.96 = 122.35 \text{ KN/m}^2$$
.

❖ Sous système Bt:

$$Q_{Bt} = \delta \times Q \times b_t = 1,54 \times 71,43 \times 1 = 110 \text{ KN/m}^2$$

- À 1'ELU :

$$Q_{Bt Elu} = 1.61 \times Q_{Bt} = 1.61 \times 110 = 177,10 \text{ KN/m}^2$$

- À l'ELS :

$$Q_{Bt Els} = 1.2 \times Q_{Bt} = 1.2 \times 110 = 132 \text{ KN/m}^2$$
.

❖ Sous système Mc 120 :

$$Q_{Mc120} = \delta \times Q = 1.54 \times 63.95 = 98.48 \, KN/m^2$$

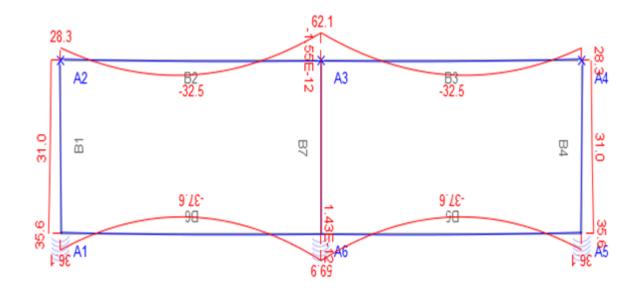
- À 1'ELU :

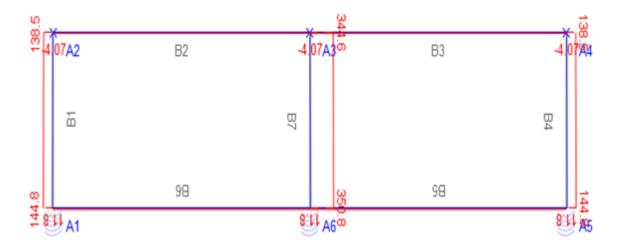
$$Q_{Bc\ Elu} = 1,61 \times Q_{Mc120} = 1,61 \times 98,48 = 158,55 \text{ KN/m}^2$$

- À l'ELS :

$$Q_{Bc_Els} = 1.2 \times Q_{Mc120} = 1.2 \times 110 = 118.18 \text{ KN/m}^2$$
.

<u>NB</u>: A l'issue de ces calculs, il apparait que le système Bt (à l'ELS) a fourni des valeurs supérieures à celles des autres systèmes. Par conséquent, le dimensionnement des ouvrages sera effectué sous le système Bt.


❖ La valeur du moment fléchissant et effort tranchant :



Pour la détermination des différentes valeurs du moment fléchissant et effort tranchant, nous avons utilisé le logiciel Pybar. En y intégrant les différentes charges appliquées, le logiciel nous a généré les valeurs des moments et efforts illustrés par les figures ci-dessous :

A L'ELS:

Annexe 37: Les valeurs des moments fléchissant

Annexe 38: Valeurs des efforts normaux:

Détermination de la section d'armature du dalot :

Données:

fc28	25
Fe	400
n	15
d	0,225
ft28	2,1
cg(mm)	20
cg(mm)	3

$$\frac{1}{2}Y_{ser}^2 - 15A_{st}(d - Y_{ser}) = 0$$

$$\frac{1}{2}Y_{ser}^2 - 15A_{st}(d - Y_{ser}) = 0$$

• Section d'acier du tablier (Flexion simple) :

Désignations	Application linéaire	Appuis A2 et A3	Appui A3	Travée B2 et B3
Moment à L'ELS		28,30	62,1	32,5
Vérification de la présence des aciers comprimés	$M_{rserb} > M_{ser}$	Pas d'aciers comprimés	Pas d'aciers comprimés	Pas d'aciers comprimés
Section d'acier tendu	$A_{st1} = \frac{M_{ser}}{d\left(1 - \frac{\overline{\alpha_{ser}}}{3}\right)\sigma_{st}}$	7,57	16,61	8,69
Condition de non fragilité	$A_{stmin} = \frac{0.23 \ b \ d \ f_{tj}}{f_e}$	2,72	2,72	2,72
Choix Acier		As = Ast	As = Ast	As = Ast

	$\max(A_{st}; A_{stmin})$	7HA12 soit 7,92 cm ²	12 HA14 soit 16,93 cm ²	6HA14 soit 9,24 cm ²
Espacement réel (cm)	$e_h = \frac{100 - (\phi * n + enr * 2)}{n - 1}$	15	10	15
	Vérification des contra	intes des matériaux	X.	
Position de l'axe neutre Yser	$\frac{1}{2}Y_{ser}^2 - 15A_{st}(d - Y_{ser}) = 0$	0,05	0,08	0,05
Moment quadratique Iser	$I_{ser} = \frac{b_o}{2} Y_{ser}^3 + nA_{st} (d - Y_{ser})^2$	7,19E-04	6,93E-04	6,99E-04
Contraintes du	$\sigma_{bc} = \frac{M_{ser}}{I_{ser}} Y_{ser}$	1,77	7,17	2,33
béton	$\sigma_{bc} < \overline{\sigma}_{bc}$	Contrainte du béton vérifiée	Contrainte du béton vérifiée	Contrainte du béton vérifiée
Contraintes des	$\sigma_{\rm st} = n \frac{M_{ser}}{I_{ser}} (d - Y_{ser})$	106,32	194,96	122,10
aciers	$\sigma_{st} < \overline{\sigma}_{st}$	Contrainte de l'acier vérifiée	Contrainte de l'acier vérifiée	Contrainte de l'acier vérifiée
Acier de répartition	Ar = Ast/3	2,64	5,54	3,08

• Section d'acier du radier (Flexion simple) :

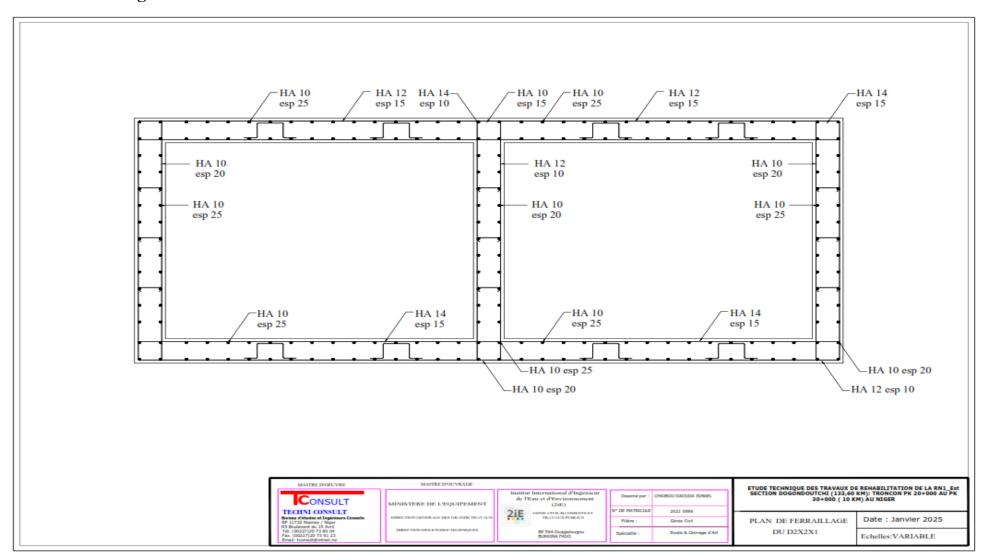
Désignations	Application linéaire	Appuis A2 et A3	Appui A3	Travée B2 et B3
Moment à L'ELS		36,10	59,9	37,6
Vérification de la présence des aciers comprimés	$M_{rserb} > M_{ser}$	Pas d'aciers comprimés	Pas d'aciers comprimés	Pas d'aciers comprimés
Section d'acier tendu	$A_{st1} = \frac{M_{ser}}{d\left(1 - \frac{\overline{\alpha_{ser}}}{3}\right)\sigma_{st}}$	9,65	16,02	10,06
Condition de non fragilité	$A_{stmin} = \frac{0.23 \ b \ d \ f_{tj}}{f_e}$	2,72	2,72	2,72
Choix Acier		As = Ast	As = Ast	As = Ast

	$\max(A_{st}; A_{stmin})$	9HA12 soit 10,18 cm ²	11 HA14 soit 13,85 cm ²	7HA14 soit 10,78 cm ²
Espacement réel (cm)	$e_h = \frac{100 - (\phi * n + enr * 2)}{n - 1}$	15	10	15
	Vérification des contrai	ntes des matériaux		
Position de l'axe neutre Yser	$\frac{1}{2}Y_{ser}^2 - 15A_{st}(d - Y_{ser}) = 0$	0,05	0,08	0,05
Moment quadratique Iser	$I_{ser} = \frac{b_o}{2} Y_{ser}^3 + nA_{st} (d - Y_{ser})^2$	7,19E-04	6,93E-04	6,99E-04
Contraintes du	$\sigma_{bc} = \frac{M_{ser}}{I_{ser}} Y_{ser}$	1,77	7,17	2,33
béton	$\sigma_{bc} < \overline{\sigma}_{bc}$	Contrainte du béton vérifiée	Contrainte du béton vérifiée	Contrainte du béton vérifiée
Contraintes des	$\sigma_{\rm st} = n \frac{M_{ser}}{I_{ser}} (d - Y_{ser})$	106,32	194,96	122,10
aciers	$\sigma_{st} < \overline{\sigma}_{st}$	Contrainte de l'acier vérifiée	Contrainte de l'acier vérifiée	Contrainte de l'acier vérifiée

• Section d'aciers des piédroits :

* Piédroit de rive (flexion composée)

Désignations	Application linéaire	Résultats
Moment à L'ELS	31	
Effort normal	138,5	
Excentricité du premier ordre	$e1 = \frac{M_{ser}}{N_{ser}}$	0,22
Excentricité due aux effets secondaires	e2 = max (2cm, L/250)	0,02
Excentricité additionnelle	$e3 = \frac{3L_{\rm f}^2}{10000{\rm h}}(2 + \alpha\varphi)$	0,0033
Excentricité	e	0,25
Effort de compression centré max supportable par le béton	$N_{bmax} = b \times h \times f_{bc}$	2,83
Coefficient de remplissage	$\psi 1 = \frac{N_{ser}}{Nb_{max}}$	0,05
Ψ1<0,81 d^' où e_NC=ζ×h	$e_{NC} = \zeta \times h$	0,01
Conclusion	La Section Est Partiellement Co	omprimée
Excentricité eA	$e_A = e + (d - 0.5h)$	0,37
Moment fictif	$Mserf = Nser \times e_A$	51,54
Alpha ser	$\overline{\alpha_{ser}} = \frac{n\overline{\sigma}_{bc}}{n\overline{\sigma}_{bc} + \overline{\sigma}_{st}}$	0,53
Position de l'axe	$Yser = d \times \alpha_{ser}$	0,12
Bras de levier	$Zser = d - \frac{y_{ser}}{3}$	0,1854
Moment réduit	$Mserb = \frac{1}{2}bo \times Zser \times \overline{\sigma}_{bc} \times Yser$	165,04
Conclusion	Pas D'acier Comprimé	


Désignations	Application Linéaire	Résultats
Section D'acier Fictive	$A_{stf} = \frac{M_{serf}}{Z_{ser} \times \sigma_{st}}$	13,78
Section D'acier	$A_{s} = A_{stf} - \frac{N_{ser}}{\sigma_{st}}$	6,91
Condition De Non Fragilité	$A_{stmin} = \max\left(\frac{bh}{100}; \frac{0.23 \ b \ d \ f_{tj}}{f_e}\right)$	2,72
Choix	$\max(A_{st}; A_{stmin})$	6,91
Acier 13 HA12 Soit 14,70 Cm ²		70 Cm ²
Espacement	6,21	10

Section d'aciers des piédroits intermédiaires (Compression) :

Moment à L'ELS (Mser)	Mser	31
Effort normal (Nser)	Nser	0,3477
Section réduite (Br)	Br = (h-0.02) (b-0.02)	0,1764
Élancement	$\lambda = 3.5 \times \frac{lf}{a}$ Avec $lf = 0.7 \times H$	9,80
Alpha	$\alpha = \frac{0.85}{1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2}$	0,8369
Acier comprimés	$Asc = \frac{\gamma_s}{fe} \left(\frac{Nu}{\alpha} - \frac{Br \times fc28}{0.9Br} \right)$	-0,01
	4 <i>U</i>	9,60
Acier min	$\frac{0.2 \times B}{100}$	4,00
	$Ascmin = max\left(4 \ U; \frac{0.2 \times B}{100}\right)$	9,60
Asc	9HA12 soit 10,18 cm ² esp 15 cm	
Condition de non fragilité	$A_{stmin} = \max\left(\frac{bh}{100}; \frac{0.23 \ b \ d \ f_{tj}}{f_e}\right)$	2,72
Acier	$\max(A_s; A_{stmin})$	9HA12 Soit 10,18 cm ²
Section d'acier de	$A_{\rm r} = A_{\rm st}/3$	3,39
répartition	Choix	5 HA10 Soit 3,93cm ² esp 20 cm

Plan de ferraillage:

2. Cas du dalot de section 1×2×1 au pk 23+875

Description du dalot:

Les épaisseurs des différents éléments constitutifs du dalot (dalle, radier, piédroits,

voiles) : e = 0.25 m

■ Hauteur des piédroits : e = 0,25 m

• Largeur roulable : Lr = 10,20 m;

• Largeur chargeable : Lc = 7.2 m;

Nombre de voies : $n = entier(\frac{Lc}{3}) \Rightarrow n = entier(\frac{7,2}{3}) = 2$;

• Largeur d'une voie : 1 = 3.6 m;

• Largeur de la travée du dalot : L = 2 m;

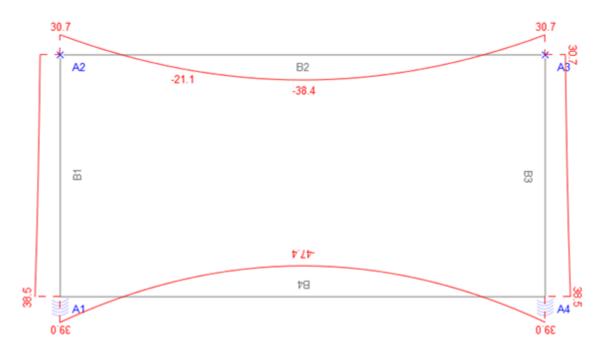
■ Gabarit du dalot : 2 m × 1,5 m ;

• Section des guides roues en BA : (0.25×0.60) m²;

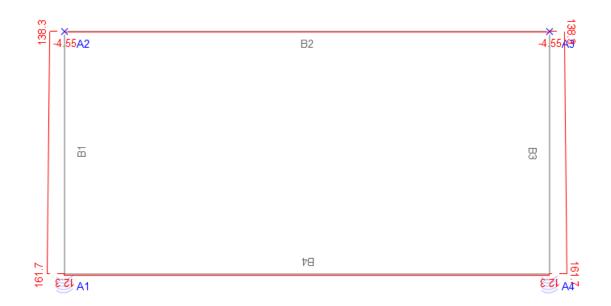
Classe de l'ouvrage de franchissement : $Lr > 7 \text{ m} \Rightarrow \text{classe I (première classe)}$.

• Charge permanente:

Charge permanentes sur :	G	Valeurs
Tablier	GTablier	17,16 KN/ml
Radier	G Radier	27,26 KN/ml
Poussée Latérales sur les	G Lat au niveau du Tablier	3,85 KN/ml
Piédroits	G Lat au niveau du radier	11,62 KN/ml


• Charge d'exploitation :

Les sous systèmes :					
Sous système Bt					
bt	1			177,10	
S(m ²)	8,96	On	ELU		
$S_{Bt}(KN)$	640	QBt	ELS	122.00	
Bt (KN/m²)	71,43		ELS	132,00	
	Sous système Bc				
bc	1,1	QВс	ELU	156,94	
S(m ²)	8,3125		ELU		
$S_{Bc}(KN)$	480		ELS	117,41	
Bc (KN/m²)	57,76		ELS		
Sous système Bc-Niger					
bc	1,1		ELU	16// 16	
S(m ²)	8,64	OD a Ni can	ELU	164,16	
$S_{Bc-N}(KN)$	520	QBc-Niger	ELS	122,35	
Bc-N (KN/m²)	60,19		LLS	122,33	
Sous-système Mc120					
S (m2)	17,2		ELII	150 55	
$S_{Mc120}(KN)$	1100	Q Mc120	ELU	158,55	
Mc120 (KN/m2)	63,95		ELS	118,18	
Charge	d'exploitation retenue	ELU	1	77,10	
Charge a exploitation retenue		ELS	1	32,00	


La valeur du moment fléchissant et effort normal :

Les valeurs générées par le logiciel pybar sont présentées ci-dessous :

Annexe 39 : Valeurs des moments fléchissant 1x2x1

D1X2X1 (N)

Annexe 40: Valeurs des efforts normaux 1x2x1

Détermination de la section d'armature du dalot :

Section d'acier du tablier (Flexion simple) :

Désignations	Application linéaire	Appuis A2 et A3	Travée B2
Moment à L'ELS		25,70	43,4
Vérification de la présence des aciers comprimés	$M_{rserb} > M_{ser}$	Pas d'aciers comprimés	Pas d'aciers comprimés
Section d'acier tendu	$A_{st1} = \frac{M_{ser}}{d\left(1 - \frac{\overline{\alpha_{ser}}}{3}\right)\sigma_{st}}$	6,87	10,27
Condition de non fragilité	$A_{stmin} = \frac{0.23 \ b \ d \ f_{tj}}{f_e}$	2,72	2,72
Choix	$\max(A_{st}; A_{stmin})$	As = Ast	As = Ast
Acier		7HA12 soit 7,92 cm ²	12HA12 soit 12,44 cm ²
Espacement réel (cm)	$e_h = \frac{100 - (\phi * n + enr * 2)}{n - 1}$	14,27	7,24
	Vérification des contraintes des	s matériaux	
Position de l'axe neutre Yser	$\frac{1}{2}Y_{ser}^2 - 15A_{st}(d - Y_{ser}) = 0$	0,05	0,055
Moment quadratique Iser	$I_{ser} = \frac{b_o}{2} Y_{ser}^3 + nA_{st} (d - Y_{ser})^2$	7,14E-04	6,84E-04
Contraintes du	$\sigma_{bc} = \frac{M_{ser}}{I_{ser}} Y_{ser}$	1,66	3,49
béton	$\sigma_{bc} < \overline{\sigma}_{bc}$	Contrainte du béton vérifiée	Contrainte du béton vérifiée
Contraintes des	$\sigma_{\rm st} = n \frac{M_{ser}}{I_{ser}} (d - Y_{ser})$	96,60	161,90
aciers	$\sigma_{st} < \overline{\sigma}_{st}$	Contrainte de l'acier vérifiée	Contrainte de l'acier vérifiée

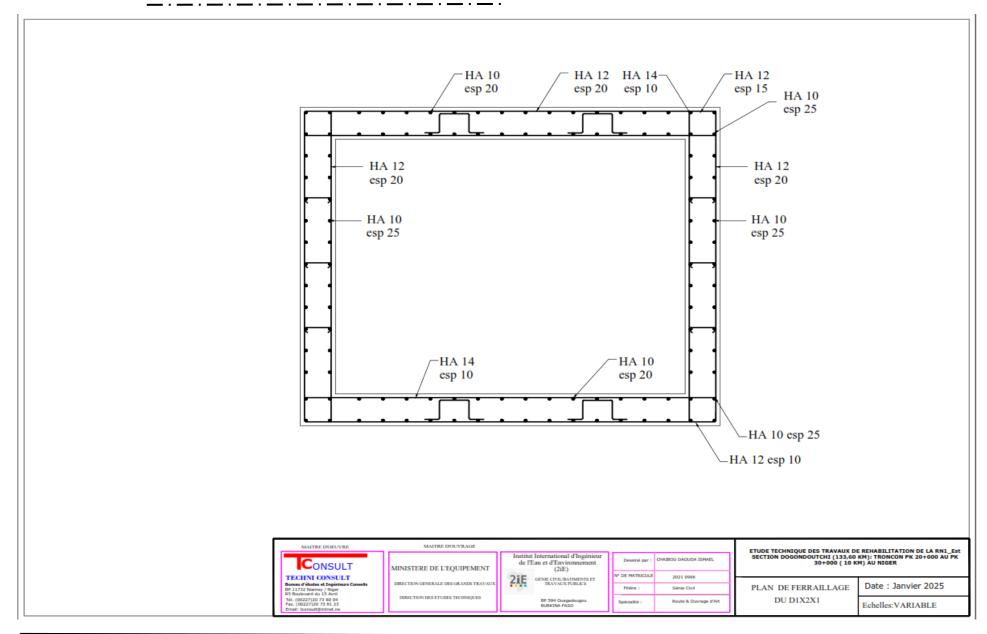
Section d'acier du radier :

Désignations	Application linéaire	Appuis A1 et A4	Travée B4		
Moment à L'ELS		37.40	55.2		
Vérification de la présence des aciers comprimés	$M_{rserb} > M_{ser}$	pas d'aciers comprimés	pas d'aciers comprimés		
Section d'acier tendu	$A_{st1} = \frac{M_{ser}}{d\left(1 - \frac{\overline{\alpha_{ser}}}{3}\right)\sigma_{st}}$	10.00	14,76		
Condition de non fragilité	$A_{stmin} = \frac{0.23 \ b \ d \ f_{tj}}{f_e}$	2,72	2,72		
Choix	$\max(A_{st}; A_{stmin})$	As = Ast	As = Ast		
Acier	max(1 _{st} ,11 _{stmin})	9HA12 soit 11,31 cm ²	10HA14 soit 15,39 cm ²		
Espacement réel (cm)	$e_h = \frac{100 - (\phi * n + enr * 2)}{n - 1}$	10,40	9,11		
	Vérification des contraintes d	es matériaux			
Position de l'axe neutre Yser	$\frac{1}{2}Y_{ser}^2 - 15A_{st}(0.18 - Y_{ser}) = 0$	0,05	0,062		
Moment quadratique Iser	$I_{ser} = \frac{b_o}{2} Y_{ser}^3 + nA_{st} (d - Y_{ser})^2$	6,89E-04	6,71E-04		
Contraintes du	$\sigma_{bc} = \frac{M_{ser}}{I_{ser}} Y_{ser}$	2,88	5,10		
béton	$\sigma_{bc} < \overline{\sigma}_{bc}$	Contrainte du béton vérifiée	Contrainte du béton vérifiée		
Contraintes des aciers	$\sigma_{\rm st} = n \frac{M_{ser}}{I_{ser}} (d - Y_{ser})$	140,04	201,10		
	$\sigma_{st} < \overline{\sigma}_{st}$	Contrainte de l'acier vérifiée	Contrainte de l'acier vérifiée		

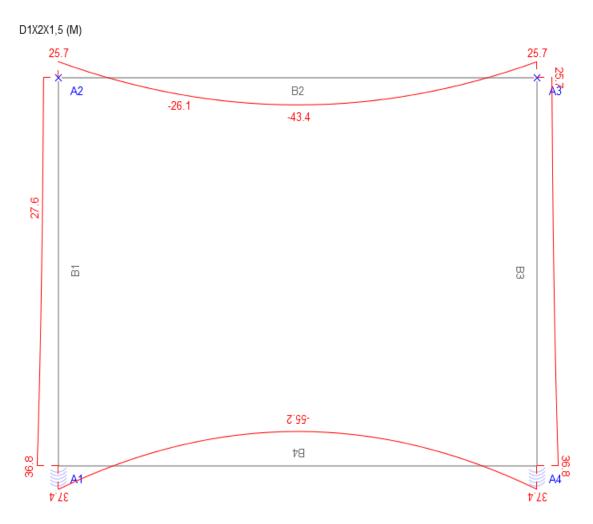
• Section d'aciers des piédroits :

Piédroits de rive (flexion composée)

Désignations	Application linéaire	Résultats
Moment à L'ELS	35	
Effort normal	151	
Excentricité du premier ordre	$e1 = \frac{M_{ser}}{N_{ser}}$	0,23
Excentricité due aux effets secondaires	e2 = max (2cm, L/250)	0,02
Excentricité additionnelle	$e3 = \frac{3L_{\rm f}^2}{10000{\rm h}}(2 + \alpha\varphi)$	0,0033
Excentricité	e	0,26
Effort de compression centré max supportable par le béton	$N_{bmax} = b \times h \times f_{bc}$	3,54
Coefficient de remplissage	$\psi_1 = \frac{N_{ser}}{Nb_{max}}$	0,04
Ψ1<0,81 d^' où e_NC=ζ×h	$e_{NC} = \zeta \times h$	0,01
Conclusion	La Section Est Partiellement Co	omprimée
Excentricité eA	$e_A = e + (d - 0.5h)$	0,36
Moment fictif	$Mserf = Nser \times e_A$	53,62
Alpha ser	$\overline{\alpha_{ser}} = \frac{n\overline{\sigma}_{bc}}{n\overline{\sigma}_{bc} + \overline{\sigma}_{st}}$	0,53
Position de l'axe	$Yser = d \times \alpha_{ser}$	0,12
Bras de levier	$Zser = d - \frac{y_{ser}}{3}$	0,1854
Moment réduit	$Mserb = \frac{1}{2}bo \times Zser \times \overline{\sigma}_{bc} \times Yser$	165,04
Conclusion	Pas D'acier Comprimé	



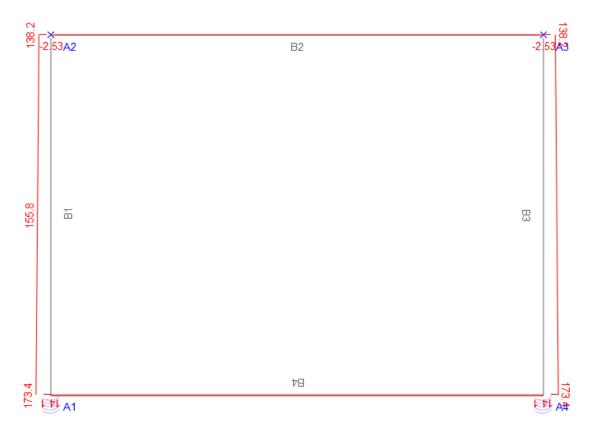
Désignations	Application Linéaire	Résultats				
Section D'acier Fictive	$A_{stf} = \frac{M_{serf}}{Z_{ser} \times \sigma_{st}}$	14,34				
Section D'acier	$A_{s} = A_{stf} - \frac{N_{ser}}{\sigma_{st}}$	6,85				
Condition De Non Fragilité	$A_{stmin} = \max\left(\frac{bh}{100}; \frac{0,23 \ b \ d \ f_{tj}}{f_e}\right)$	2,72				
Choix	$\max(A_{st}; A_{stmin})$	6,85				
Acier	13 HA12 Soit 14,70 Cm ²					
Espacement	6,21	10				



3. Cas du DALOT $1\times2\times1,5$:

• Détermination de la section d'armature du dalot :

Les hypothèses et les données précédemment utilisées seront réutilisées pour la détermination de la section du dalot 1×2×1,5, étant donné que tous les trois ouvrages ont la même largeur.


Nous présenterons uniquement les résultats des sections d'armatures.

Annexe 41 : Valeurs des moments fléchissant

Annexe 42: Valeurs des efforts normaux

Section d'acier du tablier (Flexion simple) :

Désignations	Application linéaire	Appuis A2 et A3	Travée B2			
Moment à L'ELS		30,70	38,4			
Vérification de la présence des aciers comprimés	$M_{rserb} > M_{ser}$	Pas d'aciers comprimés	Pas d'aciers comprimés			
Section d'acier tendu	$A_{st1} = \frac{M_{ser}}{d\left(1 - \frac{\overline{\alpha}_{ser}}{3}\right)\sigma_{st}}$	8,21	10,27			
Condition de non fragilité	$A_{stmin} = \frac{0.23 \ b \ d \ f_{tj}}{f_e}$	2,72	2,72			
Choix	$\max(A_{st}; A_{stmin})$	As = Ast	As = Ast			
Acier		8HA12 soit 9,42 cm ²	10HA12 soit 11,31 cm ²			
Espacement réel (cm)	$e_h = \frac{100 - (\phi * n + enr * 2)}{n - 1}$	16,88	9,11			
	Vérification des contraintes des	matériaux				
Position de l'axe neutre Yser	$\frac{1}{2}Y_{ser}^2 - 15A_{st}(d - Y_{ser}) = 0$	0,05	0,051			
Moment quadratique Iser	$I_{ser} = \frac{b_o}{2} Y_{ser}^3 + nA_{st} (d - Y_{ser})^2$	7,02E-04	6,95E-04			
Contraintes du	$\sigma_{bc} = \frac{M_{ser}}{I_{ser}} Y_{ser}$	2,14	2,82			
béton	$\sigma_{bc} < \overline{\sigma}_{bc}$	Contrainte du béton vérifiée	Contrainte du béton vérifiée			
Contraintes des	$\sigma_{\rm st} = n \frac{M_{ser}}{I_{ser}} (d - Y_{ser})$	115,40	144,14			
aciers	$\sigma_{st} < \overline{\sigma}_{st}$	Contrainte de l'acier vérifiée	Contrainte de l'acier vérifiée			

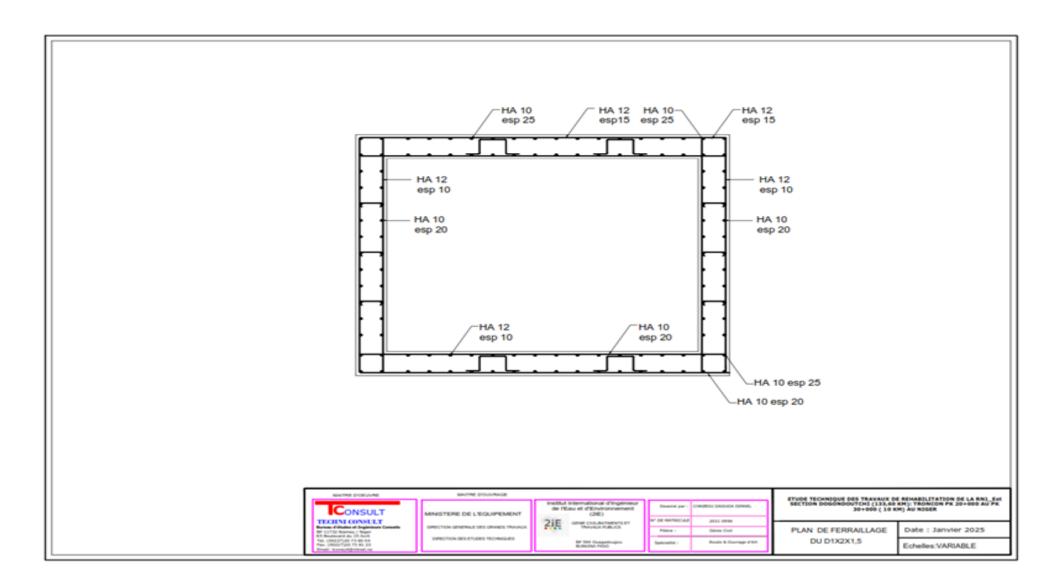
Section d'acier du radier :

Désignations	Application linéaire	Appuis A1 et A4	Travée B4		
Moment à L'ELS		39,00	47,4		
Vérification de la présence des aciers comprimés	$M_{rserb} > M_{ser}$	pas d'aciers comprimés	pas d'aciers comprimés		
Section d'acier tendu	$A_{st1} = \frac{M_{ser}}{d\left(1 - \frac{\overline{\alpha_{ser}}}{3}\right)\sigma_{st}}$	10,43	12,68		
Condition de non fragilité	$A_{stmin} = \frac{0.23 \ b \ d \ f_{tj}}{f_e}$	2,72	2,72		
Choix	$\max(A_{st}; A_{stmin})$	As = Ast	As = Ast		
Acier	max(1 _{st} ,11 _{stmin})	10HA12 soit 11,31 cm ²	12HA12 soit 13,57 cm ²		
Espacement réel (cm)	$e_h = \frac{100 - (\phi * n + enr * 2)}{n - 1}$	9,11	7,24		
	Vérification des contraintes d	es matériaux			
Position de l'axe neutre Yser	$\frac{1}{2}Y_{ser}^2 - 15A_{st}(0.18 - Y_{ser}) = 0$	0,05	0,042		
Moment quadratique Iser	$I_{ser} = \frac{b_o}{2} Y_{ser}^3 + nA_{st} (d - Y_{ser})^2$	7,19E-04	7,33E-04		
Contraintes du	$\sigma_{bc} = \frac{M_{ser}}{I_{ser}} Y_{ser}$	2,44	2,72		
béton	$\sigma_{bc} < \overline{\sigma}_{bc}$	Contrainte du béton vérifiée	Contrainte du béton vérifiée		
Contraintes des	$\sigma_{\rm st} = n \frac{M_{ser}}{I_{ser}} (d - Y_{ser})$	146,52	177,56		
aciers	$\sigma_{st} < \overline{\sigma}_{st}$	Contrainte de l'acier vérifiée	Contrainte de l'acier vérifiée		

• Section d'aciers des piédroits :

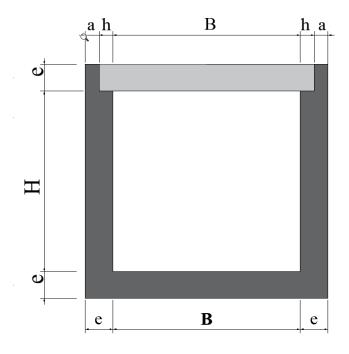
Piédroit de rive (flexion composée)

Désignations	Application linéaire	Résultats			
Moment à L'ELS	29,1				
Effort normal	155,8				
Excentricité du premier ordre	$e1 = \frac{M_{ser}}{N_{ser}}$	0,19			
Excentricité due aux effets secondaires	e2 = max (2cm, L/250)	0,02			
Excentricité additionnelle	$e3 = \frac{3L_{\rm f}^2}{10000{\rm h}}(2 + \alpha\varphi)$	0,0033			
Excentricité	e	0,21			
Effort de compression centré max supportable par le béton	$N_{bmax} = b \times h \times f_{bc}$	3.54			
Coefficient de remplissage	$\psi 1 = \frac{N_{ser}}{Nb_{max}}$	0,04			
Ψ1<0,81 d^' où e_NC=ζ×h	$e_{NC} = \zeta \times h$	0,01			
Conclusion	La Section Est Partiellement Comprimée				
Excentricité eA	$e_A = e + (d - 0.5h)$	0,31			
Moment fictif	$Mserf = Nser \times e_A$	48.31			
Alpha ser	$\overline{\alpha_{ser}} = \frac{n\overline{\sigma}_{bc}}{n\overline{\sigma}_{bc} + \overline{\sigma}_{st}}$	0,53			
Position de l'axe	$Yser = d \times \alpha_{ser}$	0,12			
Bras de levier	$Zser = d - \frac{y_{ser}}{3}$	0,1854			
Moment réduit	$Mserb = \frac{1}{2}bo \times Zser \times \overline{\sigma}_{bc} \times Yser$	165,04			
Conclusion	Pas D'acier Comprimé				



Désignations	Application Linéaire	Résultats				
Section D'acier Fictive	$A_{stf} = \frac{M_{serf}}{Z_{ser} \times \sigma_{st}}$	12,92				
Section D'acier	$A_{s} = A_{stf} - \frac{N_{ser}}{\sigma_{st}}$	5,19				
Condition De Non Fragilité	$A_{stmin} = \max\left(\frac{bh}{100}; \frac{0,23 \ b \ d \ f_{tj}}{f_e}\right)$	2,72				
Choix	$\max(A_{st}; A_{stmin})$	12,92				
Acier	13 HA12 Soit 14,70 Cm ²					
Espacement	6,21	10				

❖ Plan de ferraillage :



4. DIMENSIONNEMENT STRUCTURAL DU CANIVEAU (80 ×80 cm²):

a. Prédimensionnement du caniveau :

$$e = \frac{B}{32} + 0.125$$

$$e = \frac{0,80}{32} + 0,125 = 15 \text{ cm}$$
;

Annexe 43: Description du caniveau

- Epaisseurs de la lèvre de feuillure : $a = \frac{e}{2} = 7.5$ cm ;
- Redent de la feuillure : h = e-a = 7.5 cm;
- Largeur de la dallette : O = B+2h= 95 cm;
- Epaisseur de la dallette, du radier, du piédroit : e = 15 cm ;
- Hauteur libre et ouverture du caniveau : H = 80 cm.

b. Détermination de la section d'acier de la dallette :

La dallette est dimensionnée sur la base de l'hypothèse qu'elle agit comme une poutre soumise à une flexion simple, en raison de l'application ponctuelle de la surcharge routière Br.

- Calcul de la descente des charges :
- **A** Charge permanentes:

Poids propre de la dallette :

$$P_1 = e \times b \times \gamma_b = 0.15 \times 1 \times 25 = 3.75 \text{ Kn/ml}$$

Charges d'exploitations :

Surcharge de roue isolée Br = 100 KN selon le fascicule 61 Titre II :

$$Q1 = 100 \text{ KN}$$

- Calcul des sollicitations :
- ❖ À 1'ELS:

Effort tranchant:

Vser =
$$\frac{P_1 \times l}{2} + \frac{Q_1}{2} = \frac{3,75 \times 1}{2} + \frac{100}{2} = 61,24 \text{ KN/ml}$$

Moment:

Mser =
$$\frac{P_1 \times l^2}{8}$$
 + 1,2 $\left(\frac{Q_1 \times l}{4}\right)$ = $\frac{2,48 \times 1^2}{8}$ + 1,2 × $\left(\frac{100 \times 1}{4}\right)$ = 30,47 KN.m/ml

❖ À l'ELU:

Effort tranchant:

$$Vu = 1,35 \times \frac{P_1 \times l}{2} + 1,61 \times \frac{Q_1}{2} = 1,35 \times \frac{3,75 \times 1}{2} + 1,61 \times \frac{100}{2} = 83,03 \text{ KN/ml}$$

Moment:

$$Mu = 1,35 \times \frac{P_1 \times l^2}{8} + 1,61 \times \frac{Q_1}{4}l = 1,35 \times \frac{3,75 \times 1^2}{8} + 1,61 \times \frac{100}{4} \times 1 = 40,88 \text{ KN. m/ml}$$

- Calcul du ferraillage :
- Moment réduit :

$$\mu_u = \frac{M_u}{b \times d^2 \times fbu} = \frac{40,88}{1 \times 0.135^2 \times 14.17} = 0,16$$

Vérification de présence d'acier comprimés : (on a $\mu_{ul} = 0.186$)

$$(\mu_u = 0.16) < (\mu_{ul} = 0.186) \Rightarrow \text{Pivot A il n'y a pas d'aciers comprimés}$$

Alpha:

$$\alpha_{\rm u} = 1,25 \times (1 - \sqrt{1 - 2\mu_{\rm u}}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0},16) = 0,22$$

Le bras de lévrier :

$$Z_u = d \times (1 - 0.4 \times \alpha_u) = 0.135 \times (1 - 0.4 \times 0.22) = 0.12 \text{ m}$$

Section d'acier :

$$A_{st} = \frac{M_u}{Z_u \times \sigma_{st}} = \frac{40,88}{0,12 \times 347,83 \times 10^3} \times 10^4 = 9,53 \text{ cm}^2$$

Condition de non fragilité :

$$A_{stmin} = \frac{0.23 \text{ b d } f_{tj}}{f_e} = \frac{0.23 \times 1 \times 0.135 \times 2.1}{400} \times 10^4 = 1.63 \text{ cm}^2$$

Choix d'acier :

- Aciers principaux :

$$A_s(Cm^2/ml) = max(A_{st}; A_{stmin})$$

$$A_s = max (9.53 \text{ cm}^2/\text{ml}; 1.63 \text{ cm}^2/\text{ml}) \Rightarrow As = 9.53 \text{ cm}^2/\text{ml}$$

Avec $As = 9.53 \text{ cm}^2/\text{ml}$, nous choisissons 9 HA 12 (totalisant 10.18 cm²).

Espacement d'armature :

$$e_h = \frac{100 - (\phi \times n + enr \times 2)}{n-1} = \frac{100 - (1,2 \times 9 + 3 \times 2)}{9-1} = 10, 4 \text{ cm}$$
; on prendra $e_h = 12,5 \text{ cm}$

- Aciers de répartition :

$$A_r = \frac{A_{ST}}{3} = \frac{9,53}{3} = 3,18 \text{ cm}^2$$

Avec $A_r = 3.18 \text{ cm}^2$, nous choisissons 6 HA 10 (totalisant 4,71 cm²).

Espacement d'armature :

$$e_r = \frac{100 - (\phi \times n + enr \times 2)}{n - 1} = \frac{100 - (1 \times 6 + 3 \times 2)}{6 - 1} = 17, 6 \text{ cm} \text{ ; on prendra } \mathbf{e_h} = \mathbf{20} \text{ cm.}$$

- Vérification à l'ELS :
- Vérification des contraintes d'aciers :
 - Position de l'axe neutre Yser :

$$\frac{b_0}{2}Y_{\text{ser}}^2 - nA_{\text{st}}(d - Y_{\text{ser}}) = 0 \iff \frac{1}{2} \times Y_{\text{ser}}^2 - 15 \times 9,53 \times 10^{-4} \times (0,135 - Y_{\text{ser}}) = 0$$

 $Yser_1 = 0.065 \text{ m}$ et $Yser_2 = -0.081 \text{ m}$, on prendra Yser = 0.065 m.

- Moment quadratique Iser:

$$I_{ser} = \frac{b_0}{3} Y_{ser}^3 + nA_{st} (d - Y_{ser})^2 = \frac{1}{3} (0.13^3) + 15 \times (\frac{9.53}{10000}) \times (0.135 - 0.13)^2$$

$$I_{ser} = 0.00017 \text{ m}^4$$

Contraintes du béton :

$$\sigma_{\rm bc} = \frac{M_{\rm ser}}{I_{\rm ser}} \times Y_{\rm ser} = \frac{30,47 \times 10^{-3}}{0,00017} \times 0,07 = 12,55 \text{ MPa}$$

Vérification de la contrainte du béton :

 σ_{bc} (12,55 MPa) $< \overline{\sigma}_{bc}$ (15 MPa) \Rightarrow contrainte du béton est vérifiée.

Contraintes des aciers :

$$\sigma_{st} = n \frac{M_{ser}}{I_{ser}} (d - Y_{ser}) = 15 \times \frac{30,47 \times 10^{-3}}{0,00017} \times (0,135 - 0,07) = 192,30 \text{ MPa}$$

Vérification de la contrainte d'acier :

 $\sigma_{\rm st}(192,30~{\rm MPa}) < \overline{\sigma}_{\rm st}(201,63~{\rm MPa}) \Rightarrow$ contrainte de l'acier est vérifiée.

- e. Détermination de la section d'armatures du piédroit :
- Descente des charges :
- Charges permanentes :
 - Poids de la dallette :

$$P_1 = e \times \frac{1}{2} \times \gamma_b = 0.15 \times \frac{1}{2} \times 25 = 1.87 \text{ KN/ml}$$

- Poids propre du piédroit :

$$P_2 = e' \times H \times \gamma_b = 0.15 \times 0.80 \times 25 = 3 \text{ KN/ml}$$

- Poussée des terres :

$$P_3 = \frac{1}{2} \times \text{Ka} \times \text{H}^2 \times \gamma_{\text{terre}} = \frac{1}{2} \times 0.33 \times 0.80^2 \times 20 = 2.11 \text{KN/ml}$$

* Charge d'exploitation (roue isolée de 100KN) :

$$Q1 = \frac{100}{2} = 50 \text{ KN}$$

- Calcul des sollicitations :
- ❖ À 1'ELS :
 - Effort normal:

Nser =
$$P_1 + P_2 + 1.2Q_1 = 1.88 + 3 + 50 = 64.88 \text{ KN}$$

- Effort tranchant:

$$Vser = \frac{P_3}{3} = \frac{2,11}{3} = 0,70 \text{ KN/ml}$$

- Moment:

$$Mser = \frac{P_3 \times H}{3} = \frac{P_3 \times H}{3} = \frac{2,11 \times 0,80}{3} = 0,56 \text{ KN. m/ml}$$

- ❖ À 1'ELU:
 - Effort normal:

$$Nu = 1.35(P_1 + P_2) + 1.61Q_1 = (1.88 + 3.00) + 1.61 \times 50 = 87.08 \text{ KN}.$$

- Effort tranchant:

$$Vu = 1,35 \times \frac{P_3}{3} = 1,35 \times \frac{2,11}{3} = 0,95 \text{ KN/ml}$$

- Moment:

$$Mu = 1,35 \times \frac{P_3 \times l}{3} = 1,35 \times \frac{2,11 \times 0,80}{3} = 0,76 \text{ KN.m/ml}$$

- Calcul du ferraillage :
- * Excentricité du premier ordre :

$$e1 = \frac{M_{ser}}{N_{ser}} = \frac{0.56}{64.88} = 0.01 \text{ m}$$

* Excentricité due aux effets secondaires :

e2 = max (2cm, L/250) = max (2 cm ,
$$\frac{0,80}{250}$$
) = 0,02 m

Excentricité additionnelle :

$$e3 = \frac{3L_{\rm f}^2}{10000h}(2 + \alpha\phi)$$

Calcul de α :

$$\alpha = 10 \left(1 - \frac{M_u}{1,5 \text{ Mser}} \right) = 10 \times \left(1 - \frac{0,76}{1,5 \times 0,56} \right) = 1,00$$

$$\Rightarrow e3 = \frac{3L_f^2}{10000h} (2 + \alpha \phi) = \frac{3 \times 0,40^2}{10000 \times 0,15} \times (2 + 1 \times 1) = 0$$

Excentricité

$$e = e_1 + e_2 + e_3 = 0.01 + 0.02 + 0 = 0.03 \text{ m}$$

* Effort de compression centré maximal supportable par le béton :

$$N_{bmax} = b \times h \times f_{bc} = 1 \times 0.80 \times 14.17 = 2.13 \text{ MN}$$

❖ Coefficient de remplissage :

$$\psi 1 = \frac{N_{\text{ser}}}{Nb_{\text{max}}} = \frac{64,88 \times 10^{-3}}{2,13} = 0,30$$

ψ1	ζ	ψ1	ζ	١
0,000	0,1667	0,200	0,1602	I
0,005	0,1665	0,205	0,1600	l
0,010	0,1664	0,210	0,1598	۱
0,015	0,1662	0,215	0,1596	١
0,020	0,1661	0,220	0,1595	l
0,025	0,1660	0,225	0,1593	
0,030	0,1658	0,230	0,1591	Ī
0,035	0,1657	0,235	0,1589	ł
0,040	0,1655	0,240	0,1587	ĺ
0,045	0,1654	0,245	0,1585	1
0,050	0,1652	0,250	0,1582	1
0,055	0,1651	0,255	0,1580	Ī
0,060	0,1649	0,260	0,1578	1
0,065	0,1648	0,265	0,1576	ı
0,070	0,1646	0,270	0,1574	ı
0,075	0,1645	0,275	0,1572	l

Selon la figure et la val

❖ Calcul de e_{NC}

$$\psi 1 < 0.81 \text{ d'où } e_{NC} = \zeta \times h = 0.1658 \times 0.030 = 0.005 \text{ m}$$

Vérification de la présence d'acier comprimé :

e $(0,03 \text{ m}) > e_{Nc}(0,005)$: La section est partiellement comprimée.

❖ Calcul de e_{A:}

$$e_A = e + (d - 0.5h) = 0.03 + (0.135 - 0.5 \times 0.15) = 0.09 \text{ m}$$

Moment réduit :

$$Mserb = \frac{1}{2}bo \times Zser \times \overline{\sigma}_{bc} \times Yser = Mserb = \frac{1}{2}bo \times Zser \times \overline{\sigma}_{bc} \times Yser$$

$$Mserb = 59,41 KN. m$$

Vérification d'acier comprimé :

M_{serf}(6,38 KN. m) < M_{serb}(59,41 KN. m): Pas d'acier comprimé.

Section d'acier fictive :

$$A_{stf} = \frac{M_{serf}}{Z_{ser} \times \sigma_{st}} = \left(\frac{6.38 \times 10^{-3}}{0.11 \times 347.83}\right) \times 10^4 = 1.65 \text{cm}^2$$

Section d'acier théorique :

$$A_s = A_{stf} - \frac{N_{ser}}{\sigma_{st}} = (1.65 - \frac{64.88 \times 10^{-3}}{347.83}) \times 10^4 = 0.22 \text{ cm}^2$$

- Condition de non fragilité :

$$\begin{split} A_{stmin} &= max \left(\frac{bh}{100}; \frac{0,\!23\;b\;d\;f_{tj}}{f_e} \right) \\ &= \; max \left(\frac{100\times0,\!15}{100}; \frac{0,\!23\,\times1\times\,0,\!135\times\,2,\!10\,\times10^4}{400} \right) \end{split}$$

$$A_{\text{stmin}} = 1,63 \text{ cm}^2$$

- Choix d'acier:

$$A_{st} = max(A_s; A_{stmin})$$

$$A_{st} = max (0.22 cm^2; 1.63 cm^2) = 1.63 cm^2$$

Avec Ast = $1,63 \text{ cm}^2$, nous choisissons **6 HA 10** qui totalisent $4,71 \text{ cm}^2$

- Espacement:

$$e_h = \frac{_{100-(\varphi \times n + enr \times 2)}}{_{n-1}} = \frac{_{100-(1,0 \times 6 + 3 \times 2)}}{_{6-1}} = 17,6 \text{ cm} \text{ ; on prendra } e_h = 20 \text{ cm}$$

Aciers de répartition :

$$A_r = \frac{A_{ST}}{3} = \frac{1,63}{3} = 0,54 \text{ cm}^2$$

- Choix d'acier:

Avec $Ar = 0.54 \text{ cm}^2$, nous prenons 5 HA 10 qui totalisent 3,93 cm²

- Espacement réel :

$$e_h = \frac{{}^{100 - (\varphi \times n + enr \times 2)}}{{}^{n-1}} = \frac{{}^{100 - (1,0 \times 5 + 3 \times 2)}}{{}^{5-1}} = 22{,}25 \text{ cm, nous prenons } e_h = 25 \text{ cm.}$$

f. Calcul de la section d'acier du radier :

- Descente de charge :
- Charges permanentes G:
 - Poids de la dallette :

$$P_1 = e \times b \times \gamma_b = 0.15 \times 1 \times 25 = 3.75 \text{ KN/m}^2$$

- Poids propre du radier :

$$P_2 = e' \times b \times \gamma_b = 3.75 \text{ KN/m}^2$$

- Poids propre des piédroits :

$$P_3 = \frac{2 \times e' \times h}{B} \times \gamma_b = \frac{2 \times 0,15 \times 0,15}{B} \times 25 = 2,86 \text{ KN/m}^2$$

- La charge totale :

$$G = P_1 + P_2 + P_3 = 3,75 + 3,75 + 2,86 = 10,36 \text{ KN/m}^2$$

• Charge d'exploitation (roue isolée de 100 KN) :

$$Q_1 = \frac{100}{h \times B} = \frac{100}{1 \times B} = 47,62 \text{ KN/m}^2$$

- * Calcul du moment :
- À l'ELS :
 - Moment:

Mser =
$$\frac{G \times l^2}{8}$$
 + 1,2 $\frac{Q \times l}{4}$ = $\frac{10,36 \times l^2}{8}$ + 1,2 $\times \frac{47,62 \times l}{4}$ = 31,96 KN. m/ml

- ❖ Calcul du ferraillage :
- Moment réduit :
 - $\overline{\alpha_{ser}}$:

$$\overline{\alpha_{\text{ser}}} = \frac{n\overline{\sigma}_{\text{bc}}}{n\overline{\sigma}_{\text{bc}} + \overline{\sigma}_{\text{st}}} = \frac{15 \times 15}{15 \times 15 + 201,63} = 0.53$$

- Yser:

$$Yser = d \times \alpha_{ser} = 0.9 \times 0.15 \times 0.53 = 0.07 \text{ m}$$

- Zser

Zser = d
$$-\frac{Y_{ser}}{3}$$
 = 0,135 $-\frac{0.07}{3}$ = 0,11 m

$$Mserb = \frac{1}{2}bo \times Zser \times \overline{\sigma}_{bc} \times Yser = \frac{1}{2} \times 1 \times 0,11 \times 15 \times 0,07 \times 10^{3} = 59,41 \text{ KN. m}$$

Vérification :

 $M_{rserb}(59,41KN.m) > M_{ser}(31,96 KN.m)$: pas d'aciers comprimés

• Section d'acier tendu :

$$A_{st} = \frac{M_{ser}}{Z_{ser} \times \overline{\sigma}_{st}} = \frac{31,96 \times 10^{-3}}{0,11 \times 201,63} \times 10^4 = 14,25 \text{ cm}^2$$

• Condition de non fragilité :

$$A_{\text{stmin}} = \frac{0.23 \text{ b d f}_{tj}}{f_e} = \frac{0.23 \times 1 \times 0.135 \times 2.1}{400} \times 10^4 = 1.63 \text{ cm}^2$$

- Choix d'acier:

Ast =
$$\max(A_{st}; A_{stmin}) = \max(14,25 \text{ cm}^2; 1,63 \text{ cm}^2) = 14,25 \text{ cm}^2$$

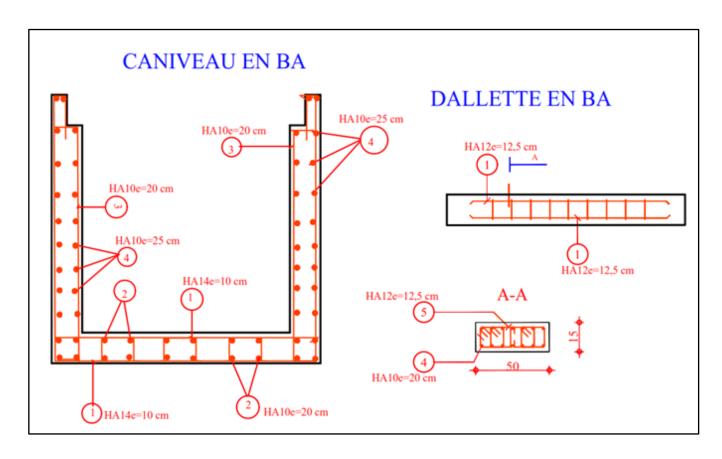
Avec Ast = $14,25 \text{ cm}^2$, nous prenons 10 HA 14 qui totalisent 15,39 cm²

- Espacement:

$$e_r = \frac{100 - (\varphi \times n + enr \times 2)}{n-1} = \frac{100 - (1,4 \times 10 + 3 \times 2)}{10-1} = 8,88 \text{ cm} \; ; \; \text{on prendra } e_h = 10 \; \text{cm.}$$

• Acier de répartition :

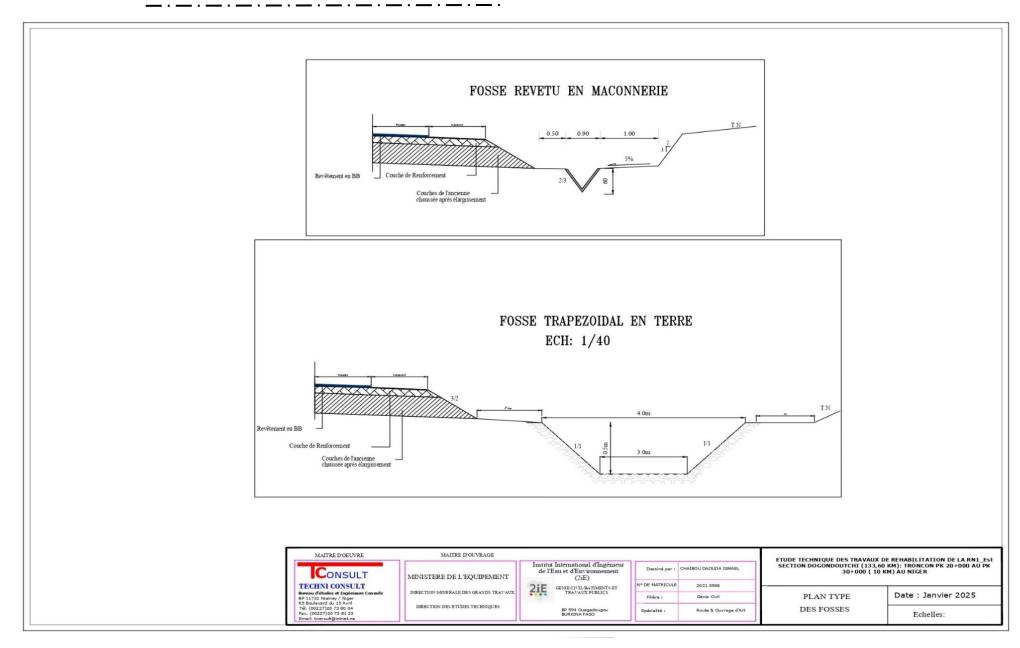
$$A_{\rm r} = \frac{\emptyset_l}{3} = \frac{14}{3} = 4,67 \ cm^2$$


- Choix d'acier:

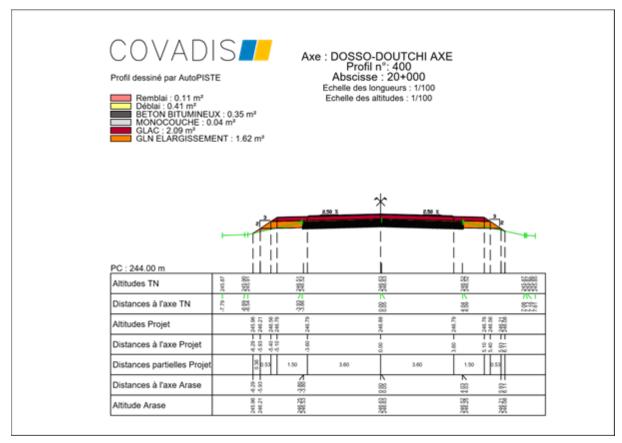
Avec Ast = $4,67 \text{ cm}^2$, nous prenons 6 HA 10 qui totalisent $4,71 \text{ cm}^2$

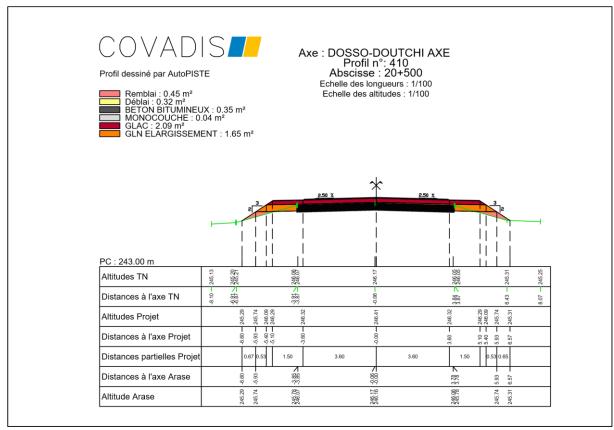
- Espacement:

$$e_r = \frac{100 - (\varphi \times n + enr \times 2)}{n - 1} = \frac{100 - (1 \times 6 + 3 \times 2)}{6 - 1} = 17,6 \text{ cm} \text{ ; on prendra } e_h = \textbf{20 cm.}$$

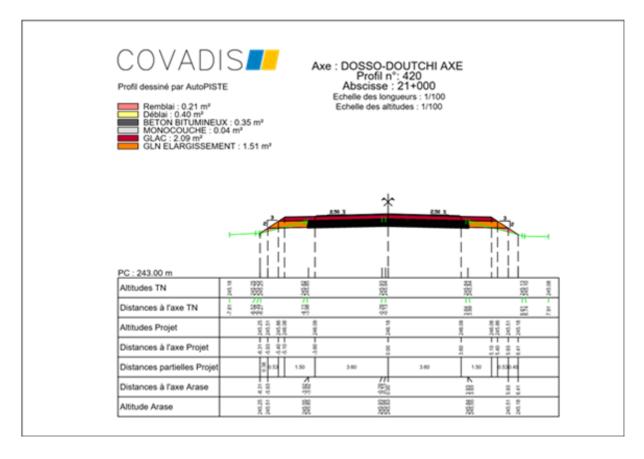

c. Plan de ferraillage

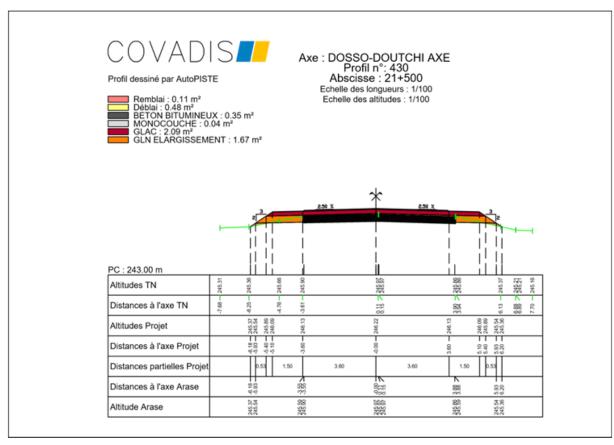
5. Le plan type des fossés retenus pour le projet :

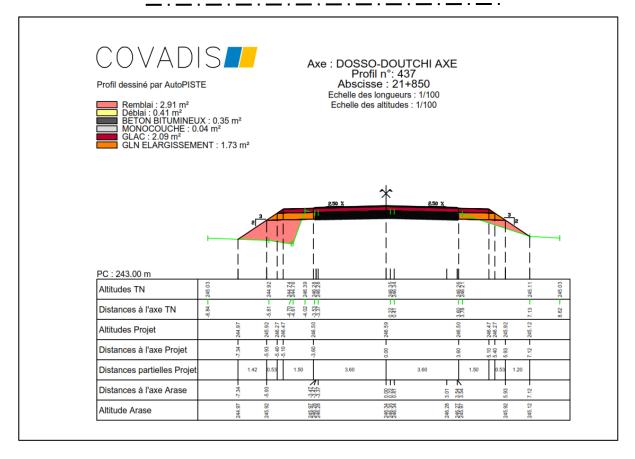

IV. ANNEXE ÉTUDE DE LA CONCEPTION

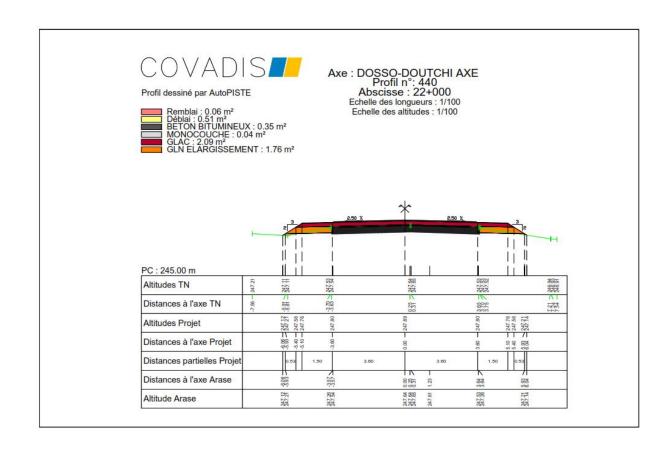

GÉOMÉTRIQUE DE LA ROUTE :

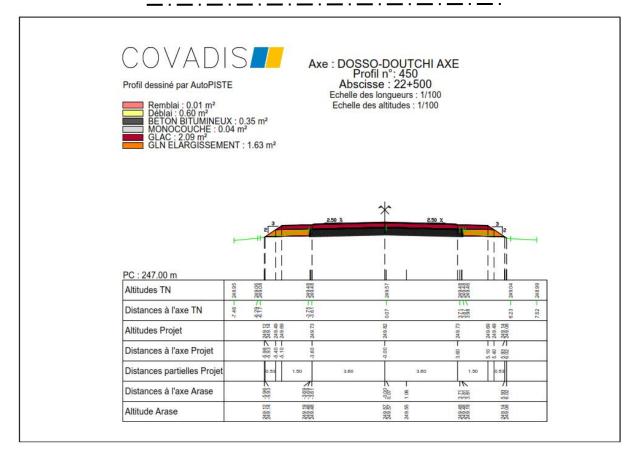
Axe En Plan									
	Elts Caractér	Points de Contacts							
Nom	Paramètres	Longueur	Abscisse	X	Y				
Droite 1	Gisement	119.46g	187,909	20+000.000	541736,235	1435410,015			
Arc 1	Rayon	2000.000 m	25,019	20+187.909	541915,437	1435353,479			
	Centre X	542517.182 m							
	Centre Y	1437260.807 m							
Droite 2	Gisement	118.66g	679,505	20+212.927	541939,342	1435346,101			
Arc 2	Rayon	2000.000 m	0,065	20+892.432	542589,869	1435149,778			
	Centre X	543167.70 m							
	Centre Y	1437064.485 m							
Droite 3	Gisement	118.66g	1603,632	20+892.497	542589,931	1435149,759			
Arc 3	Rayon	2000.000 m	4,857	22+496.129	544125,188	1434686,488			
	Centre X	544702.966 m							
	Centre Y	1436601.213 m							
Droite 4	Gisement	118.5g	1668,323	22+500.986	544129,839	1434685,090			
Arc 4	Rayon	5000.000 m	3,609	24+169.309	545728,195	1434207,010			
	Centre X	547161.012 m							
	Centre Y	1438997.317 m							
Droite 5	Gisement	118.46g	607,892	24+172.918	545731,654	1434205,977			
Arc 5	Rayon	-2000.000 m	2,657	24+780.810	546314,177	1434032,198			
	Centre X	545742.434 m							
	Centre Y	1432115.662 m							
Droite 6	Gisement	118.54g	382,533	24+783.467	546316,723	1434031,437			
Arc 6	Rayon	2000.000 m	0,671	25+166.000	546683,146	1433921,595			
	Centre X	547257.436 m							
	Centre Y	1435837.369 m							
Droite 7	Gisement	118.52g	217,393	25+166.671	546683,789	1433921,402			
Arc 7	Rayon	-1000.000 m	288,031	25+384.064	546892,048	1433859,049			
	Centre X	546605.224 m							
	Centre Y	1432901.065 m							
Droite 8	Gisement	136.86g	1484,576	25+672.095	547152,362	1433738,108			
Clothoïde 1	Paramètre	507,030	285,644	27+156.671	548395,016	1432925,841			
Arc 8	Rayon	900.000 m	229,323	27+442.315	548641,762	1432782,573			
	Centre X	549008.952 m							
	Centre Y	1433604.261 m							
Clothoïde 2	Paramètre	-507,030	285,644	27+671.638	548860,729	1432716,551			
Droite 9	Gisement	100.43g	2089,654	27+957.282	549145,546	1432699,544			
				30+046.936	551235,152	1432685,428			
	Lo	ngueur totale de l'ax	xe 10046.93	66 mètre(s)					

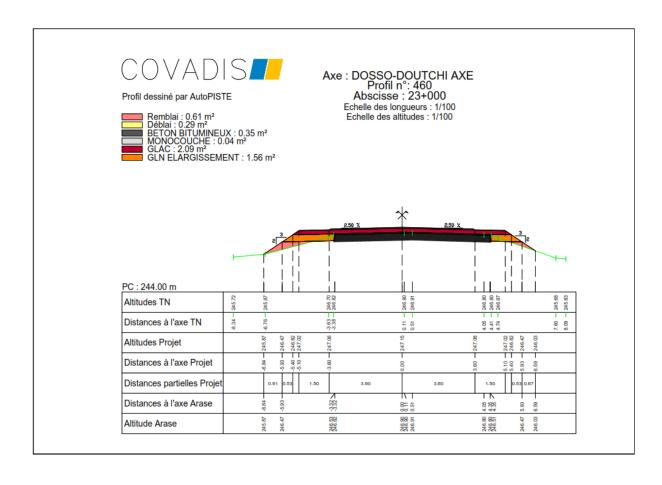


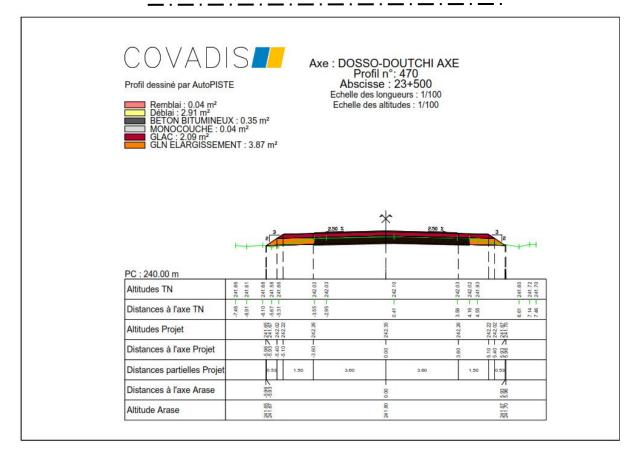


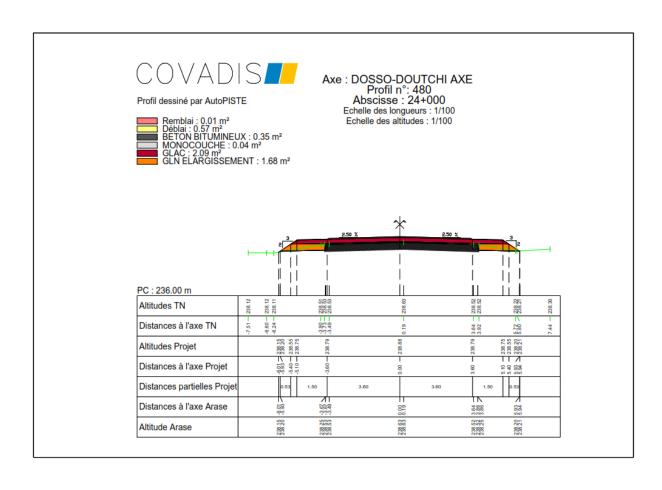


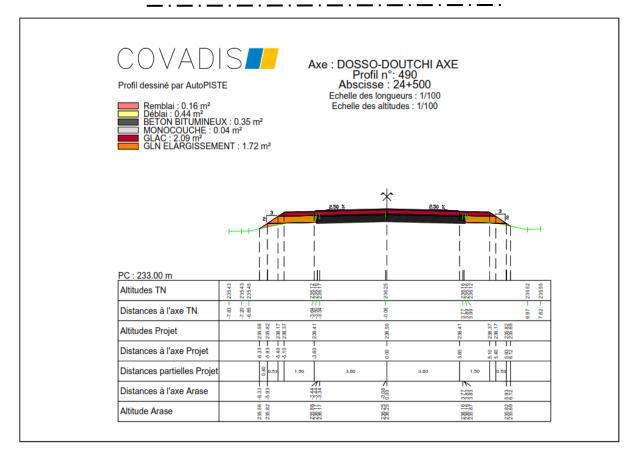


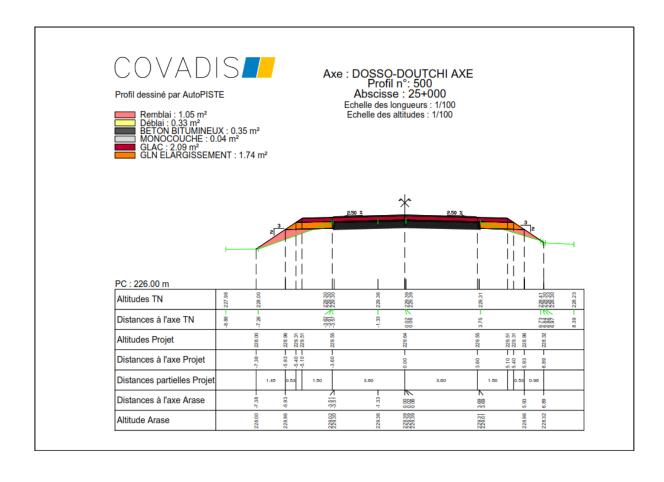


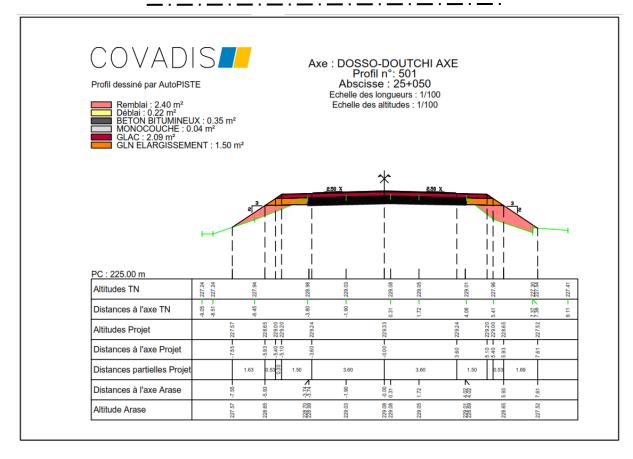


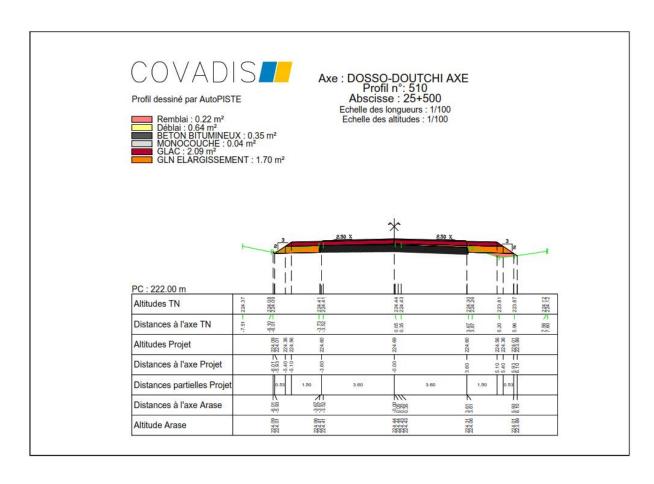


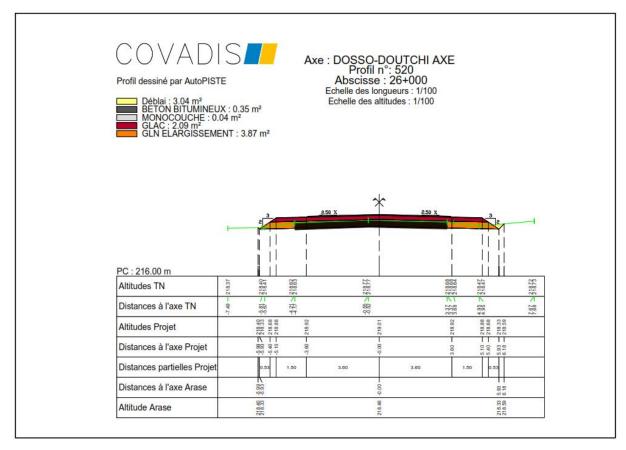


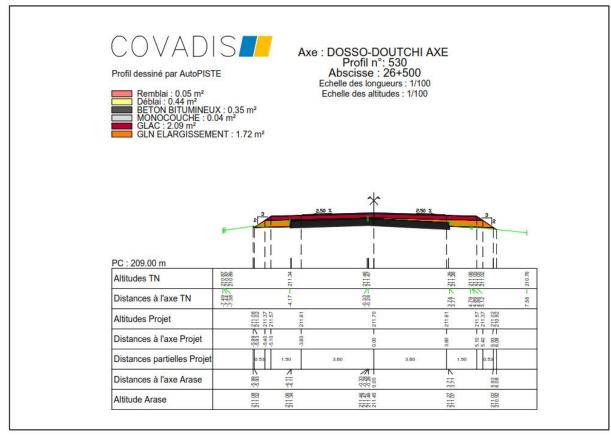


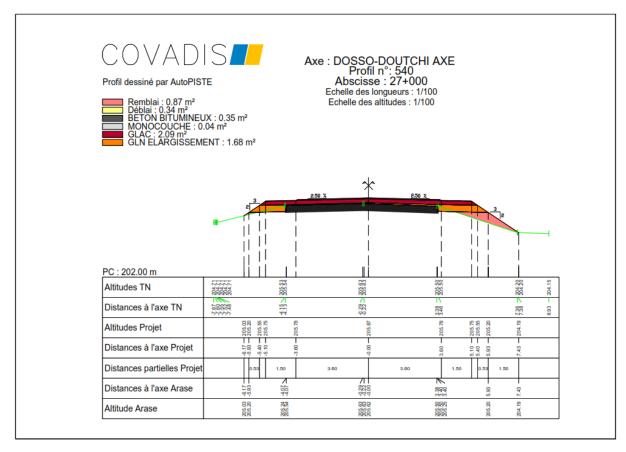


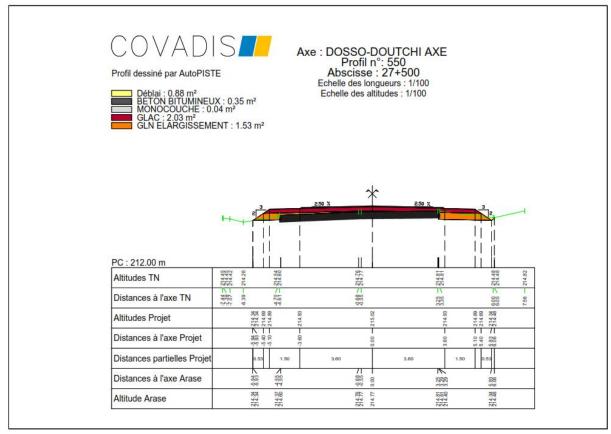


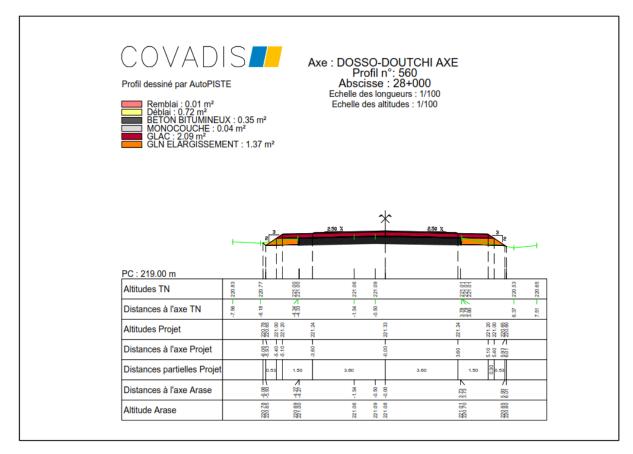


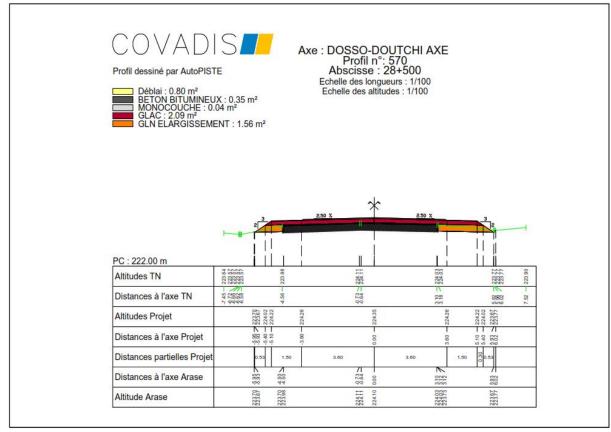


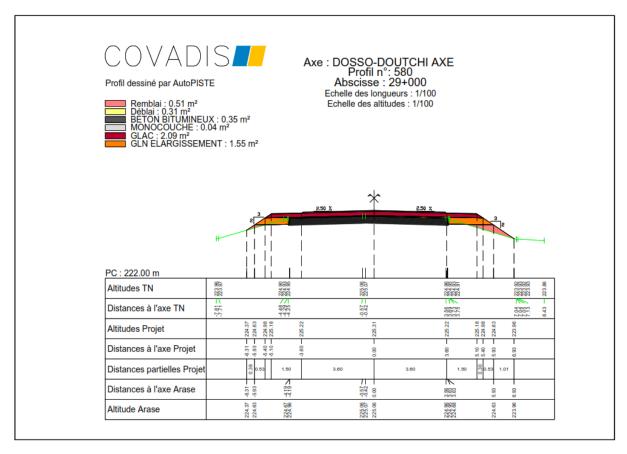


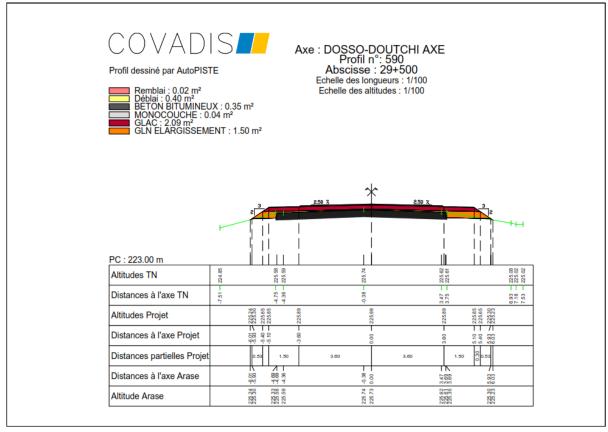


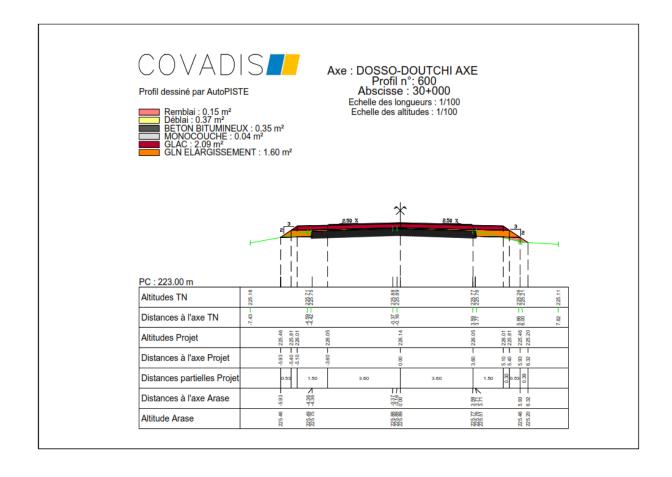


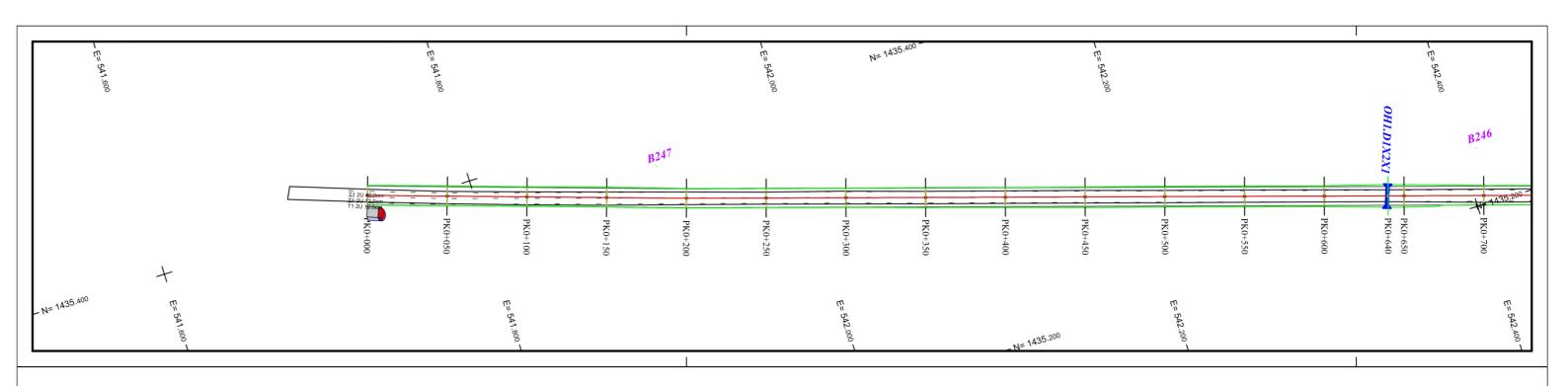


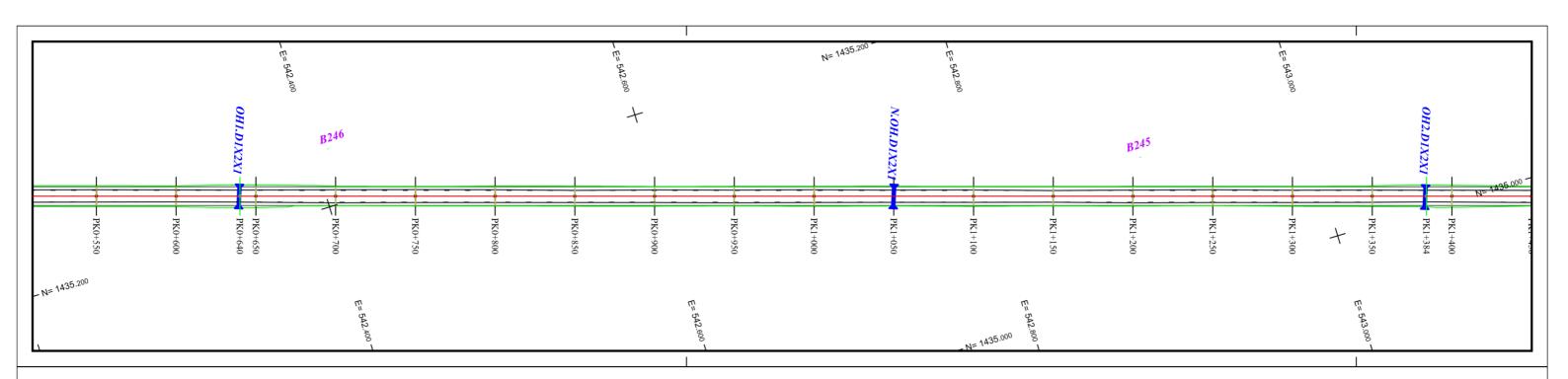








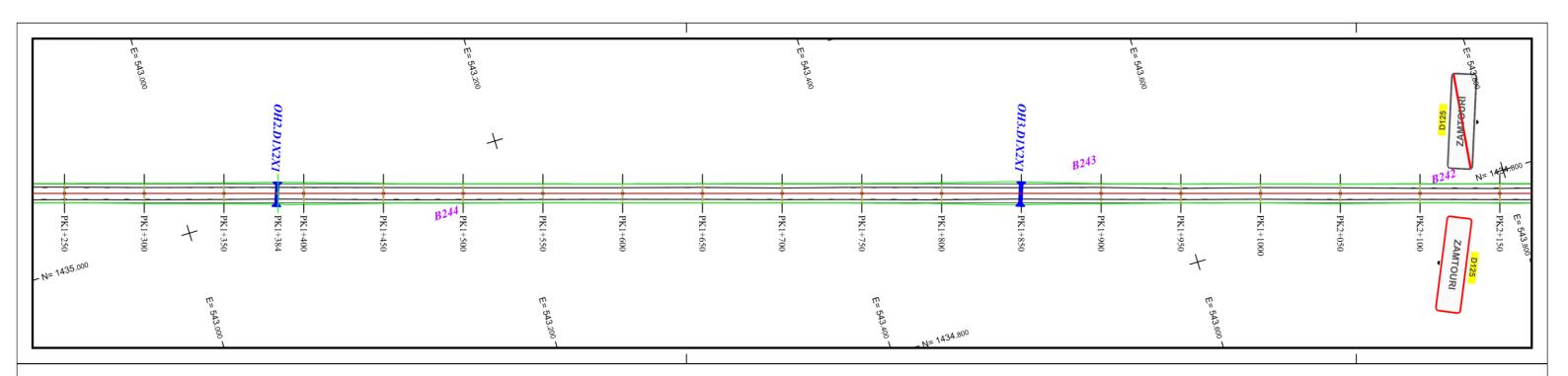




COVADIS	

Axe: DOSSO-DOUTCHI AXE

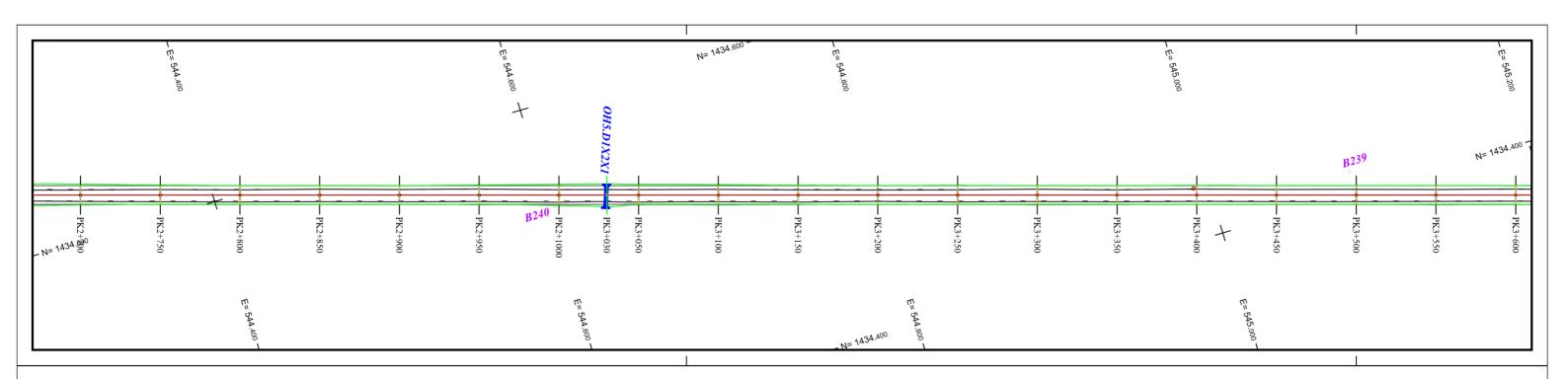
Dévers Droit


Profil dessiné par AutoPISTE		***************************************	•	p	***************************************	***************************************	∞∞• ∞∞	***************************************	***************************************	•	**********	************	***************************************				<i>OH1</i> _	D1X2	X1		
Echelle en X : 1/2000													**********	***************************************	***************************************	******	***************************************	***********	244		
Echelle en Y: 1/200																					
PC: 240.00 m																					
Numéro de profils en travers	400		401	402	403	}	404	405		406	407	000	804	409	410	411	2.2	212	414		415
Altitudes TN	246.63		246.61	246.60	246 61		246.58	246 54	500	246.43	246.40	3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	246.29	246.20	246.16	246.07	0 0 0	246.05	246.01		245.98
Altitudes Projet	246.88		246.86	246.86	246 86		246.83	246 79	2.017	246.68	246.65	0 0 0	246.54	246.45	246.41	246.33	0.00	246.30	246.26		246.23
Ecarts Projet - TN	0.25		0.25	0.26	0.25		0.25	C 075	N.	0.25	0.25	200	0.25	0.25	0.25	0.25	, c	0.25	0.25		0.25
Abscisses	20+000		20+050	20+100	20+150		20+200	20+250		20+300	20+350	OCA	20+400	20+450	20+500	20+550	000	20+600	20+640		20+700
Distances partielles		50.00	50.00		50.00	50.00		50.00	50.00	50.00		50.00	50.00	50.00	50.00		50.00	40.01	9.99	50.00	50.00
Pentes et rampes				PENTE L = 2	49.25 m P = -0.	.0 <u>4 %</u>			PENTE L = 50.75 m P = -0.22 %	PENTE L = 47.98 m P = -0.07 %		ENTE L = 99.96	6 m P = -0.20 %	PENTE L = 52.08 m P = -0.08 %	PENTE L = 48.00 m P = -0.18 %						PE
Dévers Gauche	2.50		5.50	2.50	C.		2.50	C C	200	2.50	2.50	C	2.50	5.50	2.50	2.50	C	7.50	2.50		2.50

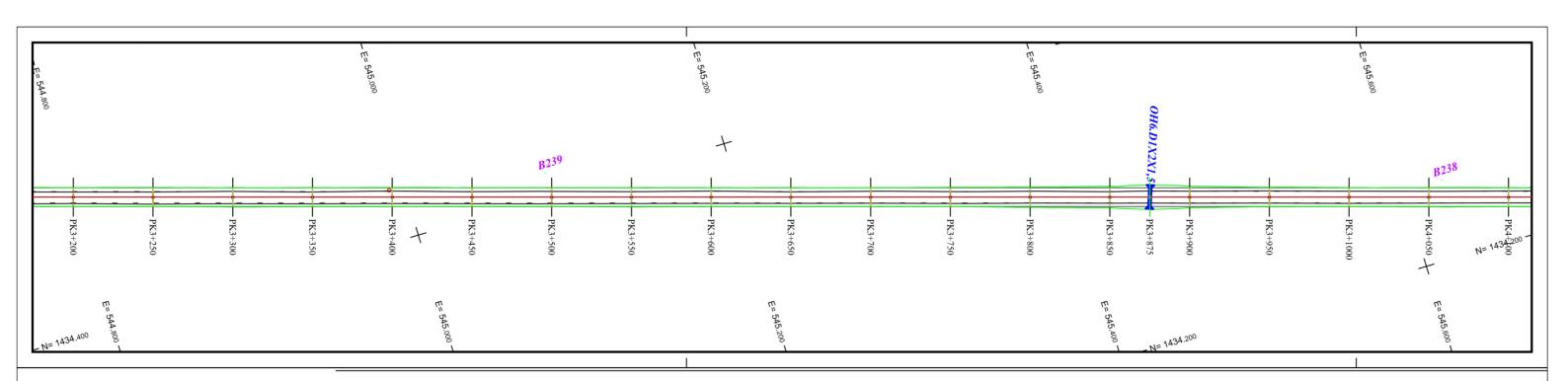
COVADIS	
COVADIO	

Axe: DOSSO-DOUTCHI AXE

P. C. I	N.OH D1X2X1												OH2 D1X2X1			
Profil dessiné par AutoPISTE	***************************************	***************************************	***************************************	***************************************	***************************************		_		****	*******	***************************************	*****				***********
Echelle en X : 1/2000								*							X 244 62	
Echelle en Y: 1/200																
PC: 240.00 m																
Numéro de profils en travers	}	94	4	814	419	420	421	422	423	424	425	426	427	428	429	431
Altitudes TN	06:647	245.94	645.95	245.94	245.95	245.95	245.93	245.99	245.94	245.95	245.92	245.93	245.95	245.95	245.96	245.95
Altitudes Projet	07:047	246.20	246.20	246.19	246.20	246.20	246.18	246.24	246.19	246.20	246.19	246.18	246.20	246.21	246.21	246.22
Ecarts Projet - TN	07:0		67.0	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.27	0.25	0.25	0.26	0.25	0.26
Abscisses	001	20+750	008+00	20+850	20+900	20+950	21+000	21+050	21+100	21+150	21+200	21+250	21+300	21+350	21+384	21+450
Distances partielles	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.0	50.00	50.00	50.00	50.00	34	4.00 16.00	50.00
Pentes et rampes	PENTE L = 450.15 m P = -0.03 %							PENTE L = 49.84 m P = -0.12 %	RAMPE L = 551.53 m P = 0.03 %							
Dévers Gauche		2:50	06:30	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Dévers Droit		-2.50	06:2-	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50


Axe : DOSSO-DOUTCHI AXE Profil dessiné par AutoPISTE

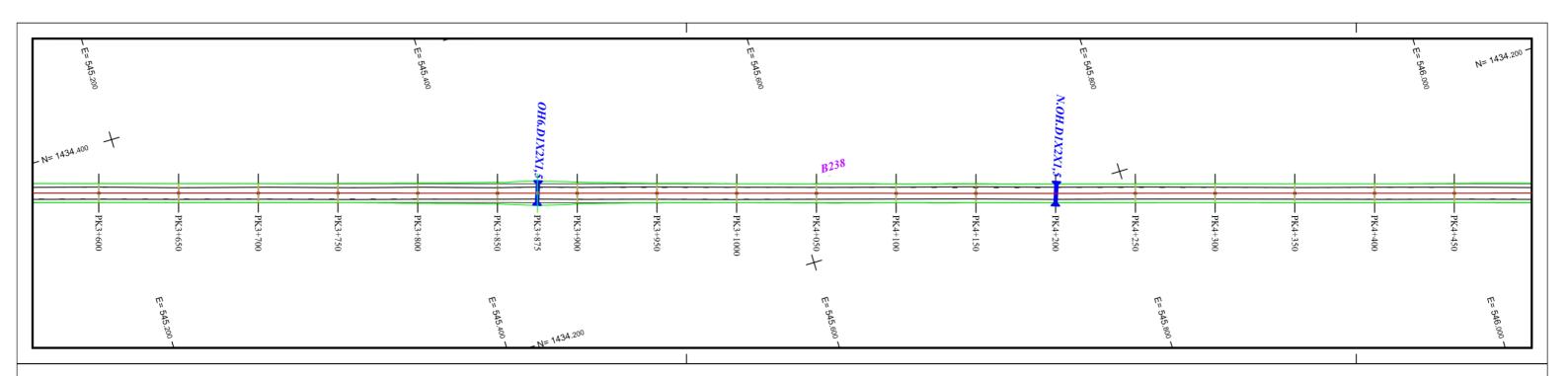
Echelle en X : 1/2000									0	H3_D1X2	X1		× p	***************************************	***************************************	X	
Echelle en Y: 1/200	**********	***********	*********	**********	************	************	***************************************	***************************************	***************************************	H3_D1X2	244.97						
PC: 243.00 m																	
Numéro de profils en travers		431	432	433	ç	\$	435	436	437	438	439	440	144	442	443	444	445
Altitudes TN		245.95	245.97	246.01	9		246.09	246.08	246.13	246.14	246.34	246.71	247.14	247.64	248.08	248.53	248.92
Altitudes Projet		246.22	246.22	246.26	9		246.34	246.33	246.38	246.38	246.59	246.96	247.39	247.89	248.33	248.78	249.17
Ecarts Projet - TN		0.26	0.25	0.24	u c c		0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Abscisses		21+450	21+500	21+550	9		21+650	21+700	21+750	21+800	21+850	21+900	21+950	22+000	22+050	22+100	22+150
Distances partielles	50.00	50.00	50	0.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
Pentes et rampes				•			PENTE L = 52.94 m P = -0.03 %	RAMPE L = 40.38 m P = 0.15 %	PENTE L = 50.65 m P = -0.09 %	RAMPE L = 57.33 m P = 0.40 %	RAMPE L = 100	0.95 m P = 0.79 %	RAMPE L = 52.44 m P = 0.99 %	RAMPE L = 94.	15 m P = 0.89 %	RAMPE L = 49.16 m P = 0.76 %	RAMPE L = 45.99 P = 1.16
Dévers Gauche		2.50	2.50	2.50	C		2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Dévers Droit		-2.50	-2.50	-2.50	c c		-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50

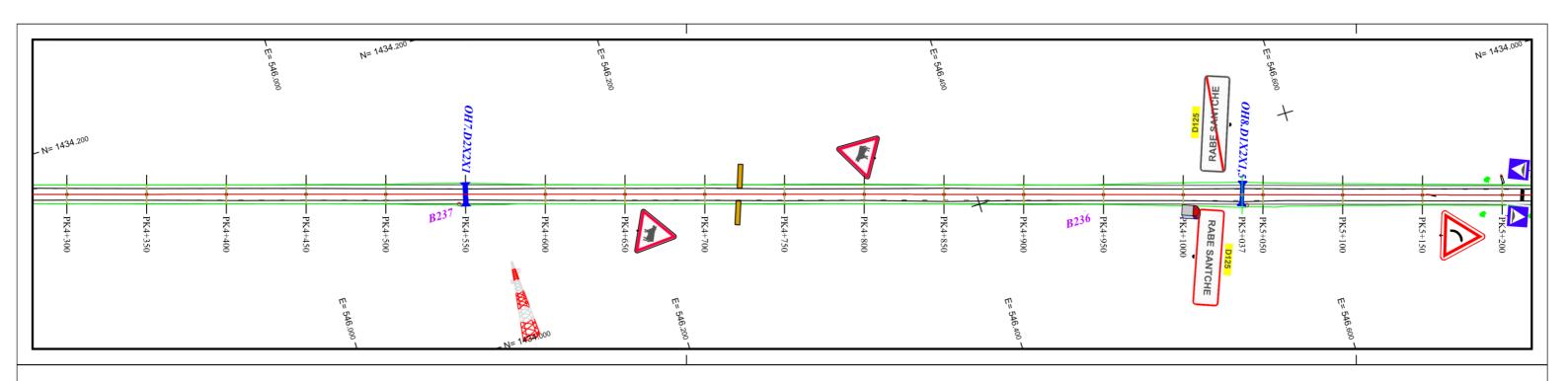


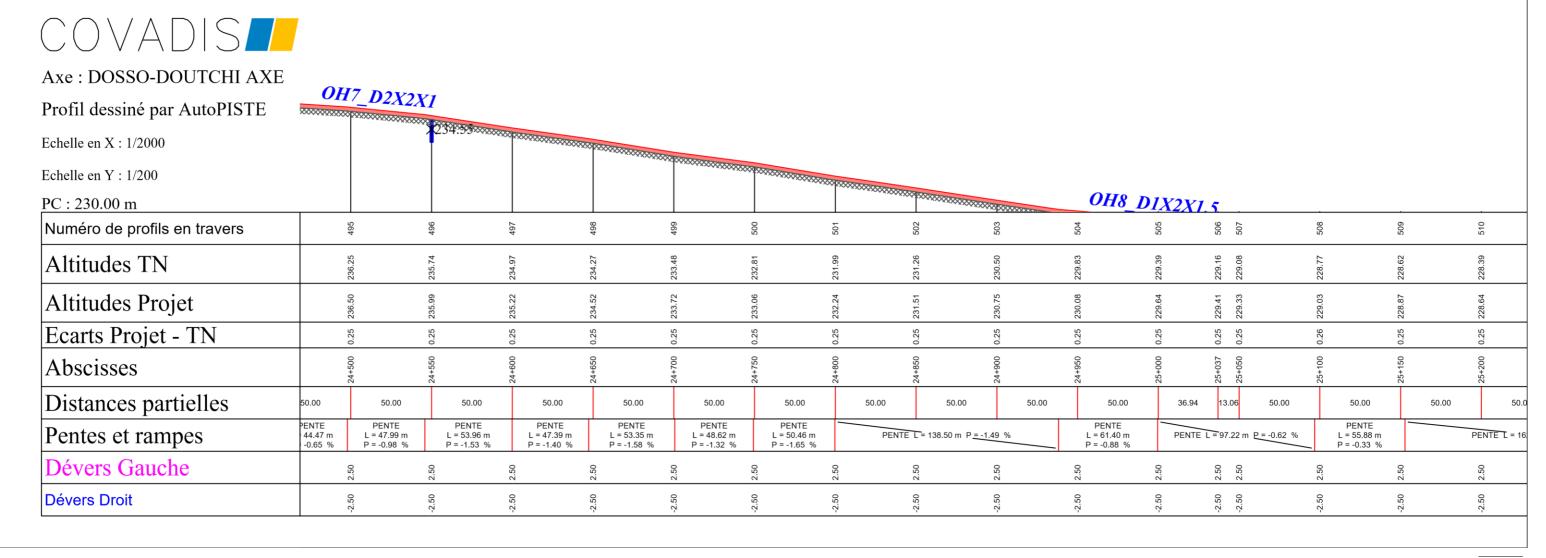
Axe: DOSSO-DOUTCHI AXE															
Profil dessiné par AutoPISTE					***************************************	***************************************	***************************************		<u>ОН4</u>	_D1X2X	1				
Echelle en X : 1/2000	****************	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						***************************************	^^^	***************************************	248.11	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	***************************************		****
Echelle en Y: 1/200															
PC: 244.00 m															
Numéro de profils en travers	445	446	447	448	449	450	451	452	453	454	455	457	458	459	460
Altitudes TN	248.92	249.47	249.69	249.77	249.75	249.66	249.60	249.57	249.49	249.47	249.45	249.33	249.04	248.64	248.23
Altitudes Projet	249.17	249.72	249.92	250.01	250.00	249.91	249.85	249.82	249.75	249.72	249.70	249.57	249.29	248.89	248.48
Ecarts Projet - TN	0.25	0.25	0.24	0.24	0.25	0.25	0.25	0.25	0.26	0.25	0.25	0.25	0.25	0.25	0.25
Abscisses	22+150	22+200	22+250	22+300	22+350	22+400	22+450	22+500	22+550	22+600	22+637	22+700	22+750	22+800	22+850
Distances partielles	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	37.09	12.91 50.00	50.00	50.00	50.00	50.00
Pentes et rampes	RAMPE L = 45.99 m P = 1.16 %	RAMPE L = 43.39 m P = 0.48 %	RAMPE L = 54.21 m P = 0.20 %	PENTE L = 55.54 m P = -0.01 %			PENTE L = 288	3.42 m P = -0.10 <u>%</u>			RAMPE PENTE L = 22.06 m L = 30.95 m P = 0.13 % P = -0.34 %	PENTE L = 52.61 m P = -0.52 %			
Dévers Gauche	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Dévers Droit	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50

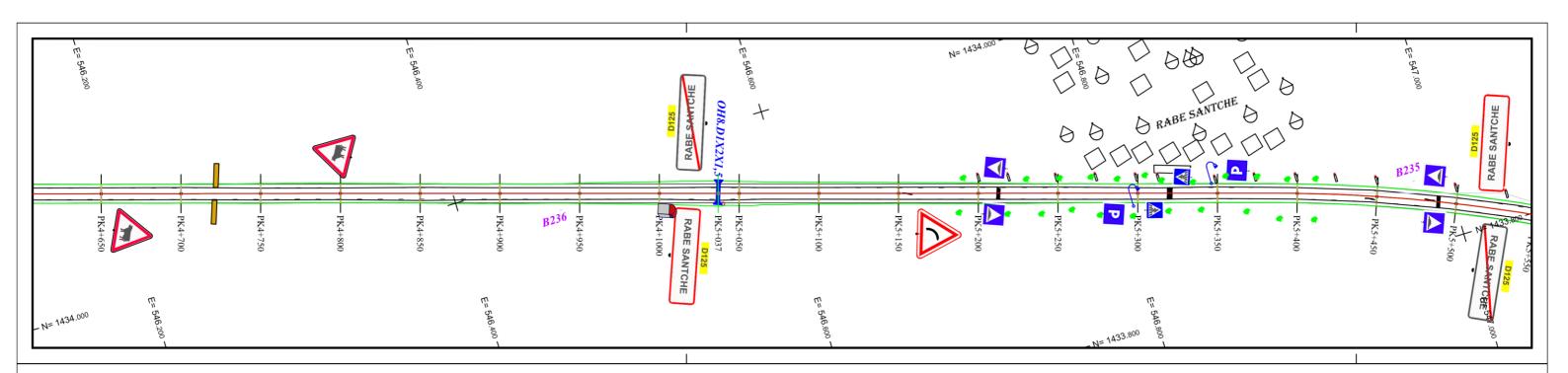
COVADIS

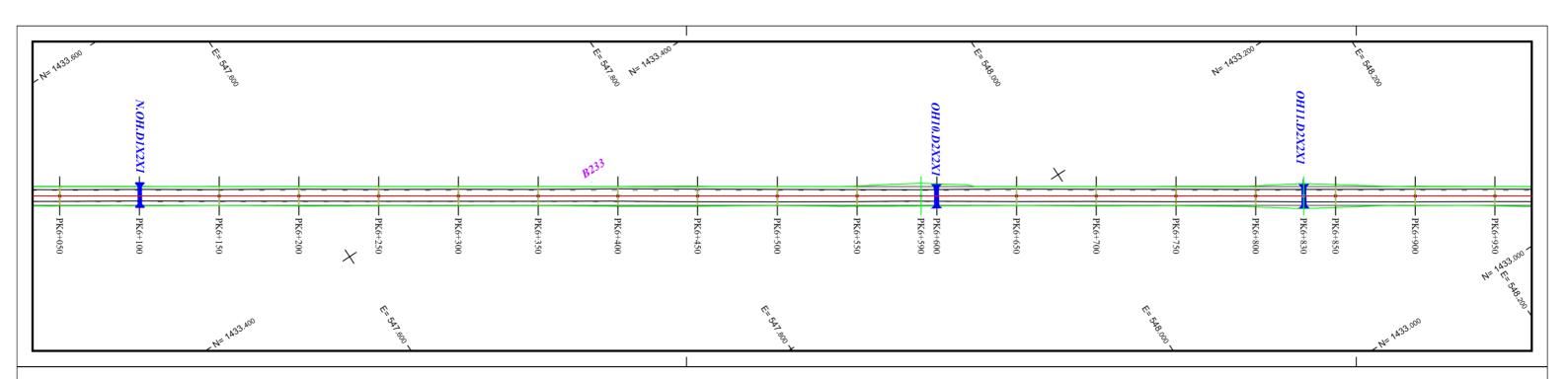
Axe: DOSSO-DOUTCHI AXE																			
Profil dessiné par AutoPISTE	************	××××××××××××××××××××××××××××××××××××××	OH5_1	D1X2X1	,														
Echelle en X : 1/2000			***************************************	***************************************	245 2	······································	××××××××××××××××××××××××××××××××××××××	***************************************	XXXXX										
Echelle en Y: 1/200				<i>'</i>	243.3	+			~~~	*********	***************************************	***************************************	***************************************	VI Davis					
PC: 242.00 m														****************	****	XXXX			
Numéro de profils en travers		461	462	463	464		466	467	468	469	!	470	471	472	473	474	476	0	476
Altitudes TN		247.78	247.32	246.90	246.68		246.19	245.82	245.45	245.12		244.66	244.21	243.53	242.81	242.10	600	241.30	240.70
Altitudes Projet		248.03	247.57	247.15	246.93		246.44	246.07	245.70	245.37		244.91	244.46	243.78	243.06	242.35	4	74 1.04	240.95
Ecarts Projet - TN		0.25	0.25	0.25	0.25		0.25	0.25	0.25	0.25		0.25	0.25	0.25	0.25	0.25	200	6.50	0.25
Abscisses		22+900	22+950	23+000	23+030		23+100	23+150	23+200	23+250		23+300	23+350	23+400	23+450	23+500	007	000+00	23+600
Distances partielles	50.00	50.00	50.00	30.02	19.98	50.00	50.00	50.00	50.00	0	50.00	50.00	50.00	50.00	50.0	00	50.00	50.00	•
Pentes et rampes			PENTE L = 505	5.97 m P = -0.78	%						PENTE L = 100.3	38 m <u>P</u> = -0.91 %	PENTE L = 48.94 m P = -1.35 %				PENTE L = 307.	70 m P = -1.42 <u>%</u>	
Dévers Gauche		2.50	2.50	2.50	2.50		2.50	2.50	2.50	2.50		2.50	2.50	2.50	2.50	2.50	6	7:30 0:50	2.50
Dévers Droit		-2.50	-2.50	-2.50	-2.50		-2.50	-2.50	-2.50	-2.50		-2.50	-2.50	-2.50	-2.50	-2.50	c u	06.2-	-2.50

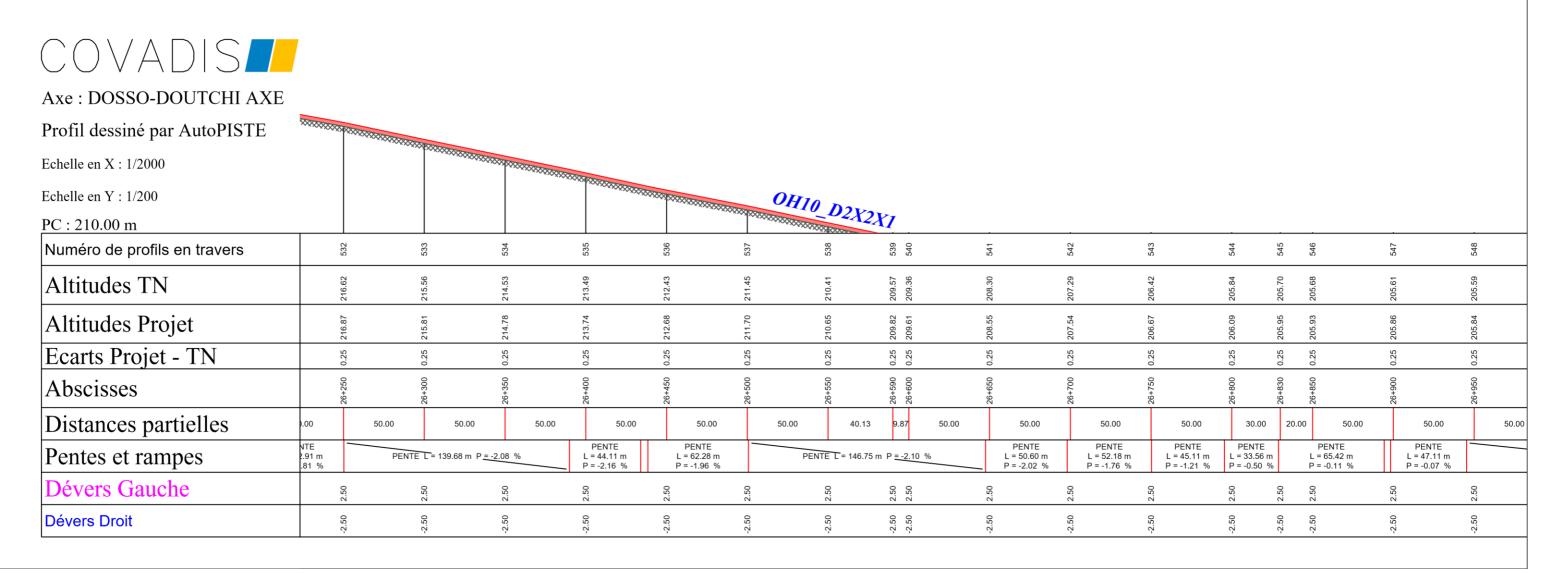


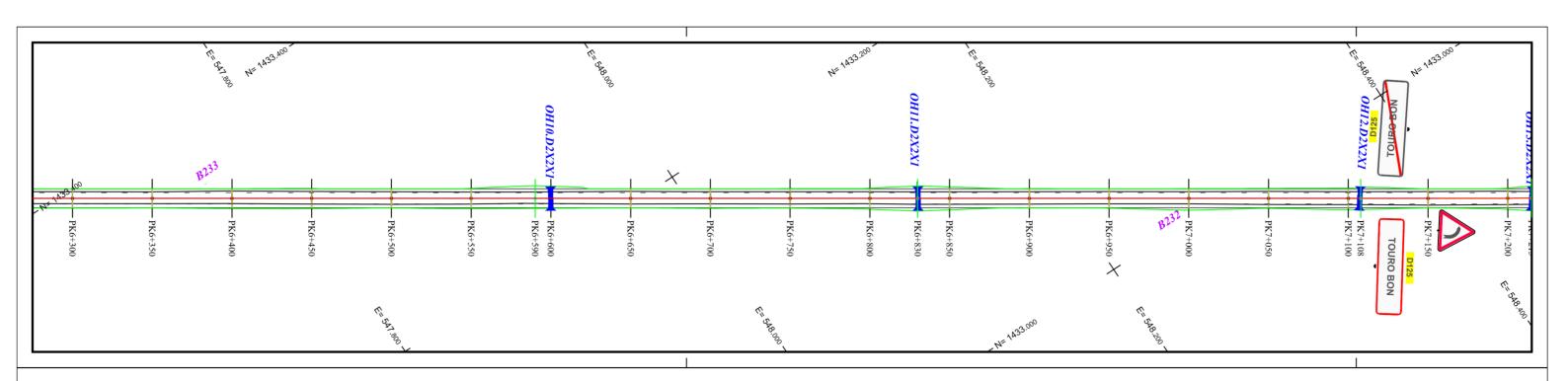

	C. DOSSO-DOUTCHI AAL
P	ofil dessiné par AutoPISTE

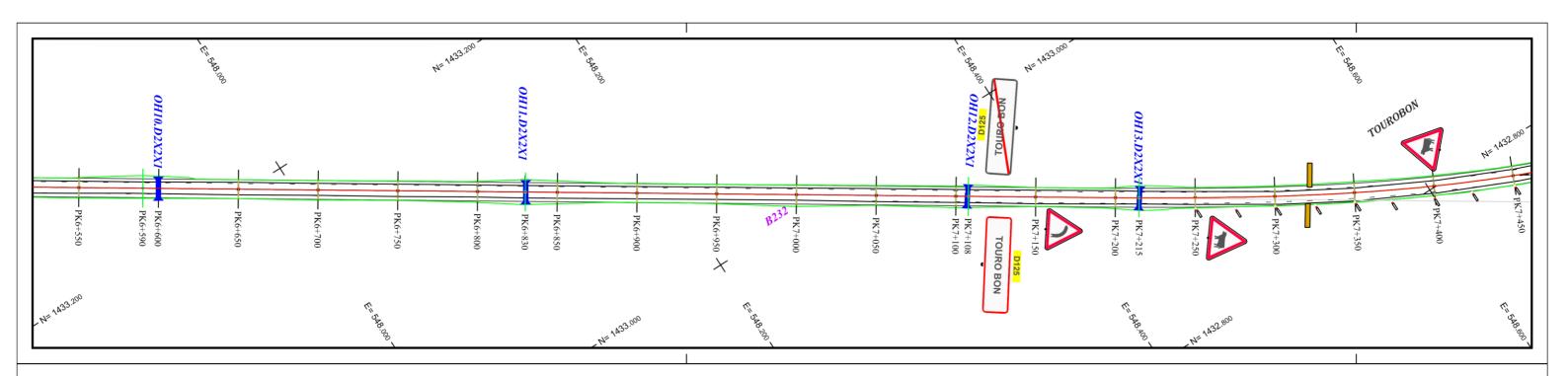

Echelle en X :	1/2000
----------------	--------

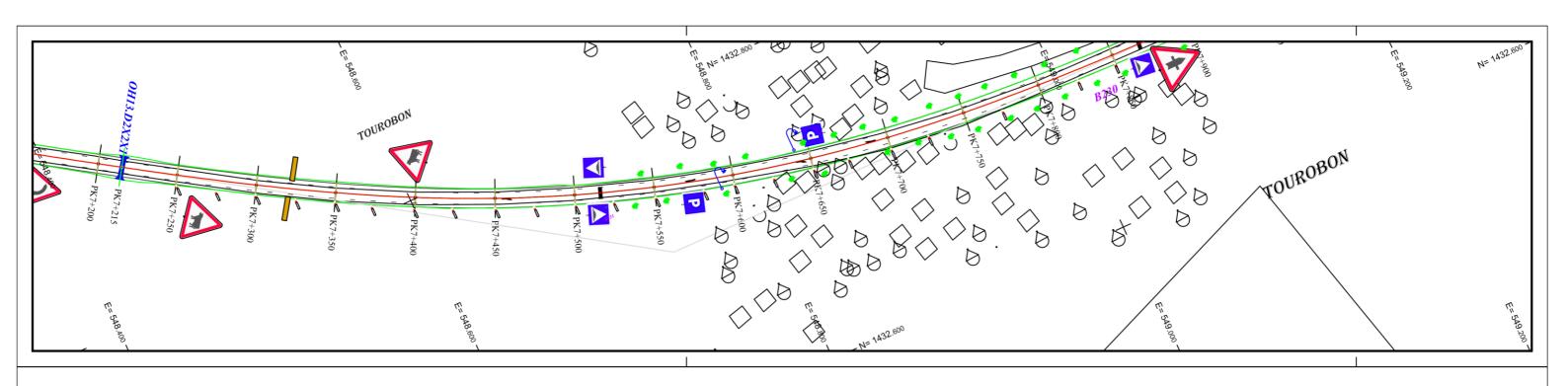

Echelle en X : 1/2000						*************	××××	***************************************																			
Echelle en Y: 1/200						***************************************		***************************************	**************************************	****	************	× × × × × × × × × × × × × × × × × × ×	***************************************		0	H6_D12	X2X 1	!,5								1	V.
PC: 237.00 m													***************************************	************	******	***********	***	×××××	××××××××××××××××××××××××××××××××××××××	***********	***	200000000000000000000000000000000000000	*******	***********	*************	****	XXX
Numéro de profils en travers		472		473	474		475	476	4/6	477		478	ţ	479	480		481	482	483		484	4 0 1	485	486		487	
Altitudes TN		243.53		242.81	242.10		241.38	040 70	240.12	240.00		239.28	6	238.86	238.66		238.61	238.61	238.61		238.60	23 82	238.63	238.60		238.46	
Altitudes Projet		243.78		243.06	242.35		241.64	040 Q5	260.92	240.25		239.53		239.11	238.91		238.86	238.86	238.86		238.85	a a c c	238.80	238.85		238.71	
Ecarts Projet - TN		0.25		0.25	0.25		0.25	0.25	0.5	0.25		0.25		0.25	0.25		0.25	0.25	0.25		0.25	, ,	0.25	0.25		0.25	
Abscisses		23+400		23+450	23+500		23+550	0044600	20010	23+650		23+700	1	23+750	23+800		23+850	23+875	23+900		23+950	0.4+000	24+000	24+050		24+100	
Distances partielles	50.00		50.00		50.00	50.00		50.00	50.00		50.00		50.00	50.00		50.00	25.	.03 2	4.97	50.00		50.00		50.00	50.00		50
Pentes et rampes	PENTE = 48.94 m = -1.35 %			•		PENTE L = 30	7.70 m l	P = -1.42 %					PENTE L = 55.20 m P = -0.80 %	PEN L = 42. P = -0.2	.52 m	PE	NTE L=	141.56 m	P <u>= -0.04</u>	· %		RAMPE L = 114.	l.64 m P	o = 0.00 %	PENTE L = 38.03 n P = -0.31 9	n L=4	
Dévers Gauche		2.50		2.50	2.50		2.50	, 5,	7:00	2.50		2.50	6	2.50	2.50		2.50	2.50	2.50		2.50	C	2.50	2.50		2.50	
Dévers Droit		-2.50		-2.50	-2.50		-2.50	, ,	75.30	-2.50	_	-2.50	i i	-2.50	-2.50		-2.50	-2.50	-2.50	_	-2.50	C C	-2.50	-2.50	_	-2.50	

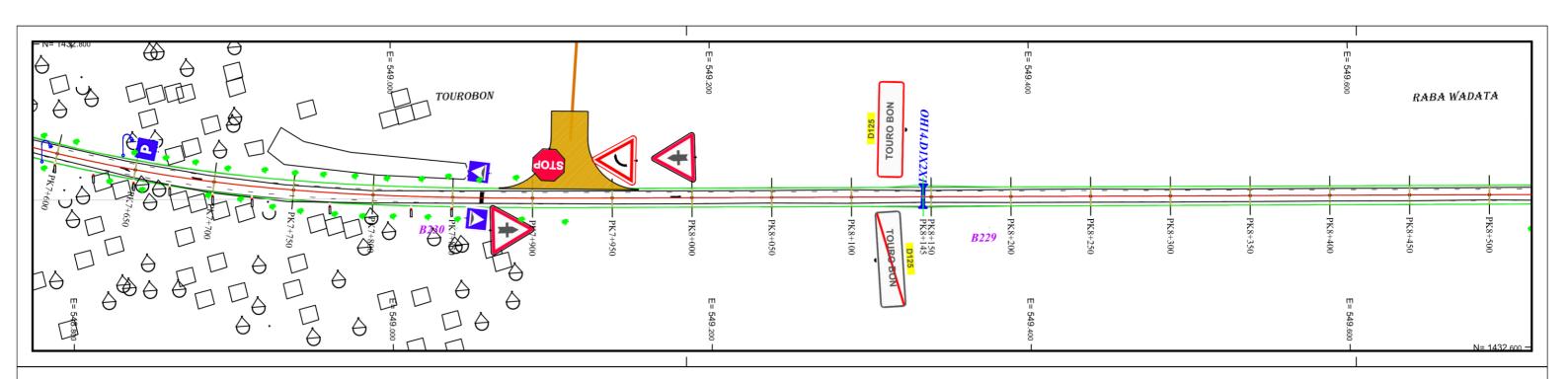






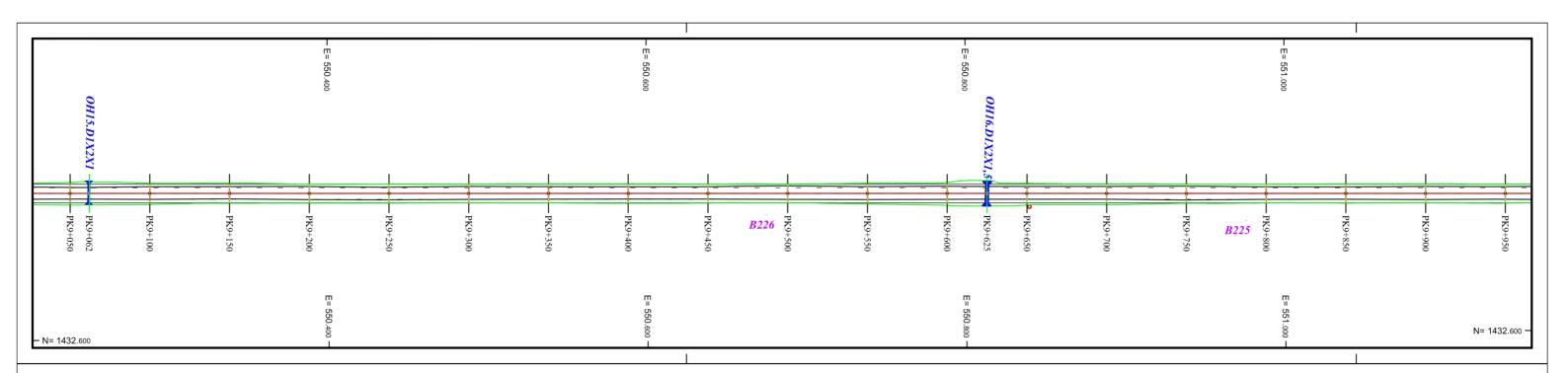

COVADIS	1																				
Axe : DOSSO-DOUTCHI AXE																					
Profil dessiné par AutoPISTE	J	***********	***************************************		0Н8	DIVIV	1 5														
Echelle en X : 1/2000			~~~	************	***************************************	************	<i>ι</i> ,3 ‱∞	**********	****	***************************************	***************************************										
Echelle en Y: 1/200							X 22	7.51			*****************************	*****	******************	***************************************	******	************	*******************************	X			
PC: 225.00 m																		************	****		
Numéro de profils en travers	501	502	503		504	505	506	507	508	1	600	510	511		512	513		514	515	516	517
Altitudes TN	231.99	231.26	230.50		229.83	229.39	229.16	229.08	228.77		728.62	228.39	228.17		227.90	227.51		226.82	225.76	224.44	223.11
Altitudes Projet	232.24	231.51	230.75		230.08	229.64		229.33	229.03		758.87	228.64	228.42		228.15	227.76		227.07	226.01	224.69	223.36
Ecarts Projet - TN	0.25	0.25	0.25		0.25	0.25	0.25	0.25	0.26		0.25	0.25	0.25		0.25	0.25		0.25	0.25	0.25	0.25
Abscisses	24+800	24+850	24+900		24+950	25+000	25+037	25+050	25+100	!	75+150	25+200	25+250		25+300	25+350		25+400	25+450	25+500	25+550
Distances partielles	50.00	50.0	00	50.00	50.00	36.94	13.0	50.00		50.00	50.00		50.00	50.00		50.00	50.00	50.00		50.00	50.00
Pentes et rampes	PEN	TE L = 138.50 m	P <u>=-1.49</u> %		PENTE L = 61.40 m P = -0.88 %	PENTI	L=97.2	2 m P = -0.62 %		PENTE L = 55.88 m P = -0.33 %		PENTE	L = 162.32 m P =	<u>-0.48</u> %		PENTE L = 33.45 m P = -0.89 %	PENTE L = 49.75 m P = -1.35 %	PENTE L = 48.65 m P = -2.07 %		PENTE I	C = 148.92 m P <u>= -2.67</u>
Dévers Gauche	2.50	2.50	2.50		2.50	2.50	2.50	5.50	2.50		7:20 7:20	2.50	2.50		2.50	2.50		2.50	2.50	2.50	
Dévers Droit	-2.50	-2.50	-2.50		-2.50	-2.50	-2.50	-2.50	-2.50		-7.50	-2.50	-2.50		-2.50	-2.50		-2.50	-2.50	-2.50	-2.50

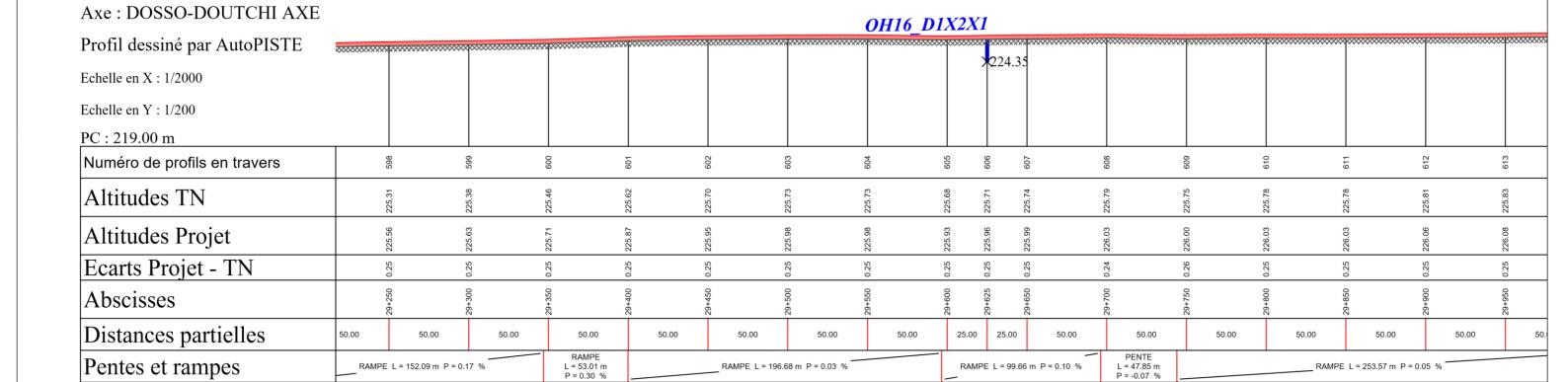

COVADIS															
Axe: DOSSO-DOUTCHI AXE															
Profil dessiné par AutoPISTE	************	OHIO_D2X	22X7 208.41 208.41												
Echelle en X : 1/2000			***************************************												
Echelle en Y: 1/200			208.41		***************************************	<i>OH11_</i>	D2X2X	1				ОН12 D2)	X2X1	<i>ОН13 І</i>	D2X2X1
PC: 205.00 m					3104XXX	***************************************	***************************************	ו××××××××××××××××××××××××××××××××××××	*****	***************************************	***************************************	·····	·····		××××××××××××××××××××××××××××××××××××××
Numéro de profils en travers	537	538	539	541	542	543	544	545	547	548	549	550	551	553	554
Altitudes TN	211.45	210.41	209.57	208.30	207.29	206.42	205.84	205.70	205.61	205.59	205.62	205.62	205.57	205.64	205.86
Altitudes Projet	211.70	210.65	209.82	208.55	207.54	206.67	206.09	205.95	205.86	205.84	205.87	205.87	205.82	205.89	206.10
Ecarts Projet - TN	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Abscisses	26+500	26+550	26+590	26+650	26+700	26+750	26+800	26+830	26+900	26+950	27+000	27+050	27+100	27+150	27+200
Distances partielles	50.00	50.00 40	.13 9.87 50.00	50.00	50.00	50.00	30.00	20.00 50.00	50.00	50.00	50.00	50.00	92.24	50.00	14.93
Pentes et rampes	ENTE 62.28 m -1.96 %	PENTE L = 146	3.75 m P <u>= -2.10</u> %	PENTE L = 50.60 m P = -2.02 %	PENTE L = 52.18 m P = -1.76 %	PENTE L = 45.11 m P = -1.21 %	PENTE L = 33.56 m P = -0.50 %	PENTE L = 65.42 m P = -0.11 %	PENTE L = 47.11 m P = -0.07 %		PENTE L = 160.61	m P = <u>-0.01</u> %	RAMPE L = 43.96 P = 0.17	m L = 45.16 m	RAMPE F L = 21.10 m L = P = 0.67 % P =
Dévers Gauche	2.50	2.50	2.50	2.50	2.50	2.50		2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Dévers Droit	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50		-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50



Axe : DOSSO-DOUTCHI AXE Profil dessiné par AutoPISTE

Echelle en X : 1/2000	WW.	OH11_1)2X2X	1		***************************************		6	OH12_D2	2X2X1	0	H13_D	2X2X	<u> </u>	XXXXXXXXXXXXXXXXX	AND THE REAL PROPERTY.			
Echelle en Y: 1/200			×	××××××××××××××××××××××××××××××××××××××	7	***************************************	***************************************	***************************************	*****	***************************************	*********	************	X	204.23					
PC: 203.00 m				203.9															
Numéro de profils en travers		543	544	545	}	547	548	549	550	551	553		554	, u		557	558	559	260
Altitudes TN		206.42	205.84	205.70		205.61	205.59	205.62	205.62	205.57	205.64		205.86	906	04.00	207.48	208.99	210.91	212.96
Altitudes Projet		206.67	206.09	205.95		205.86	205.84	205.87	205.87	205.82	205.89		206.10	7 300		207.73	209.24	211.16	213.21
Ecarts Projet - TN		0.25	0.25	0.25		0.25	0.25	0.25	0.25	0.25	0.25		0.25	300		0.25	0.25	0.25	0.25
Abscisses		26+750	26+800	26+830		26+900	26+950	27+000	27+050	27+100	27+150		27+200	27+260	000	27+300	27+350	27+400	27+450
Distances partielles	50.00	50.00	30.00	20.00	50.00	50.00	50.00	50.00	50.0	00 27.7	42.24	50.00	14.93	35.07	50.00	50.00	50.00	50.00	5
Pentes et rampes	PENTE L = 52.18 m P = -1.76 %	PENTE L = 45.11 m P = -1.21 %	PENTE L = 33.56 m P = -0.50 %	L	PENTE = 65.42 m = -0.11 %	PENTE L = 47.11 m P = -0.07 %	P	ENTE L = 160.61 m	P =0.01 %	L = -	AMPE 43.96 m 0.17 %	RAMPE L = 45.16 m P = 0.40 %		RAMPE L = 31.10 m P = 1.41 %	RAMPE L = 55.46 m P = 2.04 %	RAMPE L = 33.28 m P = 3.11 %	RAMPE L = 45.49 m P = 3.84 %	RAMPE L = 51.81 n P = 4.09 %	
Dévers Gauche		2.50	2.50	2.50		2.50	2.50	2.50	2.50	2.50	2.50		2.50		200	2.50	2.50	2.50	2.50
Dévers Droit		-2.50	-2.50	-2.50		-2.50	-2.50	-2.50	-2.50	-2.50	-2.50		-2.50			-2.50	-2.50	-2.50	-2.50


																OH1
Axe: DOSSO-DOUTCHI AXE Profil dessiné par AutoPISTE Echelle en X: 1/2000 Echelle en Y: 1/200 PC: 208.00 m			THE REAL PROPERTY OF THE PARTY	NATURAL DESCRIPTION OF THE PARTY OF THE PART	DO PORTO DE CONTROL DE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	***************************************	***************************************	***************************************	***************************************	***************************************		***************************************		***************************************
Echelle en Y : 1/200 PC : 208.00 m	ATTENDED TO SERVICE AND ADDRESS OF THE PERSON OF THE PERSO															
Numéro de profils en travers		559	- 260	561	295	563	564	565	2999	295	268	569	570	- 129	572	
Altitudes TN	66.50	210.91	212.96	214.77	216.25	217.41	218.32	218.90	219.32	219.78	220.15	220.48	220.78	221.08	221.33	
Altitudes Projet	17.60.	211.16	213.21	215.02	216.50	217.66	218.57	219.15	219.57	220.03	220.40	220.73	221.03	221.33	221.58	
Ecarts Projet - TN	7.0	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
Abscisses	900	27+400	27+450	27+500	27+550	27+600	27+650	27+700	27+750	27+800	27+850	27+900	27+950	28+000	28+050	
Distances partielles	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	5	50.00	50.00
Pentes et rampes	RAMPE L = 45.49 m P = 3.84 %	RAMPE L = 51.81 m P = 4.09 %	RAMPE L = 39.65 m P = 3.65 %	RAMPE L = 48.93 m P = 2.98 %	RAMPE L = 32.77 m P = 2.49 %	RAMPE L = 57.14 m P = 1.87 %	RAMPE L = 15.90 m P = 1.32 % P = 1.13 %	RAMPE L = 48.13 m P = 0.83 %		RA	AMPE L = 255.40 m	P = 0.71 %		L = 4	AMPE 49.11 m 0.49 %	RAMPE L = 48.55 m P = 0.77 %
Dévers Gauche	20.4	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	
Dévers Droit	200	-2.50	-2.50	-2.50	2.50	2.50	-2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	



COVADIS

Axe : DOSSO-DOUTCHI AXE Profil dessiné par AutoPISTE

Echelle en X : 1/2000						OH.	14_D1X2	X1 ************************************	***************************************	************	************	***************************************			
Echelle en Y: 1/200		*****		***************************************	***************************************	***************************************		220.77							
PC: 218.00 m	~~~														
Numéro de profils en travers	567	268	999	920	571	572	573	574 575	576	577	578	629	580	581	582
Altitudes TN	219.78	220.15	220.48	220.78	221.08	221.33	221.71	221.95	222.31	222.55	222.88	223.17	223.48	223.79	224.10
Altitudes Projet	220.03	220.40	220.73	221.03	221.33	221.58	221.96	222.20	222.56	222.80	223.13	223.43	223.74	224.04	224.35
Ecarts Projet - TN	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.26	0.26	0.25	0.25
Abscisses	27+800	27+850	27+900	27+950	28+000	28+050	28+100	28+145 28+150	28+200	28+250	28+300	28+350	28+400	28+450	28+500
Distances partielles	50.00	50.00	50.00	50.00	50.00	50.00	45.00	00 50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
Pentes et rampes		RAMPE L = 255.40 m	P = 0.71 %		RAMPE L = 49.11 m P = 0.49 %	RAMPE L = 48.55 m P = 0.77 %	RAMPE L = 46.32 m P = 0.53 %	RAMPE L = 54.95 m P = 0.65 %	RAMPE L = 45.00 m P = 0.46 %			RA	MPE L = 355.31 m P :	= 0.62 %	·
Dévers Gauche	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
Dévers Droit	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50	-2.50

RAMPE L = 196.68 m P = 0.03 %

RAMPE L = 99.66 m P = 0.10 %

COVADIS

Pentes et rampes

Dévers Gauche

Dévers Droit

RAMPE L = 152.09 m P = 0.17 %

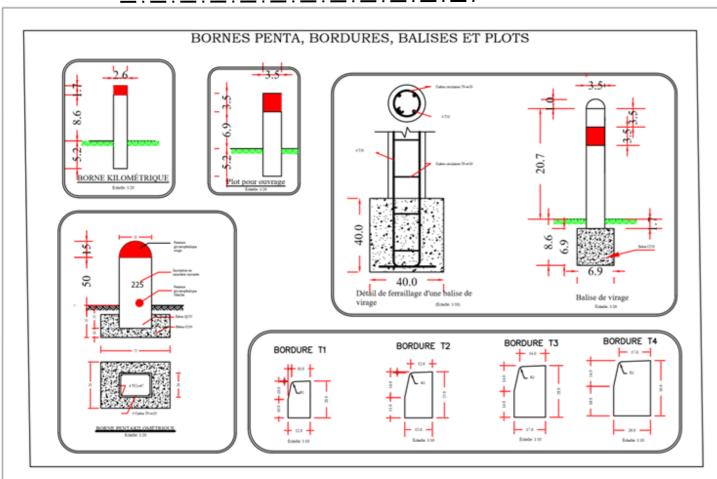
-2.50

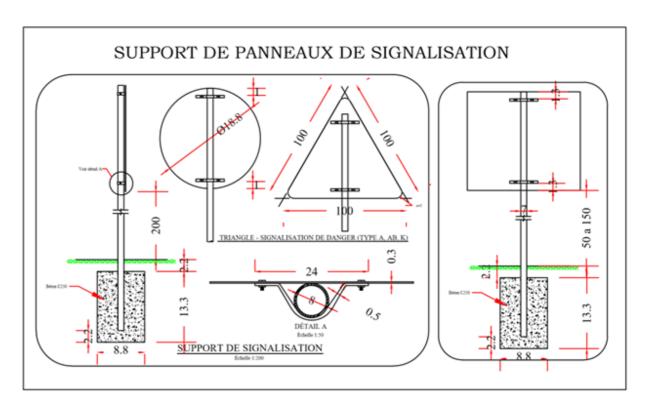
-2.50

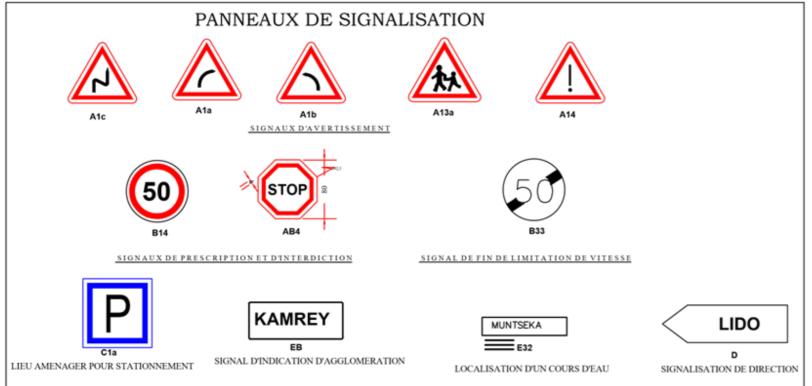
RAMPE L = 253.57 m P = 0.05 %

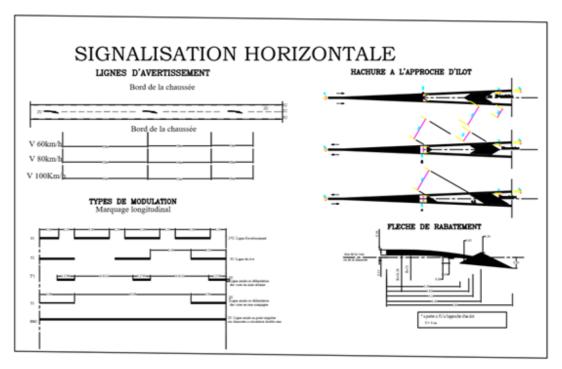
-2.50

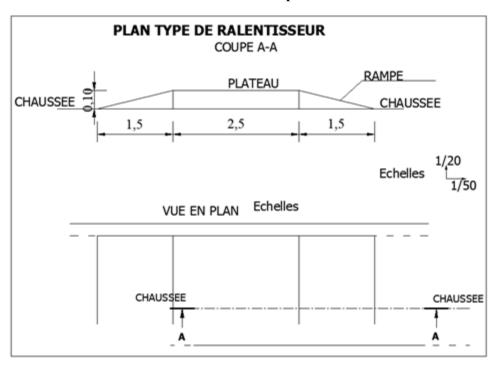
ANNEXE IV: ETUDE COMPLEMENTAIRE:


1. Signalisation routière :


La quantité des panneaux de signalisation verticale utilisée dans le cadre de notre étude se trouve dans le tableau ci-dessous :


QUA	NTITATIF (28/12/2	024)
APERCU	NOM	QUANTITE
\triangle	A15a1	4
	A1A	2
\triangle	A1b	2
lack	AB2	2
STOP	AB4	1
P	C1a	4
A	C20a	2
_	C27	12
D125 COURPIERE	EB10	6
LA CHAPELLE PRAINSOUIN	EB20	6
	J3a	42
	TOTAL	83





2. Dispositif de sécurité :

Ralentisseur forme trapézoïdale :

Source: Norme NF 98-300:

Annexe 44 : Ralentisseur retenu pour le projet

Éclairage public solaire

Spécification technique du Lampadaire retenu sont consignés dans les tableaux ci-après :

Puissance de la lampe	30 W
Efficacité lumineuse	> 180 m/w
Source d'éclairage LED	Module LED 5050 ultra lumineux
LiFePO4 Capacité de la batterie au	Maximum 74AH/25,6V (1895 WH)
lithium	
Contrôleur solaire (PWM/MPPT)	10 A/15A/20A (personnalisable)
Matériau de fixation de lampe	Moulage sous pression en aluminium
Adaptateur de lampe	60 mm diamètre
Capacité du panneau solaire	60 W – 720 W (personnalisable)
Dimension du produit	720 ×340×135 mm
Dimension du paquet	780 ×387×187
Niveaux de protection	IP 66 / IK 09
Hauteur de montage du poteau suggérée	6 m (personnalisable)
Température de travail	20 – 65° C
Durée de vie du système	> 10 ans
Garantie	3 – 5 ans
Fonctions facultatives	Capteur de mouvement/système de contrôle intelligent IoT

Puissance de lampe	Hauteur lampadaire	Largeur de la route	Distance d'espacement
20 W	5 m	6 m	18 m
30 W	6 m	7 m	20 m
40 W	8 m	8 m	25 m

3. Notice d'impact environnementale et sociale (NIES) :

Cette partie d'annexe NIES présente le tableau des différents Impacts ainsi que des mesures préventives proposées :

Phase	Composantes	Élément	Impacts	Caractéristiques de l'impact		Mesure d'atténuation et/ou bonification	
				Nature	Importance		
		Sol	Production de déchets et pollution des sols	Négatif	Moyenne	Gestion des déchets ; confinement des produits dangereux ; stockage approprié des pièces usagées ; formation à la gestion des déchets	
	Biophysique	Air	Pollution de l'air par la poussière	Négatif	Forte	Arrosage régulier des zones de travaux et voies ; entretien des engins,	
ıtion	Bio	Faune	Perturbation de l'habitat et de la quiétude	Négatif	Moyenne	Marque claire des zones de travaux ; sensibilisation la protection de la faune	
Préparation			Végétation	Destruction de la végétation	Négatif	Moyenne	Délimitation des emprises ; plantation des arbres en compensation
		Santé	Risque de maladies respiratoires	Négatif	Moyenne	Arrosage régulier des zones de poussiéreuses ; accès à l'eau potable et installation sanitaire	
	Humain	Sécurité	Risque d'accidents	Négatif	Moyenne	Signalisation appropriée ; communication sur les mesures de prévention	
		Emploi	Création d'emploi	Positif	Moyenne	Priorité aux populations locales pour les postes non qualifiés,	

Phase	Composantes	Élément	Impacts	Caractéristiques de l'impact		Mesure d'atténuation et/ou bonification
				Nature	Importance	
		Air	Pollution par poussière et gaz	Négatif	Mineure	Arroser régulièrement les pistes ; entretien des engins ; éloigner les zones de stockage des habitations,
		Ambiance sonore	Nuisance sonores	Négatif	Mineure	Réduire les travaux bruyants nocturnes ; protection individuelle contre le bruit pour les travailleurs,
ction	ique	Sol	Érosion et contamination	Négatif	Mineure	Stabiliser les terrains après travaux ; mise en place de mesures de conservation des sols
Construction	Biophysique	Eau	Contamination et modification de l'hydrologie	Négatif	Mineure	Gestion rationnelle de l'au, éviter les dépôts de déchets à proximité des cours d'eau
		Végétation	Perte de la couverture végétale	Négatif	Moyenne	Planter des arbres en compensation ; sensibiliser les travailleurs à la protection de la végétation
		Faune	Destruction de l'habitat	Négatif	Mineure	Respecter la législation en vigueur ; sensibiliser sur l'importance de la faune

Phase	Composantes	Élément	Impacts	Caractéristiques de l'impact Nature Importance		1'impact Mesure d'atténu		Mesure d'atténuation et/ou bonification
Construction	Humain	Santé et sécurité	Maladies respiratoires; risque d'accidents de travail; risque d'augmentation de l'incidence sexuelle (VIH/SIDA) pour les communautés riverains	Négatif	Moyenne	Fournir des équipements de protection ; mettre en place un plan de gestion de la santé et de la sécurité, élaboration et mise en œuvre d'un plan d'information sur les MST et le VIH/SIDA et d'un plan de surveillance médicale de la main d'œuvre		
Cor	, ,	Emploi et revenu	Création d'emplois et dynamisation du commerce	Positif	Moyenne	Encourager les candidatures des femmes aux emplois proposés ; favoriser la sous -traitance locale,		
		Agriculture et élevage	Destruction des parcelles agricoles et perturbation du transport de bétail	Négatif	Moyenne	Installer les panneaux de signalisation ; sensibiliser les pollutions sur la divagation des animaux,		

Phase	Composantes	Élément	Impacts	Caractéristiques de l'impact		Mesure d'atténuation et/ou bonification
				Nature	Importance	
		Air	Altération de la qualité de l'air	Négatif	Moyenne	Panneaux de signalisation et ralentisseurs,
	Biophysique	Sol	Amélioration des activités de conservation	Positif	Moyenne	Surveillance des ouvrages de drainage
	B	Eau	Obstruction ou modification des écoulements	Négatif	Mineure	Maintenance régulière des ouvrages hydrauliques
EXPLOITATION		Santé et sécurité	Propagation des MST/VIH; risque d'accidents de circulation	Négatif	Faible	Sensibilisation des riverains et mise en place de la comité locale
	Humain	Commerce et transport	Amélioration des activités économiques et de transport	Positif	Moyenne	Mettre en place des comités locaux d'entretien de la route pour la sensibilisation des pollutions bénéficiaires sur le bienfait de l'infrastructure d'une part, et la nécessité de la préserver en cas de détérioration constatée d'autre part.

4. ESTIMATION DU COUT DU PROJET:

L'estimation du coût du projet de notre étude se trouve dans le tableau de la page suivante :

N° Prix	Désignations	Unités	Quantités	P.U 2024	Montants H.T
SERIE 000	INSTALLATION ET	REPLII	EMENT DE	CHANTIER	
1	Installations des bases de l'entreprise	ff	1	250 000 000	250 000 000
2	Amenée et repli du matériel	ff	1	227 000 000	227 000 000
3	Centrale de concassage y compris pont bascule	ff	1	50 000 000	50 000 000
4	Centrale d'enrobage	ff	1	40 000 000	40 000 000
5	Aménagement et/ou entretien des déviations	km	10	6 000 000	60 000 000
6	Bureaux de chantier de la mission de Contrôle	FF	1	100 000 000	100 000 000
7	Logements de la mission de contrôle	FF	1	150 000 000	150 000 000
8	Campagne de déflexion à la fin de la	km	10	840 000	8 400 000
	couche de base				
	al série 000 : Installation et repliement de				885 400 000
SERIE	TRAVAU	X PREPA	ARATOIRE	S	
100		T -	1	T	T
101	Débroussaillement, nettoyage et décapage de l'emprise de l'élargissement	m2	2 000	400	800 000
102	Abattage d'arbres de circonférence	u	20	65 000	1 300 000
103	supérieure à 1 m mesurée à 1,5 m du sol				
103	Démolition ou dépose d'ouvrage existant autre que les dalots et buses				
103.1	Ouvrage divers en béton armé	m3	15	54 000	810 000
103.1	Ouvrage divers en béton non armé	m3	10	51 500	515 000
103.2	Bordures de tous types	ml	64	5 500	352 000
103.4	Descentes d'eau	ml	10	6 000	60 000
103.5	Perré maçonné	m2	8 909	4 500	40 090 500
103.6	Fossé maçonné	ml	2 422	4 200	10 172 400
103.7	Fossé bétonné	ml	4 739	5 800	27 486 200
103.8	Gabion	m3	2 294	3 500	8 029 000
103.9	Enrochement	m3	55	3 200	176 000
103.10	Panneau de signalisation	u	118	2 500	295 000
103.11	Balise	u	30	6 050	181 500
103.12	Borne kilométrique	u	5	15 000	75 000
103.13	Borne penta kilométrique	u	_	18 000	
104	Déviations des réseaux des				
1044	concessionnaires	D		120 000 000	120 000 000
104.1	Réseau d'eau potable Réseau électrique et d'éclairage	Prov. Prov.	1	120 000 000 65 000 000	120 000 000 65 000 000
104.3	(NIGELEC) Réseau téléphonique (NIGER TELECOM)	Prov.	1	15 000 000	15 000 000
105	Foureau de réservation	Prov.	1	50 000 000	50 000 000

SERIE 100	TRAVAUX PREPARATOIRES				
106	Démolition des têtes de dalots				
106.1	D1X1X0,60	u	4	112 800	451 200
106.2	D1X1,5X0,75	u	1	131 600	131 600
106.3	D1X2X0,80	u	1	150 400	150 400
106.4	D1X2X1	u	5	188 000	940 000
107	Démolition des corps des dalots				
107.1	D1X1X0,60	ml	277,25	40 800	11 311 800
107.2	D1X1,5X0,75	ml	8,4	68 000	571 200
107.3	D1X2X0,80	ml	118,1	48 960	5 782 176
108	Démontage et dépôt des buses				
108.1	Buse de diamètre 80 cm	ml	1 709,00	35 000	59 815 000
	Sous total série 100 : Travaux préparatoire				420 902 476
SERIE 200	TERRASSEMENT POUR ELARGISSEMENT				
201	Purge sur emprise d'élargissement	m3	250	8 000	2 000 000
202	Déblai mis en dépôt ou en remblai				
202.1	En terrain ordinaire ou rippable	m3	84 000	3 500	294 000 000
202.2	En terrain rocheux	m3	5	12 000	60 000
203	Remblai en redan provenant de déblai quel qu'en soit la distance	m3	51 000	3 200	163 200 000
204	Remblai en redan provenant d'emprunt quel qu'en soit la distance	m3	5 000	3 800	19 000 000
	Sous-total Série 200 : Terrassement				478 260 000
SERIE 300	CHAUSSEE				
301	Fourniture et mise en œuvre de graveleux latéritique naturel (GLN) pour élargissement de la fondation et base existantes	m3	254 000	6 500	1 651 000 000
302	Point à temps en GLN sur ancienne base y.c le transport	m3	20	3 800	76 000
303	Scarification de la chaussée existante	m2	10 000	250	2 500 000
304	Recyclage de la base élargie pour servir de fondation	m2	117 065	260	30 436 900
305	Fourniture et mise en œuvre de GLN pour le renforcement	m3	85 650	6 825	584 561 250
306	Fourniture et mise en œuvre de ciment pour grave latéritique améliorée au ciment (GLAC)	t	13 900	75 000	1 042 500 000
307	Transport matériaux de chaussée (prix 301 et 305)	m3xkm	183 760	240	44 102 400
	Sous-total Série 300 : chaussée				3 355 176 550

SERIE 400	REVETEMENT				
401	Fourniture de bitume fluidifié 0/1 (cut back)	t	120	840 000	100 800 000
	pour imprégnation				
402	Fourniture de bitume pur pour enduit	t	75	840 000	63 000 000
	superficiel monocouche et couche				
	d'accrochage				
403	Fourniture et transport de granulats de toutes	m3	400	65 000	26 000 000
	dimensions pour enduit superficiel				
404	Mise en œuvre imprégnation	m2	10 000	180	1 800 000
405	Mise en œuvre monocouche	m2	45	280	12 600
406	Mise en œuvre couche d'accrochage	m2	7 000	150	1 050 000
407	Fourniture et mise en œuvre du béton	m3	3 390	260 000	881 400 000
	bitumineux (BBSG) pour couche de				
	roulement				
	Sous-total Série 400 : revêtement				1 074 062 600
SERIE 500	ASSAINISSEMENT ET DRAINAGE				
501	Fouille en terrain de toute nature	m3	7 233	6 000	43 398 000
502	Remblai latéritique pour bloc technique	m3	460	15 000	6 900 000
503	Bétons pour ouvrages				
503.1	Béton de propreté dosé à 150 kg/m3	m3	100	85 000	8 500 000
503.2	Béton cyclopéen	m3	5	92 000	460 000
503.3	Béton dosé à 250 kg/m3	m3	10	105 000	1 050 000
503.4	Béton dosé à 300 kg/m3	m3	15	118 000	1 770 000
503.5	Béton dosé à 350 kg/m3	m3	510	125 000	63 750 000
504	Fourniture et mise en œuvre des aciers haute	kg	21 500	1 520	32 680 000
	adhérence pour ouvrages				
505	Fossés triangulaires en terre latéraux ou	ml	70	2 500	175 000
	divergents	_			
506	Fossés longitudinaux revêtus en béton	m3	960	60 000	57 600 000
	cyclopéen			1.70.000	
507	Construction de caniveaux en béton armé	ml	100	150 000	15 000 000
7 00	avec rainure de pose de dallettes 0,80x0,80		20	22 000	540.000
508	Fourniture et pose dallettes sur caniveaux de	ml	20	32 000	640 000
500	8,00x0,80	1	4.200	10.000	12 000 000
509	Fourniture et pose de bordures types T2	ml	4 300	10 000	43 000 000
510	Fourniture et pose de descente d'eau	ml	82	15 000	1 230 000
511	Fourniture et mise en œuvre de perrés maçonnés	m2	304	32 000	9 728 000
512	Fourniture et pose de gabions	m3	100	35 000	3 500 000
513	Fourniture et pose d'enrochement	m3	65	20 000	1 300 000
514	Calibrage et rectification de lit de cours d'eau	m3	950	3 000	2 850 000
	Sous-total Série 500 : assainissement et				293 531 000
	drainage				

SERIE	SIGNALISATION				
600					
601	SECURITE Signalisation horizontale				
601.1	Ligne d'axe continue module T1 largeur = 12 cm	ml	26 338	1 460	38 453 480
601.2	Ligne d'axe discontinue module T1 largeur = 12 cm	ml	9 613	580	5 575 540
601.3	Ligne de rive module T'2 largeur = 12 cm	ml	19 780	730	14 439 400
601.4	Marquage spécial de passage piétons	m2	10,5	2 000	21 000
601.5	Marquage spécial des flèches directionnelles de rabattement	u	42	1 800	75 600
601.6	Marquage embranchements et carrefours	m2	25	3 000	75 000
602	Signalisation verticale				
602.1	Panneau de signalisation triangulaire de type A	u	8	112 000	896 000
602.2	Panneau de signalisation octogonal de type AB	u	3	112 000	336 000
602.3	Panneau rectangulaire de signalisation de localité de type EB	u	12	112 000	1 344 000
602.4	Panneau de pré signalisation ou de signalisation d'aire de stationnement de type C	u	18	112 000	2 016 000
603	Fourniture et pose de balises	u	42	45 000	1 890 000
604	Plots de signalisation pour ouvrages	u	76	30 000	2 280 000
605	Borne kilométrique	u	3	70 000	210 000
606	Borne penta kilométrique	u	22	120 000	2 640 000
607	Construction de ralentisseur en béton armé	u	6	650 000	3 900 000
608	Aire de stationnement	u	2	-	-
609	Fourniture et installation de candélabres solaire simple cross y.c tous les accessoires	u	14	1 200 000	16 800 000
610	Glissière de sécurité	ml	400	140 000	56 000 000
	Sous-total Série 600 : Signalisation et Sécurité				146 952 020

SERIE 700	ENVIRONNEMENT				
701	Remise en état des gîtes en terre agricole	ha	20	2 500 000	50 000 000
702	Plantation d'arbres d'alignement et suivi pendant un an	u	100	20 000	2 000 000
703	Rampe d'accès pour animaux d'une largeur de 5 ml et une rampe de 10%	u	2	400 000	800 000
704	Sensibilisation des IST/SIDA	ff	1	10 000 000	10 000 000
	Sous-total Série 700 : Environnement				62 800 000
SERIE 800	TRAVAUX CONNEXES				
801	Réalisation de forages	u	1	50 000 000	50 000 000
802	Clôtures d'écoles, de centre de santé et de marché	ml	400	45 000	18 000 000
	Sous-total Série 800 : Travaux connexes				68 000 000
	TOTAL TRAVAUX H. T			6 785	084 646
	TVA (19%)	•	1 289 166 083		
	MONTANT TOTAL TTC (FCFA)	8 074	1 250 729		